mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-21 15:43:52 +08:00
Compare commits
1 Commits
main
...
codex/remo
Author | SHA1 | Date | |
---|---|---|---|
944913c0fa |
@ -5,11 +5,11 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import zipfile
|
import zipfile
|
||||||
|
|
||||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 500 MiB
|
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 450 MiB
|
||||||
# Note that we have 800 MiB quota, please use it wisely.
|
# Note that we have 800 MiB quota, please use it wisely.
|
||||||
# See https://github.com/pypi/support/issues/6326 .
|
# See https://github.com/pypi/support/issues/6326 .
|
||||||
# Please also sync the value with the one in Dockerfile.
|
# Please also sync the value with the one in Dockerfile.
|
||||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 500))
|
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 450))
|
||||||
|
|
||||||
|
|
||||||
def print_top_10_largest_files(zip_file):
|
def print_top_10_largest_files(zip_file):
|
||||||
|
@ -1,12 +0,0 @@
|
|||||||
# For vllm script, with -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
|
|
||||||
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
|
|
||||||
tasks:
|
|
||||||
- name: "gsm8k"
|
|
||||||
metrics:
|
|
||||||
- name: "exact_match,strict-match"
|
|
||||||
value: 0.419
|
|
||||||
- name: "exact_match,flexible-extract"
|
|
||||||
value: 0.416
|
|
||||||
limit: 1000
|
|
||||||
num_fewshot: 5
|
|
@ -1,12 +0,0 @@
|
|||||||
# For hf script, without -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 100 -t 8
|
|
||||||
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
|
||||||
backend: "vllm-vlm"
|
|
||||||
tasks:
|
|
||||||
- name: "chartqa"
|
|
||||||
metrics:
|
|
||||||
- name: "relaxed_accuracy,none"
|
|
||||||
# TODO(zhewenl): model card is 0.90, but the actual score is 0.80.
|
|
||||||
value: 0.80
|
|
||||||
limit: 100
|
|
||||||
num_fewshot: 0
|
|
@ -1,10 +0,0 @@
|
|||||||
# For hf script, without -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-mmlupro-vllm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 250 -t 8 -f 5
|
|
||||||
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
|
||||||
tasks:
|
|
||||||
- name: "mmlu_pro"
|
|
||||||
metrics:
|
|
||||||
- name: "exact_match,custom-extract"
|
|
||||||
value: 0.80
|
|
||||||
limit: 250 # will run on 250 * 14 subjects = 3500 samples
|
|
||||||
num_fewshot: 5
|
|
@ -1,5 +1,4 @@
|
|||||||
# For vllm script, with -t option (tensor parallel size)
|
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -l 1319 -t 1
|
|
||||||
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
|
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
|
||||||
tasks:
|
tasks:
|
||||||
- name: "gsm8k"
|
- name: "gsm8k"
|
||||||
|
@ -1,12 +0,0 @@
|
|||||||
# For vllm script, with -t option (tensor parallel size).
|
|
||||||
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m Qwen/Qwen2.5-VL-7B-Instruct -l 2500 -t 1
|
|
||||||
|
|
||||||
model_name: "Qwen/Qwen2.5-VL-7B-Instruct"
|
|
||||||
backend: "vllm-vlm"
|
|
||||||
tasks:
|
|
||||||
- name: "chartqa"
|
|
||||||
metrics:
|
|
||||||
- name: "relaxed_accuracy,none"
|
|
||||||
value: 0.855
|
|
||||||
limit: 2500
|
|
||||||
num_fewshot: 0
|
|
@ -1 +0,0 @@
|
|||||||
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8.yaml
|
|
@ -1 +0,0 @@
|
|||||||
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8-MM.yaml
|
|
@ -1 +0,0 @@
|
|||||||
Qwen2.5-VL-7B-Instruct.yaml
|
|
@ -1,44 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# We can use this script to compute baseline accuracy on chartqa for vllm.
|
|
||||||
#
|
|
||||||
# Make sure you have lm-eval-harness installed:
|
|
||||||
# pip install lm-eval==0.4.9
|
|
||||||
|
|
||||||
usage() {
|
|
||||||
echo``
|
|
||||||
echo "Runs lm eval harness on ChartQA using multimodal vllm."
|
|
||||||
echo "This pathway is intended to be used to create baselines for "
|
|
||||||
echo "our correctness tests in vllm's CI."
|
|
||||||
echo
|
|
||||||
echo "usage: ${0} <options>"
|
|
||||||
echo
|
|
||||||
echo " -m - huggingface stub or local directory of the model"
|
|
||||||
echo " -l - limit number of samples to run"
|
|
||||||
echo " -t - tensor parallel size to run at"
|
|
||||||
echo
|
|
||||||
}
|
|
||||||
|
|
||||||
while getopts "m:l:t:" OPT; do
|
|
||||||
case ${OPT} in
|
|
||||||
m )
|
|
||||||
MODEL="$OPTARG"
|
|
||||||
;;
|
|
||||||
l )
|
|
||||||
LIMIT="$OPTARG"
|
|
||||||
;;
|
|
||||||
t )
|
|
||||||
TP_SIZE="$OPTARG"
|
|
||||||
;;
|
|
||||||
\? )
|
|
||||||
usage
|
|
||||||
exit 1
|
|
||||||
;;
|
|
||||||
esac
|
|
||||||
done
|
|
||||||
|
|
||||||
lm_eval --model vllm-vlm \
|
|
||||||
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE" \
|
|
||||||
--tasks chartqa \
|
|
||||||
--batch_size auto \
|
|
||||||
--apply_chat_template \
|
|
||||||
--limit $LIMIT
|
|
0
.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Executable file → Normal file
0
.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Executable file → Normal file
@ -1,50 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# We can use this script to compute baseline accuracy on MMLUPRO for vllm.
|
|
||||||
# We use this for fp8, which HF does not support.
|
|
||||||
#
|
|
||||||
# Make sure you have lm-eval-harness installed:
|
|
||||||
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
|
|
||||||
|
|
||||||
usage() {
|
|
||||||
echo``
|
|
||||||
echo "Runs lm eval harness on MMLU Pro using huggingface transformers."
|
|
||||||
echo "This pathway is intended to be used to create baselines for "
|
|
||||||
echo "our automated nm-test-accuracy workflow"
|
|
||||||
echo
|
|
||||||
echo "usage: ${0} <options>"
|
|
||||||
echo
|
|
||||||
echo " -m - huggingface stub or local directory of the model"
|
|
||||||
echo " -l - limit number of samples to run"
|
|
||||||
echo " -f - number of fewshot samples to use"
|
|
||||||
echo " -t - tensor parallel size to run at"
|
|
||||||
echo
|
|
||||||
}
|
|
||||||
|
|
||||||
while getopts "m:b:l:f:t:" OPT; do
|
|
||||||
case ${OPT} in
|
|
||||||
m )
|
|
||||||
MODEL="$OPTARG"
|
|
||||||
;;
|
|
||||||
b )
|
|
||||||
BATCH_SIZE="$OPTARG"
|
|
||||||
;;
|
|
||||||
l )
|
|
||||||
LIMIT="$OPTARG"
|
|
||||||
;;
|
|
||||||
f )
|
|
||||||
FEWSHOT="$OPTARG"
|
|
||||||
;;
|
|
||||||
t )
|
|
||||||
TP_SIZE="$OPTARG"
|
|
||||||
;;
|
|
||||||
\? )
|
|
||||||
usage
|
|
||||||
exit 1
|
|
||||||
;;
|
|
||||||
esac
|
|
||||||
done
|
|
||||||
|
|
||||||
lm_eval --model vllm \
|
|
||||||
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,trust_remote_code=true,max_model_len=4096" \
|
|
||||||
--tasks mmlu_pro --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
|
|
||||||
--batch_size auto
|
|
@ -19,27 +19,21 @@ RTOL = 0.08
|
|||||||
def launch_lm_eval(eval_config, tp_size):
|
def launch_lm_eval(eval_config, tp_size):
|
||||||
trust_remote_code = eval_config.get("trust_remote_code", False)
|
trust_remote_code = eval_config.get("trust_remote_code", False)
|
||||||
max_model_len = eval_config.get("max_model_len", 4096)
|
max_model_len = eval_config.get("max_model_len", 4096)
|
||||||
batch_size = eval_config.get("batch_size", "auto")
|
|
||||||
backend = eval_config.get("backend", "vllm")
|
|
||||||
model_args = (
|
model_args = (
|
||||||
f"pretrained={eval_config['model_name']},"
|
f"pretrained={eval_config['model_name']},"
|
||||||
f"tensor_parallel_size={tp_size},"
|
f"tensor_parallel_size={tp_size},"
|
||||||
f"enforce_eager=true,"
|
f"enforce_eager=true,"
|
||||||
f"add_bos_token=true,"
|
f"add_bos_token=true,"
|
||||||
f"trust_remote_code={trust_remote_code},"
|
f"trust_remote_code={trust_remote_code},"
|
||||||
f"max_model_len={max_model_len},"
|
f"max_model_len={max_model_len}"
|
||||||
)
|
)
|
||||||
results = lm_eval.simple_evaluate(
|
results = lm_eval.simple_evaluate(
|
||||||
model=backend,
|
model="vllm",
|
||||||
model_args=model_args,
|
model_args=model_args,
|
||||||
tasks=[task["name"] for task in eval_config["tasks"]],
|
tasks=[task["name"] for task in eval_config["tasks"]],
|
||||||
num_fewshot=eval_config["num_fewshot"],
|
num_fewshot=eval_config["num_fewshot"],
|
||||||
limit=eval_config["limit"],
|
limit=eval_config["limit"],
|
||||||
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
|
batch_size="auto",
|
||||||
# text models. however, this is regressing measured strict-match for
|
|
||||||
# existing text models in CI, so only apply it for mm.
|
|
||||||
apply_chat_template=backend == "vllm-vlm",
|
|
||||||
batch_size=batch_size,
|
|
||||||
)
|
)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
@ -454,6 +454,11 @@ main() {
|
|||||||
fi
|
fi
|
||||||
check_hf_token
|
check_hf_token
|
||||||
|
|
||||||
|
# Set to v1 to run v1 benchmark
|
||||||
|
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
|
||||||
|
export VLLM_USE_V1=1
|
||||||
|
fi
|
||||||
|
|
||||||
# dependencies
|
# dependencies
|
||||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||||
(which jq) || (apt-get update && apt-get -y install jq)
|
(which jq) || (apt-get update && apt-get -y install jq)
|
||||||
|
@ -8,21 +8,7 @@ steps:
|
|||||||
commands:
|
commands:
|
||||||
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
|
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
|
||||||
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
|
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||||
- "mkdir artifacts"
|
|
||||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
|
||||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
|
||||||
env:
|
|
||||||
DOCKER_BUILDKIT: "1"
|
|
||||||
|
|
||||||
# aarch64 build.
|
|
||||||
- label: "Build arm64 CPU wheel"
|
|
||||||
depends_on: ~
|
|
||||||
id: build-wheel-arm64-cpu
|
|
||||||
agents:
|
|
||||||
queue: arm64_cpu_queue_postmerge
|
|
||||||
commands:
|
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile.cpu ."
|
|
||||||
- "mkdir artifacts"
|
- "mkdir artifacts"
|
||||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||||
@ -62,7 +48,7 @@ steps:
|
|||||||
agents:
|
agents:
|
||||||
queue: cpu_queue_postmerge
|
queue: cpu_queue_postmerge
|
||||||
commands:
|
commands:
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||||
- "mkdir artifacts"
|
- "mkdir artifacts"
|
||||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||||
@ -90,7 +76,7 @@ steps:
|
|||||||
queue: arm64_cpu_queue_postmerge
|
queue: arm64_cpu_queue_postmerge
|
||||||
commands:
|
commands:
|
||||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||||
|
|
||||||
# Add job to create multi-arch manifest
|
# Add job to create multi-arch manifest
|
||||||
@ -156,22 +142,6 @@ steps:
|
|||||||
env:
|
env:
|
||||||
DOCKER_BUILDKIT: "1"
|
DOCKER_BUILDKIT: "1"
|
||||||
|
|
||||||
- block: "Build arm64 CPU release image"
|
|
||||||
key: block-arm64-cpu-release-image-build
|
|
||||||
depends_on: ~
|
|
||||||
|
|
||||||
- label: "Build and publish arm64 CPU release image"
|
|
||||||
depends_on: block-arm64-cpu-release-image-build
|
|
||||||
agents:
|
|
||||||
queue: arm64_cpu_queue_postmerge
|
|
||||||
commands:
|
|
||||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
|
||||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
|
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:latest"
|
|
||||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-arm64-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
|
||||||
env:
|
|
||||||
DOCKER_BUILDKIT: "1"
|
|
||||||
|
|
||||||
- label: "Build and publish nightly multi-arch image to DockerHub"
|
- label: "Build and publish nightly multi-arch image to DockerHub"
|
||||||
depends_on:
|
depends_on:
|
||||||
- create-multi-arch-manifest
|
- create-multi-arch-manifest
|
||||||
|
@ -25,28 +25,25 @@ function cpu_tests() {
|
|||||||
|
|
||||||
# offline inference
|
# offline inference
|
||||||
podman exec -it "$container_id" bash -c "
|
podman exec -it "$container_id" bash -c "
|
||||||
set -xve
|
set -e
|
||||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m" >> $HOME/test_basic.log
|
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||||
|
|
||||||
# Run basic model test
|
# Run basic model test
|
||||||
podman exec -it "$container_id" bash -c "
|
podman exec -it "$container_id" bash -c "
|
||||||
set -evx
|
set -e
|
||||||
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
||||||
pip install sentence-transformers datamodel_code_generator
|
pip install sentence-transformers datamodel_code_generator
|
||||||
|
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
||||||
# Note: disable Bart until supports V1
|
|
||||||
# pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
|
||||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
|
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
|
||||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
||||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
||||||
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||||
# TODO: Below test case tests/models/language/pooling/test_embedding.py::test_models[True-ssmits/Qwen2-7B-Instruct-embed-base] fails on ppc64le. Disabling it for time being.
|
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
|
||||||
# pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model" >> $HOME/test_rest.log
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# All of CPU tests are expected to be finished less than 40 mins.
|
# All of CPU tests are expected to be finished less than 40 mins.
|
||||||
|
|
||||||
export container_id
|
export container_id
|
||||||
export -f cpu_tests
|
export -f cpu_tests
|
||||||
timeout 120m bash -c cpu_tests
|
timeout 40m bash -c cpu_tests
|
||||||
|
|
||||||
|
@ -70,7 +70,7 @@ function cpu_tests() {
|
|||||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||||
set -e
|
set -e
|
||||||
pytest -x -s -v \
|
pytest -x -s -v \
|
||||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs"
|
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
|
||||||
|
|
||||||
# Note: disable it until supports V1
|
# Note: disable it until supports V1
|
||||||
# Run AWQ test
|
# Run AWQ test
|
||||||
|
@ -64,9 +64,10 @@ python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git
|
|||||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
||||||
echo "--- Python dependencies installed ---"
|
echo "--- Python dependencies installed ---"
|
||||||
|
export VLLM_USE_V1=1
|
||||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||||
export VLLM_XLA_CACHE_PATH=
|
export VLLM_XLA_CACHE_PATH=
|
||||||
|
echo "Using VLLM V1"
|
||||||
|
|
||||||
echo "--- Hardware Information ---"
|
echo "--- Hardware Information ---"
|
||||||
# tpu-info
|
# tpu-info
|
||||||
|
@ -64,9 +64,10 @@ python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git
|
|||||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
||||||
echo "--- Python dependencies installed ---"
|
echo "--- Python dependencies installed ---"
|
||||||
|
export VLLM_USE_V1=1
|
||||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||||
export VLLM_XLA_CACHE_PATH=
|
export VLLM_XLA_CACHE_PATH=
|
||||||
|
echo "Using VLLM V1"
|
||||||
|
|
||||||
echo "--- Hardware Information ---"
|
echo "--- Hardware Information ---"
|
||||||
# tpu-info
|
# tpu-info
|
||||||
|
@ -44,5 +44,6 @@ docker run \
|
|||||||
pytest -v -s v1/structured_output
|
pytest -v -s v1/structured_output
|
||||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||||
|
pytest -v -s v1/test_metrics
|
||||||
pytest -v -s v1/test_serial_utils.py
|
pytest -v -s v1/test_serial_utils.py
|
||||||
'
|
'
|
||||||
|
@ -9,6 +9,6 @@ MAX_NUM_BATCHED_TOKENS=1024
|
|||||||
TENSOR_PARALLEL_SIZE=1
|
TENSOR_PARALLEL_SIZE=1
|
||||||
MAX_MODEL_LEN=2048
|
MAX_MODEL_LEN=2048
|
||||||
DOWNLOAD_DIR=/mnt/disks/persist
|
DOWNLOAD_DIR=/mnt/disks/persist
|
||||||
EXPECTED_THROUGHPUT=8.7
|
EXPECTED_THROUGHPUT=10.0
|
||||||
INPUT_LEN=1800
|
INPUT_LEN=1800
|
||||||
OUTPUT_LEN=128
|
OUTPUT_LEN=128
|
||||||
|
@ -42,7 +42,7 @@ echo "lanching vllm..."
|
|||||||
echo "logging to $VLLM_LOG"
|
echo "logging to $VLLM_LOG"
|
||||||
echo
|
echo
|
||||||
|
|
||||||
vllm serve $MODEL \
|
VLLM_USE_V1=1 vllm serve $MODEL \
|
||||||
--seed 42 \
|
--seed 42 \
|
||||||
--max-num-seqs $MAX_NUM_SEQS \
|
--max-num-seqs $MAX_NUM_SEQS \
|
||||||
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -296,7 +296,6 @@ steps:
|
|||||||
- tests/v1
|
- tests/v1
|
||||||
commands:
|
commands:
|
||||||
# split the test to avoid interference
|
# split the test to avoid interference
|
||||||
- pytest -v -s -m 'not cpu_test' v1/core
|
|
||||||
- pytest -v -s v1/executor
|
- pytest -v -s v1/executor
|
||||||
- pytest -v -s v1/kv_offload
|
- pytest -v -s v1/kv_offload
|
||||||
- pytest -v -s v1/sample
|
- pytest -v -s v1/sample
|
||||||
@ -318,7 +317,7 @@ steps:
|
|||||||
no_gpu: true
|
no_gpu: true
|
||||||
commands:
|
commands:
|
||||||
# split the test to avoid interference
|
# split the test to avoid interference
|
||||||
- pytest -v -s -m 'cpu_test' v1/core
|
- pytest -v -s v1/core
|
||||||
- pytest -v -s v1/structured_output
|
- pytest -v -s v1/structured_output
|
||||||
- pytest -v -s v1/test_serial_utils.py
|
- pytest -v -s v1/test_serial_utils.py
|
||||||
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
|
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
|
||||||
@ -384,12 +383,7 @@ steps:
|
|||||||
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
|
--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT \
|
||||||
--ignore=lora/test_chatglm3_tp.py \
|
--ignore=lora/test_chatglm3_tp.py \
|
||||||
--ignore=lora/test_llama_tp.py \
|
--ignore=lora/test_llama_tp.py \
|
||||||
--ignore=lora/test_llm_with_multi_loras.py \
|
--ignore=lora/test_llm_with_multi_loras.py
|
||||||
--ignore=lora/test_olmoe_tp.py \
|
|
||||||
--ignore=lora/test_deepseekv2_tp.py \
|
|
||||||
--ignore=lora/test_gptoss.py \
|
|
||||||
--ignore=lora/test_qwen3moe_tp.py
|
|
||||||
|
|
||||||
parallelism: 4
|
parallelism: 4
|
||||||
|
|
||||||
- label: PyTorch Compilation Unit Tests # 15min
|
- label: PyTorch Compilation Unit Tests # 15min
|
||||||
@ -405,10 +399,11 @@ steps:
|
|||||||
- pytest -v -s compile/test_fusion_attn.py
|
- pytest -v -s compile/test_fusion_attn.py
|
||||||
- pytest -v -s compile/test_functionalization.py
|
- pytest -v -s compile/test_functionalization.py
|
||||||
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
||||||
|
- pytest -v -s compile/test_sequence_parallelism.py
|
||||||
|
- pytest -v -s compile/test_async_tp.py
|
||||||
- pytest -v -s compile/test_fusion_all_reduce.py
|
- pytest -v -s compile/test_fusion_all_reduce.py
|
||||||
- pytest -v -s compile/test_decorator.py
|
- pytest -v -s compile/test_decorator.py
|
||||||
- pytest -v -s compile/test_noop_elimination.py
|
- pytest -v -s compile/test_noop_elimination.py
|
||||||
- pytest -v -s compile/test_aot_compile.py
|
|
||||||
|
|
||||||
- label: PyTorch Fullgraph Smoke Test # 15min
|
- label: PyTorch Fullgraph Smoke Test # 15min
|
||||||
timeout_in_minutes: 30
|
timeout_in_minutes: 30
|
||||||
@ -421,8 +416,8 @@ steps:
|
|||||||
- pytest -v -s compile/test_basic_correctness.py
|
- pytest -v -s compile/test_basic_correctness.py
|
||||||
- pytest -v -s compile/piecewise/
|
- pytest -v -s compile/piecewise/
|
||||||
|
|
||||||
- label: PyTorch Fullgraph Test # 22min
|
- label: PyTorch Fullgraph Test # 20min
|
||||||
timeout_in_minutes: 35
|
timeout_in_minutes: 30
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
torch_nightly: true
|
torch_nightly: true
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
@ -430,7 +425,6 @@ steps:
|
|||||||
- tests/compile
|
- tests/compile
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s compile/test_full_graph.py
|
- pytest -v -s compile/test_full_graph.py
|
||||||
- pytest -v -s compile/test_fusions_e2e.py
|
|
||||||
|
|
||||||
- label: Kernels Core Operation Test # 48min
|
- label: Kernels Core Operation Test # 48min
|
||||||
timeout_in_minutes: 75
|
timeout_in_minutes: 75
|
||||||
@ -438,9 +432,8 @@ steps:
|
|||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
- csrc/
|
- csrc/
|
||||||
- tests/kernels/core
|
- tests/kernels/core
|
||||||
- tests/kernels/test_top_k_per_row.py
|
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s kernels/core kernels/test_top_k_per_row.py
|
- pytest -v -s kernels/core
|
||||||
|
|
||||||
- label: Kernels Attention Test %N # 23min
|
- label: Kernels Attention Test %N # 23min
|
||||||
timeout_in_minutes: 35
|
timeout_in_minutes: 35
|
||||||
@ -533,9 +526,8 @@ steps:
|
|||||||
# since torchao nightly is only compatible with torch nightly currently
|
# since torchao nightly is only compatible with torch nightly currently
|
||||||
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
||||||
# we can only upgrade after this is resolved
|
# we can only upgrade after this is resolved
|
||||||
# TODO(jerryzh168): resolve the above comment
|
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||||
- uv pip install --system torchao==0.13.0
|
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/
|
||||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
|
|
||||||
|
|
||||||
- label: LM Eval Small Models # 53min
|
- label: LM Eval Small Models # 53min
|
||||||
timeout_in_minutes: 75
|
timeout_in_minutes: 75
|
||||||
@ -740,16 +732,6 @@ steps:
|
|||||||
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
|
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
|
||||||
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
||||||
|
|
||||||
- label: Multi-Modal Accuracy Eval (Small Models) # 50min
|
|
||||||
timeout_in_minutes: 70
|
|
||||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/multimodal/
|
|
||||||
- vllm/inputs/
|
|
||||||
- vllm/v1/core/
|
|
||||||
commands:
|
|
||||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
|
|
||||||
|
|
||||||
- label: Multi-Modal Models Test (Extended) 1
|
- label: Multi-Modal Models Test (Extended) 1
|
||||||
mirror_hardwares: [amdexperimental]
|
mirror_hardwares: [amdexperimental]
|
||||||
optional: true
|
optional: true
|
||||||
@ -813,8 +795,8 @@ steps:
|
|||||||
# Whisper needs spawn method to avoid deadlock
|
# Whisper needs spawn method to avoid deadlock
|
||||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
|
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||||
|
|
||||||
- label: Blackwell Test # 21 min
|
- label: Blackwell Test # 38 min
|
||||||
timeout_in_minutes: 30
|
timeout_in_minutes: 60
|
||||||
working_dir: "/vllm-workspace/"
|
working_dir: "/vllm-workspace/"
|
||||||
gpu: b200
|
gpu: b200
|
||||||
# optional: true
|
# optional: true
|
||||||
@ -827,6 +809,8 @@ steps:
|
|||||||
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
|
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
|
||||||
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
||||||
- vllm/v1/attention/backends/flashinfer.py
|
- vllm/v1/attention/backends/flashinfer.py
|
||||||
|
- vllm/compilation/fusion.py
|
||||||
|
- vllm/compilation/fusion_attn.py
|
||||||
commands:
|
commands:
|
||||||
- nvidia-smi
|
- nvidia-smi
|
||||||
- python3 examples/offline_inference/basic/chat.py
|
- python3 examples/offline_inference/basic/chat.py
|
||||||
@ -843,32 +827,13 @@ steps:
|
|||||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
|
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
|
||||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
|
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
|
||||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
|
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
|
||||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_qutlass.py
|
|
||||||
- pytest -v -s tests/kernels/quantization/test_mxfp4_qutlass.py
|
|
||||||
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
|
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
|
||||||
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
|
- pytest -v -s tests/kernels/moe/test_mxfp4_moe.py
|
||||||
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
# Fusion
|
||||||
|
|
||||||
- label: Blackwell Fusion Tests # 30 min
|
|
||||||
timeout_in_minutes: 40
|
|
||||||
working_dir: "/vllm-workspace/"
|
|
||||||
gpu: b200
|
|
||||||
source_file_dependencies:
|
|
||||||
- csrc/quantization/fp4/
|
|
||||||
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
|
||||||
- vllm/v1/attention/backends/flashinfer.py
|
|
||||||
- vllm/compilation/
|
|
||||||
# can affect pattern matching
|
|
||||||
- vllm/model_executor/layers/layernorm.py
|
|
||||||
- vllm/model_executor/layers/activation.py
|
|
||||||
- vllm/model_executor/layers/quantization/input_quant_fp8.py
|
|
||||||
commands:
|
|
||||||
- nvidia-smi
|
|
||||||
- pytest -v -s tests/compile/test_fusion_attn.py
|
|
||||||
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
|
||||||
# this runner has 2 GPUs available even though num_gpus=2 is not set
|
|
||||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
||||||
- pytest -v -s tests/compile/test_fusions_e2e.py
|
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
|
||||||
|
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
||||||
|
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
||||||
|
|
||||||
- label: Blackwell GPT-OSS Eval
|
- label: Blackwell GPT-OSS Eval
|
||||||
timeout_in_minutes: 60
|
timeout_in_minutes: 60
|
||||||
@ -902,7 +867,7 @@ steps:
|
|||||||
- pytest -s -v tests/quantization/test_blackwell_moe.py
|
- pytest -s -v tests/quantization/test_blackwell_moe.py
|
||||||
|
|
||||||
- label: Blackwell LM Eval Small Models
|
- label: Blackwell LM Eval Small Models
|
||||||
timeout_in_minutes: 120
|
timeout_in_minutes: 75
|
||||||
gpu: b200
|
gpu: b200
|
||||||
optional: true # run on nightlies
|
optional: true # run on nightlies
|
||||||
source_file_dependencies:
|
source_file_dependencies:
|
||||||
@ -982,7 +947,6 @@ steps:
|
|||||||
- pytest -v -s ./compile/test_basic_correctness.py
|
- pytest -v -s ./compile/test_basic_correctness.py
|
||||||
- pytest -v -s ./compile/test_wrapper.py
|
- pytest -v -s ./compile/test_wrapper.py
|
||||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||||
- VLLM_TEST_SAME_HOST=1 VLLM_TEST_WITH_DEFAULT_DEVICE_SET=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
|
||||||
- pytest -v -s distributed/test_sequence_parallel.py
|
- pytest -v -s distributed/test_sequence_parallel.py
|
||||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||||
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
|
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
|
||||||
@ -1026,11 +990,6 @@ steps:
|
|||||||
- pytest -v -s plugins_tests/test_io_processor_plugins.py
|
- pytest -v -s plugins_tests/test_io_processor_plugins.py
|
||||||
- pip uninstall prithvi_io_processor_plugin -y
|
- pip uninstall prithvi_io_processor_plugin -y
|
||||||
# end io_processor plugins test
|
# end io_processor plugins test
|
||||||
# begin stat_logger plugins test
|
|
||||||
- pip install -e ./plugins/vllm_add_dummy_stat_logger
|
|
||||||
- pytest -v -s plugins_tests/test_stats_logger_plugins.py
|
|
||||||
- pip uninstall dummy_stat_logger -y
|
|
||||||
# end stat_logger plugins test
|
|
||||||
# other tests continue here:
|
# other tests continue here:
|
||||||
- pytest -v -s plugins_tests/test_scheduler_plugins.py
|
- pytest -v -s plugins_tests/test_scheduler_plugins.py
|
||||||
- pip install -e ./plugins/vllm_add_dummy_model
|
- pip install -e ./plugins/vllm_add_dummy_model
|
||||||
@ -1070,7 +1029,6 @@ steps:
|
|||||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||||
- pytest -v -s -x lora/test_llama_tp.py
|
- pytest -v -s -x lora/test_llama_tp.py
|
||||||
- pytest -v -s -x lora/test_llm_with_multi_loras.py
|
- pytest -v -s -x lora/test_llm_with_multi_loras.py
|
||||||
- pytest -v -s -x lora/test_olmoe_tp.py
|
|
||||||
|
|
||||||
|
|
||||||
- label: Weight Loading Multiple GPU Test # 33min
|
- label: Weight Loading Multiple GPU Test # 33min
|
||||||
@ -1096,17 +1054,6 @@ steps:
|
|||||||
- tests/weight_loading
|
- tests/weight_loading
|
||||||
commands:
|
commands:
|
||||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||||
|
|
||||||
- label: NixlConnector PD accuracy tests (Distributed) # 30min
|
|
||||||
timeout_in_minutes: 30
|
|
||||||
working_dir: "/vllm-workspace/tests"
|
|
||||||
num_gpus: 4
|
|
||||||
source_file_dependencies:
|
|
||||||
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py
|
|
||||||
- tests/v1/kv_connector/nixl_integration/
|
|
||||||
commands:
|
|
||||||
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
|
|
||||||
- bash v1/kv_connector/nixl_integration/tp_config_sweep_accuracy_test.sh
|
|
||||||
|
|
||||||
|
|
||||||
##### multi gpus test #####
|
##### multi gpus test #####
|
||||||
@ -1139,16 +1086,12 @@ steps:
|
|||||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
||||||
|
|
||||||
##### H200 test #####
|
##### H200 test #####
|
||||||
- label: Distributed Tests (H200) # optional
|
- label: Distrubted Tests (H200) # optional
|
||||||
gpu: h200
|
gpu: h200
|
||||||
optional: true
|
optional: true
|
||||||
working_dir: "/vllm-workspace/"
|
working_dir: "/vllm-workspace/"
|
||||||
num_gpus: 2
|
num_gpus: 2
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s tests/compile/test_async_tp.py
|
|
||||||
- pytest -v -s tests/compile/test_sequence_parallelism.py
|
|
||||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
|
||||||
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
|
|
||||||
- pytest -v -s tests/distributed/test_context_parallel.py
|
- pytest -v -s tests/distributed/test_context_parallel.py
|
||||||
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
||||||
|
|
||||||
|
17
.coveragerc
17
.coveragerc
@ -1,10 +1,5 @@
|
|||||||
[run]
|
[run]
|
||||||
# Track the installed vllm package (this is what actually gets imported during tests)
|
source = vllm
|
||||||
# Use wildcard pattern to match the installed location
|
|
||||||
source =
|
|
||||||
vllm
|
|
||||||
*/dist-packages/vllm
|
|
||||||
*/site-packages/vllm
|
|
||||||
omit =
|
omit =
|
||||||
*/tests/*
|
*/tests/*
|
||||||
*/test_*
|
*/test_*
|
||||||
@ -17,16 +12,6 @@ omit =
|
|||||||
*/benchmarks/*
|
*/benchmarks/*
|
||||||
*/docs/*
|
*/docs/*
|
||||||
|
|
||||||
[paths]
|
|
||||||
# Map all possible vllm locations to a canonical "vllm" path
|
|
||||||
# This ensures coverage.combine properly merges data from different test runs
|
|
||||||
source =
|
|
||||||
vllm
|
|
||||||
/vllm-workspace/src/vllm
|
|
||||||
/vllm-workspace/vllm
|
|
||||||
*/site-packages/vllm
|
|
||||||
*/dist-packages/vllm
|
|
||||||
|
|
||||||
[report]
|
[report]
|
||||||
exclude_lines =
|
exclude_lines =
|
||||||
pragma: no cover
|
pragma: no cover
|
||||||
|
@ -1,4 +0,0 @@
|
|||||||
# Migrate from `yapf` & `isort` to `ruff`
|
|
||||||
d6953beb91da4e9c99be4c0a1304a2d24189535c
|
|
||||||
# Convert `Optional[x]` to `x | None` and `Union[x, y]` to `x | y`
|
|
||||||
8fcaaf6a165e661f63fc51be906bc05b0767332f
|
|
13
.github/CODEOWNERS
vendored
13
.github/CODEOWNERS
vendored
@ -5,7 +5,9 @@
|
|||||||
/vllm/attention @LucasWilkinson
|
/vllm/attention @LucasWilkinson
|
||||||
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||||
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||||
|
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||||
/vllm/model_executor/layers/fused_moe @mgoin
|
/vllm/model_executor/layers/fused_moe @mgoin
|
||||||
|
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
|
||||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
|
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
|
||||||
/vllm/model_executor/layers/mamba @tdoublep
|
/vllm/model_executor/layers/mamba @tdoublep
|
||||||
/vllm/model_executor/model_loader @22quinn
|
/vllm/model_executor/model_loader @22quinn
|
||||||
@ -24,6 +26,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
|||||||
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
|
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
|
||||||
|
|
||||||
# vLLM V1
|
# vLLM V1
|
||||||
|
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||||
/vllm/v1/attention @LucasWilkinson
|
/vllm/v1/attention @LucasWilkinson
|
||||||
/vllm/v1/attention/backends/flashinfer.py @mgoin
|
/vllm/v1/attention/backends/flashinfer.py @mgoin
|
||||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||||
@ -57,7 +60,7 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
|||||||
/tests/v1/offloading @ApostaC
|
/tests/v1/offloading @ApostaC
|
||||||
|
|
||||||
# Transformers backend
|
# Transformers backend
|
||||||
/vllm/model_executor/models/transformers @hmellor
|
/vllm/model_executor/models/transformers.py @hmellor
|
||||||
/tests/models/test_transformers.py @hmellor
|
/tests/models/test_transformers.py @hmellor
|
||||||
|
|
||||||
# Docs
|
# Docs
|
||||||
@ -118,11 +121,3 @@ mkdocs.yaml @hmellor
|
|||||||
|
|
||||||
# KVConnector installation files
|
# KVConnector installation files
|
||||||
/requirements/kv_connectors.txt @NickLucche
|
/requirements/kv_connectors.txt @NickLucche
|
||||||
|
|
||||||
# Pooling models
|
|
||||||
/examples/*/pooling/ @noooop
|
|
||||||
/tests/models/*/pooling* @noooop
|
|
||||||
/tests/entrypoints/pooling @noooop
|
|
||||||
/vllm/config/pooler.py @noooop
|
|
||||||
/vllm/pooling_params.py @noooop
|
|
||||||
/vllm/model_executor/layers/pooler.py @noooop
|
|
||||||
|
2
.github/mergify.yml
vendored
2
.github/mergify.yml
vendored
@ -11,8 +11,6 @@ pull_request_rules:
|
|||||||
label:
|
label:
|
||||||
add:
|
add:
|
||||||
- documentation
|
- documentation
|
||||||
comment:
|
|
||||||
message: "Documentation preview: https://vllm--{{number}}.org.readthedocs.build/en/{{number}}/"
|
|
||||||
|
|
||||||
- name: label-ci-build
|
- name: label-ci-build
|
||||||
description: Automatically apply ci/build label
|
description: Automatically apply ci/build label
|
||||||
|
138
.github/workflows/issue_autolabel.yml
vendored
138
.github/workflows/issue_autolabel.yml
vendored
@ -13,7 +13,6 @@ jobs:
|
|||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- name: Label issues based on keywords
|
- name: Label issues based on keywords
|
||||||
id: label-step
|
|
||||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||||
with:
|
with:
|
||||||
script: |
|
script: |
|
||||||
@ -43,6 +42,7 @@ jobs:
|
|||||||
searchIn: "body"
|
searchIn: "body"
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
|
|
||||||
// Substring search - matches anywhere in text (partial matches)
|
// Substring search - matches anywhere in text (partial matches)
|
||||||
substrings: [
|
substrings: [
|
||||||
{
|
{
|
||||||
@ -89,12 +89,14 @@ jobs:
|
|||||||
term: "hip_",
|
term: "hip_",
|
||||||
searchIn: "both"
|
searchIn: "both"
|
||||||
},
|
},
|
||||||
|
|
||||||
// ROCm tools and libraries
|
// ROCm tools and libraries
|
||||||
{
|
{
|
||||||
term: "hipify",
|
term: "hipify",
|
||||||
searchIn: "both"
|
searchIn: "both"
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
|
|
||||||
// Regex patterns - for complex pattern matching
|
// Regex patterns - for complex pattern matching
|
||||||
regexPatterns: [
|
regexPatterns: [
|
||||||
{
|
{
|
||||||
@ -105,17 +107,13 @@ jobs:
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
// Add more label configurations here as needed
|
|
||||||
// example: {
|
|
||||||
// keywords: [...],
|
|
||||||
// substrings: [...],
|
|
||||||
// regexPatterns: [...]
