Compare commits

...

70 Commits

Author SHA1 Message Date
63375f0cdb [V1][Spec Decode] Update N-gram Proposer Interface (#15750)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-04 16:32:54 -07:00
70ad3f9e98 [Bugfix][TPU] Fix V1 TPU worker for sliding window (#16059)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-04-04 23:31:19 +00:00
d6fc629f4d [Kernel][Minor] Re-fuse triton moe weight application (#16071)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-04 23:27:34 +00:00
af51d80fa1 Revert "[V1] Scatter and gather placeholders in the model runner" (#16075) 2025-04-04 14:50:57 -07:00
f5722a5052 [V1] Scatter and gather placeholders in the model runner (#15712)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-04-04 21:26:44 +00:00
651cf0fec1 [V1] DP scale-out (1/N): Use zmq ROUTER/DEALER sockets for input queue (#15906)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-04-04 12:56:43 -07:00
4dc52e1c53 [CI] Reorganize .buildkite directory (#16001)
Signed-off-by: kevin <kevin@anyscale.com>
2025-04-04 12:16:20 -07:00
4708f13a9c [Bugfix] Fix default behavior/fallback for pp in v1 (#16057)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-04 17:58:08 +00:00
a6d042df0a [ROCm][Bugfix] Bring back fallback to eager mode removed in #14917, but for ROCm only (#15413)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-04 09:40:37 -07:00
40a36ccfeb [ROCm][Bugfix] Use platform specific FP8 dtype (#15717)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-04-04 09:40:20 -07:00
ef608c37a7 [Distributed] [ROCM] Fix custom allreduce enable checks (#16010)
Signed-off-by: ilmarkov <imarkov@redhat.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
2025-04-04 09:39:08 -07:00
2386803f2a [CPU] Change default block_size for CPU backend (#16002)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-04-04 09:39:05 -07:00
95862f7b4d [Benchmark][Doc] Update throughput benchmark and README (#15998)
Signed-off-by: StevenShi-23 <shi.ziji.sm@gmail.com>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-04-04 09:39:02 -07:00
230b131b54 [Bugfix][kernels] Fix half2float conversion in gguf kernels (#15995)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-04-04 09:38:58 -07:00
0812d8dd41 [Hardware][Gaudi][BugFix] fix arguments of hpu fused moe (#15945)
Signed-off-by: zhenwei <zhenweiliu@habana.ai>
2025-04-04 09:38:55 -07:00
bf7e3c51ae [Model] use AutoWeightsLoader for baichuan, gpt-neox, mpt (#15939)
Signed-off-by: Jonghyun Choe <andy.choe729@gmail.com>
2025-04-04 09:38:52 -07:00
a35a8a8392 [V1][Spec Decode] Avoid logging useless nan metrics (#16023)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-04-04 08:52:41 -07:00
4ef0bb1fcf doc: add info for macos clang errors (#16049)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-04 14:58:16 +00:00
fadc59c0e6 [TPU][V1] Remove ragged attention kernel parameter hard coding (#16041)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-04 07:48:50 -04:00
86cbd2eee9 [Misc] improve gguf check (#15974)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-04 01:33:36 +00:00
092475f738 [ROCm] Tweak the benchmark script to run on ROCm (#14252) 2025-04-03 17:12:48 -07:00
dcc56d62da [Bugfix] Fix function names in test_block_fp8.py (#16033)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-03 23:01:34 +00:00
f15e70d906 [TPU] Switch Test to Non-Sliding Window (#15981)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-04-03 14:28:45 -07:00
b6be6f8d1e [TPU] Support sliding window and logit soft capping in the paged attention kernel for TPU. (#15732)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-04-03 14:23:28 -07:00
03a70eacaf Re-enable the AMD Testing for the passing tests. (#15586)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-04-03 11:05:17 -07:00
45b1ff7a25 [Misc][Performance] Advance tpu.txt to the most recent nightly torch … (#16024) 2025-04-03 17:32:54 +00:00
15ba07ef25 [Minor] Fused experts refactor (#15914)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-03 10:19:38 -07:00
d2b58ca203 [Neuron][kernel] Fuse kv cache into a single tensor (#15911)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
2025-04-03 09:51:32 -07:00
82e7e19a6e [SupportsQuant] Chameleon, Chatglm, Commandr (#15952)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-04-03 08:25:22 -07:00
421c462948 [SupportsQuant] Bert, Blip, Blip2, Bloom (#15573)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-04-03 08:23:19 -07:00
84884cd9ac fix: tiny fix make format.sh excutable (#16015)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-03 15:18:05 +00:00
a43aa183dc [doc] update contribution link (#15922)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-03 10:47:31 +00:00
463bbb1835 [Bugfix][V1] Fix bug from putting llm_engine.model_executor in a background process (#15367)
Signed-off-by: wwl2755 <wangwenlong2755@gmail.com>
2025-04-03 07:32:10 +00:00
5e125e74d1 [misc] improve error message for "Failed to infer device type" (#15994)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-03 14:45:03 +08:00
06f21ce7a5 [Benchmark] Add AIMO Dataset to Benchmark (#15955)
Signed-off-by: Ziji Shi <shi.ziji.sm@gmail.com>
Signed-off-by: StevenShi-23 <shi.ziji.sm@gmail.com>
2025-04-03 06:09:18 +00:00
57a810db9c [ROCM][V0] PA kennel selection when no sliding window provided (#15982)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
2025-04-03 05:28:44 +00:00
8b664706aa [bugfix] add seed in torchrun_example.py (#15980)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-03 12:25:01 +08:00
37bfee92bf fix: better error message for get_config close #13889 (#15943)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-04-03 03:53:19 +00:00
e73ff24e31 [ROCM][KERNEL] Paged attention for V1 (#15720)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: root <root@banff-cyxtera-s65-4.amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: root <root@banff-cyxtera-s65-4.amd.com>
2025-04-02 19:48:00 -07:00
bd7599d34a [V1][TPU] Do not compile sampling more than needed (#15883)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-04-03 01:36:01 +00:00
01b6113659 [TPU] optimize the all-reduce performance (#15903)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-04-03 00:25:14 +00:00
1b84eff03a [V1][TPU] TPU-optimized top-p implementation (avoids scattering). (#15736)
Signed-off-by: Hyesoo Yang <hyeygit@gmail.com>
Co-authored-by: root <root@t1v-n-822696b7-w-0.us-central2-b.c.tpu-prod-env-large-adhoc.internal>
2025-04-02 17:18:08 -07:00
55acf86bf8 Fix huggingface-cli[hf-xet] -> huggingface-cli[hf_xet] (#15969)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-02 23:37:30 +00:00
f021b97993 [V1] Support Mistral3 in V1 (#15950)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-04-02 15:36:24 -07:00
1cab43c2d2 [misc] instruct pytorch to use nvml-based cuda check (#15951)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-04-03 01:02:58 +08:00
8bd651b318 Restricted cmake to be less than version 4 as 4.x breaks the build of… (#15859)
Signed-off-by: Nishidha Panpaliya <nishidha.panpaliya@partner.ibm.com>
2025-04-02 16:19:39 +00:00
58e234a754 [Misc] V1 LoRA support CPU offload (#15843)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-02 23:04:43 +08:00
e86c414d6a [Model] use AutoWeightsLoader in model load_weights (#15770)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-04-02 07:47:31 -07:00
550b2801ad [CPU][Bugfix] Using custom allreduce for CPU backend (#15934)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-04-02 07:46:47 -07:00
cefb9e5a28 [Frontend] Implement Tool Calling with tool_choice='required' (#13483)
Signed-off-by: Liangfu Chen <liangfc@amazon.com>
Signed-off-by: Matt, Matthias <matthias.matt@tuwien.ac.at>
Co-authored-by: Liangfu Chen <liangfc@amazon.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2025-04-02 07:45:45 -07:00
98d7367b61 [Metrics] Hide deprecated metrics (#15458)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-04-02 07:37:19 -07:00
594a8b9030 [Bugfix] Fix the issue where the model name is empty string, causing no response with the model name. (#15938)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-02 06:33:52 -07:00
44f990515b [CI] Remove duplicate entrypoints-test (#15940)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-04-02 02:44:01 -07:00
252937806c [Bugfix][Benchmarks] Ensure async_request_deepspeed_mii uses the OpenAI choices key (#15926)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-04-02 02:19:35 -07:00
51826d51fa Add minimum version for huggingface_hub to enable Xet downloads (#15873)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-02 02:03:36 -07:00
14e53ed11f [V1] Fix json_object support with xgrammar (#15488)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-04-02 02:00:08 -07:00
ddb94c2605 [core] Add tags parameter to wake_up() (#15500)
Signed-off-by: Eric <erictang000@gmail.com>
2025-04-02 01:59:27 -07:00
90969fb39a [Kernel] Add more dtype support for GGUF dequantization (#15879)
Signed-off-by: lukas.bluebaum <lukas.bluebaum@aleph-alpha.com>
2025-04-02 01:58:48 -07:00
101f1481f9 [Build/CI] Update lm-eval to 0.4.8 (#15912)
Signed-off-by: Chris Thi <chris.c.thi@gmail.com>
2025-04-02 01:47:57 -07:00
2edc87b161 [Bugfix] Fix cache block size calculation for CPU MLA (#15848)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-04-02 01:45:02 -07:00
4203926f10 [CI/Build] Further clean up LoRA tests (#15920)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-04-02 01:39:09 -07:00
cdb57015a7 [Misc] Replace print with logger (#15923)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-04-02 01:37:38 -07:00
aa557e6422 [Benchmark]Fix error message (#15866)
Signed-off-by: wangli <wangli858794774@gmail.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2025-04-02 01:32:24 -07:00
0e00d40e4f [V1][Bugfix] Fix typo in MoE TPU checking (#15927)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-04-01 23:46:42 -07:00
c920e01242 [Doc] Update rocm.inc.md (#15917)
Signed-off-by: chun37 <chun.jb.37@gmail.com>
2025-04-01 23:38:26 -07:00
274d8e8818 [V1][Minor] Enhance SpecDecoding Metrics Log in V1 (#15902)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-01 23:38:02 -07:00
2039c6305b [Bugfix] Fix imports for MoE on CPU (#15841)
Signed-off-by: Thien Tran <gau.nernst@yahoo.com.sg>
2025-04-02 03:33:55 +00:00
6efb195a6e [V1] Fix: make sure k_index is int64 for apply_top_k_only (#15907)
Signed-off-by: Brayden Zhong <b8zhong@uwaterloo.ca>
2025-04-01 19:06:44 -07:00
24b7fb455a [Spec Decode] Fix input triton kernel for eagle (#15909) 2025-04-01 18:15:14 -07:00
58f5a59769 [Docs] Add Intel as Sponsor (#15913)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-04-01 17:16:55 -07:00
155 changed files with 4653 additions and 1836 deletions

View File

@ -10,15 +10,24 @@ set -x
set -o pipefail
check_gpus() {
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
if command -v nvidia-smi; then
# check the number of GPUs and GPU type.
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
elif command -v amd-smi; then
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
fi
if [[ $gpu_count -gt 0 ]]; then
echo "GPU found."
else
echo "Need at least 1 GPU to run benchmarking."
exit 1
fi
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
if command -v nvidia-smi; then
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
elif command -v amd-smi; then
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
fi
echo "GPU type is $gpu_type"
}
@ -90,9 +99,15 @@ kill_gpu_processes() {
# wait until GPU memory usage smaller than 1GB
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
done
if command -v nvidia-smi; then
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
done
elif command -v amd-smi; then
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
sleep 1
done
fi
# remove vllm config file
rm -rf ~/.config/vllm

View File

@ -6,7 +6,7 @@ steps:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/upload-wheels.sh"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
@ -17,7 +17,7 @@ steps:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/upload-wheels.sh"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
@ -34,7 +34,7 @@ steps:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/upload-wheels.sh"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"

View File

@ -105,19 +105,33 @@ fi
if [[ $commands == *" entrypoints/openai "* ]]; then
commands=${commands//" entrypoints/openai "/" entrypoints/openai \
--ignore=entrypoints/openai/test_audio.py \
--ignore=entrypoints/openai/test_chat.py \
--ignore=entrypoints/openai/test_shutdown.py \
--ignore=entrypoints/openai/test_completion.py \
--ignore=entrypoints/openai/test_sleep.py \
--ignore=entrypoints/openai/test_models.py \
--ignore=entrypoints/openai/test_lora_adapters.py \
--ignore=entrypoints/openai/test_return_tokens_as_ids.py \
--ignore=entrypoints/openai/test_root_path.py \
--ignore=entrypoints/openai/test_tokenization.py \
--ignore=entrypoints/openai/test_prompt_validation.py "}
fi
#ignore certain Entrypoints/llm tests
if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
if [[ $commands == *" entrypoints/llm "* ]]; then
commands=${commands//" entrypoints/llm "/" entrypoints/llm \
--ignore=entrypoints/llm/test_chat.py \
--ignore=entrypoints/llm/test_accuracy.py \
--ignore=entrypoints/llm/test_init.py \
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
--ignore=entrypoints/llm/test_prompt_validation.py "}
fi
#Obsolete currently
##ignore certain Entrypoints/llm tests
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
#fi
# --ignore=entrypoints/openai/test_encoder_decoder.py \
# --ignore=entrypoints/openai/test_embedding.py \
# --ignore=entrypoints/openai/test_oot_registration.py