|
|
||||||
// },
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// Helper function to create regex based on search type
|
// Helper function to create regex based on search type
|
||||||
function createSearchRegex(term, type) {
|
function createSearchRegex(term, type) {
|
||||||
// Escape special regex characters in the term
|
// Escape special regex characters in the term
|
||||||
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
||||||
|
|
||||||
switch (type) {
|
switch (type) {
|
||||||
case 'keyword':
|
case 'keyword':
|
||||||
// Word boundary search - matches whole words only
|
// Word boundary search - matches whole words only
|
||||||
@ -127,13 +125,16 @@ jobs:
|
|||||||
throw new Error(`Unknown search type: ${type}`);
|
throw new Error(`Unknown search type: ${type}`);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Helper function to find matching terms in text with line information
|
// Helper function to find matching terms in text with line information
|
||||||
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
|
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
|
||||||
const matches = [];
|
const matches = [];
|
||||||
const lines = text.split('\n');
|
const lines = text.split('\n');
|
||||||
|
|
||||||
for (const termConfig of searchTerms) {
|
for (const termConfig of searchTerms) {
|
||||||
let regex;
|
let regex;
|
||||||
let term, searchIn, pattern, description, flags;
|
let term, searchIn, pattern, description, flags;
|
||||||
|
|
||||||
// Handle different input formats (string or object)
|
// Handle different input formats (string or object)
|
||||||
if (typeof termConfig === 'string') {
|
if (typeof termConfig === 'string') {
|
||||||
term = termConfig;
|
term = termConfig;
|
||||||
@ -145,17 +146,21 @@ jobs:
|
|||||||
description = termConfig.description;
|
description = termConfig.description;
|
||||||
flags = termConfig.flags;
|
flags = termConfig.flags;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Skip if this term shouldn't be searched in the current location
|
// Skip if this term shouldn't be searched in the current location
|
||||||
if (searchIn !== 'both' && searchIn !== searchLocation) {
|
if (searchIn !== 'both' && searchIn !== searchLocation) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Create appropriate regex
|
// Create appropriate regex
|
||||||
if (searchType === 'regex') {
|
if (searchType === 'regex') {
|
||||||
regex = new RegExp(pattern, flags || "gi");
|
regex = new RegExp(pattern, flags || "gi");
|
||||||
} else {
|
} else {
|
||||||
regex = createSearchRegex(term, searchType);
|
regex = createSearchRegex(term, searchType);
|
||||||
}
|
}
|
||||||
|
|
||||||
const termMatches = [];
|
const termMatches = [];
|
||||||
|
|
||||||
// Check each line for matches
|
// Check each line for matches
|
||||||
lines.forEach((line, lineIndex) => {
|
lines.forEach((line, lineIndex) => {
|
||||||
const lineMatches = line.match(regex);
|
const lineMatches = line.match(regex);
|
||||||
@ -170,14 +175,15 @@ jobs:
|
|||||||
originalTerm: term || pattern,
|
originalTerm: term || pattern,
|
||||||
description: description,
|
description: description,
|
||||||
// Show context around the match in the line
|
// Show context around the match in the line
|
||||||
context: line.length > 100 ?
|
context: line.length > 100 ?
|
||||||
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
||||||
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
||||||
: line.trim()
|
: line.trim()
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
if (termMatches.length > 0) {
|
if (termMatches.length > 0) {
|
||||||
matches.push({
|
matches.push({
|
||||||
term: term || (description || pattern),
|
term: term || (description || pattern),
|
||||||
@ -190,48 +196,64 @@ jobs:
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return matches;
|
return matches;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Helper function to check if label should be added
|
// Helper function to check if label should be added
|
||||||
async function processLabel(labelName, config) {
|
async function processLabel(labelName, config) {
|
||||||
const body = context.payload.issue.body || "";
|
const body = context.payload.issue.body || "";
|
||||||
const title = context.payload.issue.title || "";
|
const title = context.payload.issue.title || "";
|
||||||
|
|
||||||
core.notice(`Processing label: ${labelName}`);
|
core.notice(`Processing label: ${labelName}`);
|
||||||
core.notice(`Issue Title: "${title}"`);
|
core.notice(`Issue Title: "${title}"`);
|
||||||
core.notice(`Issue Body length: ${body.length} characters`);
|
core.notice(`Issue Body length: ${body.length} characters`);
|
||||||
|
|
||||||
let shouldAddLabel = false;
|
let shouldAddLabel = false;
|
||||||
let allMatches = [];
|
let allMatches = [];
|
||||||
let reason = '';
|
let reason = '';
|
||||||
|
|
||||||
const keywords = config.keywords || [];
|
const keywords = config.keywords || [];
|
||||||
const substrings = config.substrings || [];
|
const substrings = config.substrings || [];
|
||||||
const regexPatterns = config.regexPatterns || [];
|
const regexPatterns = config.regexPatterns || [];
|
||||||
|
|
||||||
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
|
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
|
||||||
|
|
||||||
// Search in title
|
// Search in title
|
||||||
if (title.trim()) {
|
if (title.trim()) {
|
||||||
core.notice(`Searching in title: "${title}"`);
|
core.notice(`Searching in title: "${title}"`);
|
||||||
|
|
||||||
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
|
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
|
||||||
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
|
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
|
||||||
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
|
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
|
||||||
|
|
||||||
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
|
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Search in body
|
// Search in body
|
||||||
if (body.trim()) {
|
if (body.trim()) {
|
||||||
core.notice(`Searching in body (${body.length} characters)`);
|
core.notice(`Searching in body (${body.length} characters)`);
|
||||||
|
|
||||||
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
|
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
|
||||||
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
|
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
|
||||||
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
|
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
|
||||||
|
|
||||||
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
|
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (allMatches.length > 0) {
|
if (allMatches.length > 0) {
|
||||||
core.notice(`Found ${allMatches.length} matching term(s):`);
|
core.notice(`Found ${allMatches.length} matching term(s):`);
|
||||||
|
|
||||||
for (const termMatch of allMatches) {
|
for (const termMatch of allMatches) {
|
||||||
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
|
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
|
||||||
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
|
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
|
||||||
|
|
||||||
if (termMatch.searchType === 'regex') {
|
if (termMatch.searchType === 'regex') {
|
||||||
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||||
} else {
|
} else {
|
||||||
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Show details for each match
|
// Show details for each match
|
||||||
termMatch.matches.forEach((match, index) => {
|
termMatch.matches.forEach((match, index) => {
|
||||||
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
|
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
|
||||||
@ -244,6 +266,7 @@ jobs:
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
shouldAddLabel = true;
|
shouldAddLabel = true;
|
||||||
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
|
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
|
||||||
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
|
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
|
||||||
@ -251,10 +274,13 @@ jobs:
|
|||||||
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
|
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
|
||||||
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
|
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
|
||||||
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
|
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
|
||||||
|
|
||||||
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
|
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
|
||||||
}
|
}
|
||||||
|
|
||||||
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
|
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
|
||||||
core.notice(`Reason: ${reason || 'No matching terms found'}`);
|
core.notice(`Reason: ${reason || 'No matching terms found'}`);
|
||||||
|
|
||||||
if (shouldAddLabel) {
|
if (shouldAddLabel) {
|
||||||
const existingLabels = context.payload.issue.labels.map(l => l.name);
|
const existingLabels = context.payload.issue.labels.map(l => l.name);
|
||||||
if (!existingLabels.includes(labelName)) {
|
if (!existingLabels.includes(labelName)) {
|
||||||
@ -270,92 +296,14 @@ jobs:
|
|||||||
core.notice(`Label "${labelName}" already present.`);
|
core.notice(`Label "${labelName}" already present.`);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
core.notice(`No matching terms found for label "${labelName}".`);
|
core.notice(`No matching terms found for label "${labelName}".`);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Process all configured labels
|
// Process all configured labels
|
||||||
const labelsAddedResults = await Promise.all(
|
const processLabels = Object.entries(labelConfig)
|
||||||
Object.entries(labelConfig).map(([labelName, config]) =>
|
.map(([labelName, config]) => processLabel(labelName, config));
|
||||||
processLabel(labelName, config).then(added => ({ labelName, added }))
|
const labelsAdded = await Promise.all(processLabels);
|
||||||
)
|
const numLabelsAdded = labelsAdded.reduce((x, y) => x + y, 0);
|
||||||
);
|
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
||||||
|
|
||||||
const numLabelsAdded = labelsAddedResults.filter(r => r.added).length;
|
|
||||||
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
|
||||||
|
|
||||||
// Return which labels were added for the next step
|
|
||||||
const addedLabels = labelsAddedResults.filter(r => r.added).map(r => r.labelName);
|
|
||||||
core.setOutput('labels_added', JSON.stringify(addedLabels));
|
|
||||||
return addedLabels;
|
|
||||||
|
|
||||||
- name: CC users for labeled issues
|
|
||||||
if: steps.label-step.outputs.labels_added != '[]'
|
|
||||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
|
||||||
with:
|
|
||||||
script: |
|
|
||||||
// Configuration: Map labels to GitHub users to CC
|
|
||||||
// You can add multiple users per label, and multiple label configurations
|
|
||||||
const ccConfig = {
|
|
||||||
rocm: {
|
|
||||||
users: ['hongxiayang', 'tjtanaa', 'vllmellm'], // Add more users as needed: ['user1', 'user2', 'user3']
|
|
||||||
message: 'CC {users} for ROCm-related issue' // {users} will be replaced with @mentions
|
|
||||||
},
|
|
||||||
// Add more label -> user mappings here
|
|
||||||
// Example:
|
|
||||||
// cuda: {
|
|
||||||
// users: ['user1', 'user2'],
|
|
||||||
// message: 'CC {users} for CUDA-related issue'
|
|
||||||
// },
|
|
||||||
// performance: {
|
|
||||||
// users: ['perfexpert'],
|
|
||||||
// message: 'CC {users} for performance issue'
|
|
||||||
// },
|
|
||||||
};
|
|
||||||
|
|
||||||
const labelsAdded = JSON.parse('${{ steps.label-step.outputs.labels_added }}');
|
|
||||||
core.notice(`Labels added: ${labelsAdded.join(', ')}`);
|
|
||||||
|
|
||||||
// Get existing comments to check for already mentioned users
|
|
||||||
const comments = await github.rest.issues.listComments({
|
|
||||||
owner: context.repo.owner,
|
|
||||||
repo: context.repo.repo,
|
|
||||||
issue_number: context.issue.number,
|
|
||||||
});
|
|
||||||
|
|
||||||
const issueBody = context.payload.issue.body || '';
|
|
||||||
const allExistingText = issueBody + '\n' + comments.data.map(c => c.body).join('\n');
|
|
||||||
|
|
||||||
// Process each label that was added
|
|
||||||
for (const label of labelsAdded) {
|
|
||||||
if (ccConfig[label]) {
|
|
||||||
const config = ccConfig[label];
|
|
||||||
const usersToMention = [];
|
|
||||||
|
|
||||||
// Check which users haven't been mentioned yet
|
|
||||||
for (const user of config.users) {
|
|
||||||
const mentionPattern = new RegExp(`@${user}\\b`, 'i');
|
|
||||||
if (!mentionPattern.test(allExistingText)) {
|
|
||||||
usersToMention.push(user);
|
|
||||||
} else {
|
|
||||||
core.notice(`@${user} already mentioned for label "${label}", skipping`);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Post comment if there are users to mention
|
|
||||||
if (usersToMention.length > 0) {
|
|
||||||
const mentions = usersToMention.map(u => `@${u}`).join(' ');
|
|
||||||
const message = config.message.replace('{users}', mentions);
|
|
||||||
|
|
||||||
await github.rest.issues.createComment({
|
|
||||||
owner: context.repo.owner,
|
|
||||||
repo: context.repo.repo,
|
|
||||||
issue_number: context.issue.number,
|
|
||||||
body: message
|
|
||||||
});
|
|
||||||
|
|
||||||
core.notice(`CC comment added for label "${label}": ${mentions}`);
|
|
||||||
} else {
|
|
||||||
core.notice(`All users for label "${label}" already mentioned, skipping comment`);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -94,9 +94,6 @@ ipython_config.py
|
|||||||
# generated files
|
# generated files
|
||||||
**/generated/**
|
**/generated/**
|
||||||
|
|
||||||
# uv
|
|
||||||
uv.lock
|
|
||||||
|
|
||||||
# pyenv
|
# pyenv
|
||||||
# For a library or package, you might want to ignore these files since the code is
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
# intended to run in multiple environments; otherwise, check them in:
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
@ -4,6 +4,7 @@ MD013: false
|
|||||||
MD024:
|
MD024:
|
||||||
siblings_only: true
|
siblings_only: true
|
||||||
MD033: false
|
MD033: false
|
||||||
|
MD042: false
|
||||||
MD045: false
|
MD045: false
|
||||||
MD046: false
|
MD046: false
|
||||||
MD051: false
|
MD051: false
|
||||||
|
@ -7,18 +7,17 @@ default_stages:
|
|||||||
exclude: 'vllm/third_party/.*'
|
exclude: 'vllm/third_party/.*'
|
||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
rev: v0.14.0
|
rev: v0.13.3
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff-check
|
- id: ruff-check
|
||||||
args: [--output-format, github, --fix]
|
args: [--output-format, github, --fix]
|
||||||
- id: ruff-format
|
- id: ruff-format
|
||||||
- repo: https://github.com/crate-ci/typos
|
- repo: https://github.com/crate-ci/typos
|
||||||
rev: v1.38.1
|
rev: v1.35.5
|
||||||
hooks:
|
hooks:
|
||||||
- id: typos
|
- id: typos
|
||||||
args: [--force-exclude]
|
|
||||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||||
rev: v21.1.2
|
rev: v20.1.3
|
||||||
hooks:
|
hooks:
|
||||||
- id: clang-format
|
- id: clang-format
|
||||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
||||||
@ -35,7 +34,7 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: actionlint
|
- id: actionlint
|
||||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||||
rev: 0.9.1
|
rev: 0.6.17
|
||||||
hooks:
|
hooks:
|
||||||
- id: pip-compile
|
- id: pip-compile
|
||||||
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
|
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
|
||||||
@ -56,6 +55,11 @@ repos:
|
|||||||
types_or: [python, pyi]
|
types_or: [python, pyi]
|
||||||
require_serial: true
|
require_serial: true
|
||||||
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
|
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
|
||||||
|
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||||
|
name: Run mypy for Python 3.9
|
||||||
|
entry: python tools/pre_commit/mypy.py 1 "3.9"
|
||||||
|
<<: *mypy_common
|
||||||
|
stages: [manual] # Only run in CI
|
||||||
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||||
name: Run mypy for Python 3.10
|
name: Run mypy for Python 3.10
|
||||||
entry: python tools/pre_commit/mypy.py 1 "3.10"
|
entry: python tools/pre_commit/mypy.py 1 "3.10"
|
||||||
@ -71,11 +75,6 @@ repos:
|
|||||||
entry: python tools/pre_commit/mypy.py 1 "3.12"
|
entry: python tools/pre_commit/mypy.py 1 "3.12"
|
||||||
<<: *mypy_common
|
<<: *mypy_common
|
||||||
stages: [manual] # Only run in CI
|
stages: [manual] # Only run in CI
|
||||||
- id: mypy-3.13 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
|
||||||
name: Run mypy for Python 3.13
|
|
||||||
entry: python tools/pre_commit/mypy.py 1 "3.13"
|
|
||||||
<<: *mypy_common
|
|
||||||
stages: [manual] # Only run in CI
|
|
||||||
- id: shellcheck
|
- id: shellcheck
|
||||||
name: Lint shell scripts
|
name: Lint shell scripts
|
||||||
entry: tools/shellcheck.sh
|
entry: tools/shellcheck.sh
|
||||||
|
@ -34,7 +34,7 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
|||||||
# Supported python versions. These versions will be searched in order, the
|
# Supported python versions. These versions will be searched in order, the
|
||||||
# first match will be selected. These should be kept in sync with setup.py.
|
# first match will be selected. These should be kept in sync with setup.py.
|
||||||
#
|
#
|
||||||
set(PYTHON_SUPPORTED_VERSIONS "3.10" "3.11" "3.12" "3.13")
|
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
|
||||||
|
|
||||||
# Supported AMD GPU architectures.
|
# Supported AMD GPU architectures.
|
||||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
|
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
|
||||||
@ -269,8 +269,8 @@ set(VLLM_EXT_SRC
|
|||||||
"csrc/sampler.cu"
|
"csrc/sampler.cu"
|
||||||
"csrc/cuda_view.cu"
|
"csrc/cuda_view.cu"
|
||||||
"csrc/quantization/gptq/q_gemm.cu"
|
"csrc/quantization/gptq/q_gemm.cu"
|
||||||
"csrc/quantization/w8a8/int8/scaled_quant.cu"
|
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||||
"csrc/quantization/w8a8/fp8/common.cu"
|
"csrc/quantization/fp8/common.cu"
|
||||||
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
|
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
|
||||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||||
"csrc/quantization/activation_kernels.cu"
|
"csrc/quantization/activation_kernels.cu"
|
||||||
@ -314,13 +314,12 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
list(APPEND VLLM_EXT_SRC
|
list(APPEND VLLM_EXT_SRC
|
||||||
"csrc/quantization/awq/gemm_kernels.cu"
|
"csrc/quantization/awq/gemm_kernels.cu"
|
||||||
"csrc/permute_cols.cu"
|
"csrc/permute_cols.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_entry.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||||
"csrc/cutlass_extensions/common.cpp"
|
"csrc/cutlass_extensions/common.cpp"
|
||||||
"csrc/quantization/w8a8/fp8/per_token_group_quant.cu"
|
"csrc/quantization/fp8/per_token_group_quant.cu")
|
||||||
"csrc/quantization/w8a8/int8/per_token_group_quant.cu")
|
|
||||||
|
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${VLLM_EXT_SRC}"
|
SRCS "${VLLM_EXT_SRC}"
|
||||||
@ -424,11 +423,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm90.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_int8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_azp_sm90_int8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -459,9 +458,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
endif()
|
endif()
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm120.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm120_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm120_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm120_fp8.cu"
|
||||||
)
|
)
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
@ -493,9 +492,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
endif()
|
endif()
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS
|
set(SRCS
|
||||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm100.cu"
|
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm100_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
|
||||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm100_fp8.cu"
|
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
|
||||||
)
|
)
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
@ -526,7 +525,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
# subtract out the archs that are already built for 3x
|
# subtract out the archs that are already built for 3x
|
||||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||||
if (SCALED_MM_2X_ARCHS)
|
if (SCALED_MM_2X_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/scaled_mm_c2x.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
|
||||||
@ -649,7 +648,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
# if it's possible to compile MoE kernels that use its output.
|
# if it's possible to compile MoE kernels that use its output.
|
||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm90.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -673,7 +672,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||||
endif()
|
endif()
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm100.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -698,7 +697,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||||
endif()
|
endif()
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/moe_data.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
|
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
|
||||||
@ -721,7 +720,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
|||||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||||
endif()
|
endif()
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/blockwise_scaled_group_mm_sm100.cu")
|
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
|
||||||
set_gencode_flags_for_srcs(
|
set_gencode_flags_for_srcs(
|
||||||
SRCS "${SRCS}"
|
SRCS "${SRCS}"
|
||||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||||
@ -883,7 +882,6 @@ target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
|
|||||||
set(VLLM_MOE_EXT_SRC
|
set(VLLM_MOE_EXT_SRC
|
||||||
"csrc/moe/torch_bindings.cpp"
|
"csrc/moe/torch_bindings.cpp"
|
||||||
"csrc/moe/moe_align_sum_kernels.cu"
|
"csrc/moe/moe_align_sum_kernels.cu"
|
||||||
"csrc/moe/moe_lora_align_sum_kernels.cu"
|
|
||||||
"csrc/moe/topk_softmax_kernels.cu")
|
"csrc/moe/topk_softmax_kernels.cu")
|
||||||
|
|
||||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||||
@ -1008,7 +1006,6 @@ endif()
|
|||||||
# For CUDA we also build and ship some external projects.
|
# For CUDA we also build and ship some external projects.
|
||||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||||
include(cmake/external_projects/flashmla.cmake)
|
include(cmake/external_projects/flashmla.cmake)
|
||||||
include(cmake/external_projects/qutlass.cmake)
|
|
||||||
|
|
||||||
# vllm-flash-attn should be last as it overwrites some CMake functions
|
# vllm-flash-attn should be last as it overwrites some CMake functions
|
||||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||||
|
@ -149,7 +149,6 @@ Compute Resources:
|
|||||||
- Trainy
|
- Trainy
|
||||||
- UC Berkeley
|
- UC Berkeley
|
||||||
- UC San Diego
|
- UC San Diego
|
||||||
- Volcengine
|
|
||||||
|
|
||||||
Slack Sponsor: Anyscale
|
Slack Sponsor: Anyscale
|
||||||
|
|
||||||
|
@ -74,7 +74,7 @@ start_server() {
|
|||||||
local vllm_log=$4
|
local vllm_log=$4
|
||||||
local profile_dir=$5
|
local profile_dir=$5
|
||||||
|
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
|
|
||||||
# Define the common arguments as a bash array.
|
# Define the common arguments as a bash array.
|
||||||
# Each argument and its value are separate elements.
|
# Each argument and its value are separate elements.
|
||||||
@ -96,11 +96,11 @@ start_server() {
|
|||||||
# This correctly passes each element as a separate argument.
|
# This correctly passes each element as a separate argument.
|
||||||
if [[ -n "$profile_dir" ]]; then
|
if [[ -n "$profile_dir" ]]; then
|
||||||
# Start server with profiling enabled
|
# Start server with profiling enabled
|
||||||
VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
|
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
|
||||||
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
||||||
else
|
else
|
||||||
# Start server without profiling
|
# Start server without profiling
|
||||||
VLLM_SERVER_DEV_MODE=1 \
|
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
|
||||||
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
||||||
fi
|
fi
|
||||||
local server_pid=$!
|
local server_pid=$!
|
||||||
@ -139,7 +139,7 @@ run_benchmark() {
|
|||||||
echo "vllm_log: $vllm_log"
|
echo "vllm_log: $vllm_log"
|
||||||
echo
|
echo
|
||||||
rm -f $vllm_log
|
rm -f $vllm_log
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
|
|
||||||
echo "starting server..."
|
echo "starting server..."
|
||||||
# Call start_server without a profile_dir to avoid profiling overhead
|
# Call start_server without a profile_dir to avoid profiling overhead
|
||||||
@ -232,7 +232,7 @@ run_benchmark() {
|
|||||||
|
|
||||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||||
|
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
sleep 10
|
sleep 10
|
||||||
echo "===================="
|
echo "===================="
|
||||||
return 0
|
return 0
|
||||||
@ -308,6 +308,6 @@ if (( $(echo "$best_throughput > 0" | bc -l) )); then
|
|||||||
else
|
else
|
||||||
echo "No configuration met the latency requirements. Skipping final profiling run."
|
echo "No configuration met the latency requirements. Skipping final profiling run."
|
||||||
fi
|
fi
|
||||||
pkill -if "vllm serve" || true
|
pkill -if vllm
|
||||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
|
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
|
||||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
|
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
|
||||||
|
@ -8,6 +8,7 @@ import sys
|
|||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
import aiohttp
|
import aiohttp
|
||||||
import huggingface_hub.constants
|
import huggingface_hub.constants
|
||||||
@ -27,13 +28,13 @@ class RequestFuncInput:
|
|||||||
prompt_len: int
|
prompt_len: int
|
||||||
output_len: int
|
output_len: int
|
||||||
model: str
|
model: str
|
||||||
model_name: str | None = None
|
model_name: Optional[str] = None
|
||||||
logprobs: int | None = None
|
logprobs: Optional[int] = None
|
||||||
extra_body: dict | None = None
|
extra_body: Optional[dict] = None
|
||||||
multi_modal_content: dict | list[dict] | None = None
|
multi_modal_content: Optional[dict | list[dict]] = None
|
||||||
ignore_eos: bool = False
|
ignore_eos: bool = False
|
||||||
language: str | None = None
|
language: Optional[str] = None
|
||||||
request_id: str | None = None
|
request_id: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -51,7 +52,7 @@ class RequestFuncOutput:
|
|||||||
|
|
||||||
async def async_request_tgi(
|
async def async_request_tgi(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith("generate_stream")
|
assert api_url.endswith("generate_stream")
|
||||||
@ -132,7 +133,7 @@ async def async_request_tgi(
|
|||||||
|
|
||||||
async def async_request_trt_llm(
|
async def async_request_trt_llm(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith("generate_stream")
|
assert api_url.endswith("generate_stream")
|
||||||
@ -203,7 +204,7 @@ async def async_request_trt_llm(
|
|||||||
|
|
||||||
async def async_request_deepspeed_mii(
|
async def async_request_deepspeed_mii(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith(("completions", "profile")), (
|
assert api_url.endswith(("completions", "profile")), (
|
||||||
@ -266,7 +267,7 @@ async def async_request_deepspeed_mii(
|
|||||||
|
|
||||||
async def async_request_openai_completions(
|
async def async_request_openai_completions(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith(("completions", "profile")), (
|
assert api_url.endswith(("completions", "profile")), (
|
||||||
@ -366,7 +367,7 @@ async def async_request_openai_completions(
|
|||||||
|
|
||||||
async def async_request_openai_chat_completions(
|
async def async_request_openai_chat_completions(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
api_url = request_func_input.api_url
|
api_url = request_func_input.api_url
|
||||||
assert api_url.endswith(("chat/completions", "profile")), (
|
assert api_url.endswith(("chat/completions", "profile")), (
|
||||||
@ -475,7 +476,7 @@ async def async_request_openai_chat_completions(
|
|||||||
|
|
||||||
async def async_request_openai_audio(
|
async def async_request_openai_audio(
|
||||||
request_func_input: RequestFuncInput,
|
request_func_input: RequestFuncInput,
|
||||||
pbar: tqdm | None = None,
|
pbar: Optional[tqdm] = None,
|
||||||
) -> RequestFuncOutput:
|
) -> RequestFuncOutput:
|
||||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||||
import soundfile
|
import soundfile
|
||||||
@ -609,7 +610,7 @@ def get_tokenizer(
|
|||||||
tokenizer_mode: str = "auto",
|
tokenizer_mode: str = "auto",
|
||||||
trust_remote_code: bool = False,
|
trust_remote_code: bool = False,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> PreTrainedTokenizer | PreTrainedTokenizerFast:
|
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||||
if pretrained_model_name_or_path is not None and not os.path.exists(
|
if pretrained_model_name_or_path is not None and not os.path.exists(
|
||||||
pretrained_model_name_or_path
|
pretrained_model_name_or_path
|
||||||
):
|
):
|
||||||
|
@ -32,6 +32,7 @@ import dataclasses
|
|||||||
import json
|
import json
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
from transformers import PreTrainedTokenizerBase
|
from transformers import PreTrainedTokenizerBase
|
||||||
|
|
||||||
@ -79,7 +80,7 @@ def sample_requests_from_dataset(
|
|||||||
num_requests: int,
|
num_requests: int,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
input_length_range: tuple[int, int],
|
input_length_range: tuple[int, int],
|
||||||
fixed_output_len: int | None,
|
fixed_output_len: Optional[int],
|
||||||
) -> list[Request]:
|
) -> list[Request]:
|
||||||
if fixed_output_len is not None and fixed_output_len < 4:
|
if fixed_output_len is not None and fixed_output_len < 4:
|
||||||
raise ValueError("output_len too small")
|
raise ValueError("output_len too small")
|
||||||
@ -127,7 +128,7 @@ def sample_requests_from_random(
|
|||||||
num_requests: int,
|
num_requests: int,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
input_length_range: tuple[int, int],
|
input_length_range: tuple[int, int],
|
||||||
fixed_output_len: int | None,
|
fixed_output_len: Optional[int],
|
||||||
prefix_len: int,
|
prefix_len: int,
|
||||||
) -> list[Request]:
|
) -> list[Request]:
|
||||||
requests = []
|
requests = []
|
||||||
|
@ -7,6 +7,7 @@ import dataclasses
|
|||||||
import json
|
import json
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||||
|
|
||||||
@ -23,7 +24,7 @@ def sample_requests(
|
|||||||
dataset_path: str,
|
dataset_path: str,
|
||||||
num_requests: int,
|
num_requests: int,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
fixed_output_len: int | None,
|
fixed_output_len: Optional[int],
|
||||||
) -> list[tuple[str, int, int, int]]:
|
) -> list[tuple[str, int, int, int]]:
|
||||||
if fixed_output_len is not None and fixed_output_len < 4:
|
if fixed_output_len is not None and fixed_output_len < 4:
|
||||||
raise ValueError("output_len too small")
|
raise ValueError("output_len too small")
|
||||||
|
@ -31,8 +31,8 @@ import time
|
|||||||
import uuid
|
import uuid
|
||||||
import warnings
|
import warnings
|
||||||
from collections.abc import AsyncGenerator
|
from collections.abc import AsyncGenerator
|
||||||
from contextlib import nullcontext
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -316,7 +316,7 @@ def calculate_metrics(
|
|||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
selected_percentile_metrics: list[str],
|
selected_percentile_metrics: list[str],
|
||||||
selected_percentiles: list[float],
|
selected_percentiles: list[float],
|
||||||
goodput_config_dict: dict[str, float] | None = None,
|
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||||
) -> tuple[BenchmarkMetrics, list[int]]:
|
) -> tuple[BenchmarkMetrics, list[int]]:
|
||||||
actual_output_lens: list[int] = []
|
actual_output_lens: list[int] = []
|
||||||
total_input = 0
|
total_input = 0
|
||||||
@ -436,9 +436,9 @@ async def benchmark(
|
|||||||
selected_percentile_metrics: list[str],
|
selected_percentile_metrics: list[str],
|
||||||
selected_percentiles: list[str],
|
selected_percentiles: list[str],
|
||||||
ignore_eos: bool,
|
ignore_eos: bool,
|
||||||
max_concurrency: int | None,
|
max_concurrency: Optional[int],
|
||||||
structured_output_ratio: float,
|
structured_output_ratio: float,
|
||||||
goodput_config_dict: dict[str, float] | None = None,
|
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||||
):
|
):
|
||||||
if backend in ASYNC_REQUEST_FUNCS:
|
if backend in ASYNC_REQUEST_FUNCS:
|
||||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||||
@ -502,9 +502,15 @@ async def benchmark(
|
|||||||
|
|
||||||
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
||||||
|
|
||||||
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else nullcontext()
|
# This can be used once the minimum Python version is 3.10 or higher,
|
||||||
|
# and it will simplify the code in limited_request_func.
|
||||||
|
# semaphore = (asyncio.Semaphore(max_concurrency)
|
||||||
|
# if max_concurrency else contextlib.nullcontext())
|
||||||
|
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
|
||||||
|
|
||||||
async def limited_request_func(request_func_input, pbar):
|
async def limited_request_func(request_func_input, pbar):
|
||||||
|
if semaphore is None:
|
||||||
|
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||||
async with semaphore:
|
async with semaphore:
|
||||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||||
|
|
||||||
|
@ -6,7 +6,7 @@ import math
|
|||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from types import TracebackType
|
from types import TracebackType
|
||||||
from typing import Any
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
|
|
||||||
def convert_to_pytorch_benchmark_format(
|
def convert_to_pytorch_benchmark_format(
|
||||||
@ -92,7 +92,7 @@ class TimeCollector:
|
|||||||
def __init__(self, scale: int) -> None:
|
def __init__(self, scale: int) -> None:
|
||||||
self.cnt: int = 0
|
self.cnt: int = 0
|
||||||
self._sum: int = 0
|
self._sum: int = 0
|
||||||
self._max: int | None = None
|
self._max: Optional[int] = None
|
||||||
self.scale = scale
|
self.scale = scale
|
||||||
self.start_time: int = time.monotonic_ns()
|
self.start_time: int = time.monotonic_ns()
|
||||||
|
|
||||||
@ -104,13 +104,13 @@ class TimeCollector:
|
|||||||
else:
|
else:
|
||||||
self._max = max(self._max, v)
|
self._max = max(self._max, v)
|
||||||
|
|
||||||
def avg(self) -> float | str:
|
def avg(self) -> Union[float, str]:
|
||||||
return self._sum * 1.0 / self.cnt / self.scale if self.cnt > 0 else "N/A"
|
return self._sum * 1.0 / self.cnt / self.scale if self.cnt > 0 else "N/A"
|
||||||
|
|
||||||
def max(self) -> float | str:
|
def max(self) -> Union[float, str]:
|
||||||
return self._max / self.scale if self._max else "N/A"
|
return self._max / self.scale if self._max else "N/A"
|
||||||
|
|
||||||
def dump_avg_max(self) -> list[float | str]:
|
def dump_avg_max(self) -> list[Union[float, str]]:
|
||||||
return [self.avg(), self.max()]
|
return [self.avg(), self.max()]
|
||||||
|
|
||||||
def __enter__(self) -> None:
|
def __enter__(self) -> None:
|
||||||
@ -118,8 +118,8 @@ class TimeCollector:
|
|||||||
|
|
||||||
def __exit__(
|
def __exit__(
|
||||||
self,
|
self,
|
||||||
exc_type: type[BaseException] | None,
|
exc_type: Optional[type[BaseException]],
|
||||||
exc_value: BaseException | None,
|
exc_value: Optional[BaseException],
|
||||||
exc_traceback: TracebackType | None,
|
exc_traceback: Optional[TracebackType],
|
||||||
) -> None:
|
) -> None:
|
||||||
self.collect(time.monotonic_ns() - self.start_time)
|
self.collect(time.monotonic_ns() - self.start_time)
|
||||||
|
@ -6,7 +6,8 @@ import copy
|
|||||||
import itertools
|
import itertools
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
|
from typing import Callable
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
|
@ -6,7 +6,8 @@ import copy
|
|||||||
import itertools
|
import itertools
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -52,7 +53,7 @@ def bench_int8(
|
|||||||
n: int,
|
n: int,
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
"""Benchmark INT8-based kernels."""
|
"""Benchmark INT8-based kernels."""
|
||||||
assert dtype == torch.int8
|
assert dtype == torch.int8
|
||||||
@ -107,7 +108,7 @@ def bench_fp8(
|
|||||||
n: int,
|
n: int,
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
"""Benchmark FP8-based kernels."""
|
"""Benchmark FP8-based kernels."""
|
||||||
assert dtype == torch.float8_e4m3fn
|
assert dtype == torch.float8_e4m3fn
|
||||||
@ -182,7 +183,7 @@ def bench(
|
|||||||
n: int,
|
n: int,
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
if dtype == torch.int8:
|
if dtype == torch.int8:
|
||||||
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||||
@ -200,7 +201,7 @@ def print_timers(timers: Iterable[TMeasurement]):
|
|||||||
def run(
|
def run(
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
MKNs: Iterable[tuple[int, int, int]],
|
MKNs: Iterable[tuple[int, int, int]],
|
||||||
bench_kernels: list[str] | None = None,
|
bench_kernels: Optional[list[str]] = None,
|
||||||
) -> Iterable[TMeasurement]:
|
) -> Iterable[TMeasurement]:
|
||||||
results = []
|
results = []
|
||||||
for m, k, n in MKNs:
|
for m, k, n in MKNs:
|
||||||
|
@ -3,9 +3,10 @@
|
|||||||
|
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from itertools import product
|
from itertools import product
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -50,7 +51,7 @@ def get_bench_params() -> list[bench_params_t]:
|
|||||||
def unfused_int8_impl(
|
def unfused_int8_impl(
|
||||||
rms_norm_layer: RMSNorm,
|
rms_norm_layer: RMSNorm,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None,
|
residual: Optional[torch.Tensor],
|
||||||
quant_dtype: torch.dtype,
|
quant_dtype: torch.dtype,
|
||||||
):
|
):
|
||||||
# Norm
|
# Norm
|
||||||
@ -67,7 +68,7 @@ def unfused_int8_impl(
|
|||||||
def unfused_fp8_impl(
|
def unfused_fp8_impl(
|
||||||
rms_norm_layer: RMSNorm,
|
rms_norm_layer: RMSNorm,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None,
|
residual: Optional[torch.Tensor],
|
||||||
quant_dtype: torch.dtype,
|
quant_dtype: torch.dtype,
|
||||||
):
|
):
|
||||||
# Norm
|
# Norm
|
||||||
@ -84,7 +85,7 @@ def unfused_fp8_impl(
|
|||||||
def fused_impl(
|
def fused_impl(
|
||||||
rms_norm_layer: RMSNorm, # this stores the weights
|
rms_norm_layer: RMSNorm, # this stores the weights
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None,
|
residual: Optional[torch.Tensor],
|
||||||
quant_dtype: torch.dtype,
|
quant_dtype: torch.dtype,
|
||||||
):
|
):
|
||||||
out, _ = ops.rms_norm_dynamic_per_token_quant(
|
out, _ = ops.rms_norm_dynamic_per_token_quant(
|
||||||
|
@ -1,191 +0,0 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
||||||
#
|
|
||||||
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
|
|
||||||
# All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import copy
|
|
||||||
import itertools
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
|
|
||||||
from weight_shapes import WEIGHT_SHAPES
|
|
||||||
|
|
||||||
from vllm._custom_ops import fusedQuantizeMx, matmul_mxf4_bf16_tn
|
|
||||||
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
|
|
||||||
from vllm.triton_utils import triton
|
|
||||||
|
|
||||||
PROVIDER_CFGS = {
|
|
||||||
"torch-bf16": dict(enabled=True),
|
|
||||||
"mxfp4": dict(no_a_quant=False, enabled=True),
|
|
||||||
"mxfp4-noquant": dict(no_a_quant=True, enabled=True),
|
|
||||||
}
|
|
||||||
|
|
||||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
|
|
||||||
return (
|
|
||||||
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
|
|
||||||
* group_size**-0.5
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def _quant_weight_mxfp4(
|
|
||||||
b: torch.Tensor, forward_hadamard_matrix: torch.Tensor, device: str
|
|
||||||
):
|
|
||||||
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeMx(
|
|
||||||
b, forward_hadamard_matrix, method="abs_max"
|
|
||||||
)
|
|
||||||
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton")
|
|
||||||
return weight_hf_e2m1, weight_hf_scale_block
|
|
||||||
|
|
||||||
|
|
||||||
def build_mxfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device):
|
|
||||||
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_mxfp4(
|
|
||||||
b, forward_hadamard_matrix, device
|
|
||||||
)
|
|
||||||
alpha = torch.tensor([1.0], device="cuda")
|
|
||||||
|
|
||||||
if cfg["no_a_quant"]:
|
|
||||||
# Pre-quantize activation
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
|
|
||||||
a, forward_hadamard_matrix, method="abs_max"
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
|
|
||||||
|
|
||||||
def run():
|
|
||||||
return matmul_mxf4_bf16_tn(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
# Quantize activation on-the-fly
|
|
||||||
def run():
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
|
|
||||||
a, forward_hadamard_matrix, method="abs_max"
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
|
|
||||||
return matmul_mxf4_bf16_tn(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
|
|
||||||
@triton.testing.perf_report(
|
|
||||||
triton.testing.Benchmark(
|
|
||||||
x_names=["batch_size"],
|
|
||||||
x_vals=[
|
|
||||||
1,
|
|
||||||
4,
|
|
||||||
8,
|
|
||||||
16,
|
|
||||||
32,
|
|
||||||
64,
|
|
||||||
128,
|
|
||||||
256,
|
|
||||||
512,
|
|
||||||
1024,
|
|
||||||
2048,
|
|
||||||
4096,
|
|
||||||
8192,
|
|
||||||
16384,
|
|
||||||
24576,
|
|
||||||
32768,
|
|
||||||
],
|
|
||||||
x_log=False,
|
|
||||||
line_arg="provider",
|
|
||||||
line_vals=_enabled,
|
|
||||||
line_names=_enabled,
|
|
||||||
ylabel="TFLOP/s (larger is better)",
|
|
||||||
plot_name="BF16 vs MXFP4 GEMMs",
|
|
||||||
args={},
|
|
||||||
)
|
|
||||||
)
|
|
||||||
def benchmark(batch_size, provider, N, K, had_size):
|
|
||||||
M = batch_size
|
|
||||||
device = "cuda"
|
|
||||||
dtype = torch.bfloat16
|
|
||||||
|
|
||||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
|
||||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
|
||||||
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
|
|
||||||
|
|
||||||
quantiles = [0.5, 0.2, 0.8]
|
|
||||||
|
|
||||||
if provider == "torch-bf16":
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
cfg = PROVIDER_CFGS[provider]
|
|
||||||
run_quant = build_mxfp4_runner(
|
|
||||||
cfg, a, b, forward_hadamard_matrix, dtype, device
|
|
||||||
)
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: run_quant(), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
|
|
||||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
|
||||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_shapes(args):
|
|
||||||
out = []
|
|
||||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
|
||||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
|
||||||
KN[tp_dim] //= tp_size
|
|
||||||
KN.append(model)
|
|
||||||
out.append(KN)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--models",
|
|
||||||
nargs="+",
|
|
||||||
type=str,
|
|
||||||
default=["meta-llama/Llama-3.3-70B-Instruct"],
|
|
||||||
choices=list(WEIGHT_SHAPES.keys()),
|
|
||||||
)
|
|
||||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
for K, N, model in prepare_shapes(args):
|
|
||||||
for had_size in [32, 64, 128]:
|
|
||||||
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs MXFP4 GEMMs TFLOP/s:")
|
|
||||||
benchmark.run(
|
|
||||||
print_data=True,
|
|
||||||
show_plots=True,
|
|
||||||
save_path=f"bench_mxfp4_res_n{N}_k{K}",
|
|
||||||
N=N,
|
|
||||||
K=K,
|
|
||||||
had_size=had_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Benchmark finished!")
|
|
@ -1,207 +0,0 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
||||||
#
|
|
||||||
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
|
|
||||||
# All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import copy
|
|
||||||
import itertools
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
|
|
||||||
from weight_shapes import WEIGHT_SHAPES
|
|
||||||
|
|
||||||
from vllm import _custom_ops as ops # use existing nvfp4 gemm in vllm
|
|
||||||
from vllm._custom_ops import fusedQuantizeNv
|
|
||||||
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
|
|
||||||
from vllm.triton_utils import triton
|
|
||||||
|
|
||||||
PROVIDER_CFGS = {
|
|
||||||
"torch-bf16": dict(enabled=True),
|
|
||||||
"nvfp4": dict(no_a_quant=False, enabled=True),
|
|
||||||
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
|
||||||
}
|
|
||||||
|
|
||||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
|
|
||||||
return (
|
|
||||||
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
|
|
||||||
* group_size**-0.5
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def _quant_weight_nvfp4(
|
|
||||||
b: torch.Tensor,
|
|
||||||
forward_hadamard_matrix: torch.Tensor,
|
|
||||||
global_scale: torch.Tensor,
|
|
||||||
device: str,
|
|
||||||
M: int,
|
|
||||||
N: int,
|
|
||||||
K: int,
|
|
||||||
):
|
|
||||||
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeNv(
|
|
||||||
b, forward_hadamard_matrix, global_scale
|
|
||||||
)
|
|
||||||
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton").view(
|
|
||||||
-1, K // 16
|
|
||||||
)
|
|
||||||
return weight_hf_e2m1, weight_hf_scale_block
|
|
||||||
|
|
||||||
|
|
||||||
def build_nvfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K):
|
|
||||||
alpha = torch.tensor([1.0], device="cuda")
|
|
||||||
global_scale = torch.tensor([1.0], device="cuda")
|
|
||||||
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_nvfp4(
|
|
||||||
b, forward_hadamard_matrix, global_scale, device, M, N, K
|
|
||||||
)
|
|
||||||
|
|
||||||
if cfg["no_a_quant"]:
|
|
||||||
# Pre-quantize activation
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
|
|
||||||
a, forward_hadamard_matrix, global_scale
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
|
|
||||||
-1, K // 16
|
|
||||||
)
|
|
||||||
|
|
||||||
def run():
|
|
||||||
return ops.cutlass_scaled_fp4_mm(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
torch.bfloat16,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
# Quantize activation on-the-fly
|
|
||||||
def run():
|
|
||||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
|
|
||||||
a, forward_hadamard_matrix, global_scale
|
|
||||||
)
|
|
||||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
|
|
||||||
-1, K // 16
|
|
||||||
)
|
|
||||||
return ops.cutlass_scaled_fp4_mm(
|
|
||||||
input_hf_e2m1,
|
|
||||||
weight_hf_e2m1,
|
|
||||||
input_hf_scale_block,
|
|
||||||
weight_hf_scale_block,
|
|
||||||
alpha,
|
|
||||||
torch.bfloat16,
|
|
||||||
)
|
|
||||||
|
|
||||||
return run
|
|
||||||
|
|
||||||
|
|
||||||
@triton.testing.perf_report(
|
|
||||||
triton.testing.Benchmark(
|
|
||||||
x_names=["batch_size"],
|
|
||||||
x_vals=[
|
|
||||||
1,
|
|
||||||
4,
|
|
||||||
8,
|
|
||||||
16,
|
|
||||||
32,
|
|
||||||
64,
|
|
||||||
128,
|
|
||||||
256,
|
|
||||||
512,
|
|
||||||
1024,
|
|
||||||
2048,
|
|
||||||
4096,
|
|
||||||
8192,
|
|
||||||
16384,
|
|
||||||
24576,
|
|
||||||
32768,
|
|
||||||
],
|
|
||||||
x_log=False,
|
|
||||||
line_arg="provider",
|
|
||||||
line_vals=_enabled,
|
|
||||||
line_names=_enabled,
|
|
||||||
ylabel="TFLOP/s (larger is better)",
|
|
||||||
plot_name="BF16 vs NVFP4 GEMMs",
|
|
||||||
args={},
|
|
||||||
)
|
|
||||||
)
|
|
||||||
def benchmark(batch_size, provider, N, K, had_size):
|
|
||||||
M = batch_size
|
|
||||||
device = "cuda"
|
|
||||||
dtype = torch.bfloat16
|
|
||||||
|
|
||||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
|
||||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
|
||||||
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
|
|
||||||
|
|
||||||
quantiles = [0.5, 0.2, 0.8]
|
|
||||||
|
|
||||||
if provider == "torch-bf16":
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
cfg = PROVIDER_CFGS[provider]
|
|
||||||
run_quant = build_nvfp4_runner(
|
|
||||||
cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K
|
|
||||||
)
|
|
||||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
|
||||||
lambda: run_quant(), rep=200, quantiles=quantiles
|
|
||||||
)
|
|
||||||
|
|
||||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
|
||||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_shapes(args):
|
|
||||||
out = []
|
|
||||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
|
||||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
|
||||||
KN[tp_dim] //= tp_size
|
|
||||||
KN.append(model)
|
|
||||||
out.append(KN)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--models",
|
|
||||||
nargs="+",
|
|
||||||
type=str,
|
|
||||||
default=["meta-llama/Llama-3.3-70B-Instruct"],
|
|
||||||
choices=list(WEIGHT_SHAPES.keys()),
|
|
||||||
)
|
|
||||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
for K, N, model in prepare_shapes(args):
|
|
||||||
for had_size in [16, 32, 64, 128]:
|
|
||||||
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
|
||||||
benchmark.run(
|
|
||||||
print_data=True,
|
|
||||||
show_plots=True,
|
|
||||||
save_path=f"bench_nvfp4_res_n{N}_k{K}",
|
|
||||||
N=N,
|
|
||||||
K=K,
|
|
||||||
had_size=had_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Benchmark finished!")
|
|
@ -1,7 +1,7 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
import itertools
|
import itertools
|
||||||
from collections.abc import Callable
|
from typing import Callable
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -10,8 +10,7 @@ import torch
|
|||||||
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
|
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
|
||||||
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
||||||
from vllm.triton_utils import triton
|
from vllm.triton_utils import triton
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
|
|
||||||
def with_triton_mode(fn):
|
def with_triton_mode(fn):
|
||||||
|
@ -10,8 +10,7 @@ import vllm.model_executor.layers.activation # noqa F401
|
|||||||
from vllm.model_executor.custom_op import CustomOp
|
from vllm.model_executor.custom_op import CustomOp
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.triton_utils import triton
|
from vllm.triton_utils import triton
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
batch_size_range = [1, 16, 32, 64, 128]
|
batch_size_range = [1, 16, 32, 64, 128]
|
||||||
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
||||||
|
@ -22,8 +22,8 @@ Example:
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable
|
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
@ -264,12 +264,12 @@ class CommunicatorBenchmark:
|
|||||||
def benchmark_allreduce_single(
|
def benchmark_allreduce_single(
|
||||||
self,
|
self,
|
||||||
sequence_length: int,
|
sequence_length: int,
|
||||||
allreduce_fn: Callable[[torch.Tensor], torch.Tensor | None],
|
allreduce_fn: Callable[[torch.Tensor], Optional[torch.Tensor]],
|
||||||
should_use_fn: Callable[[torch.Tensor], bool],
|
should_use_fn: Callable[[torch.Tensor], bool],
|
||||||
context,
|
context,
|
||||||
num_warmup: int,
|
num_warmup: int,
|
||||||
num_trials: int,
|
num_trials: int,
|
||||||
) -> float | None:
|
) -> Optional[float]:
|
||||||
"""Benchmark method with CUDA graph optimization."""
|
"""Benchmark method with CUDA graph optimization."""
|
||||||
try:
|
try:
|
||||||
# Create test tensor (2D: sequence_length x hidden_size)
|
# Create test tensor (2D: sequence_length x hidden_size)
|
||||||
|
@ -7,8 +7,7 @@ import torch
|
|||||||
|
|
||||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
|
@ -6,12 +6,11 @@ import copy
|
|||||||
import json
|
import json
|
||||||
import pickle
|
import pickle
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from enum import Enum, auto
|
from enum import Enum, auto
|
||||||
from itertools import product
|
from itertools import product
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any
|
from typing import Any, Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -159,7 +158,7 @@ def ref_group_gemm(
|
|||||||
seq_lens_cpu: torch.Tensor,
|
seq_lens_cpu: torch.Tensor,
|
||||||
prompt_lora_mapping_cpu: torch.Tensor,
|
prompt_lora_mapping_cpu: torch.Tensor,
|
||||||
scaling: float,
|
scaling: float,
|
||||||
add_inputs: bool | None,
|
add_inputs: Optional[bool],
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Torch group gemm reference implementation to test correctness of
|
Torch group gemm reference implementation to test correctness of
|
||||||
@ -317,8 +316,8 @@ class BenchmarkContext:
|
|||||||
lora_rank: int
|
lora_rank: int
|
||||||
sort_by_lora_id: bool
|
sort_by_lora_id: bool
|
||||||
dtype: torch.dtype
|
dtype: torch.dtype
|
||||||
seq_length: int | None = None
|
seq_length: Optional[int] = None
|
||||||
num_slices: int | None = None # num_slices for slice based ops
|
num_slices: Optional[int] = None # num_slices for slice based ops
|
||||||
|
|
||||||
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
|
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
|
||||||
ctx = copy.copy(self)
|
ctx = copy.copy(self)
|
||||||
@ -562,7 +561,7 @@ class BenchmarkTensors:
|
|||||||
}
|
}
|
||||||
|
|
||||||
def bench_fn_kwargs(
|
def bench_fn_kwargs(
|
||||||
self, op_type: OpType, add_inputs: bool | None = None
|
self, op_type: OpType, add_inputs: Optional[bool] = None
|
||||||
) -> dict[str, Any]:
|
) -> dict[str, Any]:
|
||||||
if op_type.is_shrink_fn():
|
if op_type.is_shrink_fn():
|
||||||
assert add_inputs is None
|
assert add_inputs is None
|
||||||
@ -576,7 +575,7 @@ class BenchmarkTensors:
|
|||||||
raise ValueError(f"Unrecognized optype {self}")
|
raise ValueError(f"Unrecognized optype {self}")
|
||||||
|
|
||||||
def test_correctness(
|
def test_correctness(
|
||||||
self, op_type: OpType, expand_fn_add_inputs: bool | None
|
self, op_type: OpType, expand_fn_add_inputs: Optional[bool]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
"""
|
"""
|
||||||
Test correctness of op_type implementation against a grouped gemm
|
Test correctness of op_type implementation against a grouped gemm
|
||||||
@ -612,8 +611,8 @@ def bench_optype(
|
|||||||
ctx: BenchmarkContext,
|
ctx: BenchmarkContext,
|
||||||
arg_pool_size: int,
|
arg_pool_size: int,
|
||||||
op_type: OpType,
|
op_type: OpType,
|
||||||
cuda_graph_nops: int | None = None,
|
cuda_graph_nops: Optional[int] = None,
|
||||||
expand_fn_add_inputs: bool | None = None,
|
expand_fn_add_inputs: Optional[bool] = None,
|
||||||
test_correctness: bool = False,
|
test_correctness: bool = False,
|
||||||
) -> TMeasurement:
|
) -> TMeasurement:
|
||||||
assert arg_pool_size >= 1
|
assert arg_pool_size >= 1
|
||||||
@ -680,7 +679,7 @@ def bench_torch_mm(
|
|||||||
ctx: BenchmarkContext,
|
ctx: BenchmarkContext,
|
||||||
arg_pool_size: int,
|
arg_pool_size: int,
|
||||||
op_type: OpType,
|
op_type: OpType,
|
||||||
cuda_graph_nops: int | None = None,
|
cuda_graph_nops: Optional[int] = None,
|
||||||
) -> TMeasurement:
|
) -> TMeasurement:
|
||||||
"""
|
"""
|
||||||
Benchmark basic torch.mm as a roofline.
|
Benchmark basic torch.mm as a roofline.
|
||||||
@ -745,7 +744,7 @@ def use_cuda_graph_recommendation() -> str:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def print_timers(timers: list[TMeasurement], args: argparse.Namespace | None = None):
|
def print_timers(timers: list[TMeasurement], args: Optional[argparse.Namespace] = None):
|
||||||
compare = TBenchmark.Compare(timers)
|
compare = TBenchmark.Compare(timers)
|
||||||
compare.print()
|
compare.print()
|
||||||
|
|
||||||
|
@ -8,9 +8,10 @@ import math
|
|||||||
import os
|
import os
|
||||||
import pickle as pkl
|
import pickle as pkl
|
||||||
import time
|
import time
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from itertools import product
|
from itertools import product
|
||||||
|
from typing import Callable, Optional
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import torch
|
import torch
|
||||||
@ -62,23 +63,23 @@ class BenchmarkTensors:
|
|||||||
a: torch.Tensor
|
a: torch.Tensor
|
||||||
|
|
||||||
w_q: torch.Tensor
|
w_q: torch.Tensor
|
||||||
group_size: int | None
|
group_size: Optional[int]
|
||||||
wtype: ScalarType
|
wtype: ScalarType
|
||||||
w_g_s: torch.Tensor
|
w_g_s: torch.Tensor
|
||||||
w_g_zp: torch.Tensor | None
|
w_g_zp: Optional[torch.Tensor]
|
||||||
w_ch_s: torch.Tensor | None
|
w_ch_s: Optional[torch.Tensor]
|
||||||
w_tok_s: torch.Tensor | None
|
w_tok_s: Optional[torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class TypeConfig:
|
class TypeConfig:
|
||||||
act_type: torch.dtype
|
act_type: torch.dtype
|
||||||
weight_type: ScalarType
|
weight_type: ScalarType
|
||||||
output_type: torch.dtype | None
|
output_type: Optional[torch.dtype]
|
||||||
group_scale_type: torch.dtype | None
|
group_scale_type: Optional[torch.dtype]
|
||||||
group_zero_type: torch.dtype | None
|
group_zero_type: Optional[torch.dtype]
|
||||||
channel_scale_type: torch.dtype | None
|
channel_scale_type: Optional[torch.dtype]
|
||||||
token_scale_type: torch.dtype | None
|
token_scale_type: Optional[torch.dtype]
|
||||||
|
|
||||||
|
|
||||||
def rand_data(shape, dtype=torch.float16, scale=1):
|
def rand_data(shape, dtype=torch.float16, scale=1):
|
||||||
@ -92,8 +93,8 @@ def quantize_and_pack(
|
|||||||
atype: torch.dtype,
|
atype: torch.dtype,
|
||||||
w: torch.Tensor,
|
w: torch.Tensor,
|
||||||
wtype: ScalarType,
|
wtype: ScalarType,
|
||||||
stype: torch.dtype | None,
|
stype: Optional[torch.dtype],
|
||||||
group_size: int | None,
|
group_size: Optional[int],
|
||||||
zero_points: bool = False,
|
zero_points: bool = False,
|
||||||
):
|
):
|
||||||
assert wtype.is_integer(), "TODO: support floating point weights"
|
assert wtype.is_integer(), "TODO: support floating point weights"
|
||||||
@ -112,7 +113,7 @@ def quantize_and_pack(
|
|||||||
|
|
||||||
|
|
||||||
def create_bench_tensors(
|
def create_bench_tensors(
|
||||||
shape: tuple[int, int, int], types: TypeConfig, group_size: int | None
|
shape: tuple[int, int, int], types: TypeConfig, group_size: Optional[int]
|
||||||
) -> list[BenchmarkTensors]:
|
) -> list[BenchmarkTensors]:
|
||||||
m, n, k = shape
|
m, n, k = shape
|
||||||
|
|
||||||
@ -330,8 +331,8 @@ def bench_fns(label: str, sub_label: str, description: str, fns: list[Callable])
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
_SWEEP_SCHEDULES_RESULTS: pd.DataFrame | None = None
|
_SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
|
||||||
_SWEEP_SCHEDULES_RESULTS_CSV: str | None = None
|
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
def bench(
|
def bench(
|
||||||
|
@ -579,12 +579,10 @@ def main(args: argparse.Namespace):
|
|||||||
E = config.ffn_config.moe_num_experts
|
E = config.ffn_config.moe_num_experts
|
||||||
topk = config.ffn_config.moe_top_k
|
topk = config.ffn_config.moe_top_k
|
||||||
intermediate_size = config.ffn_config.ffn_hidden_size
|
intermediate_size = config.ffn_config.ffn_hidden_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] == "JambaForCausalLM":
|
elif config.architectures[0] == "JambaForCausalLM":
|
||||||
E = config.num_experts
|
E = config.num_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.intermediate_size
|
intermediate_size = config.intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] in (
|
elif config.architectures[0] in (
|
||||||
"DeepseekV2ForCausalLM",
|
"DeepseekV2ForCausalLM",
|
||||||
"DeepseekV3ForCausalLM",
|
"DeepseekV3ForCausalLM",
|
||||||
@ -594,7 +592,6 @@ def main(args: argparse.Namespace):
|
|||||||
E = config.n_routed_experts
|
E = config.n_routed_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.moe_intermediate_size
|
intermediate_size = config.moe_intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] in (
|
elif config.architectures[0] in (
|
||||||
"Qwen2MoeForCausalLM",
|
"Qwen2MoeForCausalLM",
|
||||||
"Qwen3MoeForCausalLM",
|
"Qwen3MoeForCausalLM",
|
||||||
@ -603,18 +600,10 @@ def main(args: argparse.Namespace):
|
|||||||
E = config.num_experts
|
E = config.num_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.moe_intermediate_size
|
intermediate_size = config.moe_intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
elif config.architectures[0] == "Qwen3VLMoeForConditionalGeneration":
|
|
||||||
text_config = config.get_text_config()
|
|
||||||
E = text_config.num_experts
|
|
||||||
topk = text_config.num_experts_per_tok
|
|
||||||
intermediate_size = text_config.moe_intermediate_size
|
|
||||||
hidden_size = text_config.hidden_size
|
|
||||||
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
|
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
|
||||||
E = config.num_experts
|
E = config.num_experts
|
||||||
topk = config.moe_topk[0]
|
topk = config.moe_topk[0]
|
||||||
intermediate_size = config.moe_intermediate_size[0]
|
intermediate_size = config.moe_intermediate_size[0]
|
||||||
hidden_size = config.hidden_size
|
|
||||||
else:
|
else:
|
||||||
# Support for llama4
|
# Support for llama4
|
||||||
config = config.get_text_config()
|
config = config.get_text_config()
|
||||||
@ -622,7 +611,6 @@ def main(args: argparse.Namespace):
|
|||||||
E = config.num_local_experts
|
E = config.num_local_experts
|
||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
intermediate_size = config.intermediate_size
|
intermediate_size = config.intermediate_size
|
||||||
hidden_size = config.hidden_size
|
|
||||||
enable_ep = bool(args.enable_expert_parallel)
|
enable_ep = bool(args.enable_expert_parallel)
|
||||||
if enable_ep:
|
if enable_ep:
|
||||||
ensure_divisibility(E, args.tp_size, "Number of experts")
|
ensure_divisibility(E, args.tp_size, "Number of experts")
|
||||||
@ -631,7 +619,8 @@ def main(args: argparse.Namespace):
|
|||||||
else:
|
else:
|
||||||
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
|
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
|
||||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||||
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
|
hidden_size = config.hidden_size
|
||||||
|
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||||
block_quant_shape = get_weight_block_size_safety(config)
|
block_quant_shape = get_weight_block_size_safety(config)
|
||||||
|
@ -344,7 +344,7 @@ def main(args: argparse.Namespace):
|
|||||||
topk = config.num_experts_per_tok
|
topk = config.num_experts_per_tok
|
||||||
|
|
||||||
hidden_size = config.hidden_size
|
hidden_size = config.hidden_size
|
||||||
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
|
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||||
use_customized_permute = args.use_customized_permute
|
use_customized_permute = args.use_customized_permute
|
||||||
|
@ -3,15 +3,16 @@
|
|||||||
|
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import (
|
||||||
from vllm.utils.torch_utils import (
|
|
||||||
STR_DTYPE_TO_TORCH_DTYPE,
|
STR_DTYPE_TO_TORCH_DTYPE,
|
||||||
|
FlexibleArgumentParser,
|
||||||
create_kv_caches_with_random,
|
create_kv_caches_with_random,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -36,7 +37,7 @@ def main(
|
|||||||
seed: int,
|
seed: int,
|
||||||
do_profile: bool,
|
do_profile: bool,
|
||||||
device: str = "cuda",
|
device: str = "cuda",
|
||||||
kv_cache_dtype: str | None = None,
|
kv_cache_dtype: Optional[str] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
current_platform.seed_everything(seed)
|
current_platform.seed_everything(seed)
|
||||||
|
|
||||||
|
@ -3,8 +3,8 @@
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import math
|
import math
|
||||||
from collections.abc import Callable
|
|
||||||
from contextlib import contextmanager
|
from contextlib import contextmanager
|
||||||
|
from typing import Callable
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
155
benchmarks/kernels/benchmark_polynorm.py
Normal file
155
benchmarks/kernels/benchmark_polynorm.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from vllm import _custom_ops as vllm_ops
|
||||||
|
from vllm.triton_utils import triton
|
||||||
|
|
||||||
|
|
||||||
|
def polynorm_naive(
|
||||||
|
x: torch.Tensor,
|
||||||
|
weight: torch.Tensor,
|
||||||
|
bias: torch.Tensor,
|
||||||
|
eps: float = 1e-6,
|
||||||
|
):
|
||||||
|
orig_shape = x.shape
|
||||||
|
x = x.view(-1, x.shape[-1])
|
||||||
|
|
||||||
|
def norm(x, eps: float):
|
||||||
|
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
||||||
|
|
||||||
|
x = x.float()
|
||||||
|
return (
|
||||||
|
(
|
||||||
|
weight[0] * norm(x**3, eps)
|
||||||
|
+ weight[1] * norm(x**2, eps)
|
||||||
|
+ weight[2] * norm(x, eps)
|
||||||
|
+ bias
|
||||||
|
)
|
||||||
|
.to(weight.dtype)
|
||||||
|
.view(orig_shape)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def polynorm_vllm(
|
||||||
|
x: torch.Tensor,
|
||||||
|
weight: torch.Tensor,
|
||||||
|
bias: torch.Tensor,
|
||||||
|
eps: float = 1e-6,
|
||||||
|
):
|
||||||
|
orig_shape = x.shape
|
||||||
|
x = x.view(-1, x.shape[-1])
|
||||||
|
|
||||||
|
out = torch.empty_like(x)
|
||||||
|
vllm_ops.poly_norm(out, x, weight, bias, eps)
|
||||||
|
output = out
|
||||||
|
|
||||||
|
output = output.view(orig_shape)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_diff(batch_size, seq_len, hidden_dim):
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
|
||||||
|
weight = torch.ones(3, dtype=dtype, device="cuda")
|
||||||
|
bias = torch.ones(1, dtype=dtype, device="cuda")
|
||||||
|
|
||||||
|
output_naive = polynorm_naive(x, weight, bias)
|
||||||
|
output_vllm = polynorm_vllm(x, weight, bias)
|
||||||
|
|
||||||
|
if torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2):
|
||||||
|
print("✅ All implementations match")
|
||||||
|
else:
|
||||||
|
print("❌ Implementations differ")
|
||||||
|
|
||||||
|
|
||||||
|
batch_size_range = [2**i for i in range(0, 7, 2)]
|
||||||
|
seq_length_range = [2**i for i in range(6, 11, 1)]
|
||||||
|
dim_range = [2048, 4096]
|
||||||
|
configs = list(itertools.product(dim_range, batch_size_range, seq_length_range))
|
||||||
|
|
||||||
|
|
||||||
|
def get_benchmark():
|
||||||
|
@triton.testing.perf_report(
|
||||||
|
triton.testing.Benchmark(
|
||||||
|
x_names=["dim", "batch_size", "seq_len"],
|
||||||
|
x_vals=[list(_) for _ in configs],
|
||||||
|
line_arg="provider",
|
||||||
|
line_vals=["naive", "vllm"],
|
||||||
|
line_names=["Naive", "vLLM"],
|
||||||
|
styles=[("blue", "-"), ("red", "-")],
|
||||||
|
ylabel="us",
|
||||||
|
plot_name="polynorm-perf",
|
||||||
|
args={},
|
||||||
|
)
|
||||||
|
)
|
||||||
|
def benchmark(dim, batch_size, seq_len, provider):
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
hidden_dim = dim * 4
|
||||||
|
|
||||||
|
x = torch.randn(batch_size, seq_len, hidden_dim, dtype=dtype, device="cuda")
|
||||||
|
weight = torch.ones(3, dtype=dtype, device="cuda")
|
||||||
|
bias = torch.ones(1, dtype=dtype, device="cuda")
|
||||||
|
|
||||||
|
quantiles = [0.5, 0.2, 0.8]
|
||||||
|
|
||||||
|
if provider == "naive":
|
||||||
|
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||||
|
lambda: polynorm_naive(x, weight, bias),
|
||||||
|
quantiles=quantiles,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||||
|
lambda: polynorm_vllm(x, weight, bias),
|
||||||
|
quantiles=quantiles,
|
||||||
|
)
|
||||||
|
|
||||||
|
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
|
||||||
|
|
||||||
|
return benchmark
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Batch size",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seq-len",
|
||||||
|
type=int,
|
||||||
|
default=128,
|
||||||
|
help="Sequence length",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--hidden-dim",
|
||||||
|
type=int,
|
||||||
|
default=8192,
|
||||||
|
help="Intermediate size of MLP",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--save-path",
|
||||||
|
type=str,
|
||||||
|
default="./configs/polnorm/",
|
||||||
|
help="Path to save polnorm benchmark results",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Run correctness test
|
||||||
|
calculate_diff(
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
seq_len=args.seq_len,
|
||||||
|
hidden_dim=args.hidden_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
benchmark = get_benchmark()
|
||||||
|
# Run performance benchmark
|
||||||
|
benchmark.run(print_data=True, save_path=args.save_path)
|
@ -7,8 +7,7 @@ import torch
|
|||||||
|
|
||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||||
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
|
||||||
@ -9,9 +11,9 @@ from tabulate import tabulate
|
|||||||
from vllm import _custom_ops as ops
|
from vllm import _custom_ops as ops
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import (
|
||||||
from vllm.utils.torch_utils import (
|
|
||||||
STR_DTYPE_TO_TORCH_DTYPE,
|
STR_DTYPE_TO_TORCH_DTYPE,
|
||||||
|
FlexibleArgumentParser,
|
||||||
create_kv_caches_with_random,
|
create_kv_caches_with_random,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
|
||||||
@ -12,9 +14,9 @@ from vllm.attention.ops.triton_reshape_and_cache_flash import (
|
|||||||
)
|
)
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.utils import FlexibleArgumentParser
|
from vllm.utils import (
|
||||||
from vllm.utils.torch_utils import (
|
|
||||||
STR_DTYPE_TO_TORCH_DTYPE,
|
STR_DTYPE_TO_TORCH_DTYPE,
|
||||||
|
FlexibleArgumentParser,
|
||||||
create_kv_caches_with_random_flash,
|
create_kv_caches_with_random_flash,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
import itertools
|
import itertools
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
|
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
|
||||||
@ -20,8 +21,8 @@ class HuggingFaceRMSNorm(nn.Module):
|
|||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
||||||
orig_dtype = x.dtype
|
orig_dtype = x.dtype
|
||||||
x = x.to(torch.float32)
|
x = x.to(torch.float32)
|
||||||
if residual is not None:
|
if residual is not None:
|
||||||
@ -40,7 +41,7 @@ class HuggingFaceRMSNorm(nn.Module):
|
|||||||
def rmsnorm_naive(
|
def rmsnorm_naive(
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
weight: torch.Tensor,
|
weight: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
eps: float = 1e-6,
|
eps: float = 1e-6,
|
||||||
):
|
):
|
||||||
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
|
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
|
||||||
@ -64,7 +65,7 @@ def rmsnorm_naive(
|
|||||||
def rmsnorm_flashinfer(
|
def rmsnorm_flashinfer(
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
weight: torch.Tensor,
|
weight: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
eps: float = 1e-6,
|
eps: float = 1e-6,
|
||||||
):
|
):
|
||||||
orig_shape = x.shape
|
orig_shape = x.shape
|
||||||
@ -88,7 +89,7 @@ def rmsnorm_flashinfer(
|
|||||||
def rmsnorm_vllm(
|
def rmsnorm_vllm(
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
weight: torch.Tensor,
|
weight: torch.Tensor,
|
||||||
residual: torch.Tensor | None = None,
|
residual: Optional[torch.Tensor] = None,
|
||||||
eps: float = 1e-6,
|
eps: float = 1e-6,
|
||||||
):
|
):
|
||||||
orig_shape = x.shape
|
orig_shape = x.shape
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
from itertools import accumulate
|
from itertools import accumulate
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import nvtx
|
import nvtx
|
||||||
import torch
|
import torch
|
||||||
@ -17,7 +18,7 @@ def benchmark_rope_kernels_multi_lora(
|
|||||||
seq_len: int,
|
seq_len: int,
|
||||||
num_heads: int,
|
num_heads: int,
|
||||||
head_size: int,
|
head_size: int,
|
||||||
rotary_dim: int | None,
|
rotary_dim: Optional[int],
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
seed: int,
|
seed: int,
|
||||||
device: str,
|
device: str,
|
||||||
|
@ -1,19 +1,5 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
"""
|
|
||||||
Comprehensive 3-way SiLU Benchmark Suite
|
|
||||||
|
|
||||||
This benchmark compares three SiLU implementations:
|
|
||||||
1. SiLU V2 (CUDA) - Optimized CUDA kernel implementation
|
|
||||||
2. Triton Kernel - Triton-based implementation
|
|
||||||
|
|
||||||
The suite generates detailed performance comparisons including:
|
|
||||||
- Memory bandwidth utilization
|
|
||||||
- Speedup ratios (baseline vs optimized implementations)
|
|
||||||
- Performance across different expert configurations and token distributions
|
|
||||||
"""
|
|
||||||
|
|
||||||
from collections.abc import Callable
|
from collections.abc import Callable
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@ -21,7 +7,7 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
|
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
|
||||||
persistent_masked_m_silu_mul_quant,
|
silu_mul_fp8_quant_deep_gemm_cuda,
|
||||||
)
|
)
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.triton_utils import tl, triton
|
from vllm.triton_utils import tl, triton
|
||||||
@ -108,7 +94,6 @@ def silu_mul_fp8_quant_deep_gemm_triton(
|
|||||||
num_parallel_tokens,
|
num_parallel_tokens,
|
||||||
group_size: int = 128,
|
group_size: int = 128,
|
||||||
eps: float = 1e-10,
|
eps: float = 1e-10,
|
||||||
expert_offsets: torch.Tensor = None,
|
|
||||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
|
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
|
||||||
|
|
||||||
@ -189,7 +174,7 @@ def silu_mul_fp8_quant_deep_gemm_triton(
|
|||||||
|
|
||||||
|
|
||||||
# Parse generation strategies
|
# Parse generation strategies
|
||||||
strategies = ["random_imbalanced", "uniform", "max_t"]
|
strategies = ["uniform", "max_t", "first_t"]
|
||||||
|
|
||||||
|
|
||||||
def benchmark(
|
def benchmark(
|
||||||
@ -210,27 +195,15 @@ def benchmark(
|
|||||||
current_platform.seed_everything(42 + seed_offset)
|
current_platform.seed_everything(42 + seed_offset)
|
||||||
y = torch.rand((E, T, 2 * H), dtype=torch.bfloat16, device="cuda").contiguous()
|
y = torch.rand((E, T, 2 * H), dtype=torch.bfloat16, device="cuda").contiguous()
|
||||||
|
|
||||||
if gen_strategy == "random_imbalanced":
|
if gen_strategy == "uniform":
|
||||||
|
r = torch.rand(size=(E,), device="cuda")
|
||||||
def generate_expert_loads(n_e, total_tokens, ratio, device="cuda"):
|
|
||||||
mean = total_tokens // n_e
|
|
||||||
min_max = mean // ratio
|
|
||||||
e = torch.ones(size=(E,), dtype=torch.int64, device=device) * mean
|
|
||||||
e[0] = min_max
|
|
||||||
r = torch.rand(size=(E - 1,))
|
|
||||||
r /= r.sum()
|
|
||||||
r *= total_tokens - min_max
|
|
||||||
r = r.round().long()
|
|
||||||
e[1:] = r.to(device=device)
|
|
||||||
return e
|
|
||||||
|
|
||||||
tokens_per_expert = generate_expert_loads(E, total_tokens, 0.7, "cuda")
|
|
||||||
elif gen_strategy == "uniform":
|
|
||||||
r = torch.rand(size=(E,))
|
|
||||||
r /= r.sum()
|
r /= r.sum()
|
||||||
r *= total_tokens
|
r *= total_tokens
|
||||||
r = r.round().long()
|
tokens_per_expert = r.int()
|
||||||
tokens_per_expert = r
|
tokens_per_expert = torch.minimum(
|
||||||
|
tokens_per_expert,
|
||||||
|
torch.ones((E,), device=r.device, dtype=torch.int) * T,
|
||||||
|
)
|
||||||
elif gen_strategy == "max_t":
|
elif gen_strategy == "max_t":
|
||||||
tokens_per_expert = torch.empty(size=(E,), dtype=torch.int32, device="cuda")
|
tokens_per_expert = torch.empty(size=(E,), dtype=torch.int32, device="cuda")
|
||||||
tokens_per_expert.fill_(total_tokens / E)
|
tokens_per_expert.fill_(total_tokens / E)
|
||||||
@ -308,34 +281,40 @@ def benchmark(
|
|||||||
|
|
||||||
|
|
||||||
def create_comparison_plot(
|
def create_comparison_plot(
|
||||||
ratios, silu_v2_times, triton_times, config_labels, strategy_name, id
|
ratio, cuda_times, baseline_times, config_labels, strategy_name, id
|
||||||
):
|
):
|
||||||
fig, ax = plt.subplots(1, 1, figsize=(18, 6))
|
"""Create a comparison plot for a specific generation strategy"""
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(16, 6))
|
||||||
|
|
||||||
# Configure x-axis positions
|
# Configure x-axis positions
|
||||||
x = np.arange(len(config_labels))
|
x = np.arange(len(config_labels))
|
||||||
width = 0.25
|
width = 0.35
|
||||||
|
|
||||||
# Execution Time plot (lower is better)
|
# Execution Time plot (lower is better)
|
||||||
ax.bar(x, silu_v2_times, width, label="SiLU V2 (CUDA)", alpha=0.8, color="blue")
|
|
||||||
ax.bar(
|
ax.bar(
|
||||||
x + width, triton_times, width, label="Triton Kernel", alpha=0.8, color="green"
|
x - width / 2, cuda_times, width, label="CUDA Kernel", alpha=0.8, color="blue"
|
||||||
|
)
|
||||||
|
ax.bar(
|
||||||
|
x + width / 2,
|
||||||
|
baseline_times,
|
||||||
|
width,
|
||||||
|
label="Baseline",
|
||||||
|
alpha=0.8,
|
||||||
|
color="orange",
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add speedup labels over each bar trio
|
# Add speedup labels over each bar pair
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
triton_v2_speedup = ratios[i][1] # triton/v2
|
speedup = ratio[i]
|
||||||
max_height = max(silu_v2_times[i], triton_times[i])
|
max_height = max(cuda_times[i], baseline_times[i])
|
||||||
|
|
||||||
# Triton/V2 speedup
|
|
||||||
ax.text(
|
ax.text(
|
||||||
x[i] + width / 2,
|
x[i],
|
||||||
max_height + max_height * 0.02,
|
max_height + max_height * 0.02,
|
||||||
f"{triton_v2_speedup:.2f}x",
|
f"{speedup:.2f}x",
|
||||||
ha="center",
|
ha="center",
|
||||||
va="bottom",
|
va="bottom",
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
fontsize=8,
|
fontsize=9,
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xlabel("Configuration")
|
ax.set_xlabel("Configuration")
|
||||||
@ -353,75 +332,56 @@ def create_comparison_plot(
|
|||||||
|
|
||||||
|
|
||||||
def create_combined_plot(all_results):
|
def create_combined_plot(all_results):
|
||||||
|
"""Create a combined plot with all strategies in one PNG"""
|
||||||
num_strategies = len(all_results)
|
num_strategies = len(all_results)
|
||||||
fig, axes = plt.subplots(num_strategies, 1, figsize=(22, 7 * num_strategies))
|
fig, axes = plt.subplots(num_strategies, 1, figsize=(20, 6 * num_strategies))
|
||||||
|
|
||||||
if num_strategies == 1:
|
if num_strategies == 1:
|
||||||
axes = [axes]
|
axes = [axes]
|
||||||
|
|
||||||
for idx, (
|
for idx, (
|
||||||
strategy_name,
|
strategy_name,
|
||||||
all_ratios,
|
ratio,
|
||||||
all_silu_v2_results,
|
cuda_times,
|
||||||
all_triton_results,
|
baseline_times,
|
||||||
config_labels,
|
config_labels,
|
||||||
config_x_axis,
|
|
||||||
) in enumerate(all_results):
|
) in enumerate(all_results):
|
||||||
ax = axes[idx]
|
ax = axes[idx]
|
||||||
|
|
||||||
# Flatten the nested results to get bandwidth percentages for plotting
|
|
||||||
silu_v2_bandwidths = []