View File

@ -1,6 +1,6 @@
#!/bin/bash
set -e
set -xue
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
@ -36,7 +36,11 @@ docker run --privileged --net host --shm-size=16G -it \
&& echo TEST_6 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
&& echo TEST_7 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py" \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py \
&& echo TEST_8 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
&& echo TEST_9 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py" \
# TODO: This test fails because it uses RANDOM_SEED sampling

View File

@ -3,7 +3,7 @@
set -euox pipefail
if [[ $# -lt 4 ]]; then
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
echo "Usage: .buildkite/scripts/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
exit 1
fi

View File

@ -104,7 +104,7 @@ steps:
- label: Entrypoints Test # 40min
working_dir: "/vllm-workspace/tests"
fast_check: true
mirror_hardwares: [amd]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/entrypoints/llm
@ -155,6 +155,7 @@ steps:
- popd
- label: Metrics, Tracing Test # 10min
mirror_hardwares: [amd]
num_gpus: 2
source_file_dependencies:
- vllm/
@ -173,7 +174,7 @@ steps:
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amd]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -204,7 +205,6 @@ steps:
commands:
# split the test to avoid interference
- pytest -v -s v1/core
- pytest -v -s v1/entrypoints
- pytest -v -s v1/engine
- pytest -v -s v1/entrypoints
- pytest -v -s v1/sample
@ -285,11 +285,11 @@ steps:
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
mirror_hardwares: [amd]
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py --ignore=lora/test_transfomers_model.py
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
parallelism: 4
- label: PyTorch Fullgraph Smoke Test # 9min
@ -311,7 +311,7 @@ steps:
- pytest -v -s compile/test_full_graph.py
- label: Kernels Test %N # 1h each
mirror_hardwares: [amd]
# mirror_hardwares: [amd]
source_file_dependencies:
- csrc/
- vllm/attention
@ -321,7 +321,7 @@ steps:
parallelism: 4
- label: Tensorizer Test # 11min
mirror_hardwares: [amd]
# mirror_hardwares: [amd]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
@ -337,7 +337,7 @@ steps:
source_file_dependencies:
- benchmarks/
commands:
- bash run-benchmarks.sh
- bash scripts/run-benchmarks.sh
- label: Quantization Test # 33min
source_file_dependencies:
@ -372,7 +372,7 @@ steps:
- label: OpenAI-Compatible Tool Use # 20 min
fast_check: false
mirror_hardwares: [ amd ]
#mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
@ -464,6 +464,7 @@ steps:
# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
mirror_hardwares: [amd]
optional: true
commands:
- echo 'Testing custom models...'
@ -475,6 +476,7 @@ steps:
##### multi gpus test #####
- label: Distributed Comm Ops Test # 7min
mirror_hardwares: [amd]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
source_file_dependencies:
@ -602,8 +604,6 @@ steps:
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_minicpmv_tp.py
- pytest -v -s -x lora/test_transfomers_model.py
- label: Weight Loading Multiple GPU Test # 33min

View File

@ -101,7 +101,7 @@ Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/stable/contributing/overview.html) for how to get involved.
## Sponsors
@ -124,6 +124,7 @@ Compute Resources:
- Databricks
- DeepInfra
- Google Cloud
- Intel
- Lambda Lab
- Nebius
- Novita AI

View File

@ -51,6 +51,12 @@ become available.
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>likaixin/InstructCoder</code></td>
</tr>
<tr>
<td><strong>HuggingFace-AIMO</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
</tr>
<tr>
<td><strong>HuggingFace-Other</strong></td>
@ -187,6 +193,17 @@ python3 vllm/benchmarks/benchmark_serving.py \
--num-prompts 10
```
**`AI-MO/aimo-validation-aime`**
``` bash
python3 vllm/benchmarks/benchmark_serving.py \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--num-prompts 10 \
--seed 42
```
---
## Example - Offline Throughput Benchmark
@ -278,6 +295,18 @@ python3 vllm/benchmarks/benchmark_throughput.py \
--num-prompts 10
```
**`AI-MO/aimo-validation-aime`**
```bash
python3 benchmarks/benchmark_throughput.py \
--model Qwen/QwQ-32B \
--backend vllm \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
--hf-split train \
--num-prompts 10
```
### Benchmark with LoRA Adapters
``` bash

View File

@ -219,7 +219,15 @@ async def async_request_deepspeed_mii(
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
output.generated_text = parsed_resp["text"][0]
if "choices" in parsed_resp:
output.generated_text = parsed_resp["choices"][0][
"text"]
elif "text" in parsed_resp:
output.generated_text = parsed_resp["text"][0]
else:
output.error = ("Unexpected response format: "
"neither 'choices' nor 'text' found")
output.success = False
output.success = True
else:
output.error = response.reason or ""

View File

@ -582,15 +582,6 @@ class HuggingFaceDataset(BenchmarkDataset):
) -> None:
super().__init__(dataset_path=dataset_path, **kwargs)
# Validate dataset path
if self.SUPPORTED_DATASET_PATHS and \
self.dataset_path not in self.SUPPORTED_DATASET_PATHS:
raise ValueError(
f"{self.__class__.__name__} "
f"only supports: {', '.join(self.SUPPORTED_DATASET_PATHS)}. "
"Please consider contributing if you would "
"like to add support for additional dataset formats.")
self.dataset_split = dataset_split
self.dataset_subset = dataset_subset
self.load_data()
@ -761,3 +752,52 @@ class InstructCoderDataset(HuggingFaceDataset):
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# AIMO Dataset Implementation
# -----------------------------------------------------------------------------
class AIMODataset(HuggingFaceDataset):
"""
Dataset class for processing a AIMO dataset with reasoning questions.
"""
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT"
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
**kwargs) -> list:
sampled_requests = []
dynamic_output = output_len is None
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt, completion = item['problem'], item["solution"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(prompt_len,
completion_len,
max_prompt_len=2048,
max_total_len=32000):
continue
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=None,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests

View File

@ -49,7 +49,8 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from benchmark_dataset import (BurstGPTDataset, ConversationDataset,
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
ConversationDataset, HuggingFaceDataset,
InstructCoderDataset, RandomDataset,
SampleRequest, ShareGPTDataset, SonnetDataset,
VisionArenaDataset)
@ -595,14 +596,28 @@ def main(args: argparse.Namespace):
args.hf_split = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ConversationDataset
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_class = AIMODataset
args.hf_split = "train"
else:
supported_datasets = set([
dataset_name for cls in HuggingFaceDataset.__subclasses__()
for dataset_name in cls.SUPPORTED_DATASET_PATHS
])
raise ValueError(
f"Unsupported dataset path: {args.dataset_path}. "
"Huggingface dataset only supports dataset_path"
f" from one of following: {supported_datasets}. "
"Please consider contributing if you would "
"like to add support for additional dataset formats.")
input_requests = dataset_class(
dataset_path=args.dataset_path,
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
random_seed=args.seed,
).sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
random_seed=args.seed,
output_len=args.hf_output_len,
)

View File

@ -11,10 +11,10 @@ from typing import Any, Optional, Union
import torch
import uvloop
from benchmark_dataset import (BurstGPTDataset, ConversationDataset,
InstructCoderDataset, RandomDataset,
SampleRequest, ShareGPTDataset, SonnetDataset,
VisionArenaDataset)
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
ConversationDataset, InstructCoderDataset,
RandomDataset, SampleRequest, ShareGPTDataset,
SonnetDataset, VisionArenaDataset)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
@ -332,7 +332,10 @@ def get_requests(args, tokenizer):
common_kwargs['dataset_subset'] = args.hf_subset
common_kwargs['dataset_split'] = args.hf_split
sample_kwargs["enable_multimodal_chat"] = True
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_cls = AIMODataset
common_kwargs['dataset_subset'] = None
common_kwargs['dataset_split'] = "train"
else:
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
# Remove None values
@ -467,12 +470,13 @@ def validate_args(args):
since --dataset-name is not 'hf'.",
stacklevel=2)
elif args.dataset_name == "hf":
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
assert args.backend == "vllm-chat", "VisionArenaDataset needs to use vllm-chat as the backend." #noqa: E501
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
assert args.backend == "vllm", "InstructCoder dataset needs to use vllm as the backend." #noqa: E501
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
assert args.backend == "vllm-chat", "ConversationDataset needs to use vllm-chat as the backend." #noqa: E501
if args.dataset_path in (
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
| ConversationDataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm-chat", f"{args.dataset_path} needs to use vllm-chat as the backend." #noqa: E501
elif args.dataset_path in (InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS):
assert args.backend == "vllm", f"{args.dataset_path} needs to use vllm as the backend." #noqa: E501
else:
raise ValueError(
f"{args.dataset_path} is not supported by hf dataset.")