|
|
||||||
triton_bandwidths = []
|
|
||||||
flat_ratios = []
|
|
||||||
|
|
||||||
for config_results in all_silu_v2_results:
|
|
||||||
for result in config_results:
|
|
||||||
silu_v2_bandwidths.append(result[3]) # bandwidth percentage
|
|
||||||
|
|
||||||
for config_results in all_triton_results:
|
|
||||||
for result in config_results:
|
|
||||||
triton_bandwidths.append(result[3]) # bandwidth percentage
|
|
||||||
|
|
||||||
for config_ratios in all_ratios:
|
|
||||||
for ratio in config_ratios:
|
|
||||||
flat_ratios.append(ratio)
|
|
||||||
|
|
||||||
# Configure x-axis positions
|
# Configure x-axis positions
|
||||||
x = np.arange(len(config_labels))
|
x = np.arange(len(config_labels))
|
||||||
width = 0.25
|
width = 0.35
|
||||||
|
|
||||||
# Bandwidth utilization plot (higher is better)
|
# Execution Time plot (lower is better)
|
||||||
ax.bar(
|
ax.bar(
|
||||||
x,
|
x - width / 2,
|
||||||
silu_v2_bandwidths,
|
cuda_times,
|
||||||
width,
|
width,
|
||||||
label="SiLU V2 (CUDA)",
|
label="CUDA Kernel",
|
||||||
alpha=0.8,
|
alpha=0.8,
|
||||||
color="blue",
|
color="blue",
|
||||||
)
|
)
|
||||||
ax.bar(
|
ax.bar(
|
||||||
x + width,
|
x + width / 2,
|
||||||
triton_bandwidths,
|
baseline_times,
|
||||||
width,
|
width,
|
||||||
label="Triton Kernel",
|
label="Baseline",
|
||||||
alpha=0.8,
|
alpha=0.8,
|
||||||
color="green",
|
color="orange",
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add speedup labels over each bar trio
|
# Add speedup labels over each bar pair
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
triton_v2_speedup = flat_ratios[i] # triton/v2
|
speedup = ratio[i]
|
||||||
max_height = max(silu_v2_bandwidths[i], triton_bandwidths[i])
|
max_height = max(cuda_times[i], baseline_times[i])
|
||||||
|
|
||||||
# Triton/V2 speedup
|
|
||||||
ax.text(
|
ax.text(
|
||||||
x[i] + width / 2,
|
x[i],
|
||||||
max_height + max_height * 0.02,
|
max_height + max_height * 0.02,
|
||||||
f"{triton_v2_speedup:.2f}x",
|
f"{speedup:.2f}x",
|
||||||
ha="center",
|
ha="center",
|
||||||
va="bottom",
|
va="bottom",
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
fontsize=8,
|
fontsize=9,
|
||||||
)
|
)
|
||||||
|
|
||||||
ax.set_xlabel("Configuration")
|
ax.set_xlabel("Configuration")
|
||||||
@ -435,7 +395,7 @@ def create_combined_plot(all_results):
|
|||||||
ax.grid(True, alpha=0.3)
|
ax.grid(True, alpha=0.3)
|
||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
filename = "silu_benchmark_combined_3way.png"
|
filename = "../../silu_bench/silu_benchmark_combined.png"
|
||||||
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
@ -445,9 +405,7 @@ def create_combined_plot(all_results):
|
|||||||
outer_dim = 7168
|
outer_dim = 7168
|
||||||
configs = [
|
configs = [
|
||||||
# DeepSeekV3 Configs
|
# DeepSeekV3 Configs
|
||||||
# (1, 56, 7168),
|
|
||||||
(8, 1024, 7168),
|
(8, 1024, 7168),
|
||||||
# (32, 56, 7168),
|
|
||||||
# DeepSeekV3 Configs
|
# DeepSeekV3 Configs
|
||||||
(32, 1024, 7168),
|
(32, 1024, 7168),
|
||||||
# DeepSeekV3 Configs
|
# DeepSeekV3 Configs
|
||||||
@ -459,7 +417,6 @@ num_warmups = 20
|
|||||||
|
|
||||||
strategy_descriptions = {
|
strategy_descriptions = {
|
||||||
"uniform": "Uniform Random",
|
"uniform": "Uniform Random",
|
||||||
"random_imbalanced": "Imbalanced Random",
|
|
||||||
"max_t": "Even Assignment",
|
"max_t": "Even Assignment",
|
||||||
"first_t": "experts[0] = T, experts[1:] = 0",
|
"first_t": "experts[0] = T, experts[1:] = 0",
|
||||||
}
|
}
|
||||||
@ -476,31 +433,28 @@ for id, strategy in enumerate(strategies):
|
|||||||
print(f"Testing strategy: {strategy_descriptions[strategy]}")
|
print(f"Testing strategy: {strategy_descriptions[strategy]}")
|
||||||
print(f"{'=' * 60}")
|
print(f"{'=' * 60}")
|
||||||
|
|
||||||
# Collect benchmark data for all three algorithms
|
# Collect benchmark data for both algorithms
|
||||||
config_labels = []
|
config_labels = []
|
||||||
config_x_axis = []
|
config_x_axis = []
|
||||||
all_silu_v2_results = []
|
all_cuda_results = []
|
||||||
all_triton_results = []
|
all_baseline_results = []
|
||||||
all_ratios = []
|
all_ratios = []
|
||||||
|
|
||||||
for E, T, H in configs:
|
for E, T, H in configs:
|
||||||
total_tokens_config = []
|
total_tokens_config = [8 * E, 16 * E, 32 * E, 64 * E, 128 * E, 256 * E]
|
||||||
for i in [8, 16, 32, 64, 128, 256, 512]:
|
|
||||||
if i <= T:
|
|
||||||
total_tokens_config.append(i * E)
|
|
||||||
config_x_axis.append(total_tokens_config)
|
config_x_axis.append(total_tokens_config)
|
||||||
|
|
||||||
silu_v2_results = []
|
cuda_results = []
|
||||||
triton_results = []
|
baseline_results = []
|
||||||
ratios = []
|
ratios = []
|
||||||
|
|
||||||
for total_tokens in total_tokens_config:
|
for total_tokens in total_tokens_config:
|
||||||
config_label = f"E={E},T={T},H={H},TT={total_tokens}"
|
config_label = f"E={E},T={T},H={H},TT={total_tokens}"
|
||||||
config_labels.append(config_label)
|
config_labels.append(config_label)
|
||||||
|
|
||||||
# SiLU V2 (CUDA kernel) results
|
# CUDA kernel results
|
||||||
time_ms_silu_v2, gflops, gbps, perc = benchmark(
|
time_ms_cuda, gflops, gbps, perc = benchmark(
|
||||||
persistent_masked_m_silu_mul_quant,
|
silu_mul_fp8_quant_deep_gemm_cuda,
|
||||||
E,
|
E,
|
||||||
T,
|
T,
|
||||||
H,
|
H,
|
||||||
@ -509,9 +463,9 @@ for id, strategy in enumerate(strategies):
|
|||||||
num_warmups=num_warmups,
|
num_warmups=num_warmups,
|
||||||
gen_strategy=strategy,
|
gen_strategy=strategy,
|
||||||
)
|
)
|
||||||
silu_v2_results.append((time_ms_silu_v2, gflops, gbps, perc))
|
cuda_results.append((time_ms_cuda, gflops, gbps, perc))
|
||||||
|
|
||||||
# Triton kernel results
|
# Baseline results
|
||||||
time_ms_triton, gflops, gbps, perc = benchmark(
|
time_ms_triton, gflops, gbps, perc = benchmark(
|
||||||
silu_mul_fp8_quant_deep_gemm_triton,
|
silu_mul_fp8_quant_deep_gemm_triton,
|
||||||
E,
|
E,
|
||||||
@ -522,20 +476,12 @@ for id, strategy in enumerate(strategies):
|
|||||||
num_warmups=num_warmups,
|
num_warmups=num_warmups,
|
||||||
gen_strategy=strategy,
|
gen_strategy=strategy,
|
||||||
)
|
)
|
||||||
triton_results.append((time_ms_triton, gflops, gbps, perc))
|
baseline_results.append((time_ms_triton, gflops, gbps, perc))
|
||||||
|
ratios.append(time_ms_triton / time_ms_cuda)
|
||||||
|
|
||||||
# Calculate speedup ratios (triton baseline / implementation)
|
print(f"Completed: {config_label}")
|
||||||
triton_v2_ratio = time_ms_triton / time_ms_silu_v2
|
all_cuda_results.append(cuda_results)
|
||||||
ratios.append(triton_v2_ratio)
|
all_baseline_results.append(baseline_results)
|
||||||
|
|
||||||
print(
|
|
||||||
f"Completed: {config_label}:"
|
|
||||||
f" V2: {time_ms_silu_v2:.3f}ms,"
|
|
||||||
f" Triton: {time_ms_triton:.3f}ms"
|
|
||||||
)
|
|
||||||
|
|
||||||
all_silu_v2_results.append(silu_v2_results)
|
|
||||||
all_triton_results.append(triton_results)
|
|
||||||
all_ratios.append(ratios)
|
all_ratios.append(ratios)
|
||||||
|
|
||||||
# Store results for combined plotting
|
# Store results for combined plotting
|
||||||
@ -543,8 +489,8 @@ for id, strategy in enumerate(strategies):
|
|||||||
(
|
(
|
||||||
strategy_descriptions[strategy],
|
strategy_descriptions[strategy],
|
||||||
all_ratios,
|
all_ratios,
|
||||||
all_silu_v2_results,
|
all_cuda_results,
|
||||||
all_triton_results,
|
all_baseline_results,
|
||||||
config_labels,
|
config_labels,
|
||||||
config_x_axis,
|
config_x_axis,
|
||||||
)
|
)
|
||||||
@ -552,18 +498,15 @@ for id, strategy in enumerate(strategies):
|
|||||||
|
|
||||||
# Print summary table for this strategy
|
# Print summary table for this strategy
|
||||||
print(f"\nSummary Table - {strategy_descriptions[strategy]}:")
|
print(f"\nSummary Table - {strategy_descriptions[strategy]}:")
|
||||||
print(f" {'V2 Time(ms)':<12} {'Triton Time(ms)':<14} {'Triton/V2':<10}")
|
print(f"{'Config':<20} {'CUDA Time(ms)':<12} {'Base Time(ms)':<12} {'Speedup':<8}")
|
||||||
print("-" * 90)
|
print("-" * 60)
|
||||||
|
|
||||||
for i, (E, T, H) in enumerate(configs):
|
for i, (E, T, H) in enumerate(configs):
|
||||||
# Get the first result for each config (simplifying for summary)
|
speedup = baseline_results[i][0] / cuda_results[i][0]
|
||||||
v2_time = silu_v2_results[i][0]
|
|
||||||
triton_time = triton_results[i][0]
|
|
||||||
triton_v2_speedup = triton_time / v2_time
|
|
||||||
config_label = f"E={E:3d},T={T:4d},H={H:4d}"
|
config_label = f"E={E:3d},T={T:4d},H={H:4d}"
|
||||||
print(
|
print(
|
||||||
f"{config_label:<20} {v2_time:8.5f} {triton_time:10.5f} "
|
f"{config_label:<20} {cuda_results[i][0]:8.5f} "
|
||||||
f"{triton_v2_speedup:8.2f}x"
|
f"{baseline_results[i][0]:8.5f} {speedup:6.2f}x"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -571,14 +514,15 @@ def create_total_tokens_plot(all_results):
|
|||||||
num_strategies = len(all_results)
|
num_strategies = len(all_results)
|
||||||
num_configs = len(configs)
|
num_configs = len(configs)
|
||||||
|
|
||||||
|
# Create side-by-side subplots: 2 columns for speedup and bandwidth percentage
|
||||||
fig, axs = plt.subplots(
|
fig, axs = plt.subplots(
|
||||||
num_strategies, num_configs * 2, figsize=(32, 8 * num_strategies)
|
num_strategies, num_configs * 2, figsize=(28, 6 * num_strategies)
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add main title to the entire figure
|
# Add main title to the entire figure
|
||||||
fig.suptitle(
|
fig.suptitle(
|
||||||
"Performance Analysis: Speedup vs Bandwidth Utilization (SiLU V2, and Triton)",
|
"Performance Analysis: Speedup vs Bandwidth Utilization (Triton & CUDA)",
|
||||||
fontsize=18,
|
fontsize=16,
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
y=0.98,
|
y=0.98,
|
||||||
)
|
)
|
||||||
@ -595,8 +539,8 @@ def create_total_tokens_plot(all_results):
|
|||||||
(
|
(
|
||||||
strategy_name,
|
strategy_name,
|
||||||
all_ratios,
|
all_ratios,
|
||||||
all_silu_v2_results,
|
all_cuda_results,
|
||||||
all_triton_results,
|
all_baseline_results,
|
||||||
config_labels,
|
config_labels,
|
||||||
config_x_axis,
|
config_x_axis,
|
||||||
) = result
|
) = result
|
||||||
@ -611,54 +555,42 @@ def create_total_tokens_plot(all_results):
|
|||||||
ratios = all_ratios[config_idx]
|
ratios = all_ratios[config_idx]
|
||||||
total_tokens_values = config_x_axis[config_idx]
|
total_tokens_values = config_x_axis[config_idx]
|
||||||
|
|
||||||
# Extract speedup ratios
|
# Extract CUDA and Triton bandwidth percentages
|
||||||
triton_v2_ratios = [ratio for ratio in ratios]
|
cuda_bandwidth_percentages = [
|
||||||
|
result[3] for result in all_cuda_results[config_idx]
|
||||||
# Extract bandwidth percentages for all implementations
|
|
||||||
v2_bandwidth_percentages = [
|
|
||||||
result[3] for result in all_silu_v2_results[config_idx]
|
|
||||||
]
|
]
|
||||||
triton_bandwidth_percentages = [
|
triton_bandwidth_percentages = [
|
||||||
result[3] for result in all_triton_results[config_idx]
|
result[3] for result in all_baseline_results[config_idx]
|
||||||
]
|
]
|
||||||
|
|
||||||
# Plot speedup ratios vs total tokens (left plot)
|
# Plot speedup ratios vs total tokens (left plot)
|
||||||
ax_speedup.plot(
|
ax_speedup.plot(
|
||||||
total_tokens_values,
|
total_tokens_values, ratios, "bo-", linewidth=3, markersize=8
|
||||||
triton_v2_ratios,
|
|
||||||
"go-",
|
|
||||||
linewidth=3,
|
|
||||||
markersize=8,
|
|
||||||
label="Triton/V2 Speedup",
|
|
||||||
)
|
)
|
||||||
ax_speedup.set_title(
|
ax_speedup.set_title(
|
||||||
f"{strategy_name}\nSpeedup vs Baseline (Triton)\nE={E}, T={T}, H={H}",
|
f"{strategy_name}\nSpeedup (CUDA/Triton)\nE={E}, T={T}, H={H}",
|
||||||
fontsize=12,
|
fontsize=12,
|
||||||
fontweight="bold",
|
fontweight="bold",
|
||||||
)
|
)
|
||||||
ax_speedup.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
|
ax_speedup.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
|
||||||
ax_speedup.set_ylabel("Speedup Ratio", fontweight="bold", fontsize=11)
|
ax_speedup.set_ylabel("Speedup Ratio", fontweight="bold", fontsize=11)
|
||||||
ax_speedup.legend(prop={"weight": "bold"})
|
|
||||||
ax_speedup.grid(True, alpha=0.3)
|
ax_speedup.grid(True, alpha=0.3)
|
||||||
|
|
||||||
# Plot bandwidth utilization (right plot)
|
|
||||||
ax_bandwidth.plot(
|
ax_bandwidth.plot(
|
||||||
total_tokens_values,
|
total_tokens_values,
|
||||||
v2_bandwidth_percentages,
|
cuda_bandwidth_percentages,
|
||||||
"o-",
|
"ro-",
|
||||||
linewidth=3,
|
linewidth=3,
|
||||||
markersize=8,
|
markersize=8,
|
||||||
label="SiLU V2",
|
label="CUDA",
|
||||||
color="blue",
|
|
||||||
)
|
)
|
||||||
ax_bandwidth.plot(
|
ax_bandwidth.plot(
|
||||||
total_tokens_values,
|
total_tokens_values,
|
||||||
triton_bandwidth_percentages,
|
triton_bandwidth_percentages,
|
||||||
"o-",
|
"go-",
|
||||||
linewidth=3,
|
linewidth=3,
|
||||||
markersize=8,
|
markersize=8,
|
||||||
label="Triton",
|
label="Triton",
|
||||||
color="green",
|
|
||||||
)
|
)
|
||||||
ax_bandwidth.set_title(
|
ax_bandwidth.set_title(
|
||||||
f"{strategy_name}\nBandwidth Utilization (Hopper)\nE={E}, T={T}, H={H}",
|
f"{strategy_name}\nBandwidth Utilization (Hopper)\nE={E}, T={T}, H={H}",
|
||||||
@ -686,12 +618,38 @@ def create_total_tokens_plot(all_results):
|
|||||||
for label in ax.get_xticklabels() + ax.get_yticklabels():
|
for label in ax.get_xticklabels() + ax.get_yticklabels():
|
||||||
label.set_fontweight("bold")
|
label.set_fontweight("bold")
|
||||||
|
|
||||||
# Add value labels on Triton/V2 speedup points
|
# Add value labels on speedup points
|
||||||
for x, y in zip(total_tokens_values, triton_v2_ratios):
|
for x, y in zip(total_tokens_values, ratios):
|
||||||
ax_speedup.annotate(
|
ax_speedup.annotate(
|
||||||
f"{y:.2f}x",
|
f"{y:.2f}x",
|
||||||
(x, y),
|
(x, y),
|
||||||
textcoords="offset points",
|
textcoords="offset points",
|
||||||
|
xytext=(0, 12),
|
||||||
|
ha="center",
|
||||||
|
fontsize=10,
|
||||||
|
fontweight="bold",
|
||||||
|
bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add value labels on CUDA bandwidth points
|
||||||
|
for x, y in zip(total_tokens_values, cuda_bandwidth_percentages):
|
||||||
|
ax_bandwidth.annotate(
|
||||||
|
f"{y:.1f}%",
|
||||||
|
(x, y),
|
||||||
|
textcoords="offset points",
|
||||||
|
xytext=(0, 12),
|
||||||
|
ha="center",
|
||||||
|
fontsize=9,
|
||||||
|
fontweight="bold",
|
||||||
|
bbox=dict(boxstyle="round,pad=0.2", facecolor="red", alpha=0.3),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add value labels on Triton bandwidth points
|
||||||
|
for x, y in zip(total_tokens_values, triton_bandwidth_percentages):
|
||||||
|
ax_bandwidth.annotate(
|
||||||
|
f"{y:.1f}%",
|
||||||
|
(x, y),
|
||||||
|
textcoords="offset points",
|
||||||
xytext=(0, -15),
|
xytext=(0, -15),
|
||||||
ha="center",
|
ha="center",
|
||||||
fontsize=9,
|
fontsize=9,
|
||||||
@ -701,20 +659,17 @@ def create_total_tokens_plot(all_results):
|
|||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
plt.subplots_adjust(top=0.93) # Make room for main title
|
plt.subplots_adjust(top=0.93) # Make room for main title
|
||||||
filename = "silu_benchmark_total_tokens_3way.png"
|
filename = "silu_benchmark_total_tokens.png"
|
||||||
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
return filename
|
return filename
|
||||||
|
|
||||||
|
|
||||||
# Create comprehensive 3-way comparison plots
|
# Create combined plot with all strategies
|
||||||
combined_plot_filename = create_combined_plot(all_results)
|
combined_plot_filename = create_total_tokens_plot(all_results)
|
||||||
total_tokens_plot_filename = create_total_tokens_plot(all_results)
|
|
||||||
|
|
||||||
print(f"\n{'=' * 80}")
|
print(f"\n{'=' * 60}")
|
||||||
print("3-Way Benchmark Suite Complete!")
|
print("Benchmark Complete!")
|
||||||
print(f"Generated combined comparison plot: {combined_plot_filename}")
|
print(f"Generated combined plot: {combined_plot_filename}")
|
||||||
print(f"Generated total tokens analysis plot: {total_tokens_plot_filename}")
|
print(f"{'=' * 60}")
|
||||||
print("Compared: SiLU V2 (CUDA), and Triton implementations")
|
|
||||||
print(f"{'=' * 80}")
|
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
import csv
|
import csv
|
||||||
import os
|
import os
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import flashinfer
|
import flashinfer
|
||||||
import torch
|
import torch
|
||||||
@ -27,7 +28,9 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def benchmark_decode(
|
def benchmark_decode(
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
quant_dtypes: tuple[torch.dtype | None, torch.dtype | None, torch.dtype | None],
|
quant_dtypes: tuple[
|
||||||
|
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||||
|
],
|
||||||
batch_size: int,
|
batch_size: int,
|
||||||
max_seq_len: int,
|
max_seq_len: int,
|
||||||
num_heads: tuple[int, int] = (64, 8),
|
num_heads: tuple[int, int] = (64, 8),
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
import csv
|
import csv
|
||||||
import os
|
import os
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import flashinfer
|
import flashinfer
|
||||||
import torch
|
import torch
|
||||||
@ -27,7 +28,9 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def benchmark_prefill(
|
def benchmark_prefill(
|
||||||
dtype: torch.dtype,
|
dtype: torch.dtype,
|
||||||
quant_dtypes: tuple[torch.dtype | None, torch.dtype | None, torch.dtype | None],
|
quant_dtypes: tuple[
|
||||||
|
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||||
|
],
|
||||||
batch_size: int,
|
batch_size: int,
|
||||||
max_seq_len: int,
|
max_seq_len: int,
|
||||||
num_heads: tuple[int, int] = (64, 8),
|
num_heads: tuple[int, int] = (64, 8),
|
||||||
|
@ -14,7 +14,7 @@ import torch
|
|||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||||
_w8a8_triton_block_scaled_mm,
|
_w8a8_block_fp8_matmul,
|
||||||
)
|
)
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
from vllm.triton_utils import triton
|
from vllm.triton_utils import triton
|
||||||
@ -83,7 +83,7 @@ def w8a8_block_matmul(
|
|||||||
)
|
)
|
||||||
|
|
||||||
if A.dtype == torch.float8_e4m3fn:
|
if A.dtype == torch.float8_e4m3fn:
|
||||||
kernel = _w8a8_triton_block_scaled_mm
|
kernel = _w8a8_block_fp8_matmul
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
|
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
|
||||||
|
|
||||||
|
@ -2,8 +2,8 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
import dataclasses
|
import dataclasses
|
||||||
from collections.abc import Callable, Iterable
|
from collections.abc import Iterable
|
||||||
from typing import Any
|
from typing import Any, Callable, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.benchmark as TBenchmark
|
import torch.utils.benchmark as TBenchmark
|
||||||
@ -55,7 +55,7 @@ class Bench:
|
|||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
cuda_graph_params: CudaGraphBenchParams | None,
|
cuda_graph_params: Optional[CudaGraphBenchParams],
|
||||||
label: str,
|
label: str,
|
||||||
sub_label: str,
|
sub_label: str,
|
||||||
description: str,
|
description: str,
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
from typing import Any, NamedTuple
|
from typing import Any, NamedTuple, Optional, Union
|
||||||
|
|
||||||
import numpy as np # type: ignore
|
import numpy as np # type: ignore
|
||||||
import pandas as pd # type: ignore
|
import pandas as pd # type: ignore
|
||||||
@ -35,8 +35,8 @@ class Distribution(ABC):
|
|||||||
class UniformDistribution(Distribution):
|
class UniformDistribution(Distribution):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
min_val: int | float,
|
min_val: Union[int, float],
|
||||||
max_val: int | float,
|
max_val: Union[int, float],
|
||||||
is_integer: bool = True,
|
is_integer: bool = True,
|
||||||
) -> None:
|
) -> None:
|
||||||
self.min_val = min_val
|
self.min_val = min_val
|
||||||
@ -56,7 +56,7 @@ class UniformDistribution(Distribution):
|
|||||||
|
|
||||||
|
|
||||||
class ConstantDistribution(Distribution):
|
class ConstantDistribution(Distribution):
|
||||||
def __init__(self, value: int | float) -> None:
|
def __init__(self, value: Union[int, float]) -> None:
|
||||||
self.value = value
|
self.value = value
|
||||||
self.max_val = value
|
self.max_val = value
|
||||||
|
|
||||||
@ -68,7 +68,7 @@ class ConstantDistribution(Distribution):
|
|||||||
|
|
||||||
|
|
||||||
class ZipfDistribution(Distribution):
|
class ZipfDistribution(Distribution):
|
||||||
def __init__(self, alpha: float, max_val: int | None = None) -> None:
|
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
|
||||||
self.alpha = alpha
|
self.alpha = alpha
|
||||||
self.max_val = max_val
|
self.max_val = max_val
|
||||||
|
|
||||||
@ -83,7 +83,7 @@ class ZipfDistribution(Distribution):
|
|||||||
|
|
||||||
|
|
||||||
class PoissonDistribution(Distribution):
|
class PoissonDistribution(Distribution):
|
||||||
def __init__(self, alpha: float, max_val: int | None = None) -> None:
|
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
|
||||||
self.alpha = alpha
|
self.alpha = alpha
|
||||||
self.max_val = max_val
|
self.max_val = max_val
|
||||||
|
|
||||||
@ -100,11 +100,11 @@ class PoissonDistribution(Distribution):
|
|||||||
class LognormalDistribution(Distribution):
|
class LognormalDistribution(Distribution):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
mean: float | None = None,
|
mean: Optional[float] = None,
|
||||||
sigma: float | None = None,
|
sigma: Optional[float] = None,
|
||||||
average: int | None = None,
|
average: Optional[int] = None,
|
||||||
median_ratio: float | None = None,
|
median_ratio: Optional[float] = None,
|
||||||
max_val: int | None = None,
|
max_val: Optional[int] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
self.average = average
|
self.average = average
|
||||||
self.median_ratio = median_ratio
|
self.median_ratio = median_ratio
|
||||||
|
@ -13,7 +13,7 @@ from datetime import datetime
|
|||||||
from enum import Enum
|
from enum import Enum
|
||||||
from http import HTTPStatus
|
from http import HTTPStatus
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
from typing import NamedTuple
|
from typing import NamedTuple, Optional, Union
|
||||||
|
|
||||||
import aiohttp # type: ignore
|
import aiohttp # type: ignore
|
||||||
import numpy as np # type: ignore
|
import numpy as np # type: ignore
|
||||||
@ -46,9 +46,9 @@ class ConversationSampling(str, Enum):
|
|||||||
|
|
||||||
class ClientArgs(NamedTuple):
|
class ClientArgs(NamedTuple):
|
||||||
seed: int
|
seed: int
|
||||||
max_num_requests: int | None
|
max_num_requests: Optional[int]
|
||||||
skip_first_turn: bool
|
skip_first_turn: bool
|
||||||
max_turns: int | None
|
max_turns: Optional[int]
|
||||||
max_active_conversations: int
|
max_active_conversations: int
|
||||||
verbose: bool
|
verbose: bool
|
||||||
print_content: bool
|
print_content: bool
|
||||||
@ -109,9 +109,9 @@ class RequestStats(NamedTuple):
|
|||||||
|
|
||||||
class MetricStats:
|
class MetricStats:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.min: float | None = None
|
self.min: Optional[float] = None
|
||||||
self.max: float | None = None
|
self.max: Optional[float] = None
|
||||||
self.avg: float | None = None
|
self.avg: Optional[float] = None
|
||||||
self.sum = 0.0
|
self.sum = 0.0
|
||||||
self.count = 0
|
self.count = 0
|
||||||
|
|
||||||
@ -143,7 +143,7 @@ class MovingAverage:
|
|||||||
self.index = 0
|
self.index = 0
|
||||||
self.sum = 0.0
|
self.sum = 0.0
|
||||||
self.count = 0
|
self.count = 0
|
||||||
self.avg: float | None = None
|
self.avg: Optional[float] = None
|
||||||
|
|
||||||
def update(self, new_value: float) -> None:
|
def update(self, new_value: float) -> None:
|
||||||
if self.count < self.window_size:
|
if self.count < self.window_size:
|
||||||
@ -169,7 +169,7 @@ class MovingAverage:
|
|||||||
class DebugStats:
|
class DebugStats:
|
||||||
def __init__(self, logger: logging.Logger, window_size: int) -> None:
|
def __init__(self, logger: logging.Logger, window_size: int) -> None:
|
||||||
self.logger = logger
|
self.logger = logger
|
||||||
self.metrics: dict[str, MovingAverage | MetricStats] = {
|
self.metrics: dict[str, Union[MovingAverage, MetricStats]] = {
|
||||||
"moving_avg_ttft_ms": MovingAverage(window_size),
|
"moving_avg_ttft_ms": MovingAverage(window_size),
|
||||||
"moving_avg_tpot_ms": MovingAverage(window_size),
|
"moving_avg_tpot_ms": MovingAverage(window_size),
|
||||||
"ttft_ms": MetricStats(),
|
"ttft_ms": MetricStats(),
|
||||||
@ -198,6 +198,14 @@ class DebugStats:
|
|||||||
self.logger.info("-" * 50)
|
self.logger.info("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
|
# Must support Python 3.8, we can't use str.removeprefix(prefix)
|
||||||
|
# introduced in Python 3.9
|
||||||
|
def remove_prefix(text: str, prefix: str) -> str:
|
||||||
|
if text.startswith(prefix):
|
||||||
|
return text[len(prefix) :]
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
def nanosec_to_millisec(value: float) -> float:
|
def nanosec_to_millisec(value: float) -> float:
|
||||||
return value / 1000000.0
|
return value / 1000000.0
|
||||||
|
|
||||||
@ -212,8 +220,8 @@ async def send_request(
|
|||||||
chat_url: str,
|
chat_url: str,
|
||||||
model: str,
|
model: str,
|
||||||
stream: bool = True,
|
stream: bool = True,
|
||||||
min_tokens: int | None = None,
|
min_tokens: Optional[int] = None,
|
||||||
max_tokens: int | None = None,
|
max_tokens: Optional[int] = None,
|
||||||
) -> ServerResponse:
|
) -> ServerResponse:
|
||||||
payload = {
|
payload = {
|
||||||
"model": model,
|
"model": model,
|
||||||
@ -242,9 +250,9 @@ async def send_request(
|
|||||||
timeout = aiohttp.ClientTimeout(total=timeout_sec)
|
timeout = aiohttp.ClientTimeout(total=timeout_sec)
|
||||||
|
|
||||||
valid_response = True
|
valid_response = True
|
||||||
ttft: float | None = None
|
ttft: Optional[float] = None
|
||||||
chunk_delay: list[int] = []
|
chunk_delay: list[int] = []
|
||||||
latency: float | None = None
|
latency: Optional[float] = None
|
||||||
first_chunk = ""
|
first_chunk = ""
|
||||||
generated_text = ""
|
generated_text = ""
|
||||||
|
|
||||||
@ -261,7 +269,7 @@ async def send_request(
|
|||||||
if not chunk_bytes:
|
if not chunk_bytes:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
|
||||||
if chunk == "[DONE]":
|
if chunk == "[DONE]":
|
||||||
# End of stream
|
# End of stream
|
||||||
latency = time.perf_counter_ns() - start_time
|
latency = time.perf_counter_ns() - start_time
|
||||||
@ -356,7 +364,7 @@ async def send_turn(
|
|||||||
req_args: RequestArgs,
|
req_args: RequestArgs,
|
||||||
verbose: bool,
|
verbose: bool,
|
||||||
verify_output: bool,
|
verify_output: bool,
|
||||||
) -> RequestStats | None:
|
) -> Optional[RequestStats]:
|
||||||
assert messages_to_use > 0
|
assert messages_to_use > 0
|
||||||
assert messages_to_use <= len(conversation_messages)
|
assert messages_to_use <= len(conversation_messages)
|
||||||
|
|
||||||
@ -636,7 +644,7 @@ async def client_main(
|
|||||||
|
|
||||||
if args.verbose:
|
if args.verbose:
|
||||||
curr_time_sec: float = time.perf_counter()
|
curr_time_sec: float = time.perf_counter()
|
||||||
time_since_last_turn: str | float = "N/A"
|
time_since_last_turn: Union[str, float] = "N/A"
|
||||||
if conv_id in time_of_last_turn:
|
if conv_id in time_of_last_turn:
|
||||||
time_since_last_turn = round(
|
time_since_last_turn = round(
|
||||||
curr_time_sec - time_of_last_turn[conv_id], 3
|
curr_time_sec - time_of_last_turn[conv_id], 3
|
||||||
@ -761,7 +769,7 @@ def get_client_config(
|
|||||||
"Number of conversations must be equal or larger than the number of clients"
|
"Number of conversations must be equal or larger than the number of clients"
|
||||||
)
|
)
|
||||||
|
|
||||||
max_req_per_client: int | None = None
|
max_req_per_client: Optional[int] = None
|
||||||
if args.max_num_requests is not None:
|
if args.max_num_requests is not None:
|
||||||
# Max number of requests per client
|
# Max number of requests per client
|
||||||
req_per_client = args.max_num_requests // args.num_clients
|
req_per_client = args.max_num_requests // args.num_clients
|
||||||
@ -928,13 +936,13 @@ async def main_mp(
|
|||||||
f"{num_clients_finished} out of {bench_args.num_clients} clients finished, collected {len(client_metrics)} measurements, runtime {runtime_sec:.3f} sec{Color.RESET}" # noqa: E501
|
f"{num_clients_finished} out of {bench_args.num_clients} clients finished, collected {len(client_metrics)} measurements, runtime {runtime_sec:.3f} sec{Color.RESET}" # noqa: E501
|
||||||
)
|
)
|
||||||
|
|
||||||
rps: str | float = round(len(client_metrics) / runtime_sec, 3)
|
rps: Union[str, float] = round(len(client_metrics) / runtime_sec, 3)
|
||||||
if len(client_metrics) < (5 * bench_args.num_clients):
|
if len(client_metrics) < (5 * bench_args.num_clients):
|
||||||
# Do not estimate the RPS if the number of samples is very low
|
# Do not estimate the RPS if the number of samples is very low
|
||||||
# (threshold can be tuned if needed)
|
# (threshold can be tuned if needed)
|
||||||
rps = "N/A"
|
rps = "N/A"
|
||||||
|
|
||||||
runtime_left_sec: str | float = round(
|
runtime_left_sec: Union[str, float] = round(
|
||||||
(runtime_sec / finished_convs) * (total_convs - finished_convs), 3
|
(runtime_sec / finished_convs) * (total_convs - finished_convs), 3
|
||||||
)
|
)
|
||||||
if percent < 0.05:
|
if percent < 0.05:
|
||||||
@ -1024,7 +1032,7 @@ def process_statistics(
|
|||||||
warmup_percentages: list[float],
|
warmup_percentages: list[float],
|
||||||
test_params: dict,
|
test_params: dict,
|
||||||
verbose: bool,
|
verbose: bool,
|
||||||
gen_conv_args: GenConvArgs | None = None,
|
gen_conv_args: Optional[GenConvArgs] = None,
|
||||||
excel_output: bool = False,
|
excel_output: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
if len(client_metrics) == 0:
|
if len(client_metrics) == 0:
|
||||||
@ -1251,7 +1259,7 @@ async def main() -> None:
|
|||||||
default=None,
|
default=None,
|
||||||
help="The model name used in the API. "
|
help="The model name used in the API. "
|
||||||
"If not specified, the model name will be the "
|
"If not specified, the model name will be the "
|
||||||
"same as the `--model` argument. ",
|
"same as the ``--model`` argument. ",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@ -13,7 +13,7 @@ import argparse
|
|||||||
import json
|
import json
|
||||||
import random
|
import random
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
from typing import Any
|
from typing import Any, Optional
|
||||||
|
|
||||||
import pandas as pd # type: ignore
|
import pandas as pd # type: ignore
|
||||||
import tqdm # type: ignore
|
import tqdm # type: ignore
|
||||||
@ -25,7 +25,7 @@ def has_non_english_chars(text: str) -> bool:
|
|||||||
|
|
||||||
|
|
||||||
def content_is_valid(
|
def content_is_valid(
|
||||||
content: str, min_content_len: int | None, max_content_len: int | None
|
content: str, min_content_len: Optional[int], max_content_len: Optional[int]
|
||||||
) -> bool:
|
) -> bool:
|
||||||
if min_content_len and len(content) < min_content_len:
|
if min_content_len and len(content) < min_content_len:
|
||||||
return False
|
return False
|
||||||
@ -37,7 +37,7 @@ def content_is_valid(
|
|||||||
|
|
||||||
|
|
||||||
def print_stats(
|
def print_stats(
|
||||||
conversations: "list[dict[Any, Any]]", tokenizer: AutoTokenizer | None = None
|
conversations: "list[dict[Any, Any]]", tokenizer: Optional[AutoTokenizer] = None
|
||||||
) -> None:
|
) -> None:
|
||||||
# Collect statistics
|
# Collect statistics
|
||||||
stats = []
|
stats = []
|
||||||
@ -109,12 +109,12 @@ def convert_sharegpt_to_openai(
|
|||||||
seed: int,
|
seed: int,
|
||||||
input_file: str,
|
input_file: str,
|
||||||
output_file: str,
|
output_file: str,
|
||||||
max_items: int | None,
|
max_items: Optional[int],
|
||||||
min_content_len: int | None = None,
|
min_content_len: Optional[int] = None,
|
||||||
max_content_len: int | None = None,
|
max_content_len: Optional[int] = None,
|
||||||
min_turns: int | None = None,
|
min_turns: Optional[int] = None,
|
||||||
max_turns: int | None = None,
|
max_turns: Optional[int] = None,
|
||||||
model: str | None = None,
|
model: Optional[str] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
if min_turns and max_turns:
|
if min_turns and max_turns:
|
||||||
assert min_turns <= max_turns
|
assert min_turns <= max_turns
|
||||||
|
@ -188,66 +188,34 @@ else()
|
|||||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
|
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
#
|
||||||
|
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
|
||||||
|
# Flag to enable ACL kernels for AARCH64 platforms
|
||||||
|
if (VLLM_BUILD_ACL STREQUAL "ON")
|
||||||
|
set(USE_ACL ON)
|
||||||
|
else()
|
||||||
|
set(USE_ACL OFF)
|
||||||
|
endif()
|
||||||
|
|
||||||
# Build oneDNN for GEMM kernels (only for x86-AVX512 /ARM platforms)
|
|
||||||
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||||
# Fetch and build Arm Compute Library (ACL) as oneDNN's backend for AArch64
|
FetchContent_Declare(
|
||||||
# TODO [fadara01]: remove this once ACL can be fetched and built automatically as a dependency of oneDNN
|
oneDNN
|
||||||
if(ASIMD_FOUND)
|
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
||||||
if(DEFINED ENV{ACL_ROOT_DIR} AND IS_DIRECTORY "$ENV{ACL_ROOT_DIR}")
|
GIT_TAG v3.9
|
||||||
message(STATUS "Using ACL from specified source directory: $ENV{ACL_ROOT_DIR}")
|
GIT_PROGRESS TRUE
|
||||||
else()
|
GIT_SHALLOW TRUE
|
||||||
message(STATUS "Downloading Arm Compute Library (ACL) from GitHub")
|
)
|
||||||
FetchContent_Populate(arm_compute
|
|
||||||
SUBBUILD_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-subbuild"
|
|
||||||
SOURCE_DIR "${FETCHCONTENT_BASE_DIR}/arm_compute-src"
|
|
||||||
GIT_REPOSITORY https://github.com/ARM-software/ComputeLibrary.git
|
|
||||||
GIT_TAG v52.2.0
|
|
||||||
GIT_SHALLOW TRUE
|
|
||||||
GIT_PROGRESS TRUE
|
|
||||||
)
|
|
||||||
set(ENV{ACL_ROOT_DIR} "${arm_compute_SOURCE_DIR}")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
# Build ACL with scons
|
if(USE_ACL)
|
||||||
include(ProcessorCount)
|
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
|
||||||
ProcessorCount(_NPROC)
|
if(NOT ARM_COMPUTE_LIBRARY)
|
||||||
execute_process(
|
message(FATAL_ERROR "Could not find ARM Compute Library: please set ACL_ROOT_DIR")
|
||||||
COMMAND scons -j${_NPROC}
|
|
||||||
Werror=0 debug=0 neon=1 examples=0 embed_kernels=0 os=linux
|
|
||||||
arch=armv8.2-a build=native benchmark_examples=0 fixed_format_kernels=1
|
|
||||||
multi_isa=1 openmp=1 cppthreads=0
|
|
||||||
WORKING_DIRECTORY "$ENV{ACL_ROOT_DIR}"
|
|
||||||
RESULT_VARIABLE _acl_rc
|
|
||||||
)
|
|
||||||
if(NOT _acl_rc EQUAL 0)
|
|
||||||
message(FATAL_ERROR "ACL SCons build failed (exit ${_acl_rc}).")
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
set(ONEDNN_AARCH64_USE_ACL "ON")
|
set(ONEDNN_AARCH64_USE_ACL "ON")
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
||||||
add_compile_definitions(VLLM_USE_ACL)
|
add_compile_definitions(VLLM_USE_ACL)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
set(FETCHCONTENT_SOURCE_DIR_ONEDNN "$ENV{FETCHCONTENT_SOURCE_DIR_ONEDNN}" CACHE PATH "Path to a local oneDNN source directory.")
|
|
||||||
|
|
||||||
if(FETCHCONTENT_SOURCE_DIR_ONEDNN)
|
|
||||||
message(STATUS "Using oneDNN from specified source directory: ${FETCHCONTENT_SOURCE_DIR_ONEDNN}")
|
|
||||||
FetchContent_Declare(
|
|
||||||
oneDNN
|
|
||||||
SOURCE_DIR ${FETCHCONTENT_SOURCE_DIR_ONEDNN}
|
|
||||||
)
|
|
||||||
else()
|
|
||||||
message(STATUS "Downloading oneDNN from GitHub")
|
|
||||||
FetchContent_Declare(
|
|
||||||
oneDNN
|
|
||||||
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
|
||||||
GIT_TAG v3.9
|
|
||||||
GIT_PROGRESS TRUE
|
|
||||||
GIT_SHALLOW TRUE
|
|
||||||
)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
||||||
set(ONEDNN_BUILD_DOC "OFF")
|
set(ONEDNN_BUILD_DOC "OFF")
|
||||||
set(ONEDNN_BUILD_EXAMPLES "OFF")
|
set(ONEDNN_BUILD_EXAMPLES "OFF")
|
||||||
@ -259,7 +227,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
|
|||||||
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
|
set(ONEDNN_ENABLE_ITT_TASKS "OFF")
|
||||||
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
|
set(ONEDNN_ENABLE_MAX_CPU_ISA "OFF")
|
||||||
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
|
set(ONEDNN_ENABLE_CPU_ISA_HINTS "OFF")
|
||||||
set(ONEDNN_VERBOSE "OFF")
|
set(ONEDNN_VERBOSE "ON")
|
||||||
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
|
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
|
||||||
|
|
||||||
FetchContent_MakeAvailable(oneDNN)
|
FetchContent_MakeAvailable(oneDNN)
|
||||||
@ -341,4 +309,4 @@ define_gpu_extension_target(
|
|||||||
WITH_SOABI
|
WITH_SOABI
|
||||||
)
|
)
|
||||||
|
|
||||||
message(STATUS "Enabling C extension.")
|
message(STATUS "Enabling C extension.")
|
||||||
|
@ -1,97 +0,0 @@
|
|||||||
include(FetchContent)
|
|
||||||
|
|
||||||
set(CUTLASS_INCLUDE_DIR "${CUTLASS_INCLUDE_DIR}" CACHE PATH "Path to CUTLASS include/ directory")
|
|
||||||
|
|
||||||
if(DEFINED ENV{QUTLASS_SRC_DIR})
|
|
||||||
set(QUTLASS_SRC_DIR $ENV{QUTLASS_SRC_DIR})
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if(QUTLASS_SRC_DIR)
|
|
||||||
FetchContent_Declare(
|
|
||||||
qutlass
|
|
||||||
SOURCE_DIR ${QUTLASS_SRC_DIR}
|
|
||||||
CONFIGURE_COMMAND ""
|
|
||||||
BUILD_COMMAND ""
|
|
||||||
)
|
|
||||||
else()
|
|
||||||
FetchContent_Declare(
|
|
||||||
qutlass
|
|
||||||
GIT_REPOSITORY https://github.com/IST-DASLab/qutlass.git
|
|
||||||
GIT_TAG 830d2c4537c7396e14a02a46fbddd18b5d107c65
|
|
||||||
GIT_PROGRESS TRUE
|
|
||||||
CONFIGURE_COMMAND ""
|
|
||||||
BUILD_COMMAND ""
|
|
||||||
)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
FetchContent_Populate(qutlass)
|
|
||||||
|
|
||||||
if(NOT qutlass_SOURCE_DIR)
|
|
||||||
message(FATAL_ERROR "[QUTLASS] source directory could not be resolved.")
|
|
||||||
endif()
|
|
||||||
message(STATUS "[QUTLASS] QuTLASS is available at ${qutlass_SOURCE_DIR}")
|
|
||||||
|
|
||||||
cuda_archs_loose_intersection(QUTLASS_ARCHS "12.0a;10.0a" "${CUDA_ARCHS}")
|
|
||||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND QUTLASS_ARCHS)
|
|
||||||
|
|
||||||
if(QUTLASS_ARCHS MATCHES "10\\.0a")
|
|
||||||
set(QUTLASS_TARGET_CC 100)
|
|
||||||
elseif(QUTLASS_ARCHS MATCHES "12\\.0a")
|
|
||||||
set(QUTLASS_TARGET_CC 120)
|
|
||||||
else()
|
|
||||||
message(FATAL_ERROR "[QUTLASS] internal error parsing CUDA_ARCHS='${QUTLASS_ARCHS}'.")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set(QUTLASS_SOURCES
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/bindings.cpp
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm_ada.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx_sm100.cu
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv_sm100.cu
|
|
||||||
)
|
|
||||||
|
|
||||||
set(QUTLASS_INCLUDES
|
|
||||||
${qutlass_SOURCE_DIR}
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/include
|
|
||||||
${qutlass_SOURCE_DIR}/qutlass/csrc/include/cutlass_extensions
|
|
||||||
)
|
|
||||||
|
|
||||||
if(CUTLASS_INCLUDE_DIR AND EXISTS "${CUTLASS_INCLUDE_DIR}/cutlass/cutlass.h")
|
|
||||||
list(APPEND QUTLASS_INCLUDES "${CUTLASS_INCLUDE_DIR}")
|
|
||||||
elseif(EXISTS "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include/cutlass/cutlass.h")
|
|
||||||
list(APPEND QUTLASS_INCLUDES "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include")
|
|
||||||
message(STATUS "[QUTLASS] Using QuTLASS vendored CUTLASS headers (no vLLM CUTLASS detected).")
|
|
||||||
else()
|
|
||||||
message(FATAL_ERROR "[QUTLASS] CUTLASS headers not found. "
|
|
||||||
"Set -DCUTLASS_INCLUDE_DIR=/path/to/cutlass/include")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
set_gencode_flags_for_srcs(
|
|
||||||
SRCS "${QUTLASS_SOURCES}"
|
|
||||||
CUDA_ARCHS "${QUTLASS_ARCHS}"
|
|
||||||
)
|
|
||||||
|
|
||||||
target_sources(_C PRIVATE ${QUTLASS_SOURCES})
|
|
||||||
target_include_directories(_C PRIVATE ${QUTLASS_INCLUDES})
|
|
||||||
target_compile_definitions(_C PRIVATE
|
|
||||||
QUTLASS_DISABLE_PYBIND=1
|
|
||||||
TARGET_CUDA_ARCH=${QUTLASS_TARGET_CC}
|
|
||||||
)
|
|
||||||
|
|
||||||
set_property(SOURCE ${QUTLASS_SOURCES} APPEND PROPERTY COMPILE_OPTIONS
|
|
||||||
$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr --use_fast_math -O3>
|
|
||||||
)
|
|
||||||
|
|
||||||
else()
|
|
||||||
if("${CMAKE_CUDA_COMPILER_VERSION}" VERSION_LESS "12.8")
|
|
||||||
message(STATUS
|
|
||||||
"[QUTLASS] Skipping build: CUDA 12.8 or newer is required (found ${CMAKE_CUDA_COMPILER_VERSION}).")
|
|
||||||
else()
|
|
||||||
message(STATUS
|
|
||||||
"[QUTLASS] Skipping build: no supported arch (12.0a / 10.0a) found in "
|
|
||||||
"CUDA_ARCHS='${CUDA_ARCHS}'.")
|
|
||||||
endif()
|
|
||||||
endif()
|
|
@ -38,7 +38,7 @@ else()
|
|||||||
FetchContent_Declare(
|
FetchContent_Declare(
|
||||||
vllm-flash-attn
|
vllm-flash-attn
|
||||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||||
GIT_TAG a893712401d70362fbb299cd9c4b3476e8e9ed54
|
GIT_TAG 4695e6bed5366c41e28c06cd86170166e4f43d00
|
||||||
GIT_PROGRESS TRUE
|
GIT_PROGRESS TRUE
|
||||||
# Don't share the vllm-flash-attn build between build types
|
# Don't share the vllm-flash-attn build between build types
|
||||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||||
|
12
codecov.yml
12
codecov.yml
@ -1,12 +0,0 @@
|
|||||||
codecov:
|
|
||||||
require_ci_to_pass: false
|
|
||||||
|
|
||||||
fixes:
|
|
||||||
# Map source code paths to repository root paths
|
|
||||||
# Wildcards match any Python version (python3.*)
|
|
||||||
- "/vllm-workspace/src/vllm/::vllm/"
|
|
||||||
- "/vllm-workspace/vllm/::vllm/"
|
|
||||||
- "/usr/local/lib/python3.*/dist-packages/vllm/::vllm/"
|
|
||||||
- "/usr/local/lib/python3.*/site-packages/vllm/::vllm/"
|
|
||||||
- "/usr/lib/python3.*/dist-packages/vllm/::vllm/"
|
|
||||||
- "/usr/lib/python3.*/site-packages/vllm/::vllm/"
|
|
@ -28,10 +28,10 @@
|
|||||||
|
|
||||||
#ifdef USE_ROCM
|
#ifdef USE_ROCM
|
||||||
#include <hip/hip_bf16.h>
|
#include <hip/hip_bf16.h>
|
||||||
#include "../quantization/w8a8/fp8/amd/quant_utils.cuh"
|
#include "../quantization/fp8/amd/quant_utils.cuh"
|
||||||
typedef __hip_bfloat16 __nv_bfloat16;
|
typedef __hip_bfloat16 __nv_bfloat16;
|
||||||
#else
|
#else
|
||||||
#include "../quantization/w8a8/fp8/nvidia/quant_utils.cuh"
|
#include "../quantization/fp8/nvidia/quant_utils.cuh"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
|
@ -125,37 +125,32 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void set_split_kv (KernelArguments& args) {
|
static void set_split_kv (KernelArguments& args) {
|
||||||
|
// printf("set_split_kv start");
|
||||||
if (args.split_kv >= 1) return;
|
if (args.split_kv >= 1) return;
|
||||||
auto [H, K, D, B] = args.problem_shape;
|
auto [H, K, D, B] = args.problem_shape;
|
||||||
|
// std::cout << H << " " << K << " " << D << " " << B << "\n";
|
||||||
int sm_count = args.hw_info.sm_count;
|
int sm_count = args.hw_info.sm_count;
|
||||||
float seq_length_k = static_cast<float>(K) / 1024.0f;
|
// printf(" sm_count = %d\n", sm_count);
|
||||||
int max_splits = 1;
|
int max_splits = ceil_div(K, 128);
|
||||||
|
max_splits = min(16, max_splits);
|
||||||
|
|
||||||
if (B <= 4 && seq_length_k >= 16) {
|
// TODO: This avoids a hang when the batch size larger than 1 and
|
||||||
max_splits = 16;
|
// there is more than 1 kv_splits.
|
||||||
|
// Discuss with NVIDIA how this can be fixed.
|
||||||
|
if (B > 1) {
|
||||||
|
max_splits = min(1, max_splits);
|
||||||
}
|
}
|
||||||
else if (B <= 8 && seq_length_k >= 4) {
|
|
||||||
max_splits = 8;
|
// printf(" max_splits = %d\n", max_splits);
|
||||||
}
|
|
||||||
else if ((B <= 16 && seq_length_k >= 8) ||
|
|
||||||
(B == 48 && seq_length_k >= 32)) {
|
|
||||||
max_splits = 4;
|
|
||||||
}
|
|
||||||
else if ((B <= 32 && seq_length_k >= 16) ||
|
|
||||||
(B == 96 && seq_length_k >= 16)) {
|
|
||||||
max_splits = 2;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
max_splits = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Wave-aware scheduling: ensure integer number of waves in K dimension
|
|
||||||
int sms_per_batch = max(1, sm_count / B);
|
int sms_per_batch = max(1, sm_count / B);
|
||||||
|
// printf(" sms_per_batch = %d\n", sms_per_batch);
|
||||||
int split_heur = min(max_splits, sms_per_batch);
|
int split_heur = min(max_splits, sms_per_batch);
|
||||||
int waves = ceil_div(B * split_heur, sm_count);
|
int waves = ceil_div(B * split_heur, sm_count);
|
||||||
int k_waves = ceil_div(max_splits, split_heur);
|
int k_waves = ceil_div(max_splits, split_heur);
|
||||||
int split_wave_aware = ceil_div(max_splits, k_waves);
|
int split_wave_aware = ceil_div(max_splits, k_waves);
|
||||||
args.split_kv = split_wave_aware;
|
args.split_kv = split_wave_aware;
|
||||||
|
// printf(" args.split_kv = %d\n", args.split_kv);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Determines whether the GEMM can execute the given problem.
|
/// Determines whether the GEMM can execute the given problem.
|
||||||
|
@ -64,11 +64,3 @@ void indexer_k_quant_and_cache(
|
|||||||
torch::Tensor& slot_mapping, // [num_tokens]
|
torch::Tensor& slot_mapping, // [num_tokens]
|
||||||
int64_t quant_block_size, // quantization block size
|
int64_t quant_block_size, // quantization block size
|
||||||
const std::string& scale_fmt);
|
const std::string& scale_fmt);
|
||||||
|
|
||||||
// Extract function to gather quantized K cache
|
|
||||||
void cp_gather_indexer_k_quant_cache(
|
|
||||||
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
|
||||||
torch::Tensor& dst_k, // [num_tokens, head_dim]
|
|
||||||
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
|
|
||||||
const torch::Tensor& block_table, // [batch_size, num_blocks]
|
|
||||||
const torch::Tensor& cu_seq_lens); // [batch_size + 1]
|
|
@ -9,9 +9,9 @@
|
|||||||
#include "quantization/vectorization_utils.cuh"
|
#include "quantization/vectorization_utils.cuh"
|
||||||
|
|
||||||
#ifdef USE_ROCM
|
#ifdef USE_ROCM
|
||||||
#include "quantization/w8a8/fp8/amd/quant_utils.cuh"
|
#include "quantization/fp8/amd/quant_utils.cuh"
|
||||||
#else
|
#else
|
||||||
#include "quantization/w8a8/fp8/nvidia/quant_utils.cuh"
|
#include "quantization/fp8/nvidia/quant_utils.cuh"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
@ -572,70 +572,6 @@ __global__ void indexer_k_quant_and_cache_kernel(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int BLOCK_Y_SIZE>
|
|
||||||
__global__ void cp_gather_indexer_k_quant_cache_kernel(
|
|
||||||
const char* __restrict__ kv_cache, // [num_blocks, block_size,
|
|
||||||
// cache_stride]
|
|
||||||
char* __restrict__ dst_k, // [num_tokens, head_dim]
|
|
||||||
char* __restrict__ dst_scale, // [num_tokens, head_dim / quant_block_size *
|
|
||||||
// 4]
|
|
||||||
const int* __restrict__ block_table, // [batch_size, num_blocks]
|
|
||||||
const int* __restrict__ cu_seq_lens, // [batch_size + 1]
|
|
||||||
const int batch_size, // batch size
|
|
||||||
const int64_t token_stride, // stride for each token in dst_k
|
|
||||||
const int64_t head_dim, // dimension of each head
|
|
||||||
const int64_t block_stride, // stride for each block in kv_cache
|
|
||||||
const int64_t cache_token_stride, // stride for each token in kv_cache
|
|
||||||
const int64_t cache_block_size, // num_tokens for each block in kv_cache
|
|
||||||
const int num_blocks, // number of blocks
|
|
||||||
const int num_tokens, // number of tokens
|
|
||||||
const int quant_block_size // quantization block size
|
|
||||||
) {
|
|
||||||
constexpr int VEC_SIZE = sizeof(float4) / sizeof(char);
|
|
||||||
const int token_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
|
||||||
const int head_idx = (blockIdx.y * blockDim.x + threadIdx.x) * VEC_SIZE;
|
|
||||||
// Find batch index within a block
|
|
||||||
__shared__ int batch_idx[BLOCK_Y_SIZE];
|
|
||||||
for (int iter = 0; iter < cuda_utils::ceil_div(batch_size, int(blockDim.x));
|
|
||||||
iter++) {
|
|
||||||
int tid = iter * blockDim.x + threadIdx.x;
|
|
||||||
if (tid < batch_size) {
|
|
||||||
const int seq_start = cu_seq_lens[tid];
|
|
||||||
const int seq_end = cu_seq_lens[tid + 1];
|
|
||||||
if (token_idx >= seq_start && token_idx < seq_end) {
|
|
||||||
batch_idx[threadIdx.y] = tid;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifndef USE_ROCM
|
|
||||||
__syncwarp();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
if (head_idx >= head_dim || token_idx >= num_tokens) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
const int inbatch_seq_idx = token_idx - cu_seq_lens[batch_idx[threadIdx.y]];
|
|
||||||
const int block_idx = block_table[batch_idx[threadIdx.y] * num_blocks +
|
|
||||||
inbatch_seq_idx / cache_block_size];
|
|
||||||
const int64_t src_block_offset = block_idx * block_stride;
|
|
||||||
const int64_t cache_inblock_offset =
|
|
||||||
(inbatch_seq_idx % cache_block_size) * head_dim + head_idx;
|
|
||||||
const int64_t src_inblock_offset = src_block_offset + cache_inblock_offset;
|
|
||||||
const int64_t dst_inblock_offset = token_idx * token_stride + head_idx;
|
|
||||||
|
|
||||||
reinterpret_cast<float4*>(dst_k)[dst_inblock_offset / VEC_SIZE] =
|
|
||||||
reinterpret_cast<const float4*>(kv_cache)[src_inblock_offset / VEC_SIZE];
|
|
||||||
;
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
const int64_t src_scale_offset =
|
|
||||||
src_block_offset + cache_block_size * head_dim +
|
|
||||||
cache_inblock_offset * 4 / quant_block_size;
|
|
||||||
reinterpret_cast<float*>(dst_scale)[dst_inblock_offset / quant_block_size] =
|
|
||||||
reinterpret_cast<const float*>(kv_cache)[src_scale_offset / 4];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace vllm
|
} // namespace vllm
|
||||||
|
|
||||||
// KV_T is the data type of key and value tensors.
|
// KV_T is the data type of key and value tensors.
|
||||||
@ -1237,59 +1173,3 @@ void indexer_k_quant_and_cache(
|
|||||||
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
|
DISPATCH_BY_KV_CACHE_DTYPE(k.dtype(), "fp8_e4m3",
|
||||||
CALL_INDEXER_K_QUANT_AND_CACHE);
|
CALL_INDEXER_K_QUANT_AND_CACHE);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Macro to dispatch the kernel based on the data amount.
|
|
||||||
#define CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(BLOCK_Y_SIZE) \
|
|
||||||
vllm::cp_gather_indexer_k_quant_cache_kernel<BLOCK_Y_SIZE> \
|
|
||||||
<<<dim3((num_tokens + BLOCK_Y_SIZE - 1) / BLOCK_Y_SIZE, \
|
|
||||||
(head_dim + 8 * vec_size - 1) / (8 * vec_size)), \
|
|
||||||
dim3(8, BLOCK_Y_SIZE), 0, stream>>>( \
|
|
||||||
reinterpret_cast<char*>(kv_cache.data_ptr()), \
|
|
||||||
reinterpret_cast<char*>(dst_k.data_ptr()), \
|
|
||||||
reinterpret_cast<char*>(dst_scale.data_ptr()), \
|
|
||||||
block_table.data_ptr<int32_t>(), cu_seq_lens.data_ptr<int32_t>(), \
|
|
||||||
batch_size, dst_k.stride(0), dst_k.size(1), kv_cache.stride(0), \
|
|
||||||
kv_cache.stride(1), kv_cache.size(1), block_table.size(1), \
|
|
||||||
num_tokens, quant_block_size);
|
|
||||||
|
|
||||||
void cp_gather_indexer_k_quant_cache(
|
|
||||||
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
|
|
||||||
torch::Tensor& dst_k, // [num_tokens, head_dim]
|
|
||||||
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
|
|
||||||
const torch::Tensor& block_table, // [batch_size, num_blocks]
|
|
||||||
const torch::Tensor& cu_seq_lens // [batch_size + 1]
|
|
||||||
) {
|
|
||||||
int batch_size = block_table.size(0);
|
|
||||||
int num_tokens = dst_k.size(0);
|
|
||||||
int head_dim = dst_k.size(1);
|
|
||||||
int quant_block_size = head_dim * 4 / dst_scale.size(1);
|
|
||||||
|
|
||||||
TORCH_CHECK(kv_cache.device() == dst_k.device(),
|
|
||||||
"kv_cache and dst_k must be on the same device");
|
|
||||||
TORCH_CHECK(kv_cache.device() == dst_scale.device(),
|
|
||||||
"kv_cache and dst_scale must be on the same device");
|
|
||||||
TORCH_CHECK(kv_cache.device() == block_table.device(),
|
|
||||||
"kv_cache and block_table must be on the same device");
|
|
||||||
TORCH_CHECK(kv_cache.device() == cu_seq_lens.device(),
|
|
||||||
"kv_cache and cu_seq_lens must be on the same device");
|
|
||||||
TORCH_CHECK(head_dim % quant_block_size == 0,
|
|
||||||
"head_dim must be divisible by quant_block_size");
|
|
||||||
|
|
||||||
constexpr int vec_size = 16;
|
|
||||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(kv_cache));
|
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
||||||
|
|
||||||
if (num_tokens < 32) {
|
|
||||||
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(1);
|
|
||||||
} else if (num_tokens < 64) {
|
|
||||||
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(2);
|
|
||||||
} else if (num_tokens < 128) {
|
|
||||||
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(4);
|
|
||||||
} else if (num_tokens < 256) {
|
|
||||||
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(8);
|
|
||||||
} else if (num_tokens < 512) {
|
|
||||||
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(16);
|
|
||||||
} else {
|
|
||||||
CALL_CP_GATHER_INDEXER_K_QUANT_CACHE(32);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -5,15 +5,12 @@
|
|||||||
|
|
||||||
namespace vllm {
|
namespace vllm {
|
||||||
|
|
||||||
// vllm_is_batch_invariant(); returns true
|
// vllm_kernel_override_batch_invariant(); returns true
|
||||||
// if env VLLM_BATCH_INVARIANT=1
|
// if env VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT=1
|
||||||
inline bool vllm_is_batch_invariant() {
|
inline bool vllm_kernel_override_batch_invariant() {
|
||||||
static bool cached = []() {
|
std::string env_key = "VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT";
|
||||||
std::string env_key = "VLLM_BATCH_INVARIANT";
|
const char* val = std::getenv(env_key.c_str());
|
||||||
const char* val = std::getenv(env_key.c_str());
|
return (val && std::atoi(val) != 0) ? 1 : 0;
|
||||||
return (val && std::atoi(val) != 0) ? 1 : 0;
|
|
||||||
}();
|
|
||||||
return cached;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace vllm
|
} // namespace vllm
|
||||||
|
@ -12,7 +12,6 @@ using CubMaxOp = cub::Max;
|
|||||||
#endif // CUB_VERSION
|
#endif // CUB_VERSION
|
||||||
#else
|
#else
|
||||||
#include <hipcub/hipcub.hpp>
|
#include <hipcub/hipcub.hpp>
|
||||||
namespace cub = hipcub;
|
using CubAddOp = cub::Sum;
|
||||||
using CubAddOp = hipcub::Sum;
|
using CubMaxOp = cub::Max;
|
||||||
using CubMaxOp = hipcub::Max;
|
|
||||||
#endif // USE_ROCM
|
#endif // USE_ROCM
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
import enum
|
import enum
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
from cutlass_library import *
|
from cutlass_library import *
|
||||||
|
|
||||||
@ -21,7 +22,7 @@ class MixedInputKernelScheduleType(enum.Enum):
|
|||||||
TmaWarpSpecializedCooperative = enum_auto()
|
TmaWarpSpecializedCooperative = enum_auto()
|
||||||
|
|
||||||
|
|
||||||
VLLMDataTypeNames: dict[VLLMDataType | DataType, str] = {
|
VLLMDataTypeNames: dict[Union[VLLMDataType, DataType], str] = {
|
||||||
**DataTypeNames, # type: ignore
|
**DataTypeNames, # type: ignore
|
||||||
**{
|
**{
|
||||||
VLLMDataType.u4b8: "u4b8",
|
VLLMDataType.u4b8: "u4b8",
|
||||||
@ -29,7 +30,7 @@ VLLMDataTypeNames: dict[VLLMDataType | DataType, str] = {
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
VLLMDataTypeTag: dict[VLLMDataType | DataType, str] = {
|
VLLMDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||||
**DataTypeTag, # type: ignore
|
**DataTypeTag, # type: ignore
|
||||||
**{
|
**{
|
||||||
VLLMDataType.u4b8: "cutlass::vllm_uint4b8_t",
|
VLLMDataType.u4b8: "cutlass::vllm_uint4b8_t",
|
||||||
@ -37,7 +38,7 @@ VLLMDataTypeTag: dict[VLLMDataType | DataType, str] = {
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
VLLMDataTypeSize: dict[VLLMDataType | DataType, int] = {
|
VLLMDataTypeSize: dict[Union[VLLMDataType, DataType], int] = {
|
||||||
**DataTypeSize, # type: ignore
|
**DataTypeSize, # type: ignore
|
||||||
**{
|
**{
|
||||||
VLLMDataType.u4b8: 4,
|
VLLMDataType.u4b8: 4,
|
||||||
@ -45,7 +46,7 @@ VLLMDataTypeSize: dict[VLLMDataType | DataType, int] = {
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
VLLMDataTypeVLLMScalarTypeTag: dict[VLLMDataType | DataType, str] = {
|
VLLMDataTypeVLLMScalarTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||||
VLLMDataType.u4b8: "vllm::kU4B8",
|
VLLMDataType.u4b8: "vllm::kU4B8",
|
||||||
VLLMDataType.u8b128: "vllm::kU8B128",
|
VLLMDataType.u8b128: "vllm::kU8B128",
|
||||||
DataType.u4: "vllm::kU4",
|
DataType.u4: "vllm::kU4",
|
||||||
@ -56,7 +57,7 @@ VLLMDataTypeVLLMScalarTypeTag: dict[VLLMDataType | DataType, str] = {
|
|||||||
DataType.bf16: "vllm::kBfloat16",
|
DataType.bf16: "vllm::kBfloat16",
|
||||||
}
|
}
|
||||||
|
|
||||||
VLLMDataTypeTorchDataTypeTag: dict[VLLMDataType | DataType, str] = {
|
VLLMDataTypeTorchDataTypeTag: dict[Union[VLLMDataType, DataType], str] = {
|
||||||
DataType.u8: "at::ScalarType::Byte",
|
DataType.u8: "at::ScalarType::Byte",
|
||||||
DataType.s8: "at::ScalarType::Char",
|
DataType.s8: "at::ScalarType::Char",
|
||||||
DataType.e4m3: "at::ScalarType::Float8_e4m3fn",
|
DataType.e4m3: "at::ScalarType::Float8_e4m3fn",
|
||||||
@ -66,7 +67,9 @@ VLLMDataTypeTorchDataTypeTag: dict[VLLMDataType | DataType, str] = {
|
|||||||
DataType.f32: "at::ScalarType::Float",
|
DataType.f32: "at::ScalarType::Float",
|
||||||
}
|
}
|
||||||
|
|
||||||
VLLMKernelScheduleTag: dict[MixedInputKernelScheduleType | KernelScheduleType, str] = {
|
VLLMKernelScheduleTag: dict[
|
||||||
|
Union[MixedInputKernelScheduleType, KernelScheduleType], str
|
||||||
|
] = {
|
||||||
**KernelScheduleTag, # type: ignore
|
**KernelScheduleTag, # type: ignore
|
||||||
**{
|
**{
|
||||||
MixedInputKernelScheduleType.TmaWarpSpecialized: "cutlass::gemm::KernelTmaWarpSpecialized", # noqa: E501
|
MixedInputKernelScheduleType.TmaWarpSpecialized: "cutlass::gemm::KernelTmaWarpSpecialized", # noqa: E501
|
||||||
|
@ -2,7 +2,6 @@
|
|||||||
#include "dispatch_utils.h"
|
#include "dispatch_utils.h"
|
||||||
#include "cub_helpers.h"
|
#include "cub_helpers.h"
|
||||||
#include "core/batch_invariant.hpp"
|
#include "core/batch_invariant.hpp"
|
||||||
#include "quantization/vectorization_utils.cuh"
|
|
||||||
|
|
||||||
#include <torch/cuda.h>
|
#include <torch/cuda.h>
|
||||||
#include <c10/cuda/CUDAGuard.h>
|
#include <c10/cuda/CUDAGuard.h>
|
||||||
@ -19,22 +18,11 @@ __global__ void rms_norm_kernel(
|
|||||||
const float epsilon, const int num_tokens, const int hidden_size) {
|
const float epsilon, const int num_tokens, const int hidden_size) {
|
||||||
__shared__ float s_variance;
|
__shared__ float s_variance;
|
||||||
float variance = 0.0f;
|
float variance = 0.0f;
|
||||||
const scalar_t* input_row = input + blockIdx.x * input_stride;
|
|
||||||
|
|
||||||
constexpr int VEC_SIZE = 8;
|
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||||
auto vec_op = [&variance](const vec_n_t<scalar_t, VEC_SIZE>& vec) {
|
const float x = (float)input[blockIdx.x * input_stride + idx];
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < VEC_SIZE; ++i) {
|
|
||||||
float x = static_cast<float>(vec.val[i]);
|
|
||||||
variance += x * x;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
auto scalar_op = [&variance](const scalar_t& val) {
|
|
||||||
float x = static_cast<float>(val);
|
|
||||||
variance += x * x;
|
variance += x * x;
|
||||||
};
|
}
|
||||||
vllm::vectorize_read_with_alignment<VEC_SIZE>(
|
|
||||||
input_row, hidden_size, threadIdx.x, blockDim.x, vec_op, scalar_op);
|
|
||||||
|
|
||||||
using BlockReduce = cub::BlockReduce<float, 1024>;
|
using BlockReduce = cub::BlockReduce<float, 1024>;
|
||||||
__shared__ typename BlockReduce::TempStorage reduceStore;
|
__shared__ typename BlockReduce::TempStorage reduceStore;
|
||||||
@ -148,6 +136,211 @@ fused_add_rms_norm_kernel(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Function specialization in the case of FP16/BF16 tensors.
|
||||||
|
Additional optimizations we can make in this case are
|
||||||
|
packed and vectorized operations, which help with the
|
||||||
|
memory latency bottleneck.
|
||||||
|
|
||||||
|
_f16VecPN struct extends _f16Vec to add operations specifically required for
|
||||||
|
polynomial normalization (poly norm).