View File

@ -197,6 +197,7 @@ set(VLLM_EXT_SRC
if (AVX512_FOUND AND NOT AVX512_DISABLED)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
endif()

View File

@ -78,9 +78,14 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
__m256i reg;
// normal load
explicit FP16Vec16(const void* ptr)
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
// non-temproal load
explicit FP16Vec16(bool, void* ptr)
: reg(_mm256_stream_load_si256((__m256i*)ptr)) {}
explicit FP16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
@ -110,9 +115,14 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
__m256i reg;
// normal load
explicit BF16Vec16(const void* ptr)
: reg((__m256i)_mm256_loadu_si256((__m256i*)ptr)) {}
// non-temproal load
explicit BF16Vec16(bool, void* ptr)
: reg(_mm256_stream_load_si256((__m256i*)ptr)) {}
explicit BF16Vec16(const FP32Vec16&);
void save(void* ptr) const { *reinterpret_cast<__m256i*>(ptr) = reg; }
@ -313,8 +323,13 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
explicit FP32Vec16() : reg(_mm512_set1_ps(0.0)) {}
// normal load
explicit FP32Vec16(const float* ptr) : reg(_mm512_loadu_ps(ptr)) {}
// non-temproal load
explicit FP32Vec16(bool, void* ptr)
: reg((__m512)_mm512_stream_load_si512(ptr)) {}
explicit FP32Vec16(__m512 data) : reg(data) {}
explicit FP32Vec16(const FP32Vec4& data)
@ -547,6 +562,33 @@ struct INT8Vec16 : public Vec<INT8Vec16> {
_mm_mask_storeu_epi8(ptr, mask, reg);
}
};
struct INT8Vec64 : public Vec<INT8Vec64> {
constexpr static int VEC_ELEM_NUM = 64;
union AliasReg {
__m512i reg;
int8_t values[VEC_ELEM_NUM];
};
__m512i reg;
// normal load
explicit INT8Vec64(void* ptr) : reg(_mm512_loadu_epi8(ptr)) {}
// non-temproal load
explicit INT8Vec64(bool, void* ptr) : reg(_mm512_stream_load_si512(ptr)) {}
void save(void* ptr) const { _mm512_storeu_epi8(ptr, reg); }
void save(int8_t* ptr, const int elem_num) const {
constexpr uint64_t M = 0xFFFFFFFFFFFFFFFF;
__mmask64 mask = _cvtu64_mask64(M >> (64 - elem_num));
_mm512_mask_storeu_epi8(ptr, mask, reg);
}
// non-temproal save
void nt_save(int8_t* ptr) { _mm512_stream_si512((__m512i*)ptr, reg); }
};
#endif
template <typename T>
@ -657,6 +699,22 @@ inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
inline void prefetch(const void* addr) { _mm_prefetch(addr, _MM_HINT_T1); }
#ifdef __AVX512F__
inline void non_temporal_save(FP16Vec16& vec, void* ptr) {
_mm256_stream_si256((__m256i*)ptr, vec.reg);
}
inline void non_temporal_save(BF16Vec32& vec, void* ptr) {
_mm512_stream_si512((__m512i*)ptr, vec.reg);
}
inline void non_temporal_save(BF16Vec16& vec, void* ptr) {
_mm256_stream_si256((__m256i*)ptr, vec.reg);
}
inline void non_temporal_save(FP32Vec16& vec, void* ptr) {
_mm512_stream_ps((float*)ptr, vec.reg);
}
#endif
inline void mem_barrier() { _mm_mfence(); }
}; // namespace vec_op
#endif

781
csrc/cpu/shm.cpp Normal file
View File

@ -0,0 +1,781 @@
#include "cpu/cpu_types.hpp"
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
namespace {
#define MAX_SHM_RANK_NUM 8
#define MAX_THREAD_NUM 12
#define PER_THREAD_SHM_BUFFER_BYTES (4 * 1024 * 1024)
#define MIN_THREAD_PROCESS_SIZE (8 * 1024)
#define MAX_P2P_SEND_TENSOR_NUM 8
template <typename scalar_t>
struct KernelVecType {
using scalar_vec_t = void;
};
template <>
struct KernelVecType<float> {
using scalar_vec_t = vec_op::FP32Vec16;
};
template <>
struct KernelVecType<c10::BFloat16> {
using scalar_vec_t = vec_op::BF16Vec16;
};
template <>
struct KernelVecType<c10::Half> {
using scalar_vec_t = vec_op::FP16Vec16;
};
enum class ThreadSHMStat : char { THREAD_READY = 0, SHM_DATA_READY, DONE };
struct ThreadSHMContext {
volatile ThreadSHMStat thread_stats[MAX_SHM_RANK_NUM];
int thread_id;
int thread_num;
int rank;
int group_size;
size_t _spinning_count;
int swizzled_ranks[MAX_SHM_RANK_NUM];
void* thread_shm_ptrs[MAX_SHM_RANK_NUM];
ThreadSHMContext* shm_contexts[MAX_SHM_RANK_NUM];
ThreadSHMContext(const int thread_id, const int thread_num, const int rank,
const int group_size, void* thread_shm_ptr)
: thread_id(thread_id),
thread_num(thread_num),
rank(rank),
group_size(group_size),
_spinning_count(0) {
static_assert(sizeof(ThreadSHMContext) % 64 == 0);
TORCH_CHECK(group_size <= MAX_SHM_RANK_NUM);
TORCH_CHECK((size_t)this % 64 == 0);
TORCH_CHECK((size_t)thread_shm_ptr % 64 == 0);
for (int i = 0; i < MAX_SHM_RANK_NUM; ++i) {
shm_contexts[i] = nullptr;
thread_shm_ptrs[i] = nullptr;
swizzled_ranks[i] = (i + rank) % group_size;
thread_stats[i] = ThreadSHMStat::DONE;
}
set_context(rank, this, thread_shm_ptr);
}
void set_context(int rank, ThreadSHMContext* ptr, void* thread_shm_ptr) {
TORCH_CHECK(rank < MAX_SHM_RANK_NUM);
TORCH_CHECK(ptr);
TORCH_CHECK(thread_shm_ptr);
TORCH_CHECK_EQ(ptr->thread_num, thread_num);
TORCH_CHECK_EQ(ptr->thread_id, thread_id);
shm_contexts[rank] = ptr;
thread_shm_ptrs[rank] = thread_shm_ptr;
}
template <typename T>
T* get_thread_shm_ptr(int rank) {
return reinterpret_cast<T*>(thread_shm_ptrs[rank]);
}
int get_swizzled_rank(int idx) { return swizzled_ranks[idx]; }
void wait_for_all(ThreadSHMStat prev_stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
while (thread_stats[rank] == prev_stat) {
++_spinning_count;
_mm_pause();
}
}
vec_op::mem_barrier();
}
void wait_for_one(int rank, ThreadSHMStat prev_stat) {
while (thread_stats[rank] == prev_stat) {
++_spinning_count;
_mm_pause();
}
vec_op::mem_barrier();
}
void set_thread_stat(ThreadSHMStat stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
shm_contexts[rank]->thread_stats[this->rank] = stat;
}
}
void set_thread_stat(int target_rank, ThreadSHMStat stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
shm_contexts[rank]->thread_stats[target_rank] = stat;
}
}
// barrier for all ranks in the group, used for all2all ops
// DONE -> THREAD_READY -> SHM_DATA_READY -> DONE -> ...
void barrier(ThreadSHMStat next_stat) {
if (next_stat == ThreadSHMStat::THREAD_READY) {
set_thread_stat(ThreadSHMStat::THREAD_READY);
wait_for_all(ThreadSHMStat::DONE);
} else if (next_stat == ThreadSHMStat::SHM_DATA_READY) {
set_thread_stat(ThreadSHMStat::SHM_DATA_READY);
wait_for_all(ThreadSHMStat::THREAD_READY);
} else if (next_stat == ThreadSHMStat::DONE) {
set_thread_stat(ThreadSHMStat::DONE);
wait_for_all(ThreadSHMStat::SHM_DATA_READY);
} else {
TORCH_CHECK(false, "Invalid next_stat to barrier.");
}
}
std::string to_string() const {
std::stringstream ss;
ss << "SHMContext:";
ss << "\nrank: " << rank;
ss << "\ngroup_size: " << group_size;
ss << "\nthread_num: " << thread_num;
ss << "\nthread_id: " << thread_id;
ss << "\nshm_ctx_stat_loop_seq: [";
for (int i = 0; i < group_size; ++i) {
ss << swizzled_ranks[i] << ", ";
}
ss << "]";
ss << "\nshm_contexts: [";
for (int i = 0; i < group_size; ++i) {
if (shm_contexts[i]) {
ss << shm_contexts[i]->rank << ", ";
}
}
ss << "]";
return ss.str();
}
};
class SHMManager {
public:
explicit SHMManager(const std::string& name, const int rank,
const int group_size)
: _rank(rank),
_group_size(group_size),
_thread_num(std::min(torch::get_num_threads(), MAX_THREAD_NUM)),
_shm_names({""}),
_shared_mem_ptrs({nullptr}),
_shm_ctx(nullptr) {
_shm_names[rank] = get_shm_name(name, rank);
_shared_mem_ptrs[rank] = init_shm(rank);
_shm_ctx = reinterpret_cast<ThreadSHMContext*>(_shared_mem_ptrs[rank]);
for (int i = 0; i < _thread_num; ++i) {
ThreadSHMContext* ctx = new (_shm_ctx + i)
ThreadSHMContext(i, _thread_num, _rank, _group_size,
compute_thread_shm_ptr(_shm_ctx, i));
}
}
void join(const std::string& name) {
for (int rank_idx = 0; rank_idx < _group_size; ++rank_idx) {
if (rank_idx != _rank) {
TORCH_CHECK(_shm_names[rank_idx].empty());
TORCH_CHECK(_shared_mem_ptrs[rank_idx] == nullptr);
_shm_names[rank_idx] = get_shm_name(name, rank_idx);
_shared_mem_ptrs[rank_idx] = init_shm(rank_idx);
ThreadSHMContext* target_ctx =
reinterpret_cast<ThreadSHMContext*>(_shared_mem_ptrs[rank_idx]);
for (int thread_idx = 0; thread_idx < _thread_num; ++thread_idx) {
_shm_ctx[thread_idx].set_context(
rank_idx, target_ctx + thread_idx,
compute_thread_shm_ptr(target_ctx, thread_idx));
}
}
}
}
~SHMManager() { destroy_shm(); }
ThreadSHMContext* get_shm_ctx() const { return _shm_ctx; }
static std::string get_shm_name(const std::string& name, int rank) {
return name + "_" + std::to_string(rank);
}
static int64_t create_singleton_instance(const std::string& name,
const int group_size,
const int rank) {
std::lock_guard<std::mutex> guard(SingletonInstancesLock);
SingletonInstances.emplace_back(
std::make_unique<SHMManager>(name, rank, group_size));
return static_cast<int64_t>(SingletonInstances.size() - 1);
}
static SHMManager* get_singleton_instance(int64_t handle) {
return SingletonInstances[handle].get();
}
protected:
static std::vector<std::unique_ptr<SHMManager>> SingletonInstances;
static std::mutex SingletonInstancesLock;
private:
static size_t round_to_alignment(size_t num) {
return ((num + 63) / 64) * 64;
}
int8_t* compute_thread_shm_ptr(ThreadSHMContext* ctx, int thread_id) {
int8_t* thread_shm_ptr =
reinterpret_cast<int8_t*>(ctx) +
round_to_alignment(_thread_num * sizeof(ThreadSHMContext));
return thread_shm_ptr +
thread_id * round_to_alignment(PER_THREAD_SHM_BUFFER_BYTES);
}
size_t compute_shm_size() {
const size_t rounded_rank_buffer_size =
round_to_alignment(PER_THREAD_SHM_BUFFER_BYTES) * _thread_num;
const size_t rounded_thread_shm_ctx_size =
round_to_alignment(_thread_num * sizeof(ThreadSHMContext));
const size_t shm_size =
rounded_thread_shm_ctx_size + rounded_rank_buffer_size;
return shm_size;
}
void* init_shm(int target_rank) {
const std::string& shm_name = _shm_names[target_rank];
const int local_rank = _rank;
const size_t shm_size = compute_shm_size();
int fd = -1;
if (local_rank == target_rank) {
fd = shm_open(shm_name.c_str(), O_CREAT | O_EXCL | O_RDWR,
S_IRUSR | S_IWUSR);
if (fd == -1)
TORCH_CHECK(false, "create shm in SHMManager failed. errno: " +
std::to_string(errno));
if (ftruncate(fd, shm_size) == -1)
TORCH_CHECK(false, "ftruncate in SHMManager failed. errno: " +
std::to_string(errno));
} else {
fd = shm_open(shm_name.c_str(), O_RDWR, S_IRUSR | S_IWUSR);
if (fd == -1)
TORCH_CHECK(false, "open shm in SHMManager failed. errno: " +
std::to_string(errno));
}
void* shm_ptr = mmap(nullptr, shm_size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_POPULATE, fd, 0);
if (shm_ptr == MAP_FAILED) {
TORCH_CHECK(false,
"mmap in SHMManager failed. errno: " + std::to_string(errno));
}
if (close(fd) != 0) {
TORCH_CHECK(
false, "close in SHMManager failed. errno: " + std::to_string(errno));
}
TORCH_CHECK((size_t)shm_ptr % 64 == 0);
return shm_ptr;
}
void destroy_shm() {
std::stringstream ss;
ss << "local rank " << _rank << ": [";
for (int thread_id = 0; thread_id < _thread_num; ++thread_id) {
ss << _shm_ctx[thread_id]._spinning_count << ", ";
}
ss << "]\n";
for (int i = 0; i < MAX_SHM_RANK_NUM; ++i) {
if (_shared_mem_ptrs[i] != nullptr) {
munmap(_shared_mem_ptrs[i], compute_shm_size());
}
if (!_shm_names[i].empty()) {
shm_unlink(_shm_names[i].c_str());
}
}
}
int _rank;
int _group_size;
int _thread_num;
std::array<std::string, MAX_SHM_RANK_NUM> _shm_names;
std::array<void*, MAX_SHM_RANK_NUM> _shared_mem_ptrs;
ThreadSHMContext* _shm_ctx;
};
namespace shm_cc_ops {
template <typename scalar_t, typename F>
void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
int thread_num = ctx->thread_num;
int64_t total_bytes = elem_num * sizeof(scalar_t);
int64_t total_units_num =
(total_bytes + MIN_THREAD_PROCESS_SIZE - 1) / MIN_THREAD_PROCESS_SIZE;
int64_t per_thread_units_num =
(total_units_num + thread_num - 1) / thread_num;
int64_t per_unit_elem_num = MIN_THREAD_PROCESS_SIZE / sizeof(scalar_t);
int64_t max_per_thread_iteration_elem_num =
PER_THREAD_SHM_BUFFER_BYTES / sizeof(scalar_t);
int64_t per_thread_elem_num = per_unit_elem_num * per_thread_units_num;
#pragma omp parallel for schedule(static, 1)
for (int i = 0; i < thread_num; ++i) {
int64_t offset = i * per_thread_elem_num;
int64_t end = std::min(elem_num, offset + per_thread_elem_num);
int64_t curr_elem_num =
std::min(max_per_thread_iteration_elem_num, end - offset);
ThreadSHMContext* thread_ctx = ctx + i;
while (curr_elem_num > 0) {
inner_func(thread_ctx, offset, curr_elem_num);
offset += max_per_thread_iteration_elem_num;
curr_elem_num = std::min(max_per_thread_iteration_elem_num, end - offset);
}
}
}
}; // namespace shm_cc_ops
namespace shm_cc_ops {
void memcpy_from_shm(void* dst, void* src, const int64_t bytes) {