|
||||||
|
The original _f16Vec does not include the sum-of-powers computation or
|
||||||
|
in-place polynomial normalization logic. */
|
||||||
|
template <typename scalar_t, int width>
|
||||||
|
struct alignas(16) _f16VecPN : _f16Vec<scalar_t, width> {
|
||||||
|
using Base = _f16Vec<scalar_t, width>;
|
||||||
|
using Converter = typename Base::Converter;
|
||||||
|
using T1 = typename Base::T1;
|
||||||
|
using T2 = typename Base::T2;
|
||||||
|
using Base::data;
|
||||||
|
|
||||||
|
__device__ auto sum_pows() const {
|
||||||
|
float s2 = 0.0f, s4 = 0.0f, s6 = 0.0f;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < width; i += 2) {
|
||||||
|
float2 z = Converter::convert(T2{data[i], data[i + 1]});
|
||||||
|
float x2 = z.x * z.x;
|
||||||
|
float x4 = x2 * x2;
|
||||||
|
float x6 = x4 * x2;
|
||||||
|
|
||||||
|
float y2 = z.y * z.y;
|
||||||
|
float y4 = y2 * y2;
|
||||||
|
float y6 = y4 * y2;
|
||||||
|
|
||||||
|
s2 += x2 + y2;
|
||||||
|
s4 += x4 + y4;
|
||||||
|
s6 += x6 + y6;
|
||||||
|
}
|
||||||
|
return std::make_tuple(s2, s4, s6);
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ void poly_norm_inplace(const float w2_inv_std,
|
||||||
|
const float w1_inv_std2,
|
||||||
|
const float w0_inv_std3, const float bias) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < width; i += 2) {
|
||||||
|
float2 z = Converter::convert(T2{data[i], data[i + 1]});
|
||||||
|
|
||||||
|
float x2 = z.x * z.x;
|
||||||
|
float x3 = x2 * z.x;
|
||||||
|
z.x = w2_inv_std * z.x + w1_inv_std2 * x2 + w0_inv_std3 * x3 + bias;
|
||||||
|
|
||||||
|
float y2 = z.y * z.y;
|
||||||
|
float y3 = y2 * z.y;
|
||||||
|
z.y = w2_inv_std * z.y + w1_inv_std2 * y2 + w0_inv_std3 * y3 + bias;
|
||||||
|
|
||||||
|
auto out = Converter::convert(z);
|
||||||
|
data[i] = out.x;
|
||||||
|
data[i + 1] = out.y;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename scalar_t, int width>
|
||||||
|
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
|
||||||
|
poly_norm_kernel(scalar_t* __restrict__ out, // [..., hidden_size]
|
||||||
|
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||||
|
const scalar_t* __restrict__ weight, // [3]
|
||||||
|
const scalar_t* __restrict__ bias, // [1]
|
||||||
|
const float epsilon, const int hidden_size) {
|
||||||
|
// Sanity checks on our vector struct and type-punned pointer arithmetic
|
||||||
|
static_assert(std::is_pod_v<_f16VecPN<scalar_t, width>>);
|
||||||
|
static_assert(sizeof(_f16VecPN<scalar_t, width>) == sizeof(scalar_t) * width);
|
||||||
|
|
||||||
|
/* These and the argument pointers are all declared `restrict` as they are
|
||||||
|
not aliased in practice. Argument pointers should not be dereferenced
|
||||||
|
in this kernel as that would be undefined behavior */
|
||||||
|
auto* __restrict__ input_v =
|
||||||
|
reinterpret_cast<const _f16VecPN<scalar_t, width>*>(input);
|
||||||
|
const int vec_hidden_size = hidden_size / width;
|
||||||
|
float variance = 0.0f;
|
||||||
|
float variance2 = 0.0f;
|
||||||
|
float variance3 = 0.0f;
|
||||||
|
|
||||||
|
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
|
||||||
|
int id = blockIdx.x * vec_hidden_size + idx;
|
||||||
|
_f16VecPN<scalar_t, width> temp = input_v[id];
|
||||||
|
auto [x2, x4, x6] = temp.sum_pows();
|
||||||
|
|
||||||
|
variance += x2;
|
||||||
|
variance2 += x4;
|
||||||
|
variance3 += x6;
|
||||||
|
}
|
||||||
|
|
||||||
|
float3 thread_variances = make_float3(variance, variance2, variance3);
|
||||||
|
|
||||||
|
struct SumOp {
|
||||||
|
__device__ float3 operator()(const float3& a, const float3& b) const {
|
||||||
|
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
using BlockReduce = cub::BlockReduce<float3, 1024>;
|
||||||
|
__shared__ typename BlockReduce::TempStorage reduceStore;
|
||||||
|
float3 block_variances =
|
||||||
|
BlockReduce(reduceStore).Reduce(thread_variances, SumOp{}, blockDim.x);
|
||||||
|
|
||||||
|
variance = block_variances.x;
|
||||||
|
variance2 = block_variances.y;
|
||||||
|
variance3 = block_variances.z;
|
||||||
|
|
||||||
|
__shared__ float s_w2_inv_std;
|
||||||
|
__shared__ float s_w1_inv_std2;
|
||||||
|
__shared__ float s_w0_inv_std3;
|
||||||
|
__shared__ float s_bias;
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
float w0 = (float)weight[0];
|
||||||
|
float w1 = (float)weight[1];
|
||||||
|
float w2 = (float)weight[2];
|
||||||
|
s_bias = (float)bias[0];
|
||||||
|
|
||||||
|
s_w2_inv_std = w2 * rsqrtf(variance / hidden_size + epsilon);
|
||||||
|
s_w1_inv_std2 = w1 * rsqrtf(variance2 / hidden_size + epsilon);
|
||||||
|
s_w0_inv_std3 = w0 * rsqrtf(variance3 / hidden_size + epsilon);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
auto* __restrict__ out_v = reinterpret_cast<_f16VecPN<scalar_t, width>*>(out);
|
||||||
|
|
||||||
|
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
|
||||||
|
int id = blockIdx.x * vec_hidden_size + idx;
|
||||||
|
_f16VecPN<scalar_t, width> temp = input_v[id];
|
||||||
|
temp.poly_norm_inplace(s_w2_inv_std, s_w1_inv_std2, s_w0_inv_std3, s_bias);
|
||||||
|
out_v[id] = temp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Generic poly_norm_kernel
|
||||||
|
The width field is not used here but necessary for other specializations.
|
||||||
|
*/
|
||||||
|
template <typename scalar_t, int width>
|
||||||
|
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
|
||||||
|
poly_norm_kernel(scalar_t* __restrict__ out, // [..., hidden_size]
|
||||||
|
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||||
|
const scalar_t* __restrict__ weight, // [3]
|
||||||
|
const scalar_t* __restrict__ bias, // [1]
|
||||||
|
const float epsilon, const int hidden_size) {
|
||||||
|
float variance = 0.0f;
|
||||||
|
float variance2 = 0.0f;
|
||||||
|
float variance3 = 0.0f;
|
||||||
|
|
||||||
|
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||||
|
float x = (float)input[blockIdx.x * hidden_size + idx];
|
||||||
|
float x2 = x * x;
|
||||||
|
float x4 = x2 * x2;
|
||||||
|
float x6 = x4 * x2;
|
||||||
|
|
||||||
|
variance += x2;
|
||||||
|
variance2 += x4;
|
||||||
|
variance3 += x6;
|
||||||
|
}
|
||||||
|
|
||||||
|
float3 thread_variances = make_float3(variance, variance2, variance3);
|
||||||
|
|
||||||
|
struct SumOp {
|
||||||
|
__device__ float3 operator()(const float3& a, const float3& b) const {
|
||||||
|
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
using BlockReduce = cub::BlockReduce<float3, 1024>;
|
||||||
|
__shared__ typename BlockReduce::TempStorage reduceStore;
|
||||||
|
float3 block_variances =
|
||||||
|
BlockReduce(reduceStore).Reduce(thread_variances, SumOp{}, blockDim.x);
|
||||||
|
|
||||||
|
variance = block_variances.x;
|
||||||
|
variance2 = block_variances.y;
|
||||||
|
variance3 = block_variances.z;
|
||||||
|
|
||||||
|
__shared__ float s_w2_inv_std;
|
||||||
|
__shared__ float s_w1_inv_std2;
|
||||||
|
__shared__ float s_w0_inv_std3;
|
||||||
|
__shared__ float s_bias;
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
float w0 = (float)weight[0];
|
||||||
|
float w1 = (float)weight[1];
|
||||||
|
float w2 = (float)weight[2];
|
||||||
|
s_bias = (float)bias[0];
|
||||||
|
|
||||||
|
s_w2_inv_std = w2 * rsqrtf(variance / hidden_size + epsilon);
|
||||||
|
s_w1_inv_std2 = w1 * rsqrtf(variance2 / hidden_size + epsilon);
|
||||||
|
s_w0_inv_std3 = w0 * rsqrtf(variance3 / hidden_size + epsilon);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||||
|
float x = (float)input[blockIdx.x * hidden_size + idx];
|
||||||
|
float x2 = x * x;
|
||||||
|
float x3 = x2 * x;
|
||||||
|
|
||||||
|
out[blockIdx.x * hidden_size + idx] =
|
||||||
|
(scalar_t)(x * s_w2_inv_std + x2 * s_w1_inv_std2 + x3 * s_w0_inv_std3 +
|
||||||
|
s_bias);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace vllm
|
} // namespace vllm
|
||||||
|
|
||||||
void rms_norm(torch::Tensor& out, // [..., hidden_size]
|
void rms_norm(torch::Tensor& out, // [..., hidden_size]
|
||||||
@ -159,26 +352,18 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
|
|||||||
TORCH_CHECK(weight.is_contiguous());
|
TORCH_CHECK(weight.is_contiguous());
|
||||||
|
|
||||||
int hidden_size = input.size(-1);
|
int hidden_size = input.size(-1);
|
||||||
|
int num_tokens = input.numel() / hidden_size;
|
||||||
// We cannot just use `input.stride(-2)` if the tensor is not row-major.
|
int64_t input_stride = input.stride(-2);
|
||||||
// Instead, we use a 2d view to get the second-innermost stride.
|
|
||||||
// That way the dimensions (except the last one) can be arbitrarily permuted.
|
|
||||||
torch::Tensor input_view = input.view({-1, hidden_size});
|
|
||||||
|
|
||||||
int num_tokens = input_view.numel() / hidden_size;
|
|
||||||
int64_t input_stride = input_view.stride(-2);
|
|
||||||
|
|
||||||
dim3 grid(num_tokens);
|
dim3 grid(num_tokens);
|
||||||
dim3 block(std::min(hidden_size, 1024));
|
dim3 block(std::min(hidden_size, 1024));
|
||||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input_view));
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
VLLM_DISPATCH_FLOATING_TYPES(
|
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_kernel", [&] {
|
||||||
input_view.scalar_type(), "rms_norm_kernel", [&] {
|
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||||
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(), input_stride,
|
||||||
out.data_ptr<scalar_t>(), input_view.data_ptr<scalar_t>(),
|
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
|
||||||
input_stride, weight.data_ptr<scalar_t>(), epsilon, num_tokens,
|
});
|
||||||
hidden_size);
|
|
||||||
});
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
|
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
|
||||||
@ -195,8 +380,6 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
|||||||
torch::Tensor& residual, // [..., hidden_size]
|
torch::Tensor& residual, // [..., hidden_size]
|
||||||
torch::Tensor& weight, // [hidden_size]
|
torch::Tensor& weight, // [hidden_size]
|
||||||
double epsilon) {
|
double epsilon) {
|
||||||
TORCH_CHECK(weight.scalar_type() == input.scalar_type());
|
|
||||||
TORCH_CHECK(input.scalar_type() == residual.scalar_type());
|
|
||||||
TORCH_CHECK(residual.is_contiguous());
|
TORCH_CHECK(residual.is_contiguous());
|
||||||
TORCH_CHECK(weight.is_contiguous());
|
TORCH_CHECK(weight.is_contiguous());
|
||||||
int hidden_size = input.size(-1);
|
int hidden_size = input.size(-1);
|
||||||
@ -231,7 +414,7 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
|||||||
wt_ptr % req_alignment_bytes == 0;
|
wt_ptr % req_alignment_bytes == 0;
|
||||||
bool offsets_are_multiple_of_vector_width =
|
bool offsets_are_multiple_of_vector_width =
|
||||||
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
|
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
|
||||||
bool batch_invariant_launch = vllm::vllm_is_batch_invariant();
|
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
|
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width &&
|
||||||
!batch_invariant_launch) {
|
!batch_invariant_launch) {
|
||||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||||
@ -239,3 +422,50 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
|||||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#define LAUNCH_FUSED_POLY_NORM(width) \
|
||||||
|
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "poly_norm_kernel", [&] { \
|
||||||
|
vllm::poly_norm_kernel<scalar_t, width><<<grid, block, 0, stream>>>( \
|
||||||
|
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(), \
|
||||||
|
weight.data_ptr<scalar_t>(), bias.data_ptr<scalar_t>(), epsilon, \
|
||||||
|
hidden_size); \
|
||||||
|
});
|
||||||
|
|
||||||
|
void poly_norm(torch::Tensor& out, // [..., hidden_size]
|
||||||
|
torch::Tensor& input, // [..., hidden_size]
|
||||||
|
torch::Tensor& weight, // [3]
|
||||||
|
torch::Tensor& bias, // [1]
|
||||||
|
double epsilon) {
|
||||||
|
TORCH_CHECK(out.is_contiguous());
|
||||||
|
TORCH_CHECK(input.is_contiguous());
|
||||||
|
TORCH_CHECK(out.data_ptr() != input.data_ptr());
|
||||||
|
|
||||||
|
int hidden_size = input.size(-1);
|
||||||
|
int num_tokens = input.numel() / hidden_size;
|
||||||
|
|
||||||
|
dim3 grid(num_tokens);
|
||||||
|
/* This kernel is memory-latency bound in many scenarios.
|
||||||
|
When num_tokens is large, a smaller block size allows
|
||||||
|
for increased block occupancy on CUs and better latency
|
||||||
|
hiding on global mem ops. */
|
||||||
|
const int max_block_size = (num_tokens < 256) ? 1024 : 256;
|
||||||
|
dim3 block(std::min(hidden_size, max_block_size));
|
||||||
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||||
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
/*If the tensor types are FP16/BF16, try to use the optimized kernel
|
||||||
|
with packed + vectorized ops.
|
||||||
|
Max optimization is achieved with a width-8 vector of FP16/BF16s
|
||||||
|
since we can load at most 128 bits at once in a global memory op.
|
||||||
|
However, this requires each tensor's data to be aligned to 16
|
||||||
|
bytes.
|
||||||
|
*/
|
||||||
|
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
|
||||||
|
auto out_ptr = reinterpret_cast<std::uintptr_t>(out.data_ptr());
|
||||||
|
bool ptrs_are_aligned = inp_ptr % 16 == 0 && out_ptr % 16 == 0;
|
||||||
|
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||||
|
if (ptrs_are_aligned && hidden_size % 8 == 0 && !batch_invariant_launch) {
|
||||||
|
LAUNCH_FUSED_POLY_NORM(8);
|
||||||
|
} else {
|
||||||
|
LAUNCH_FUSED_POLY_NORM(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
@ -6,11 +6,10 @@
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
#include "type_convert.cuh"
|
#include "type_convert.cuh"
|
||||||
#include "quantization/w8a8/fp8/common.cuh"
|
#include "quantization/fp8/common.cuh"
|
||||||
#include "dispatch_utils.h"
|
#include "dispatch_utils.h"
|
||||||
#include "cub_helpers.h"
|
#include "cub_helpers.h"
|
||||||
#include "core/batch_invariant.hpp"
|
#include "core/batch_invariant.hpp"
|
||||||
#include "quantization/vectorization_utils.cuh"
|
|
||||||
|
|
||||||
#include <torch/cuda.h>
|
#include <torch/cuda.h>
|
||||||
#include <c10/cuda/CUDAGuard.h>
|
#include <c10/cuda/CUDAGuard.h>
|
||||||
@ -29,22 +28,10 @@ __global__ void rms_norm_static_fp8_quant_kernel(
|
|||||||
__shared__ float s_variance;
|
__shared__ float s_variance;
|
||||||
float variance = 0.0f;
|
float variance = 0.0f;
|
||||||
|
|
||||||
const scalar_t* input_row = input + blockIdx.x * input_stride;
|
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||||
|
const float x = (float)input[blockIdx.x * input_stride + idx];
|
||||||
constexpr int VEC_SIZE = 8;
|
|
||||||
auto vec_op = [&variance](const vec_n_t<scalar_t, VEC_SIZE>& vec) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < VEC_SIZE; ++i) {
|
|
||||||
float x = static_cast<float>(vec.val[i]);
|
|
||||||
variance += x * x;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
auto scalar_op = [&variance](const scalar_t& val) {
|
|
||||||
float x = static_cast<float>(val);
|
|
||||||
variance += x * x;
|
variance += x * x;
|
||||||
};
|
}
|
||||||
vllm::vectorize_read_with_alignment<VEC_SIZE>(
|
|
||||||
input_row, hidden_size, threadIdx.x, blockDim.x, vec_op, scalar_op);
|
|
||||||
|
|
||||||
using BlockReduce = cub::BlockReduce<float, 1024>;
|
using BlockReduce = cub::BlockReduce<float, 1024>;
|
||||||
__shared__ typename BlockReduce::TempStorage reduceStore;
|
__shared__ typename BlockReduce::TempStorage reduceStore;
|
||||||
@ -229,8 +216,6 @@ void fused_add_rms_norm_static_fp8_quant(
|
|||||||
double epsilon) {
|
double epsilon) {
|
||||||
TORCH_CHECK(out.is_contiguous());
|
TORCH_CHECK(out.is_contiguous());
|
||||||
TORCH_CHECK(residual.is_contiguous());
|
TORCH_CHECK(residual.is_contiguous());
|
||||||
TORCH_CHECK(residual.scalar_type() == input.scalar_type());
|
|
||||||
TORCH_CHECK(weight.scalar_type() == input.scalar_type());
|
|
||||||
int hidden_size = input.size(-1);
|
int hidden_size = input.size(-1);
|
||||||
int input_stride = input.stride(-2);
|
int input_stride = input.stride(-2);
|
||||||
int num_tokens = input.numel() / hidden_size;
|
int num_tokens = input.numel() / hidden_size;
|
||||||
@ -256,7 +241,7 @@ void fused_add_rms_norm_static_fp8_quant(
|
|||||||
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
||||||
bool ptrs_are_aligned =
|
bool ptrs_are_aligned =
|
||||||
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
|
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
|
||||||
bool batch_invariant_launch = vllm::vllm_is_batch_invariant();
|
bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
|
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0 &&
|
||||||
!batch_invariant_launch) {
|
!batch_invariant_launch) {
|
||||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||||
|
@ -8,77 +8,12 @@
|
|||||||
|
|
||||||
#include "../cuda_compat.h"
|
#include "../cuda_compat.h"
|
||||||
#include "../dispatch_utils.h"
|
#include "../dispatch_utils.h"
|
||||||
#include "core/math.hpp"
|
|
||||||
|
|
||||||
#define CEILDIV(x, y) (((x) + (y) - 1) / (y))
|
#define CEILDIV(x, y) (((x) + (y) - 1) / (y))
|
||||||
|
|
||||||
namespace vllm {
|
namespace vllm {
|
||||||
namespace moe {
|
namespace moe {
|
||||||
|
|
||||||
namespace batched_moe_align_block_size {
|
|
||||||
|
|
||||||
// Note num_threads needs to be 1024 for BlockScan Reduction in the kernel.
|
|
||||||
static constexpr int32_t num_threads = 1024;
|
|
||||||
static constexpr int32_t num_blocks = 1;
|
|
||||||
__global__ void batched_moe_align_block_size_kernel(
|
|
||||||
int32_t const num_batches, int32_t const max_tokens_per_batch,
|
|
||||||
int32_t const block_size, int32_t const* __restrict__ batch_num_tokens,
|
|
||||||
int32_t* __restrict__ sorted_ids, int32_t* __restrict__ block_ids,
|
|
||||||
int32_t* __restrict__ num_tokens_post_pad) {
|
|
||||||
// TODO(varun): This is a naive implementation. Could be optimized.
|
|
||||||
|
|
||||||
size_t const batch_id = threadIdx.x;
|
|
||||||
size_t const stride = blockDim.x * gridDim.x;
|
|
||||||
int32_t const num_blocks_per_batch =
|
|
||||||
CEILDIV(max_tokens_per_batch, block_size);
|
|
||||||
int32_t const sorted_ids_size =
|
|
||||||
num_blocks_per_batch * num_batches * block_size;
|
|
||||||
int32_t const block_ids_size = sorted_ids_size / block_size;
|
|
||||||
int32_t const SENTINEL =
|
|
||||||
num_batches * max_tokens_per_batch; // To denote invalid entries.
|
|
||||||
// Intialize sorted_ids
|
|
||||||
for (size_t i = threadIdx.x; i < sorted_ids_size; i += stride) {
|
|
||||||
sorted_ids[i] = SENTINEL;
|
|
||||||
}
|
|
||||||
// Intialize expert_ids with -1
|
|
||||||
for (size_t i = threadIdx.x; i < block_ids_size; i += stride) {
|
|
||||||
block_ids[i] = -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t b_num_tokens = 0;
|
|
||||||
if (batch_id < num_batches) {
|
|
||||||
b_num_tokens = batch_num_tokens[batch_id];
|
|
||||||
}
|
|
||||||
int32_t const ceil_b_num_tokens =
|
|
||||||
CEILDIV(b_num_tokens, block_size) * block_size;
|
|
||||||
|
|
||||||
// Compute prefix sum over token counts per expert
|
|
||||||
using BlockScan = cub::BlockScan<int32_t, 1024>;
|
|
||||||
__shared__ typename BlockScan::TempStorage temp_storage;
|
|
||||||
int cumsum_val;
|
|
||||||
BlockScan(temp_storage).ExclusiveSum(ceil_b_num_tokens, cumsum_val);
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
bool const is_last_batch = batch_id == (num_batches - 1);
|
|
||||||
if (is_last_batch) {
|
|
||||||
*num_tokens_post_pad = cumsum_val + ceil_b_num_tokens;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (batch_id < num_batches) {
|
|
||||||
int32_t const batch_offset = batch_id * max_tokens_per_batch;
|
|
||||||
for (size_t i = 0; i < b_num_tokens; ++i) {
|
|
||||||
sorted_ids[cumsum_val + i] = batch_offset + i;
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t const block_start = cumsum_val / block_size;
|
|
||||||
int32_t const num_blocks = ceil_b_num_tokens / block_size;
|
|
||||||
for (size_t i = 0; i < num_blocks; ++i) {
|
|
||||||
block_ids[block_start + i] = batch_id;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} // namespace batched_moe_align_block_size
|
|
||||||
|
|
||||||
template <typename scalar_t>
|
template <typename scalar_t>
|
||||||
__global__ void moe_align_block_size_kernel(
|
__global__ void moe_align_block_size_kernel(
|
||||||
const scalar_t* __restrict__ topk_ids,
|
const scalar_t* __restrict__ topk_ids,
|
||||||
@ -345,33 +280,6 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
void batched_moe_align_block_size(int64_t max_tokens_per_batch,
|
|
||||||
int64_t block_size,
|
|
||||||
torch::Tensor const& batch_num_tokens,
|
|
||||||
torch::Tensor sorted_ids,
|
|
||||||
torch::Tensor batch_ids,
|
|
||||||
torch::Tensor num_tokens_post_pad) {
|
|
||||||
namespace batched_kernel = vllm::moe::batched_moe_align_block_size;
|
|
||||||
|
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
||||||
int32_t const B = batch_num_tokens.size(0);
|
|
||||||
int32_t const num_blocks_per_batch =
|
|
||||||
round_to_next_multiple_of(max_tokens_per_batch, block_size) / block_size;
|
|
||||||
int32_t const num_blocks = num_blocks_per_batch * B;
|
|
||||||
int64_t const sorted_ids_size = num_blocks * block_size;
|
|
||||||
|
|
||||||
TORCH_CHECK(sorted_ids.size(0) == sorted_ids_size);
|
|
||||||
TORCH_CHECK(batch_ids.size(0) == sorted_ids_size / block_size);
|
|
||||||
TORCH_CHECK(num_tokens_post_pad.size(0) == 1);
|
|
||||||
TORCH_CHECK(B <= batched_kernel::num_threads);
|
|
||||||
|
|
||||||
batched_kernel::batched_moe_align_block_size_kernel<<<
|
|
||||||
batched_kernel::num_blocks, batched_kernel::num_threads, 0, stream>>>(
|
|
||||||
B, max_tokens_per_batch, block_size, batch_num_tokens.data_ptr<int32_t>(),
|
|
||||||
sorted_ids.data_ptr<int32_t>(), batch_ids.data_ptr<int32_t>(),
|
|
||||||
num_tokens_post_pad.data_ptr<int32_t>());
|
|
||||||
}
|
|
||||||
|
|
||||||
void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
|
void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
|
||||||
torch::Tensor& output) // [num_tokens, hidden_size]
|
torch::Tensor& output) // [num_tokens, hidden_size]
|
||||||
{
|
{
|
||||||
|
@ -1,173 +0,0 @@
|
|||||||
#include <stdio.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
#include <time.h>
|
|
||||||
#include <torch/all.h>
|
|
||||||
#include <ATen/cuda/CUDAContext.h>
|
|
||||||
#include <c10/cuda/CUDAGuard.h>
|
|
||||||
|
|
||||||
#include <ATen/ATen.h>
|
|
||||||
#include <ATen/cuda/Atomic.cuh>
|
|
||||||
|
|
||||||
#include "../cuda_compat.h"
|
|
||||||
#include "../dispatch_utils.h"
|
|
||||||
#include "core/math.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
|
|
||||||
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
|
|
||||||
int32_t col) {
|
|
||||||
return row * total_col + col;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
// TODO: Refactor common parts with moe_align_sum_kernels
|
|
||||||
template <typename scalar_t, typename token_cnts_t>
|
|
||||||
__global__ void moe_lora_align_sum_kernel(
|
|
||||||
scalar_t* __restrict__ topk_ids, int32_t* token_lora_mapping,
|
|
||||||
int64_t block_size, int num_experts, int max_loras, size_t numel,
|
|
||||||
int max_num_tokens_padded, int max_num_m_blocks,
|
|
||||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
|
||||||
int topk_num, int32_t* total_tokens_post_pad) {
|
|
||||||
const size_t tokens_per_thread = div_ceil(numel, blockDim.x);
|
|
||||||
const size_t start_idx = threadIdx.x * tokens_per_thread;
|
|
||||||
|
|
||||||
int lora_id = blockIdx.x;
|
|
||||||
extern __shared__ int32_t shared_mem[];
|
|
||||||
int32_t* cumsum = shared_mem;
|
|
||||||
token_cnts_t* tokens_cnts = (token_cnts_t*)(shared_mem + num_experts + 1);
|
|
||||||
|
|
||||||
// Initialize sorted_token_ids with numel
|
|
||||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
|
|
||||||
sorted_token_ids[lora_id * max_num_tokens_padded + it] = numel;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize expert_ids with -1
|
|
||||||
for (size_t it = threadIdx.x; it < max_num_m_blocks; it += blockDim.x) {
|
|
||||||
expert_ids[lora_id * max_num_m_blocks + it] = -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize total_tokens_post_pad with 0
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
total_tokens_post_pad[lora_id] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < num_experts; ++i) {
|
|
||||||
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
|
||||||
int mask = token_lora_mapping[i / topk_num] == lora_id;
|
|
||||||
int idx = index(num_experts, threadIdx.x + 1, topk_ids[i]);
|
|
||||||
tokens_cnts[idx] += mask;
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// For each expert we accumulate the token counts from the different threads.
|
|
||||||
if (threadIdx.x < num_experts) {
|
|
||||||
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
|
|
||||||
for (int i = 1; i <= blockDim.x; ++i) {
|
|
||||||
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
|
|
||||||
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// We accumulate the token counts of all experts in thread 0.
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
cumsum[0] = 0;
|
|
||||||
for (int i = 1; i <= num_experts; ++i) {
|
|
||||||
cumsum[i] = cumsum[i - 1] +
|
|
||||||
div_ceil(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
|
|
||||||
block_size) *
|
|
||||||
block_size;
|
|
||||||
}
|
|
||||||
total_tokens_post_pad[lora_id] = static_cast<int32_t>(cumsum[num_experts]);
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
/**
|
|
||||||
* For each expert, each thread processes the tokens of the corresponding
|
|
||||||
* blocks and stores the corresponding expert_id for each block.
|
|
||||||
*/
|
|
||||||
if (threadIdx.x < num_experts) {
|
|
||||||
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
|
|
||||||
i += block_size) {
|
|
||||||
expert_ids[index(max_num_m_blocks, lora_id, i / block_size)] =
|
|
||||||
threadIdx.x;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
|
||||||
int32_t expert_id = topk_ids[i];
|
|
||||||
/** The cumsum[expert_id] stores the starting index of the tokens that the
|
|
||||||
* expert with expert_id needs to process, and
|
|
||||||
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
|
|
||||||
* processed by the expert with expert_id within the current thread's token
|
|
||||||
* shard.
|
|
||||||
*/
|
|
||||||
int32_t rank_post_pad =
|
|
||||||
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
|
|
||||||
cumsum[expert_id];
|
|
||||||
|
|
||||||
int mask = (int)token_lora_mapping[i / topk_num] == lora_id;
|
|
||||||
atomicAdd(
|
|
||||||
&sorted_token_ids[index(max_num_tokens_padded, lora_id, rank_post_pad)],
|
|
||||||
(i - numel) * mask);
|
|
||||||
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] += mask;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void moe_lora_align_block_size(torch::Tensor topk_ids,
|
|
||||||
torch::Tensor token_lora_mapping,
|
|
||||||
int64_t num_experts, int64_t block_size,
|
|
||||||
int64_t max_loras,
|
|
||||||
torch::Tensor sorted_token_ids,
|
|
||||||
torch::Tensor expert_ids,
|
|
||||||
torch::Tensor num_tokens_post_pad) {
|
|
||||||
const int topk_num = topk_ids.size(1);
|
|
||||||
|
|
||||||
int max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1);
|
|
||||||
|
|
||||||
TORCH_CHECK(block_size > 0, "block_size should be greater than 0. ");
|
|
||||||
max_num_tokens_padded = round_to_next_multiple_of(
|
|
||||||
max_num_tokens_padded, static_cast<int>(block_size));
|
|
||||||
int max_num_m_blocks = div_ceil(max_num_tokens_padded, block_size);
|
|
||||||
|
|
||||||
int device_max_shared_mem;
|
|
||||||
auto dev = topk_ids.get_device();
|
|
||||||
cudaDeviceGetAttribute(&device_max_shared_mem,
|
|
||||||
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
|
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
||||||
|
|
||||||
const int32_t num_thread = max((int32_t)num_experts, 128); // WARP_SIZE,
|
|
||||||
TORCH_CHECK(num_thread <= 1024,
|
|
||||||
"num_thread must be less than 1024, "
|
|
||||||
"and fallback is not implemented yet.");
|
|
||||||
const int32_t shared_mem = (num_thread + 1) * num_experts * sizeof(int32_t) +
|
|
||||||
(num_experts + 1) * sizeof(int32_t);
|
|
||||||
|
|
||||||
if (shared_mem > device_max_shared_mem) {
|
|
||||||
TORCH_CHECK(false,
|
|
||||||
"Shared memory usage exceeds device limit, and global memory "
|
|
||||||
"fallback is not implemented yet.");
|
|
||||||
}
|
|
||||||
|
|
||||||
VLLM_DISPATCH_INTEGRAL_TYPES(
|
|
||||||
topk_ids.scalar_type(), "moe_lora_align_sum_kernel", [&] {
|
|
||||||
dim3 blockDim(num_thread);
|
|
||||||
auto kernel = moe_lora_align_sum_kernel<scalar_t, int32_t>;
|
|
||||||
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
|
|
||||||
(void*)kernel, shared_mem));
|
|
||||||
kernel<<<max_loras, blockDim, shared_mem, stream>>>(
|
|
||||||
topk_ids.data_ptr<scalar_t>(),
|
|
||||||
token_lora_mapping.data_ptr<int32_t>(), block_size, num_experts,
|
|
||||||
max_loras, topk_ids.numel(), max_num_tokens_padded,
|
|
||||||
max_num_m_blocks, sorted_token_ids.data_ptr<int32_t>(),
|
|
||||||
expert_ids.data_ptr<int32_t>(), topk_num,
|
|
||||||
num_tokens_post_pad.data_ptr<int32_t>());
|
|
||||||
});
|
|
||||||
}
|
|
@ -4,7 +4,7 @@
|
|||||||
|
|
||||||
void topk_softmax(torch::Tensor& topk_weights, torch::Tensor& topk_indices,
|
void topk_softmax(torch::Tensor& topk_weights, torch::Tensor& topk_indices,
|
||||||
torch::Tensor& token_expert_indices,
|
torch::Tensor& token_expert_indices,
|
||||||
torch::Tensor& gating_output, bool renormalize);
|
torch::Tensor& gating_output);
|
||||||
|
|
||||||
void moe_sum(torch::Tensor& input, torch::Tensor& output);
|
void moe_sum(torch::Tensor& input, torch::Tensor& output);
|
||||||
|
|
||||||
@ -12,21 +12,6 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
|||||||
int64_t block_size, torch::Tensor sorted_token_ids,
|
int64_t block_size, torch::Tensor sorted_token_ids,
|
||||||
torch::Tensor experts_ids,
|
torch::Tensor experts_ids,
|
||||||
torch::Tensor num_tokens_post_pad);
|
torch::Tensor num_tokens_post_pad);
|
||||||
|
|
||||||
void batched_moe_align_block_size(int64_t max_tokens_per_batch,
|
|
||||||
int64_t block_size,
|
|
||||||
torch::Tensor const& expert_num_tokens,
|
|
||||||
torch::Tensor sorted_ids,
|
|
||||||
torch::Tensor expert_ids,
|
|
||||||
torch::Tensor num_tokens_post_pad);
|
|
||||||
|
|
||||||
void moe_lora_align_block_size(torch::Tensor topk_ids,
|
|
||||||
torch::Tensor token_lora_mapping,
|
|
||||||
int64_t num_experts, int64_t block_size,
|
|
||||||
int64_t max_loras,
|
|
||||||
torch::Tensor sorted_token_ids,
|
|
||||||
torch::Tensor expert_ids,
|
|
||||||
torch::Tensor num_tokens_post_pad);
|
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
||||||
torch::Tensor b_qweight, torch::Tensor b_scales,
|
torch::Tensor b_qweight, torch::Tensor b_scales,
|
||||||
|
@ -16,22 +16,12 @@
|
|||||||
* See the License for the specific language governing permissions and
|
* See the License for the specific language governing permissions and
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
#include <type_traits>
|
|
||||||
#include <torch/all.h>
|
#include <torch/all.h>
|
||||||
#include <ATen/cuda/CUDAContext.h>
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
#include <c10/cuda/CUDAGuard.h>
|
#include <c10/cuda/CUDAGuard.h>
|
||||||
#include "../cuda_compat.h"
|
#include "../cuda_compat.h"
|
||||||
#include "../cub_helpers.h"
|
#include "../cub_helpers.h"
|
||||||
|
#include "../core/batch_invariant.hpp"
|
||||||
#ifndef USE_ROCM
|
|
||||||
#include <cuda_bf16.h>
|
|
||||||
#include <cuda_fp16.h>
|
|
||||||
#else
|
|
||||||
#include <hip/hip_bf16.h>
|
|
||||||
#include <hip/hip_fp16.h>
|
|
||||||
typedef __hip_bfloat16 __nv_bfloat16;
|
|
||||||
typedef __hip_bfloat162 __nv_bfloat162;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||||
@ -47,27 +37,16 @@ template <
|
|||||||
/// Alignment requirement in bytes
|
/// Alignment requirement in bytes
|
||||||
int Alignment = sizeof(T) * N
|
int Alignment = sizeof(T) * N
|
||||||
>
|
>
|
||||||
struct alignas(Alignment) AlignedArray {
|
class alignas(Alignment) AlignedArray {
|
||||||
T data[N];
|
float data[N];
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
__device__ __forceinline__ float toFloat(T value) {
|
|
||||||
if constexpr (std::is_same_v<T, float>) {
|
|
||||||
return value;
|
|
||||||
} else if constexpr (std::is_same_v<T, __nv_bfloat16>) {
|
|
||||||
return __bfloat162float(value);
|
|
||||||
} else if constexpr (std::is_same_v<T, __half>) {
|
|
||||||
return __half2float(value);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// ====================== Softmax things ===============================
|
// ====================== Softmax things ===============================
|
||||||
// We have our own implementation of softmax here so we can support transposing the output
|
// We have our own implementation of softmax here so we can support transposing the output
|
||||||
// in the softmax kernel when we extend this module to support expert-choice routing.
|
// in the softmax kernel when we extend this module to support expert-choice routing.
|
||||||
template <int TPB, typename InputType>
|
template <int TPB>
|
||||||
__launch_bounds__(TPB) __global__
|
__launch_bounds__(TPB) __global__
|
||||||
void moeSoftmax(const InputType* input, const bool* finished, float* output, const int num_cols)
|
void moeSoftmax(const float* input, const bool* finished, float* output, const int num_cols)
|
||||||
{
|
{
|
||||||
using BlockReduce = cub::BlockReduce<float, TPB>;
|
using BlockReduce = cub::BlockReduce<float, TPB>;
|
||||||
__shared__ typename BlockReduce::TempStorage tmpStorage;
|
__shared__ typename BlockReduce::TempStorage tmpStorage;
|
||||||
@ -88,8 +67,7 @@ __launch_bounds__(TPB) __global__
|
|||||||
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
|
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
|
||||||
{
|
{
|
||||||
const int idx = thread_row_offset + ii;
|
const int idx = thread_row_offset + ii;
|
||||||
const float val = toFloat(input[idx]);
|
threadData = max(static_cast<float>(input[idx]), threadData);
|
||||||
threadData = max(val, threadData);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, CubMaxOp());
|
const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, CubMaxOp());
|
||||||
@ -104,8 +82,7 @@ __launch_bounds__(TPB) __global__
|
|||||||
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
|
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
|
||||||
{
|
{
|
||||||
const int idx = thread_row_offset + ii;
|
const int idx = thread_row_offset + ii;
|
||||||
const float val = toFloat(input[idx]);
|
threadData += exp((static_cast<float>(input[idx]) - float_max));
|
||||||
threadData += expf(val - float_max);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, CubAddOp());
|
const auto Z = BlockReduce(tmpStorage).Reduce(threadData, CubAddOp());
|
||||||
@ -119,9 +96,8 @@ __launch_bounds__(TPB) __global__
|
|||||||
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
|
for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
|
||||||
{
|
{
|
||||||
const int idx = thread_row_offset + ii;
|
const int idx = thread_row_offset + ii;
|
||||||
const float val = toFloat(input[idx]);
|
const float val = exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
|
||||||
const float softmax_val = expf(val - float_max) * normalizing_factor;
|
output[idx] = val;
|
||||||
output[idx] = softmax_val;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -135,8 +111,7 @@ __launch_bounds__(TPB) __global__ void moeTopK(
|
|||||||
const int num_experts,
|
const int num_experts,
|
||||||
const int k,
|
const int k,
|
||||||
const int start_expert,
|
const int start_expert,
|
||||||
const int end_expert,
|
const int end_expert)
|
||||||
const bool renormalize)
|
|
||||||
{
|
{
|
||||||
|
|
||||||
using cub_kvp = cub::KeyValuePair<int, float>;
|
using cub_kvp = cub::KeyValuePair<int, float>;
|
||||||
@ -151,7 +126,6 @@ __launch_bounds__(TPB) __global__ void moeTopK(
|
|||||||
|
|
||||||
const bool row_is_active = finished ? !finished[block_row] : true;
|
const bool row_is_active = finished ? !finished[block_row] : true;
|
||||||
const int thread_read_offset = blockIdx.x * num_experts;
|
const int thread_read_offset = blockIdx.x * num_experts;
|
||||||
float selected_sum = 0.f;
|
|
||||||
for (int k_idx = 0; k_idx < k; ++k_idx)
|
for (int k_idx = 0; k_idx < k; ++k_idx)
|
||||||
{
|
{
|
||||||
thread_kvp.key = 0;
|
thread_kvp.key = 0;
|
||||||
@ -190,23 +164,9 @@ __launch_bounds__(TPB) __global__ void moeTopK(
|
|||||||
indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
|
indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
|
||||||
assert(indices[idx] >= 0);
|
assert(indices[idx] >= 0);
|
||||||
source_rows[idx] = k_idx * num_rows + block_row;
|
source_rows[idx] = k_idx * num_rows + block_row;
|
||||||
if (renormalize) {
|
|
||||||
selected_sum += result_kvp.value;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Renormalize the k weights for this row to sum to 1, if requested.
|
|
||||||
if (renormalize) {
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
const float denom = selected_sum > 0.f ? selected_sum : 1.f;
|
|
||||||
for (int k_idx = 0; k_idx < k; ++k_idx) {
|
|
||||||
const int idx = k * block_row + k_idx;
|
|
||||||
output[idx] = output[idx] / denom;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// ====================== TopK softmax things ===============================
|
// ====================== TopK softmax things ===============================
|
||||||
@ -225,30 +185,21 @@ __launch_bounds__(TPB) __global__ void moeTopK(
|
|||||||
2) This implementation assumes k is small, but will work for any k.
|
2) This implementation assumes k is small, but will work for any k.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename IndType, typename InputType = float>
|
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename IndType>
|
||||||
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
|
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
|
||||||
void topkGatingSoftmax(const InputType* input, const bool* finished, float* output, const int num_rows, IndType* indices,
|
void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, IndType* indices,
|
||||||
int* source_rows, const int k, const int start_expert, const int end_expert, const bool renormalize)
|
int* source_rows, const int k, const int start_expert, const int end_expert)
|
||||||
{
|
{
|
||||||
static_assert(std::is_same_v<InputType, float> || std::is_same_v<InputType, __nv_bfloat16> ||
|
|
||||||
std::is_same_v<InputType, __half>,
|
|
||||||
"InputType must be float, __nv_bfloat16, or __half");
|
|
||||||
|
|
||||||
// We begin by enforcing compile time assertions and setting up compile time constants.
|
// We begin by enforcing compile time assertions and setting up compile time constants.
|
||||||
static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG), "BYTES_PER_LDG must be power of 2");
|
static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG), "BYTES_PER_LDG must be power of 2");
|
||||||
static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
|
static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");
|
||||||
|
|
||||||
// Number of bytes each thread pulls in per load
|
// Number of bytes each thread pulls in per load
|
||||||
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(InputType);
|
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
|
||||||
static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
|
static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
|
||||||
static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
|
static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
|
||||||
static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
|
static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;
|
||||||
|
|
||||||
if constexpr (std::is_same_v<InputType, __nv_bfloat16> || std::is_same_v<InputType, __half>) {
|
|
||||||
static_assert(ELTS_PER_LDG == 1 || ELTS_PER_LDG % 2 == 0,
|
|
||||||
"ELTS_PER_LDG must be 1 or even for 16-bit conversion");
|
|
||||||
}
|
|
||||||
|
|
||||||
// Restrictions based on previous section.
|
// Restrictions based on previous section.
|
||||||
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
|
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
|
||||||
static_assert(WARP_SIZE_PARAM % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
|
static_assert(WARP_SIZE_PARAM % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
|
||||||
@ -286,71 +237,27 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
|
|||||||
|
|
||||||
// We finally start setting up the read pointers for each thread. First, each thread jumps to the start of the
|
// We finally start setting up the read pointers for each thread. First, each thread jumps to the start of the
|
||||||
// row it will read.
|
// row it will read.
|
||||||
const InputType* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
|
const float* thread_row_ptr = input + thread_row * ELTS_PER_ROW;
|
||||||
|
|
||||||
// Now, we compute the group each thread belong to in order to determine the first column to start loads.
|
// Now, we compute the group each thread belong to in order to determine the first column to start loads.
|
||||||
const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
|
const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
|
||||||
const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
|
const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
|
||||||
const InputType* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
|
const float* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;
|
||||||
|
|
||||||
|
// Determine the pointer type to use to read in the data depending on the BYTES_PER_LDG template param. In theory,
|
||||||
|
// this can support all powers of 2 up to 16.
|
||||||
|
// NOTE(woosuk): The original implementation uses CUTLASS aligned array here.
|
||||||
|
// We defined our own aligned array and use it here to avoid the dependency on CUTLASS.
|
||||||
|
using AccessType = AlignedArray<float, ELTS_PER_LDG>;
|
||||||
|
|
||||||
// Finally, we pull in the data from global mem
|
// Finally, we pull in the data from global mem
|
||||||
float row_chunk[VPT];
|
float row_chunk[VPT];
|
||||||
|
AccessType* row_chunk_vec_ptr = reinterpret_cast<AccessType*>(&row_chunk);
|
||||||
// NOTE(zhuhaoran): dispatch different input types loading, BF16/FP16 convert to float
|
const AccessType* vec_thread_read_ptr = reinterpret_cast<const AccessType*>(thread_read_ptr);
|
||||||
if constexpr (std::is_same_v<InputType, float>) {
|
|
||||||
using VecType = AlignedArray<float, ELTS_PER_LDG>;
|
|
||||||
VecType* row_chunk_vec_ptr = reinterpret_cast<VecType*>(&row_chunk);
|
|
||||||
const VecType* vec_thread_read_ptr = reinterpret_cast<const VecType*>(thread_read_ptr);
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
|
for (int ii = 0; ii < LDG_PER_THREAD; ++ii)
|
||||||
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
|
{
|
||||||
}
|
row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
|
||||||
} else if constexpr (std::is_same_v<InputType, __nv_bfloat16>) {
|
|
||||||
if constexpr (ELTS_PER_LDG >= 2) {
|
|
||||||
using VecType = AlignedArray<__nv_bfloat16, ELTS_PER_LDG>;
|
|
||||||
float2* row_chunk_f2 = reinterpret_cast<float2*>(row_chunk);
|
|
||||||
const VecType* vec_thread_read_ptr = reinterpret_cast<const VecType*>(thread_read_ptr);
|
|
||||||
#pragma unroll
|
|
||||||
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
|
|
||||||
VecType vec = vec_thread_read_ptr[ii * THREADS_PER_ROW];
|
|
||||||
int base_idx_f2 = ii * ELTS_PER_LDG / 2;
|
|
||||||
#pragma unroll
|
|
||||||
for (int jj = 0; jj < ELTS_PER_LDG / 2; ++jj) {
|
|
||||||
row_chunk_f2[base_idx_f2 + jj] = __bfloat1622float2(
|
|
||||||
*reinterpret_cast<const __nv_bfloat162*>(vec.data + jj * 2)
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else { // ELTS_PER_LDG == 1
|
|
||||||
#pragma unroll
|
|
||||||
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
|
|
||||||
const __nv_bfloat16* scalar_ptr = thread_read_ptr + ii * THREADS_PER_ROW;
|
|
||||||
row_chunk[ii] = __bfloat162float(*scalar_ptr);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else if constexpr (std::is_same_v<InputType, __half>) {
|
|
||||||
if constexpr (ELTS_PER_LDG >= 2) {
|
|
||||||
using VecType = AlignedArray<__half, ELTS_PER_LDG>;
|
|
||||||
float2* row_chunk_f2 = reinterpret_cast<float2*>(row_chunk);
|
|
||||||
const VecType* vec_thread_read_ptr = reinterpret_cast<const VecType*>(thread_read_ptr);
|
|
||||||
#pragma unroll
|
|
||||||
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
|
|
||||||
VecType vec = vec_thread_read_ptr[ii * THREADS_PER_ROW];
|
|
||||||
int base_idx_f2 = ii * ELTS_PER_LDG / 2;
|
|
||||||
#pragma unroll
|
|
||||||
for (int jj = 0; jj < ELTS_PER_LDG / 2; ++jj) {
|
|
||||||
row_chunk_f2[base_idx_f2 + jj] = __half22float2(
|
|
||||||
*reinterpret_cast<const __half2*>(vec.data + jj * 2)
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else { // ELTS_PER_LDG == 1
|
|
||||||
#pragma unroll
|
|
||||||
for (int ii = 0; ii < LDG_PER_THREAD; ++ii) {
|
|
||||||
const __half* scalar_ptr = thread_read_ptr + ii * THREADS_PER_ROW;
|
|
||||||
row_chunk[ii] = __half2float(*scalar_ptr);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// First, we perform a max reduce within the thread. We can do the max in fp16 safely (I think) and just
|
// First, we perform a max reduce within the thread. We can do the max in fp16 safely (I think) and just
|
||||||
@ -404,7 +311,6 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
|
|||||||
int start_col = first_elt_read_by_thread;
|
int start_col = first_elt_read_by_thread;
|
||||||
static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
|
static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;
|
||||||
|
|
||||||
float selected_sum = 0.f;
|
|
||||||
for (int k_idx = 0; k_idx < k; ++k_idx)
|
for (int k_idx = 0; k_idx < k; ++k_idx)
|
||||||
{
|
{
|
||||||
// First, each thread does the local argmax
|
// First, each thread does the local argmax
|
||||||
@ -458,9 +364,6 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
|
|||||||
output[idx] = max_val;
|
output[idx] = max_val;
|
||||||
indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
|
indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
|
||||||
source_rows[idx] = k_idx * num_rows + thread_row;
|
source_rows[idx] = k_idx * num_rows + thread_row;
|
||||||
if (renormalize) {
|
|
||||||
selected_sum += max_val;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Finally, we clear the value in the thread with the current max if there is another iteration to run.
|
// Finally, we clear the value in the thread with the current max if there is another iteration to run.
|
||||||
@ -478,28 +381,15 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Renormalize the k weights for this row to sum to 1, if requested.
|
|
||||||
if (renormalize) {
|
|
||||||
if (thread_group_idx == 0)
|
|
||||||
{
|
|
||||||
const float denom = selected_sum > 0.f ? selected_sum : 1.f;
|
|
||||||
for (int k_idx = 0; k_idx < k; ++k_idx)
|
|
||||||
{
|
|
||||||
const int idx = k * thread_row + k_idx;
|
|
||||||
output[idx] = output[idx] / denom;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace detail
|
namespace detail
|
||||||
{
|
{
|
||||||
// Constructs some constants needed to partition the work across threads at compile time.
|
// Constructs some constants needed to partition the work across threads at compile time.
|
||||||
template <int EXPERTS, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename InputType>
|
template <int EXPERTS, int BYTES_PER_LDG, int WARP_SIZE_PARAM>
|
||||||
struct TopkConstants
|
struct TopkConstants
|
||||||
{
|
{
|
||||||
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(InputType);
|
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
|
||||||
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0, "");
|
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0, "");
|
||||||
static constexpr int VECs_PER_THREAD = MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM));
|
static constexpr int VECs_PER_THREAD = MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM));
|
||||||
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
|
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
|
||||||
@ -508,21 +398,21 @@ struct TopkConstants
|
|||||||
};
|
};
|
||||||
} // namespace detail
|
} // namespace detail
|
||||||
|
|
||||||
template <int EXPERTS, int WARPS_PER_TB, int WARP_SIZE_PARAM, int MAX_BYTES_PER_LDG, typename IndType, typename InputType>
|
template <int EXPERTS, int WARPS_PER_TB, int WARP_SIZE_PARAM, int MAX_BYTES_PER_LDG, typename IndType>
|
||||||
void topkGatingSoftmaxLauncherHelper(const InputType* input, const bool* finished, float* output, IndType* indices,
|
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, IndType* indices,
|
||||||
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, const bool renormalize,
|
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
|
||||||
cudaStream_t stream)
|
|
||||||
{
|
{
|
||||||
static constexpr int BYTES_PER_LDG = MIN(MAX_BYTES_PER_LDG, sizeof(InputType) * EXPERTS);
|
static constexpr int BYTES_PER_LDG = MIN(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
|
||||||
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM, InputType>;
|
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
|
||||||
static constexpr int VPT = Constants::VPT;
|
static constexpr int VPT = Constants::VPT;
|
||||||
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
|
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
|
||||||
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
const bool batch_invariant_launch = vllm::vllm_kernel_override_batch_invariant();
|
||||||
|
const int num_warps = batch_invariant_launch ? 32 : (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||||
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
|
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
|
||||||
|
|
||||||
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
|
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
|
||||||
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG, WARP_SIZE_PARAM, IndType, InputType><<<num_blocks, block_dim, 0, stream>>>(
|
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG, WARP_SIZE_PARAM><<<num_blocks, block_dim, 0, stream>>>(
|
||||||
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert, renormalize);
|
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
@ -530,26 +420,26 @@ void topkGatingSoftmaxLauncherHelper(const InputType* input, const bool* finishe
|
|||||||
static_assert(WARP_SIZE == 32, \
|
static_assert(WARP_SIZE == 32, \
|
||||||
"Unsupported warp size. Only 32 is supported for CUDA"); \
|
"Unsupported warp size. Only 32 is supported for CUDA"); \
|
||||||
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, WARP_SIZE, MAX_BYTES>( \
|
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, WARP_SIZE, MAX_BYTES>( \
|
||||||
gating_output, nullptr, topk_weights, topk_indices, token_expert_indices, \
|
gating_output, nullptr, topk_weights, topk_indices, \
|
||||||
num_tokens, topk, 0, num_experts, renormalize, stream);
|
token_expert_indices, num_tokens, topk, 0, num_experts, stream);
|
||||||
#else
|
#else
|
||||||
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB, MAX_BYTES) \
|
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB, MAX_BYTES) \
|
||||||
if (WARP_SIZE == 64) { \
|
if (WARP_SIZE == 64) { \
|
||||||
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 64, MAX_BYTES>( \
|
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 64, MAX_BYTES>( \
|
||||||
gating_output, nullptr, topk_weights, topk_indices, token_expert_indices, \
|
gating_output, nullptr, topk_weights, topk_indices, \
|
||||||
num_tokens, topk, 0, num_experts, renormalize, stream); \
|
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
|
||||||
} else if (WARP_SIZE == 32) { \
|
} else if (WARP_SIZE == 32) { \
|
||||||
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 32, MAX_BYTES>( \
|
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 32, MAX_BYTES>( \
|
||||||
gating_output, nullptr, topk_weights, topk_indices, token_expert_indices, \
|
gating_output, nullptr, topk_weights, topk_indices, \
|
||||||
num_tokens, topk, 0, num_experts, renormalize, stream); \
|
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
|
||||||
} else { \
|
} else { \
|
||||||
assert(false && "Unsupported warp size. Only 32 and 64 are supported for ROCm"); \
|
assert(false && "Unsupported warp size. Only 32 and 64 are supported for ROCm"); \
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
template <typename IndType, typename InputType>
|
template <typename IndType>
|
||||||
void topkGatingSoftmaxKernelLauncher(
|
void topkGatingSoftmaxKernelLauncher(
|
||||||
const InputType* gating_output,
|
const float* gating_output,
|
||||||
float* topk_weights,
|
float* topk_weights,
|
||||||
IndType* topk_indices,
|
IndType* topk_indices,
|
||||||
int* token_expert_indices,
|
int* token_expert_indices,
|
||||||
@ -557,15 +447,11 @@ void topkGatingSoftmaxKernelLauncher(
|
|||||||
const int num_tokens,
|
const int num_tokens,
|
||||||
const int num_experts,
|
const int num_experts,
|
||||||
const int topk,
|
const int topk,
|
||||||
const bool renormalize,
|
|
||||||
cudaStream_t stream) {
|
cudaStream_t stream) {
|
||||||
static constexpr int WARPS_PER_TB = 4;
|
static constexpr int WARPS_PER_TB = 4;
|
||||||
static constexpr int BYTES_PER_LDG_POWER_OF_2 = 16;
|
static constexpr int BYTES_PER_LDG_POWER_OF_2 = 16;
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
// for bfloat16 dtype, we need 4 bytes loading to make sure num_experts
|
static constexpr int BYTES_PER_LDG_MULTIPLE_64 = 8;
|
||||||
// elements can be loaded by a warp
|
|
||||||
static constexpr int BYTES_PER_LDG_MULTIPLE_64 =
|
|
||||||
(std::is_same_v<InputType, __nv_bfloat16> || std::is_same_v<InputType, __half>) ? 4 : 8;
|
|
||||||
#endif
|
#endif
|
||||||
switch (num_experts) {
|
switch (num_experts) {
|
||||||
case 1:
|
case 1:
|
||||||
@ -622,11 +508,11 @@ void topkGatingSoftmaxKernelLauncher(
|
|||||||
TORCH_CHECK(softmax_workspace != nullptr,
|
TORCH_CHECK(softmax_workspace != nullptr,
|
||||||
"softmax_workspace must be provided for num_experts that are not a power of 2 or multiple of 64.");
|
"softmax_workspace must be provided for num_experts that are not a power of 2 or multiple of 64.");
|
||||||
static constexpr int TPB = 256;
|
static constexpr int TPB = 256;
|
||||||
moeSoftmax<TPB, InputType><<<num_tokens, TPB, 0, stream>>>(
|
moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
|
||||||
gating_output, nullptr, softmax_workspace, num_experts);
|
gating_output, nullptr, softmax_workspace, num_experts);
|
||||||
moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
|
moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
|
||||||
softmax_workspace, nullptr, topk_weights, topk_indices, token_expert_indices,
|
softmax_workspace, nullptr, topk_weights, topk_indices, token_expert_indices,
|
||||||
num_experts, topk, 0, num_experts, renormalize);
|
num_experts, topk, 0, num_experts);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -634,50 +520,11 @@ void topkGatingSoftmaxKernelLauncher(
|
|||||||
} // namespace moe
|
} // namespace moe
|
||||||
} // namespace vllm
|
} // namespace vllm
|
||||||
|
|
||||||
|
|
||||||
template<typename ComputeType>
|
|
||||||
void dispatch_topk_softmax_launch(
|
|
||||||
torch::Tensor& gating_output,
|
|
||||||
torch::Tensor& topk_weights,
|
|
||||||
torch::Tensor& topk_indices,
|
|
||||||
torch::Tensor& token_expert_indices,
|
|
||||||
torch::Tensor& softmax_workspace,
|
|
||||||
int num_tokens, int num_experts, int topk, bool renormalize, cudaStream_t stream)
|
|
||||||
{
|
|
||||||
if (topk_indices.scalar_type() == at::ScalarType::Int) {
|
|
||||||
vllm::moe::topkGatingSoftmaxKernelLauncher<int, ComputeType>(
|
|
||||||
reinterpret_cast<const ComputeType*>(gating_output.data_ptr()),
|
|
||||||
topk_weights.data_ptr<float>(),
|
|
||||||
topk_indices.data_ptr<int>(),
|
|
||||||
token_expert_indices.data_ptr<int>(),
|
|
||||||
softmax_workspace.data_ptr<float>(),
|
|
||||||
num_tokens, num_experts, topk, renormalize, stream);
|
|
||||||
} else if (topk_indices.scalar_type() == at::ScalarType::UInt32) {
|
|
||||||
vllm::moe::topkGatingSoftmaxKernelLauncher<uint32_t, ComputeType>(
|
|
||||||
reinterpret_cast<const ComputeType*>(gating_output.data_ptr()),
|
|
||||||
topk_weights.data_ptr<float>(),
|
|
||||||
topk_indices.data_ptr<uint32_t>(),
|
|
||||||
token_expert_indices.data_ptr<int>(),
|
|
||||||
softmax_workspace.data_ptr<float>(),
|
|
||||||
num_tokens, num_experts, topk, renormalize, stream);
|
|
||||||
} else {
|
|
||||||
TORCH_CHECK(topk_indices.scalar_type() == at::ScalarType::Long);
|
|
||||||
vllm::moe::topkGatingSoftmaxKernelLauncher<int64_t, ComputeType>(
|
|
||||||
reinterpret_cast<const ComputeType*>(gating_output.data_ptr()),
|
|
||||||
topk_weights.data_ptr<float>(),
|
|
||||||
topk_indices.data_ptr<int64_t>(),
|
|
||||||
token_expert_indices.data_ptr<int>(),
|
|
||||||
softmax_workspace.data_ptr<float>(),
|
|
||||||
num_tokens, num_experts, topk, renormalize, stream);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void topk_softmax(
|
void topk_softmax(
|
||||||
torch::Tensor& topk_weights, // [num_tokens, topk]
|
torch::Tensor& topk_weights, // [num_tokens, topk]
|
||||||
torch::Tensor& topk_indices, // [num_tokens, topk]
|
torch::Tensor& topk_indices, // [num_tokens, topk]
|
||||||
torch::Tensor& token_expert_indices, // [num_tokens, topk]
|
torch::Tensor& token_expert_indices, // [num_tokens, topk]
|
||||||
torch::Tensor& gating_output, // [num_tokens, num_experts]
|
torch::Tensor& gating_output) // [num_tokens, num_experts]
|
||||||
bool renormalize)
|
|
||||||
{
|
{
|
||||||
const int num_experts = gating_output.size(-1);
|
const int num_experts = gating_output.size(-1);
|
||||||
const auto num_tokens = gating_output.numel() / num_experts;
|
const auto num_tokens = gating_output.numel() / num_experts;
|
||||||
@ -689,19 +536,45 @@ void topk_softmax(
|
|||||||
|
|
||||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
const auto workspace_options = gating_output.options().dtype(at::ScalarType::Float);
|
torch::Tensor softmax_workspace = torch::empty({workspace_size}, gating_output.options());
|
||||||
torch::Tensor softmax_workspace = torch::empty({workspace_size}, workspace_options);
|
|
||||||
|
|
||||||
if (gating_output.scalar_type() == at::ScalarType::Float) {
|
if(topk_indices.scalar_type() == at::ScalarType::Int)
|
||||||
dispatch_topk_softmax_launch<float>(gating_output, topk_weights, topk_indices,
|
{
|
||||||
token_expert_indices, softmax_workspace, num_tokens, num_experts, topk, renormalize, stream);
|
vllm::moe::topkGatingSoftmaxKernelLauncher(
|
||||||
} else if (gating_output.scalar_type() == at::ScalarType::Half) {
|
gating_output.data_ptr<float>(),
|
||||||
dispatch_topk_softmax_launch<__half>(gating_output, topk_weights, topk_indices,
|
topk_weights.data_ptr<float>(),
|
||||||
token_expert_indices, softmax_workspace, num_tokens, num_experts, topk, renormalize, stream);
|
topk_indices.data_ptr<int>(),
|
||||||
} else if (gating_output.scalar_type() == at::ScalarType::BFloat16) {
|
token_expert_indices.data_ptr<int>(),
|
||||||
dispatch_topk_softmax_launch<__nv_bfloat16>(gating_output, topk_weights, topk_indices,
|
softmax_workspace.data_ptr<float>(),
|
||||||
token_expert_indices, softmax_workspace, num_tokens, num_experts, topk, renormalize, stream);
|
num_tokens,
|
||||||
} else {
|
num_experts,
|
||||||
TORCH_CHECK(false, "Unsupported gating_output data type: ", gating_output.scalar_type());
|
topk,
|
||||||
|
stream);
|
||||||
|
}
|
||||||
|
else if (topk_indices.scalar_type() == at::ScalarType::UInt32)
|
||||||
|
{
|
||||||
|
vllm::moe::topkGatingSoftmaxKernelLauncher(
|
||||||
|
gating_output.data_ptr<float>(),
|
||||||
|
topk_weights.data_ptr<float>(),
|
||||||
|
topk_indices.data_ptr<uint32_t>(),
|
||||||
|
token_expert_indices.data_ptr<int>(),
|
||||||
|
softmax_workspace.data_ptr<float>(),
|
||||||
|
num_tokens,
|
||||||
|
num_experts,
|
||||||
|
topk,
|
||||||
|
stream);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
TORCH_CHECK(topk_indices.scalar_type() == at::ScalarType::Long);
|
||||||
|
vllm::moe::topkGatingSoftmaxKernelLauncher(
|
||||||
|
gating_output.data_ptr<float>(),
|
||||||
|
topk_weights.data_ptr<float>(),
|
||||||
|
topk_indices.data_ptr<int64_t>(),
|
||||||
|
token_expert_indices.data_ptr<int>(),
|
||||||
|
softmax_workspace.data_ptr<float>(),
|
||||||
|
num_tokens,
|
||||||
|
num_experts,
|
||||||
|
topk,
|
||||||
|
stream);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -5,7 +5,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
|||||||
// Apply topk softmax to the gating outputs.
|
// Apply topk softmax to the gating outputs.
|
||||||
m.def(
|
m.def(
|
||||||
"topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
|
"topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
|
||||||
"token_expert_indices, Tensor gating_output, bool renormalize) -> ()");
|
"token_expert_indices, Tensor gating_output) -> ()");
|
||||||
m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
|
m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
|
||||||
|
|
||||||
// Calculate the result of moe by summing up the partial results
|
// Calculate the result of moe by summing up the partial results
|
||||||
@ -22,29 +22,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
|||||||
" Tensor! num_tokens_post_pad) -> ()");
|
" Tensor! num_tokens_post_pad) -> ()");
|
||||||
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
|
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
|
||||||
|
|
||||||
// Aligning the number of tokens to be processed by each expert such
|
|
||||||
// that it is divisible by the block size, but for the batched case.
|
|
||||||
m.def(
|
|
||||||
"batched_moe_align_block_size(int max_tokens_per_batch,"
|
|
||||||
" int block_size, Tensor expert_num_tokens,"
|
|
||||||
" Tensor! sorted_token_ids,"
|
|
||||||
" Tensor! experts_ids,"
|
|
||||||
" Tensor! num_tokens_post_pad) -> ()");
|
|
||||||
m.impl("batched_moe_align_block_size", torch::kCUDA,
|
|
||||||
&batched_moe_align_block_size);
|
|
||||||
|
|
||||||
// Aligning the number of tokens to be processed by each expert such
|
|
||||||
// that it is divisible by the block size.
|
|
||||||
m.def(
|
|
||||||
"moe_lora_align_block_size(Tensor topk_ids,"
|
|
||||||
" Tensor token_lora_mapping,"
|
|
||||||
" int num_experts,"
|
|
||||||
" int block_size, int max_loras, "
|
|
||||||
" Tensor !sorted_token_ids,"
|
|
||||||
" Tensor !experts_ids,"
|
|
||||||
" Tensor !num_tokens_post_pad) -> () ");
|
|
||||||
m.impl("moe_lora_align_block_size", torch::kCUDA, &moe_lora_align_block_size);
|
|
||||||
|
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
m.def(
|
m.def(
|
||||||
"moe_wna16_gemm(Tensor input, Tensor! output, Tensor b_qweight, "
|
"moe_wna16_gemm(Tensor input, Tensor! output, Tensor b_qweight, "
|
||||||
|
12
csrc/ops.h
12
csrc/ops.h
@ -92,16 +92,14 @@ void rms_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
|
|||||||
void fused_add_rms_norm(torch::Tensor& input, torch::Tensor& residual,
|
void fused_add_rms_norm(torch::Tensor& input, torch::Tensor& residual,
|
||||||
torch::Tensor& weight, double epsilon);
|
torch::Tensor& weight, double epsilon);
|
||||||
|
|
||||||
|
void poly_norm(torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight,
|
||||||
|
torch::Tensor& bias, double epsilon);
|
||||||
|
|
||||||
void apply_repetition_penalties_(torch::Tensor& logits,
|
void apply_repetition_penalties_(torch::Tensor& logits,
|
||||||
const torch::Tensor& prompt_mask,
|
const torch::Tensor& prompt_mask,
|
||||||
const torch::Tensor& output_mask,
|
const torch::Tensor& output_mask,
|
||||||
const torch::Tensor& repetition_penalties);
|
const torch::Tensor& repetition_penalties);
|
||||||
|
|
||||||
void top_k_per_row(const torch::Tensor& logits, const torch::Tensor& rowStarts,
|
|
||||||
const torch::Tensor& rowEnds, torch::Tensor& indices,
|
|
||||||
torch::Tensor& values, int64_t numRows, int64_t stride0,
|
|
||||||
int64_t stride1);
|
|
||||||
|
|
||||||
void rms_norm_static_fp8_quant(torch::Tensor& out, torch::Tensor& input,
|
void rms_norm_static_fp8_quant(torch::Tensor& out, torch::Tensor& input,
|
||||||
torch::Tensor& weight, torch::Tensor& scale,
|
torch::Tensor& weight, torch::Tensor& scale,
|
||||||
double epsilon);
|
double epsilon);
|
||||||
@ -135,12 +133,12 @@ void silu_and_mul_nvfp4_quant(torch::Tensor& out,
|
|||||||
torch::Tensor& input,
|
torch::Tensor& input,
|
||||||
torch::Tensor& input_global_scale);
|
torch::Tensor& input_global_scale);
|
||||||
#endif
|
#endif
|
||||||
void persistent_masked_m_silu_mul_quant(
|
void silu_mul_fp8_quant_deep_gemm_cuda(
|
||||||
const at::Tensor& input, // (E, T, 2*H)
|
const at::Tensor& input, // (E, T, 2*H)
|
||||||
const at::Tensor& counts, // (E)
|
const at::Tensor& counts, // (E)
|
||||||
at::Tensor& y_q, // (E, T, H) [OUT]
|
at::Tensor& y_q, // (E, T, H) [OUT]
|
||||||
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
|
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
|
||||||
bool use_ue8m0);
|
int64_t group_size, bool use_ue8m0, int64_t num_parallel_tokens);
|
||||||
|
|
||||||
void mul_and_silu(torch::Tensor& out, torch::Tensor& input);
|
void mul_and_silu(torch::Tensor& out, torch::Tensor& input);
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
#include "../cuda_compat.h"
|
#include "../cuda_compat.h"
|
||||||
#include "dispatch_utils.h"
|
#include "dispatch_utils.h"
|
||||||
|
|
||||||
#include "quantization/w8a8/fp8/common.cuh"
|
#include "quantization/fp8/common.cuh"
|
||||||
|
|
||||||
#include <c10/util/Float8_e4m3fn.h>
|
#include <c10/util/Float8_e4m3fn.h>
|
||||||
|
|
||||||
@ -114,22 +114,13 @@ __global__ void act_and_mul_quant_kernel(
|
|||||||
}
|
}
|
||||||
|
|
||||||
__device__ __forceinline__ float silu(float x) {
|
__device__ __forceinline__ float silu(float x) {
|
||||||
return __fdividef(x, (1.f + expf(-x)));
|
return (__fdividef(x, (1.f + expf(-x))));
|
||||||
}
|
}
|
||||||
|
|
||||||
__device__ __forceinline__ float2 silu2(float2 x) {
|
__device__ __forceinline__ float2 silu2(float2 x) {
|
||||||
return make_float2(silu(x.x), silu(x.y));
|
return make_float2(silu(x.x), silu(x.y));
|
||||||
}
|
}
|
||||||
|
|
||||||
__device__ __forceinline__ __nv_bfloat162 silu2_v2(float2 x) {
|
|
||||||
#ifndef USE_ROCM
|
|
||||||
return make_bfloat162(__float2bfloat16_rn(silu(x.x)),
|
|
||||||
__float2bfloat16_rn(silu(x.y)));
|
|
||||||
#else
|
|
||||||
return __float22bfloat162_rn(make_float2(silu(x.x), silu(x.y)));
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
__device__ __forceinline__ float warp_max(float v) {
|
__device__ __forceinline__ float warp_max(float v) {
|
||||||
static constexpr unsigned FULL_MASK = 0xffffffffu;
|
static constexpr unsigned FULL_MASK = 0xffffffffu;
|
||||||
@ -232,308 +223,224 @@ constexpr __nv_bfloat16 get_fp8_min() {
|
|||||||
return __nv_bfloat16(__nv_bfloat16_raw{.x = 50032});
|
return __nv_bfloat16(__nv_bfloat16_raw{.x = 50032});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#ifndef USE_ROCM
|
||||||
template <typename Idx_t>
|
template <typename fp8_type, int32_t NUM_WARPS, typename Idx_t,
|
||||||
__device__ __forceinline__ int warp_expert_search(
|
int NUM_PARALLEL_TOKENS, bool USE_UE8M0, int GROUP_SIZE = 128,
|
||||||
int idx, int n, const Idx_t* __restrict__ input, Idx_t val) {
|
|
||||||
const Idx_t* input_ptr = input + idx;
|
|
||||||
int base_offset = 0;
|
|
||||||
|
|
||||||
for (;;) {
|
|
||||||
bool move_on = (idx < n && *input_ptr <= val);
|
|
||||||
|
|
||||||
unsigned mask = __ballot_sync(0xffffffff, move_on);
|
|
||||||
|
|
||||||
if (mask != 0xffffffffu) {
|
|
||||||
int last_lane = 31 - __clz(mask);
|
|
||||||
return base_offset + last_lane;
|
|
||||||
}
|
|
||||||
|
|
||||||
input_ptr += 32;
|
|
||||||
base_offset += 32;
|
|
||||||
idx += 32;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int num_parallel_tokens>
|
|
||||||
__device__ __forceinline__ void token_bounds(int32_t n_tokens,
|
|
||||||
int32_t worker_id,
|
|
||||||
int32_t& n_tokens_lower,
|
|
||||||
int32_t& n_tokens_upper) {
|
|
||||||
if (n_tokens < num_parallel_tokens && worker_id < n_tokens) {
|
|
||||||
if (worker_id >= num_parallel_tokens) return;
|
|
||||||
n_tokens_lower = worker_id;
|
|
||||||
n_tokens_upper = worker_id + 1;
|
|
||||||
} else {
|
|
||||||
int32_t chunk_size = n_tokens / num_parallel_tokens;
|
|
||||||
int32_t residual = n_tokens - chunk_size * num_parallel_tokens;
|
|
||||||
auto calc_id = [&](int32_t id) {
|
|
||||||
if (id < residual)
|
|
||||||
return min(n_tokens, id * (chunk_size + 1));
|
|
||||||
else
|
|
||||||
return min(n_tokens, id * chunk_size + residual);
|
|
||||||
};
|
|
||||||
n_tokens_lower = calc_id(worker_id);
|
|
||||||
n_tokens_upper = calc_id(worker_id + 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int BLOCK_COUNT, int SMEM_SIZE_BYTES_Y, typename fp8_type,
|
|
||||||
int THREADS, typename Idx_t, bool USE_UE8M0, int GROUP_SIZE = 128,
|
|
||||||
int NUM_STAGES = 3>
|
int NUM_STAGES = 3>
|
||||||
__global__ void silu_mul_fp8_quant_deep_gemm_kernel(
|
__global__ void silu_mul_fp8_quant_deep_gemm_kernel(
|
||||||
const __nv_bfloat16* __restrict__ _input, fp8_type* __restrict__ _y_q,
|
const __nv_bfloat16* __restrict__ _input, fp8_type* __restrict__ _y_q,
|
||||||
float* __restrict__ _y_s, const int32_t* __restrict__ tokens_per_expert,
|
float* __restrict__ _y_s, const int32_t* __restrict__ counts,
|
||||||
|
|
||||||
// sizes
|
// sizes
|
||||||
Idx_t E, Idx_t T, Idx_t H,
|
int H, int G,
|
||||||
|
|
||||||
// strides (in elements)
|
// strides (in elements)
|
||||||
Idx_t stride_i_e, Idx_t stride_i_t, Idx_t stride_i_h, Idx_t stride_yq_e,
|
Idx_t stride_i_e, Idx_t stride_i_t, Idx_t stride_i_h, Idx_t stride_yq_e,
|
||||||
Idx_t stride_yq_t, Idx_t stride_yq_h, Idx_t stride_ys_e, Idx_t stride_ys_t,
|
Idx_t stride_yq_t, Idx_t stride_yq_h, Idx_t stride_ys_e, Idx_t stride_ys_t,
|
||||||
Idx_t stride_ys_g, Idx_t stride_counts_e) {
|
Idx_t stride_ys_g, Idx_t stride_counts_e) {
|
||||||
#ifndef USE_ROCM
|
|
||||||
static constexpr int NUM_WARPS = THREADS / WARP_SIZE;
|
|
||||||
|
|
||||||
static constexpr int LOAD_STAGE_SIZE = 2 * GROUP_SIZE / 8;
|
|
||||||
static constexpr int LOAD_STAGE_MOD = NUM_STAGES * LOAD_STAGE_SIZE;
|
|
||||||
|
|
||||||
static constexpr int COMPUTE_STAGE_SIZE = 2 * GROUP_SIZE / 4;
|
|
||||||
static constexpr int COMPUTE_STAGE_MOD = COMPUTE_STAGE_SIZE * NUM_STAGES;
|
|
||||||
|
|
||||||
extern __shared__ __align__(16) __int128_t smem_128[];
|
|
||||||
|
|
||||||
int* s_expert_offsets =
|
|
||||||
reinterpret_cast<int*>(smem_128 + (SMEM_SIZE_BYTES_Y / 16));
|
|
||||||
|
|
||||||
static constexpr __nv_bfloat16 fp8_min = get_fp8_min<fp8_type>();
|
static constexpr __nv_bfloat16 fp8_min = get_fp8_min<fp8_type>();
|
||||||
static constexpr __nv_bfloat16 fp8_max = get_fp8_max<fp8_type>();
|
static constexpr __nv_bfloat16 fp8_max = get_fp8_max<fp8_type>();
|
||||||
// We assign EPS with it's 16-bit unsigned counterpart to allow constexpr.
|
// We assign EPS with its 16-bit unsigned counterpart to allow constexpr.
|
||||||
static constexpr __nv_bfloat16 EPS = (__nv_bfloat16_raw{.x = 11996});
|
static constexpr __nv_bfloat16 EPS = (__nv_bfloat16_raw{.x = 11996});
|
||||||
int tid = threadIdx.x;
|
|
||||||
int warp_id = tid >> 5;
|
|
||||||
int lane_id = tid & 0x1f;
|
|
||||||
|
|
||||||
int running_sum{};
|
// We pack 8 16-bit bfloat16 values into a 128-bit __int128_t.
|
||||||
if (!warp_id) {
|
static constexpr int32_t BFLOAT16_PER_GROUP = 8;
|
||||||
for (int i = 0; i < E; i += WARP_SIZE) {
|
|
||||||
bool valid = (i + threadIdx.x) < E;
|
|
||||||
int value =
|
|
||||||
(valid ? tokens_per_expert[i + threadIdx.x * stride_counts_e] : 0) +
|
|
||||||
(!lane_id ? running_sum : 0);
|
|
||||||
|
|
||||||
for (int offset = 1; offset < 32; offset *= 2) {
|
// We split the shared memory in half, corresponding to gate and up matrices:
|
||||||
int n = __shfl_up_sync(0xFFFFFFFFu, value, offset);
|
// [...gate_i, ...up_i] where 0 <= i < stages.
|
||||||
if (lane_id >= offset) value += n;
|
static constexpr int32_t S_NUM_128 =
|
||||||
}
|
2u * (GROUP_SIZE / BFLOAT16_PER_GROUP) * NUM_WARPS * NUM_STAGES;
|
||||||
|
static constexpr auto THREAD_COUNT = NUM_WARPS * WARP_SIZE;
|
||||||
|
static constexpr int HALF_THREAD_COUNT = THREAD_COUNT / 2;
|
||||||
|
static constexpr int32_t S_NUM_64 = S_NUM_128 * 2;
|
||||||
|
__shared__ __int128_t __align__(16) s_buff_128[S_NUM_128];
|
||||||
|
|
||||||
if (valid) {
|
const int32_t tid = threadIdx.x;
|
||||||
s_expert_offsets[i + threadIdx.x + 1] = value;
|
const int32_t warp_id = tid / WARP_SIZE;
|
||||||
}
|
const int32_t lane_id = tid % WARP_SIZE;
|
||||||
|
|
||||||
running_sum = __shfl_sync(0xFFFFFFFFu, value, WARP_SIZE - 1);
|
auto s_buff_compute_32 = reinterpret_cast<__nv_bfloat162*>(s_buff_128);
|
||||||
}
|
|
||||||
|
|
||||||
if (!lane_id) {
|
// block handles one (expert e, group g)
|
||||||
s_expert_offsets[0] = 0;
|
int32_t pid = blockIdx.x;
|
||||||
}
|
int32_t e = pid / G;
|
||||||
|
int32_t g = pid % G;
|
||||||
|
|
||||||
|
const int32_t n_tokens = counts[e * stride_counts_e];
|
||||||
|
|
||||||
|
if (!n_tokens) {
|
||||||
|
return; // Exit ASAP.