const int64_t aligned_bytes = ((bytes >> 6) << 6); // 64 bytes aligned
int64_t i = 0;
#pragma GCC unroll 4
for (; i < aligned_bytes; i += 64) {
vec_op::INT8Vec64 data(
true, (int8_t*)src + i); // stream loading shm to avoid caching
data.save((int8_t*)dst + i);
}
if (aligned_bytes < bytes) {
vec_op::INT8Vec64 data(true, (int8_t*)src + aligned_bytes);
data.save((int8_t*)dst + aligned_bytes, bytes - aligned_bytes);
}
}
void memcpy_to_shm(void* dst, void* src, const int64_t bytes) {
#pragma GCC unroll 4
for (int64_t i = 0; i < bytes; i += 64) {
vec_op::INT8Vec64 data((int8_t*)src + i);
data.nt_save((int8_t*)dst + i);
}
}
void memcpy(void* dst, void* src, const int64_t bytes) {
const int64_t aligned_bytes = ((bytes >> 6) << 6); // 64 bytes aligned
int64_t i = 0;
#pragma GCC unroll 4
for (; i < aligned_bytes; i += 64) {
vec_op::INT8Vec64 data((int8_t*)src + i);
data.save((int8_t*)dst + i);
}
if (aligned_bytes < bytes) {
vec_op::INT8Vec64 data((int8_t*)src + aligned_bytes);
data.save((int8_t*)dst + aligned_bytes, bytes - aligned_bytes);
}
}
template <typename scalar_t, int RANKS>
void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
size_t elem_num) {
CPU_KERNEL_GUARD_IN(all_reduce_sum_impl)
using vec_t = typename KernelVecType<scalar_t>::scalar_vec_t;
constexpr int64_t vec_elem_num = vec_t::get_elem_num();
const int worldsize = ctx->group_size;
shm_cc_ops::shm_cc_loop<scalar_t>(
ctx, elem_num,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
int rank = thread_ctx->rank;
scalar_t* thread_shm_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
scalar_t* thread_data_ptr = data + data_offset;
int64_t thread_data_elem_num = data_elem_num * sizeof(scalar_t);
scalar_t* remote_data_ptrs[RANKS - 1];
vec_op::unroll_loop<int, RANKS - 1>([&](int idx) {
remote_data_ptrs[idx] = thread_ctx->get_thread_shm_ptr<scalar_t>(
thread_ctx->get_swizzled_rank(idx + 1));
});
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, thread_data_ptr,
thread_data_elem_num);
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
int64_t aligned_data_elem_num =
(data_elem_num / vec_elem_num) * vec_elem_num;
int64_t i = 0;
#pragma GCC unroll 4
for (; i < aligned_data_elem_num; i += vec_elem_num) {
vec_t local_data(thread_data_ptr + i); // load from cache
vec_op::FP32Vec16 local_data_fp32(local_data);
vec_op::unroll_loop<int, RANKS - 1>([&](int idx) {
vec_t remote_data(
true, remote_data_ptrs[idx] + i); // stream load from shm
vec_op::FP32Vec16 remote_data_fp32(remote_data);
local_data_fp32 = local_data_fp32 + remote_data_fp32; // sum reduce
});
vec_t reduced_data(local_data_fp32);
reduced_data.save(thread_data_ptr + i);
}
if (i < data_elem_num) {
vec_t local_data(thread_data_ptr + i); // load from cache
vec_op::FP32Vec16 local_data_fp32(local_data);
vec_op::unroll_loop<int, RANKS - 1>([&](int idx) {
vec_t remote_data(
true, remote_data_ptrs[idx] + i); // stream load from shm
vec_op::FP32Vec16 remote_data_fp32(remote_data);
local_data_fp32 = local_data_fp32 + remote_data_fp32; // sum reduce
});
vec_t reduced_data(local_data_fp32);
reduced_data.save(thread_data_ptr + i,
data_elem_num - aligned_data_elem_num);
}
thread_ctx->barrier(ThreadSHMStat::DONE);
});
return;
}
}; // namespace shm_cc_ops
std::vector<std::unique_ptr<SHMManager>> SHMManager::SingletonInstances = {};
std::mutex SHMManager::SingletonInstancesLock = {};
template <typename scalar_t>
void shm_allreduce_sum(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num) {
switch (ctx->group_size) {
case 2:
shm_cc_ops::all_reduce_sum_impl<scalar_t, 2>(ctx, data, elem_num);
break;
case 3:
shm_cc_ops::all_reduce_sum_impl<scalar_t, 3>(ctx, data, elem_num);
break;
case 4:
shm_cc_ops::all_reduce_sum_impl<scalar_t, 4>(ctx, data, elem_num);
break;
case 8:
shm_cc_ops::all_reduce_sum_impl<scalar_t, 8>(ctx, data, elem_num);
break;
default:
TORCH_CHECK(false,
"Invalid world size: " + std::to_string(ctx->group_size));
}
}
template <typename scalar_t>
void shm_gather_impl(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num,
scalar_t** outputs, const int dst) {
CPU_KERNEL_GUARD_IN(shm_gather_impl)
const int worldsize = ctx->group_size;
TORCH_CHECK_LT(dst, worldsize);
shm_cc_ops::shm_cc_loop<scalar_t>(
ctx, elem_num,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
int rank = thread_ctx->rank;
scalar_t* thread_shm_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, data + data_offset,
data_elem_num * sizeof(scalar_t));
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
if (rank == dst) {
shm_cc_ops::memcpy(outputs[rank] + data_offset, data + data_offset,
data_elem_num * sizeof(scalar_t));
for (int i = 1; i < worldsize; ++i) {
int src_rank = thread_ctx->get_swizzled_rank(i);
scalar_t* src_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(src_rank); // shm
scalar_t* dst_ptr = outputs[src_rank] + data_offset;
shm_cc_ops::memcpy_from_shm(dst_ptr, src_ptr,
data_elem_num * sizeof(scalar_t));
}
}
thread_ctx->barrier(ThreadSHMStat::DONE);
});
return;
}
struct MemPiece {
void* ptr;
int64_t size;
template <typename T>
T* data_ptr() {
return reinterpret_cast<T*>(ptr);
}
};
struct TensorListMeta {
int64_t tensor_bytes[MAX_P2P_SEND_TENSOR_NUM];
torch::ScalarType tensor_types[MAX_P2P_SEND_TENSOR_NUM];
int64_t tensor_num;
int64_t total_bytes;
TensorListMeta() : tensor_num(0), total_bytes(0) {
static_assert(sizeof(TensorListMeta) % 64 == 0);
static_assert(sizeof(TensorListMeta) <
MIN_THREAD_PROCESS_SIZE); // To ensure the metadata always
// hold by the thread 0
for (int i = 0; i < MAX_P2P_SEND_TENSOR_NUM; ++i) {
tensor_bytes[i] = 0;
tensor_ptrs[i] = nullptr;
tensor_types[i] = torch::ScalarType::Undefined;
}
}
// For send and recv
void bind_tensor_list(std::vector<torch::Tensor>& tensor_list) {
TORCH_CHECK(tensor_types[0] == torch::ScalarType::Undefined,
"Re-bind TensorListMeta is not allowed.")
TORCH_CHECK_LE(tensor_list.size(), MAX_P2P_SEND_TENSOR_NUM);
tensor_num = tensor_list.size();
int64_t bytes_sum = 0;
for (int i = 0; i < tensor_list.size(); ++i) {
torch::Tensor& t = tensor_list[i];
TORCH_CHECK(t.is_contiguous());
tensor_bytes[i] = t.nbytes();
tensor_types[i] = t.scalar_type();
tensor_ptrs[i] = t.data_ptr();
bytes_sum += t.nbytes();