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
const Idx_t stride_i_t_128 = stride_i_t / 8u;
|
||||||
|
|
||||||
int32_t total_tokens = s_expert_offsets[E];
|
int32_t n_tokens_lower, n_tokens_upper;
|
||||||
|
|
||||||
const int warp_position_yq = warp_id * (H / NUM_WARPS);
|
|
||||||
const int warp_position_scales = warp_id * (H / (GROUP_SIZE * NUM_WARPS));
|
|
||||||
|
|
||||||
// A single block will handle tokens_per_block tokens.
|
|
||||||
// Each block i iterates over tokens of a slice of n_tokens =
|
// Each block i iterates over tokens of a slice of n_tokens =
|
||||||
// expert_counts[i], with the size of chunk being
|
// expert_counts[i], with the size of chunk being
|
||||||
// (n_tokens / NUM_PARALLEL_TOKENS) + residual, instead of
|
// (n_tokens / NUM_PARALLEL_TOKENS) + residual, instead of
|
||||||
// updiv(n_tokens, NUM_PARALLEL_TOKENS) for better scheduling.
|
// updiv(n_tokens, NUM_PARALLEL_TOKENS) for better scheduling.
|
||||||
|
if (n_tokens < NUM_PARALLEL_TOKENS && blockIdx.y < n_tokens) {
|
||||||
// Each warp will get space to store its hidden dim for gate and up.
|
// Specialize this, but can be likely fused.
|
||||||
__int128_t* s_hidden_load = smem_128 + warp_id * ((2 * 128 / 8) * NUM_STAGES);
|
if (blockIdx.y >= NUM_PARALLEL_TOKENS) {
|
||||||
__int128_t* smem_load_ptr = s_hidden_load + lane_id;
|
return;
|
||||||
|
}
|
||||||
const __nv_bfloat16 fp8_inv = __hdiv(__float2bfloat16(1.f), fp8_max);
|
n_tokens_lower = blockIdx.y;
|
||||||
|
n_tokens_upper = blockIdx.y + 1;
|
||||||
int32_t compute_pipeline_offset_64 = 0;
|
|
||||||
int32_t load_stage_offset{};
|
|
||||||
const __nv_bfloat16 one_bf16 = __float2bfloat16_rn(1.f);
|
|
||||||
|
|
||||||
__int64_t* smem_compute_ptr = reinterpret_cast<__int64_t*>(smem_128) +
|
|
||||||
warp_id * (2 * (GROUP_SIZE / 4) * NUM_STAGES) +
|
|
||||||
lane_id;
|
|
||||||
__int64_t* s_gate64_ptr = smem_compute_ptr;
|
|
||||||
__int64_t* s_up64_ptr = smem_compute_ptr + GROUP_SIZE / 4;
|
|
||||||
|
|
||||||
int tokens_lower, tokens_upper;
|
|
||||||
|
|
||||||
token_bounds<BLOCK_COUNT>(total_tokens, blockIdx.x, tokens_lower,
|
|
||||||
tokens_upper);
|
|
||||||
|
|
||||||
Idx_t expert_id{}, expert_offset{}, next_expert_offset{};
|
|
||||||
int token_id = tokens_lower;
|
|
||||||
int32_t t_load{};
|
|
||||||
|
|
||||||
if (token_id < tokens_upper) {
|
|
||||||
expert_id = warp_expert_search<int>(lane_id, E, s_expert_offsets, token_id);
|
|
||||||
expert_offset = s_expert_offsets[expert_id];
|
|
||||||
next_expert_offset = s_expert_offsets[expert_id + 1];
|
|
||||||
} else {
|
} else {
|
||||||
// This thread block has no work to do.
|
auto chunk_size = n_tokens / NUM_PARALLEL_TOKENS;
|
||||||
|
auto residual = n_tokens - chunk_size * NUM_PARALLEL_TOKENS;
|
||||||
|
auto calc_id = [&](int32_t id) {
|
||||||
|
if (id < residual) {
|
||||||
|
return min(n_tokens, id * (chunk_size + 1));
|
||||||
|
} else {
|
||||||
|
return min(n_tokens, id * chunk_size + residual);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
n_tokens_lower = calc_id(blockIdx.y);
|
||||||
|
n_tokens_upper = calc_id(blockIdx.y + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_tokens_lower >= n_tokens_upper) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
int t_load_bound = H / (GROUP_SIZE * NUM_WARPS);
|
// We do calculations here, using constexpr wherever possible.
|
||||||
|
const Idx_t base_i = e * stride_i_e + NUM_WARPS * g * GROUP_SIZE * stride_i_h;
|
||||||
|
const Idx_t base_ys = e * stride_ys_e + NUM_WARPS * g * stride_ys_g;
|
||||||
|
const Idx_t base_yq =
|
||||||
|
e * stride_yq_e + NUM_WARPS * g * GROUP_SIZE * stride_yq_h;
|
||||||
|
Idx_t gate_off_128 = (base_i / static_cast<Idx_t>(8u));
|
||||||
|
auto input_128_ptr = reinterpret_cast<const __int128_t*>(_input);
|
||||||
|
auto gate_128_ptr = input_128_ptr + gate_off_128 + (tid % HALF_THREAD_COUNT) +
|
||||||
|
stride_i_t_128 * n_tokens_lower;
|
||||||
|
auto up_128_ptr = gate_128_ptr + (H * stride_i_h) / 8u;
|
||||||
|
auto y_s_ptr =
|
||||||
|
_y_s + base_ys + warp_id * stride_ys_g + n_tokens_lower * stride_ys_t;
|
||||||
|
auto y_q_ptr = _y_q + base_yq + warp_id * GROUP_SIZE +
|
||||||
|
stride_yq_t * n_tokens_lower + 4 * lane_id;
|
||||||
|
int32_t t_load = n_tokens_lower, load_stage_id = 0;
|
||||||
|
auto s_buff_gate_load_128 = s_buff_128 + (tid % HALF_THREAD_COUNT);
|
||||||
|
auto s_buff_up_load_128 = s_buff_gate_load_128 + S_NUM_128 / 2u;
|
||||||
|
int32_t stage_offset{};
|
||||||
|
|
||||||
Idx_t base_i = ((expert_id * stride_i_e) / 8) +
|
static constexpr int32_t LOAD_STAGE_SIZE = (NUM_WARPS * WARP_SIZE / 2);
|
||||||
(token_id - expert_offset) * stride_i_t / 8;
|
static constexpr int32_t LOAD_STAGE_MOD =
|
||||||
const Idx_t gate_warp_offset =
|
NUM_STAGES * (NUM_WARPS * WARP_SIZE / 2);
|
||||||
warp_id * ((stride_i_h * H) / (8 * NUM_WARPS)) + (lane_id & 0b1111);
|
|
||||||
|
|
||||||
const __int128_t* input_128_ptr =
|
|
||||||
reinterpret_cast<const __int128_t*>(_input) + gate_warp_offset +
|
|
||||||
((lane_id < 16) ? 0 : ((H * stride_i_h) / 8));
|
|
||||||
__int128_t* load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
|
|
||||||
|
|
||||||
auto token_offset = token_id - expert_offset;
|
|
||||||
|
|
||||||
|
// Two halves of all threads in a block conduct global loads for gate and up,
|
||||||
|
// repsectively.
|
||||||
auto load_and_advance_y_pred = [&] {
|
auto load_and_advance_y_pred = [&] {
|
||||||
if (t_load < t_load_bound) {
|
if (t_load < n_tokens_upper) {
|
||||||
// Here we are simply continuing to load data
|
auto s_gate_stage_128_staged_ptr = s_buff_gate_load_128 + stage_offset;
|
||||||
// from the current token.
|
auto s_up_stage_128_staged_ptr = s_buff_up_load_128 + stage_offset;
|
||||||
auto smem_load_ptr_staged = smem_load_ptr + load_stage_offset;
|
|
||||||
|
|
||||||
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
|
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
|
||||||
// unnecessary ALU ops.
|
// unnecessary ALU ops.
|
||||||
load_stage_offset += LOAD_STAGE_SIZE;
|
stage_offset += LOAD_STAGE_SIZE;
|
||||||
load_stage_offset %= LOAD_STAGE_MOD;
|
stage_offset %= LOAD_STAGE_MOD;
|
||||||
|
|
||||||
cp_async4(smem_load_ptr_staged, load_ptr);
|
if (tid < HALF_THREAD_COUNT) {
|
||||||
load_ptr += GROUP_SIZE / 8;
|
cp_async4(s_gate_stage_128_staged_ptr, gate_128_ptr);
|
||||||
++t_load;
|
gate_128_ptr += stride_i_t_128;
|
||||||
} else if (token_id + 1 < tokens_upper) {
|
|
||||||
// We loaded everything from the current token, let's move on
|
|
||||||
// to the next one, and we checked that we have more tokens to load.
|
|
||||||
++token_id;
|
|
||||||
t_load = 0;
|
|
||||||
if (token_id >= next_expert_offset) {
|
|
||||||
// We need to find the next expert.
|
|
||||||
do {
|
|
||||||
// This is a loop because it's possible
|
|
||||||
// that some experts are assigned 0 tokens.
|
|
||||||
// NOTE: We are guaranteed that there's at least
|
|
||||||
// one more token left so we don't have to check for
|
|
||||||
// expert_id bounds.
|
|
||||||
++expert_id;
|
|
||||||
// This skips 1 memory read.
|
|
||||||
expert_offset = next_expert_offset;
|
|
||||||
next_expert_offset = s_expert_offsets[expert_id + 1];
|
|
||||||
} while (next_expert_offset == expert_offset);
|
|
||||||
|
|
||||||
base_i = expert_id * (stride_i_e / 8);
|
|
||||||
token_offset = 0;
|
|
||||||
load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
|
|
||||||
} else {
|
} else {
|
||||||
// We remain within the same expert, so just
|
cp_async4(s_up_stage_128_staged_ptr, up_128_ptr);
|
||||||
// move by H/4 __int128_t (2 * H/8).
|
up_128_ptr += stride_i_t_128;
|
||||||
base_i += stride_yq_t / 4;
|
|
||||||
token_offset++;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
|
|
||||||
|
|
||||||
auto smem_load_ptr_staged = smem_load_ptr + load_stage_offset;
|
|
||||||
|
|
||||||
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
|
|
||||||
// unnecessary ALU ops.
|
|
||||||
load_stage_offset += LOAD_STAGE_SIZE;
|
|
||||||
load_stage_offset %= LOAD_STAGE_MOD;
|
|
||||||
|
|
||||||
cp_async4(smem_load_ptr_staged, load_ptr);
|
|
||||||
load_ptr += GROUP_SIZE / 8;
|
|
||||||
++t_load;
|
++t_load;
|
||||||
|
++load_stage_id;
|
||||||
}
|
}
|
||||||
// We fence even if there is nothing to load to simplify pipelining.
|
// We fence even if there is nothing to load to simplify pipelining.
|
||||||
cp_async_fence();
|
cp_async_fence();
|
||||||
};
|
};
|
||||||
|
|
||||||
// We need to warm-up the pipeline.
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int i = 0; i < NUM_STAGES - 1; i++) {
|
for (int i = 0; i < NUM_STAGES - 1; i++) {
|
||||||
load_and_advance_y_pred();
|
load_and_advance_y_pred();
|
||||||
}
|
}
|
||||||
|
|
||||||
__nv_fp8x4_e4m3* y_q_base_ptr =
|
__int64_t* s_gate_ptr = reinterpret_cast<__int64_t*>(
|
||||||
reinterpret_cast<__nv_fp8x4_e4m3*>(_y_q) + lane_id;
|
s_buff_compute_32 + warp_id * (GROUP_SIZE / 2)) +
|
||||||
auto y_scale_base_ptr = _y_s + warp_position_scales * stride_ys_g;
|
lane_id;
|
||||||
|
__int64_t* s_up_ptr = s_gate_ptr + S_NUM_64 / 2;
|
||||||
|
|
||||||
for (auto j = tokens_lower; j < tokens_upper; j++) {
|
static constexpr int32_t STAGE_SIZE = (GROUP_SIZE * NUM_WARPS) / 4u;
|
||||||
const Idx_t base_ys = expert_id * stride_ys_e;
|
static constexpr int32_t STAGE_MOD = STAGE_SIZE * NUM_STAGES;
|
||||||
auto y_s_ptr = y_scale_base_ptr + base_ys + token_offset * stride_ys_t;
|
|
||||||
__nv_fp8x4_e4m3* y_q_ptr =
|
|
||||||
y_q_base_ptr + (expert_id * stride_yq_e + token_offset * stride_yq_t +
|
|
||||||
warp_position_yq * stride_yq_h) /
|
|
||||||
4;
|
|
||||||
const int COMPUTE_LIMIT = H / (GROUP_SIZE * NUM_WARPS);
|
|
||||||
|
|
||||||
for (int i = 0; i < COMPUTE_LIMIT; i++) {
|
int32_t compute_pipeline_offset_64 = 0;
|
||||||
cp_async_wait<NUM_STAGES - 2>();
|
|
||||||
__syncthreads();
|
|
||||||
load_and_advance_y_pred();
|
|
||||||
|
|
||||||
__int64_t* gate64_ptr = s_gate64_ptr + compute_pipeline_offset_64;
|
for (int32_t t = n_tokens_lower; t < n_tokens_upper; ++t) {
|
||||||
__int64_t* up64_ptr = s_up64_ptr + compute_pipeline_offset_64;
|
__nv_bfloat162 results_bf162[2];
|
||||||
|
|
||||||
// COMPUTE_STAGE_SIZE/MOD must also be constexpr!
|
cp_async_wait<NUM_STAGES - 2>();
|
||||||
compute_pipeline_offset_64 += COMPUTE_STAGE_SIZE;
|
__syncthreads();
|
||||||
compute_pipeline_offset_64 %= COMPUTE_STAGE_MOD;
|
|
||||||
|
|
||||||
__int64_t gate64 = *gate64_ptr;
|
// We double-buffer pipelined loads so that the next load will
|
||||||
__int64_t up64 = *up64_ptr;
|
// concurrently run with compute without overwrites.
|
||||||
|
load_and_advance_y_pred();
|
||||||
|
|
||||||
// Compute
|
auto s_gate_compute_64 = s_gate_ptr + compute_pipeline_offset_64;
|
||||||
__nv_bfloat162 res[2];
|
auto s_up_compute_64 = s_up_ptr + compute_pipeline_offset_64;
|
||||||
__nv_bfloat162* s_up_comp = reinterpret_cast<__nv_bfloat162*>(&up64);
|
|
||||||
__nv_bfloat162* s_gate_comp = reinterpret_cast<__nv_bfloat162*>(&gate64);
|
// STAGE_SIZE must also be constexpr!
|
||||||
|
compute_pipeline_offset_64 += STAGE_SIZE;
|
||||||
|
compute_pipeline_offset_64 %= STAGE_MOD;
|
||||||
|
|
||||||
|
// Each thread loads (gate/up) 2X 4X bfloat16 values into registers.
|
||||||
|
__int64_t gate64 = *s_gate_compute_64;
|
||||||
|
__nv_bfloat162* s_gate_compute_32 =
|
||||||
|
reinterpret_cast<__nv_bfloat162*>(&gate64);
|
||||||
|
|
||||||
|
__int64_t up64 = *s_up_compute_64;
|
||||||
|
__nv_bfloat162* s_up_compute_32 = reinterpret_cast<__nv_bfloat162*>(&up64);
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int32_t k = 0; k < 2; ++k) {
|
for (int i = 0; i < 2; i++) {
|
||||||
__nv_bfloat162 gate = silu2_v2(__bfloat1622float2(s_gate_comp[k]));
|
// For silu, we make sure that div is emitted.
|
||||||
res[k] = __hmul2(gate, s_up_comp[k]);
|
float2 gate = silu2(__bfloat1622float2(s_gate_compute_32[i]));
|
||||||
}
|
results_bf162[i] = __float22bfloat162_rn(gate);
|
||||||
|
}
|
||||||
auto _y_max2 = __hmax2(__habs2(res[0]), __habs2(res[1]));
|
|
||||||
|
|
||||||
_y_max2.x = __hmax(__hmax(_y_max2.x, _y_max2.y), EPS);
|
|
||||||
|
|
||||||
__nv_bfloat16 y_s = __hmul(warp_max(_y_max2.x), fp8_inv);
|
|
||||||
|
|
||||||
if constexpr (USE_UE8M0) {
|
|
||||||
y_s = hexp2(hceil(hlog2(y_s)));
|
|
||||||
}
|
|
||||||
|
|
||||||
__nv_bfloat16 inv_y = __hdiv(one_bf16, y_s);
|
|
||||||
|
|
||||||
auto y_s2 = make_bfloat162(inv_y, inv_y);
|
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int32_t k = 0; k < 2; ++k) {
|
for (int i = 0; i < 2; i++) {
|
||||||
res[k] = clip(__hmul2(res[k], y_s2), __bfloat162bfloat162(fp8_min),
|
results_bf162[i] = __hmul2(results_bf162[i], s_up_compute_32[i]);
|
||||||
__bfloat162bfloat162(fp8_max));
|
}
|
||||||
}
|
|
||||||
|
|
||||||
*y_q_ptr = __nv_fp8x4_e4m3(res[0], res[1]);
|
auto _y_max2 =
|
||||||
y_q_ptr += WARP_SIZE * stride_yq_h;
|
__hmax2(__habs2(results_bf162[0]), __habs2(results_bf162[1]));
|
||||||
|
|
||||||
if (!lane_id) {
|
__nv_bfloat16 y_max_bf16 = __hmax(EPS, __hmax(_y_max2.x, _y_max2.y));
|
||||||
*y_s_ptr = y_s;
|
|
||||||
y_s_ptr += stride_ys_g;
|
// An entire group is assigned to a single warp, so a simple warp reduce
|
||||||
}
|
// is used.
|
||||||
|
__nv_bfloat16 y_s = warp_max(y_max_bf16) / fp8_max;
|
||||||
|
|
||||||
|
if constexpr (USE_UE8M0) {
|
||||||
|
y_s = hexp2(hceil(hlog2(y_s)));
|
||||||
|
}
|
||||||
|
|
||||||
|
auto inv_y = __float2bfloat16_rn(1.f) / y_s;
|
||||||
|
|
||||||
|
auto y_s2 = make_bfloat162(inv_y, inv_y);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int32_t i = 0; i < 2; ++i) {
|
||||||
|
results_bf162[i] =
|
||||||
|
clip(__hmul2(results_bf162[i], y_s2), __bfloat162bfloat162(fp8_min),
|
||||||
|
__bfloat162bfloat162(fp8_max));
|
||||||
|
}
|
||||||
|
|
||||||
|
auto fp8x4 = __nv_fp8x4_e4m3(results_bf162[0], results_bf162[1]);
|
||||||
|
*reinterpret_cast<__nv_fp8x4_e4m3*>(y_q_ptr) = fp8x4;
|
||||||
|
y_q_ptr += stride_yq_t;
|
||||||
|
|
||||||
|
if (lane_id == 0) {
|
||||||
|
*y_s_ptr = y_s;
|
||||||
|
y_s_ptr += stride_ys_t;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
} // namespace vllm
|
} // namespace vllm
|
||||||
|
|
||||||
@ -568,14 +475,14 @@ void silu_and_mul_quant(torch::Tensor& out, // [..., d]
|
|||||||
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
|
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
|
||||||
}
|
}
|
||||||
|
|
||||||
void persistent_masked_m_silu_mul_quant(
|
void silu_mul_fp8_quant_deep_gemm_cuda(
|
||||||
const at::Tensor& input, // (E, T, 2*H)
|
const at::Tensor& input, // (E, T, 2*H)
|
||||||
const at::Tensor& tokens_per_expert, // (E)
|
const at::Tensor& counts, // (E)
|
||||||
at::Tensor& y_q, // (E, T, H) [OUT]
|
at::Tensor& y_q, // (E, T, H) [OUT]
|
||||||
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
|
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
|
||||||
bool use_ue8m0) {
|
int64_t group_size, bool use_ue8m0, int64_t num_parallel_tokens) {
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
|
// This kernel relies heavily on cp.async and fp8 support.
|
||||||
// This kernel currently only supports H % 128 == 0 and assumes a
|
// This kernel currently only supports H % 128 == 0 and assumes a
|
||||||
// fixed GROUP_SIZE of 128.
|
// fixed GROUP_SIZE of 128.
|
||||||
TORCH_CHECK(input.dtype() == torch::kBFloat16);
|
TORCH_CHECK(input.dtype() == torch::kBFloat16);
|
||||||
@ -584,6 +491,10 @@ void persistent_masked_m_silu_mul_quant(
|
|||||||
TORCH_CHECK(y_s.dtype() == torch::kFloat32);
|
TORCH_CHECK(y_s.dtype() == torch::kFloat32);
|
||||||
TORCH_CHECK(input.size(-1) % 256 == 0);
|
TORCH_CHECK(input.size(-1) % 256 == 0);
|
||||||
|
|
||||||
|
// Check that num_parallel_tokens is of power of 2 and between 1 and 64.
|
||||||
|
TORCH_CHECK(1 <= num_parallel_tokens && num_parallel_tokens <= 64);
|
||||||
|
TORCH_CHECK(!(num_parallel_tokens & (num_parallel_tokens - 1)));
|
||||||
|
|
||||||
using Idx_t = int64_t;
|
using Idx_t = int64_t;
|
||||||
|
|
||||||
Idx_t E = input.size(0);
|
Idx_t E = input.size(0);
|
||||||
@ -599,54 +510,81 @@ void persistent_masked_m_silu_mul_quant(
|
|||||||
Idx_t stride_ys_t = y_s.stride(1);
|
Idx_t stride_ys_t = y_s.stride(1);
|
||||||
Idx_t stride_ys_g = y_s.stride(2);
|
Idx_t stride_ys_g = y_s.stride(2);
|
||||||
|
|
||||||
Idx_t stride_counts_e = tokens_per_expert.stride(0);
|
Idx_t stride_counts_e = counts.stride(0);
|
||||||
|
|
||||||
static constexpr int GROUP_SIZE = 128;
|
static constexpr int GROUP_SIZE = 128;
|
||||||
|
|
||||||
|
#define KERNEL_FN \
|
||||||
|
if (use_ue8m0) { \
|
||||||
|
vllm::silu_mul_fp8_quant_deep_gemm_kernel<fp8_t, NUM_WARPS, Idx_t, \
|
||||||
|
NUM_PARALLEL_TOKENS, true> \
|
||||||
|
<<<grid, block, 0, stream>>>( \
|
||||||
|
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
|
||||||
|
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
|
||||||
|
reinterpret_cast<int32_t*>(counts.data_ptr<int>()), H, G, \
|
||||||
|
stride_i_e, stride_i_t, stride_i_h, stride_yq_e, stride_yq_t, \
|
||||||
|
stride_yq_h, stride_ys_e, stride_ys_t, stride_ys_g, \
|
||||||
|
stride_counts_e); \
|
||||||
|
} else { \
|
||||||
|
vllm::silu_mul_fp8_quant_deep_gemm_kernel<fp8_t, NUM_WARPS, Idx_t, \
|
||||||
|
NUM_PARALLEL_TOKENS, false> \
|
||||||
|
<<<grid, block, 0, stream>>>( \
|
||||||
|
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
|
||||||
|
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
|
||||||
|
reinterpret_cast<int32_t*>(counts.data_ptr<int>()), H, G, \
|
||||||
|
stride_i_e, stride_i_t, stride_i_h, stride_yq_e, stride_yq_t, \
|
||||||
|
stride_yq_h, stride_ys_e, stride_ys_t, stride_ys_g, \
|
||||||
|
stride_counts_e); \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define KERNEL_CALL_H \
|
||||||
|
if (H % (4 * GROUP_SIZE) == 0) { \
|
||||||
|
static constexpr int NUM_WARPS = 4; \
|
||||||
|
populate_launch_params(NUM_WARPS, NUM_PARALLEL_TOKENS); \
|
||||||
|
KERNEL_FN \
|
||||||
|
} else { \
|
||||||
|
static constexpr int NUM_WARPS = 1; \
|
||||||
|
populate_launch_params(NUM_WARPS, NUM_PARALLEL_TOKENS); \
|
||||||
|
KERNEL_FN \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define KERNEL_CALL_TOP_LEVEL \
|
||||||
|
if (num_parallel_tokens == 1) { \
|
||||||
|
static constexpr int NUM_PARALLEL_TOKENS = 1; \
|
||||||
|
KERNEL_CALL_H \
|
||||||
|
} else if (num_parallel_tokens == 2) { \
|
||||||
|
static constexpr int NUM_PARALLEL_TOKENS = 2; \
|
||||||
|
KERNEL_CALL_H \
|
||||||
|
} else if (num_parallel_tokens == 4) { \
|
||||||
|
static constexpr int NUM_PARALLEL_TOKENS = 4; \
|
||||||
|
KERNEL_CALL_H \
|
||||||
|
} else if (num_parallel_tokens == 8) { \
|
||||||
|
static constexpr int NUM_PARALLEL_TOKENS = 8; \
|
||||||
|
KERNEL_CALL_H \
|
||||||
|
} else if (num_parallel_tokens == 16) { \
|
||||||
|
static constexpr int NUM_PARALLEL_TOKENS = 16; \
|
||||||
|
KERNEL_CALL_H \
|
||||||
|
} else if (num_parallel_tokens == 32) { \
|
||||||
|
static constexpr int NUM_PARALLEL_TOKENS = 32; \
|
||||||
|
KERNEL_CALL_H \
|
||||||
|
} else if (num_parallel_tokens == 64) { \
|
||||||
|
static constexpr int NUM_PARALLEL_TOKENS = 64; \
|
||||||
|
KERNEL_CALL_H \
|
||||||
|
}
|
||||||
|
|
||||||
|
Idx_t G;
|
||||||
|
dim3 block, grid;
|
||||||
|
auto populate_launch_params = [&](int num_warps, int _num_parallel_tokens) {
|
||||||
|
G = H / Idx_t(group_size * num_warps);
|
||||||
|
grid = dim3(E * G, _num_parallel_tokens);
|
||||||
|
block = dim3(num_warps * WARP_SIZE);
|
||||||
|
};
|
||||||
|
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||||
#define KERNEL(BLOCK_COUNT, USE_UE8M0, THREAD_COUNT, STAGES) \
|
VLLM_DISPATCH_FP8_TYPES(y_q.scalar_type(),
|
||||||
static constexpr int NUM_WARPS = THREAD_COUNT / WARP_SIZE; \
|
"silu_mul_fp8_quant_deep_gemm_kernel",
|
||||||
int sms = SILU_V2_BLOCK_COUNT; \
|
[&] { KERNEL_CALL_TOP_LEVEL });
|
||||||
static constexpr int max_shared_mem_bytes = \
|
|
||||||
GROUP_SIZE * 2 * STAGES * NUM_WARPS * 2; \
|
|
||||||
dim3 grid(sms), block(THREAD_COUNT); \
|
|
||||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
|
||||||
VLLM_DISPATCH_FP8_TYPES( \
|
|
||||||
y_q.scalar_type(), "silu_mul_fp8_quant_deep_gemm_kernel", [&] { \
|
|
||||||
vllm::silu_mul_fp8_quant_deep_gemm_kernel< \
|
|
||||||
BLOCK_COUNT, max_shared_mem_bytes, fp8_t, THREAD_COUNT, Idx_t, \
|
|
||||||
USE_UE8M0, GROUP_SIZE, STAGES> \
|
|
||||||
<<<grid, block, max_shared_mem_bytes + (E + 1) * 16, stream>>>( \
|
|
||||||
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
|
|
||||||
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
|
|
||||||
reinterpret_cast<int32_t*>(tokens_per_expert.data_ptr()), E, \
|
|
||||||
T, H, stride_i_e, stride_i_t, stride_i_h, stride_yq_e, \
|
|
||||||
stride_yq_t, stride_yq_h, stride_ys_e, stride_ys_t, \
|
|
||||||
stride_ys_g, stride_counts_e); \
|
|
||||||
});
|
|
||||||
|
|
||||||
static constexpr int SILU_V2_BLOCK_COUNT = 132 * 32;
|
|
||||||
|
|
||||||
if (!use_ue8m0) {
|
|
||||||
if (H >= 4096) {
|
|
||||||
static constexpr int NUM_STAGES = 4;
|
|
||||||
static constexpr int THREAD_COUNT = 256;
|
|
||||||
KERNEL(SILU_V2_BLOCK_COUNT, false, THREAD_COUNT, NUM_STAGES);
|
|
||||||
} else {
|
|
||||||
static constexpr int THREAD_COUNT = 32;
|
|
||||||
KERNEL(SILU_V2_BLOCK_COUNT, false, THREAD_COUNT, 2);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (H >= 4096) {
|
|
||||||
static constexpr int NUM_STAGES = 4;
|
|
||||||
static constexpr int THREAD_COUNT = 256;
|
|
||||||
KERNEL(SILU_V2_BLOCK_COUNT, true, THREAD_COUNT, NUM_STAGES);
|
|
||||||
} else {
|
|
||||||
static constexpr int THREAD_COUNT = 32;
|
|
||||||
KERNEL(SILU_V2_BLOCK_COUNT, true, THREAD_COUNT, 2);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
@ -1,11 +1,15 @@
|
|||||||
#include <ATen/cuda/CUDAContext.h>
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
#include <torch/all.h>
|
#include <torch/all.h>
|
||||||
|
|
||||||
|
#ifndef USE_ROCM
|
||||||
|
#include "../per_token_group_quant_8bit.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
|
||||||
#include "dispatch_utils.h"
|
#include "../../cub_helpers.h"
|
||||||
#include "quantization/vectorization_utils.cuh"
|
#include "../../dispatch_utils.h"
|
||||||
#include "cub_helpers.h"
|
#include "../vectorization_utils.cuh"
|
||||||
|
|
||||||
static inline __device__ int8_t float_to_int8_rn(float x) {
|
static inline __device__ int8_t float_to_int8_rn(float x) {
|
||||||
#ifdef USE_ROCM
|
#ifdef USE_ROCM
|
||||||
@ -21,6 +25,7 @@ static inline __device__ int8_t float_to_int8_rn(float x) {
|
|||||||
float dst = std::nearbyint(x);
|
float dst = std::nearbyint(x);
|
||||||
|
|
||||||
// saturate
|
// saturate
|
||||||
|
|
||||||
// See https://github.com/pytorch/pytorch/issues/127666
|
// See https://github.com/pytorch/pytorch/issues/127666
|
||||||
// See https://github.com/llvm/llvm-project/issues/95183
|
// See https://github.com/llvm/llvm-project/issues/95183
|
||||||
// hip-clang std::clamp __glibcxx_assert_fail host function when building on
|
// hip-clang std::clamp __glibcxx_assert_fail host function when building on
|
||||||
@ -79,6 +84,7 @@ static inline __device__ int8_t int32_to_int8(int32_t x) {
|
|||||||
static_cast<int32_t>(std::numeric_limits<int8_t>::max());
|
static_cast<int32_t>(std::numeric_limits<int8_t>::max());
|
||||||
|
|
||||||
// saturate
|
// saturate
|
||||||
|
|
||||||
// See https://github.com/pytorch/pytorch/issues/127666
|
// See https://github.com/pytorch/pytorch/issues/127666
|
||||||
// See https://github.com/llvm/llvm-project/issues/95183
|
// See https://github.com/llvm/llvm-project/issues/95183
|
||||||
// hip-clang std::clamp __glibcxx_assert_fail host function when building on
|
// hip-clang std::clamp __glibcxx_assert_fail host function when building on
|
||||||
@ -170,6 +176,7 @@ __global__ void dynamic_scaled_int8_quant_kernel(
|
|||||||
|
|
||||||
float inv_s = (absmax == 0.f) ? 0.f : 127.f / absmax;
|
float inv_s = (absmax == 0.f) ? 0.f : 127.f / absmax;
|
||||||
|
|
||||||
|
// 2. quantize
|
||||||
vectorize_with_alignment<16>(
|
vectorize_with_alignment<16>(
|
||||||
row_in, row_out, hidden_size, tid, stride,
|
row_in, row_out, hidden_size, tid, stride,
|
||||||
[=] __device__(int8_t& dst, const scalar_t& src) {
|
[=] __device__(int8_t& dst, const scalar_t& src) {
|
||||||
@ -187,6 +194,7 @@ struct MinMax {
|
|||||||
|
|
||||||
__host__ __device__ explicit MinMax(float v) : min(v), max(v) {}
|
__host__ __device__ explicit MinMax(float v) : min(v), max(v) {}
|
||||||
|
|
||||||
|
// add a value to the MinMax
|
||||||
__host__ __device__ MinMax& operator+=(float v) {
|
__host__ __device__ MinMax& operator+=(float v) {
|
||||||
min = fminf(min, v);
|
min = fminf(min, v);
|
||||||
max = fmaxf(max, v);
|
max = fmaxf(max, v);
|
||||||
@ -220,6 +228,7 @@ __global__ void dynamic_scaled_int8_azp_quant_kernel(
|
|||||||
const scalar_t* row_in = input + token_idx * hidden_size;
|
const scalar_t* row_in = input + token_idx * hidden_size;
|
||||||
int8_t* row_out = output + token_idx * hidden_size;
|
int8_t* row_out = output + token_idx * hidden_size;
|
||||||
|
|
||||||
|
// 1. calculate min & max
|
||||||
MinMax thread_mm;
|
MinMax thread_mm;
|
||||||
vectorize_read_with_alignment<16>(row_in, hidden_size, tid, stride,
|
vectorize_read_with_alignment<16>(row_in, hidden_size, tid, stride,
|
||||||
[&] __device__(const scalar_t& src) {
|
[&] __device__(const scalar_t& src) {
|
||||||
@ -252,6 +261,7 @@ __global__ void dynamic_scaled_int8_azp_quant_kernel(
|
|||||||
const float inv_s = 1.f / scale_sh;
|
const float inv_s = 1.f / scale_sh;
|
||||||
const azp_t azp = azp_sh;
|
const azp_t azp = azp_sh;
|
||||||
|
|
||||||
|
// 2. quantize
|
||||||
vectorize_with_alignment<16>(
|
vectorize_with_alignment<16>(
|
||||||
row_in, row_out, hidden_size, tid, stride,
|
row_in, row_out, hidden_size, tid, stride,
|
||||||
[=] __device__(int8_t& dst, const scalar_t& src) {
|
[=] __device__(int8_t& dst, const scalar_t& src) {
|
||||||
@ -322,4 +332,14 @@ void dynamic_scaled_int8_quant(
|
|||||||
hidden_size);
|
hidden_size);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifndef USE_ROCM
|
||||||
|
void per_token_group_quant_int8(const torch::Tensor& input,
|
||||||
|
torch::Tensor& output_q,
|
||||||
|
torch::Tensor& output_s, int64_t group_size,
|
||||||
|
double eps, double int8_min, double int8_max) {
|
||||||
|
per_token_group_quant_8bit(input, output_q, output_s, group_size, eps,
|
||||||
|
int8_min, int8_max);
|
||||||
|
}
|
||||||
|
#endif
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user