}
total_bytes = bytes_sum;
}
// For recv
std::vector<torch::Tensor> generate_tensor_list() {
std::vector<torch::Tensor> tensor_list;
tensor_list.reserve(tensor_num);
for (int i = 0; i < tensor_num; ++i) {
int64_t bytes = tensor_bytes[i];
auto type = tensor_types[i];
int64_t elem_bytes = torch::elementSize(type);
TORCH_CHECK_EQ(bytes % elem_bytes, 0);
int64_t elem_num = bytes / elem_bytes;
auto options = torch::TensorOptions().dtype(type).device(torch::kCPU);
tensor_list.emplace_back(torch::empty({elem_num}, options));
}
return tensor_list;
}
MemPiece get_data(int64_t offset) {
for (int i = 0; i < tensor_num; ++i) {
if (offset < tensor_bytes[i]) {
return {reinterpret_cast<int8_t*>(tensor_ptrs[i]) + offset,
tensor_bytes[i] - offset};
}
offset -= tensor_bytes[i];
}
return {nullptr, 0};
}
private:
void* tensor_ptrs[MAX_P2P_SEND_TENSOR_NUM];
int8_t _padding[40];
};
void shm_send_tensor_list_impl(ThreadSHMContext* ctx,
const std::vector<torch::Tensor>& tensor_list) {
CPU_KERNEL_GUARD_IN(shm_send_tensor_list_impl)
std::vector<torch::Tensor> tensor_list_with_metadata;
tensor_list_with_metadata.reserve(1 + tensor_list.size());
auto options = torch::TensorOptions().dtype(torch::kInt8).device(torch::kCPU);
tensor_list_with_metadata.emplace_back(
torch::empty({sizeof(TensorListMeta)}, options));
tensor_list_with_metadata.insert(tensor_list_with_metadata.end(),
tensor_list.begin(), tensor_list.end());
torch::Tensor& metadata_tensor = tensor_list_with_metadata[0];
TORCH_CHECK_EQ(metadata_tensor.nbytes(), sizeof(TensorListMeta));
TensorListMeta* metadata = new (metadata_tensor.data_ptr()) TensorListMeta();
metadata->bind_tensor_list(tensor_list_with_metadata);
shm_cc_ops::shm_cc_loop<int8_t>(
ctx, metadata->total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
int rank = thread_ctx->rank;
// Wait until the receiver set the stat to DONE
thread_ctx->wait_for_one(rank, ThreadSHMStat::SHM_DATA_READY);
int64_t curr_shm_offset = 0;
while (curr_shm_offset < data_elem_num) {
MemPiece frag = metadata->get_data(data_offset + curr_shm_offset);
frag.size = std::min(frag.size, data_elem_num - curr_shm_offset);
shm_cc_ops::memcpy(
thread_ctx->get_thread_shm_ptr<int8_t>(rank) + curr_shm_offset,
frag.ptr, frag.size);
curr_shm_offset += frag.size;
}
thread_ctx->set_thread_stat(rank, ThreadSHMStat::SHM_DATA_READY);
});
}
std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
int64_t src) {
CPU_KERNEL_GUARD_IN(shm_recv_tensor_list_impl)
auto options = torch::TensorOptions().dtype(torch::kInt8).device(torch::kCPU);
torch::Tensor metadata_tensor =
torch::empty({sizeof(TensorListMeta)}, options);
// Wait until the sender set the stat of the thread 0 to SHM_DATA_READY
ctx->wait_for_one(src, ThreadSHMStat::DONE);
shm_cc_ops::memcpy(metadata_tensor.data_ptr(),
ctx->get_thread_shm_ptr<void>(src),
sizeof(TensorListMeta));
TensorListMeta* src_metadata =
reinterpret_cast<TensorListMeta*>(metadata_tensor.data_ptr());
std::vector<torch::Tensor> tensor_list_with_metadata =
src_metadata->generate_tensor_list();
TensorListMeta metadata;
metadata.bind_tensor_list(tensor_list_with_metadata);
TORCH_CHECK_EQ(metadata.tensor_num, src_metadata->tensor_num);
TORCH_CHECK_EQ(metadata.total_bytes, src_metadata->total_bytes);
shm_cc_ops::shm_cc_loop<int8_t>(
ctx, metadata.total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num) {
// Wait until the sender set the stat to SHM_DATA_READY
thread_ctx->wait_for_one(src, ThreadSHMStat::DONE);
int64_t curr_shm_offset = 0;
while (curr_shm_offset < data_elem_num) {
MemPiece frag = metadata.get_data(data_offset + curr_shm_offset);
frag.size = std::min(frag.size, data_elem_num - curr_shm_offset);
shm_cc_ops::memcpy(
frag.ptr,
thread_ctx->get_thread_shm_ptr<int8_t>(src) + curr_shm_offset,
frag.size);
curr_shm_offset += frag.size;
}
thread_ctx->set_thread_stat(src, ThreadSHMStat::DONE);
});
std::vector<torch::Tensor> tensor_list;
tensor_list.reserve(metadata.tensor_num - 1);
tensor_list.insert(tensor_list.begin(), tensor_list_with_metadata.begin() + 1,
tensor_list_with_metadata.end());
return tensor_list;
}
} // namespace
void shm_gather(int64_t handle, torch::Tensor& data,
const std::optional<std::vector<torch::Tensor>>& outputs,
int64_t dst) {
TORCH_CHECK(data.is_contiguous())
VLLM_DISPATCH_FLOATING_TYPES(data.scalar_type(), "shm_gather_impl", [&] {
CPU_KERNEL_GUARD_IN(shm_gather_impl)
if (outputs.has_value()) {
TORCH_CHECK_LE(outputs->size(), MAX_SHM_RANK_NUM);
scalar_t* output_ptrs[MAX_SHM_RANK_NUM] = {nullptr};
for (int i = 0; i < outputs->size(); ++i) {
output_ptrs[i] = outputs->at(i).data_ptr<scalar_t>();
}
shm_gather_impl(SHMManager::get_singleton_instance(handle)->get_shm_ctx(),
data.data_ptr<scalar_t>(), data.numel(), output_ptrs,
dst);
} else {
shm_gather_impl(SHMManager::get_singleton_instance(handle)->get_shm_ctx(),
data.data_ptr<scalar_t>(), data.numel(), (scalar_t**)(0),
dst);
}
CPU_KERNEL_GUARD_OUT(shm_gather_impl)
});
}
void shm_all_gather(int64_t handle, const torch::Tensor& data,
torch::Tensor& output) {
TORCH_CHECK(data.is_contiguous())
TORCH_CHECK(output.is_contiguous())
const int64_t input_elem_num = data.numel();
const int64_t output_elem_num = output.numel();
TORCH_CHECK_EQ(output_elem_num % input_elem_num, 0);
const int world_size = output_elem_num / input_elem_num;
VLLM_DISPATCH_FLOATING_TYPES(data.scalar_type(), "shm_all_gather_impl", [&] {
CPU_KERNEL_GUARD_IN(shm_all_gather_impl)
auto ctx = SHMManager::get_singleton_instance(handle)->get_shm_ctx();
TORCH_CHECK_EQ(ctx->group_size, world_size);
scalar_t* output_ptrs[MAX_SHM_RANK_NUM] = {nullptr};
for (int i = 0; i < world_size; ++i) {
output_ptrs[i] = output.data_ptr<scalar_t>() + i * input_elem_num;
}
shm_gather_impl(ctx, data.data_ptr<scalar_t>(), data.numel(), output_ptrs,
ctx->rank);
CPU_KERNEL_GUARD_OUT(shm_all_gather_impl)
});
}
void shm_allreduce(int64_t handle, torch::Tensor& data) {
TORCH_CHECK(data.is_contiguous())
VLLM_DISPATCH_FLOATING_TYPES(data.scalar_type(), "shm_allreduce_sum", [&] {
CPU_KERNEL_GUARD_IN(shm_allreduce_sum)
shm_allreduce_sum(SHMManager::get_singleton_instance(handle)->get_shm_ctx(),
data.data_ptr<scalar_t>(), data.numel());
CPU_KERNEL_GUARD_OUT(shm_allreduce_sum)
});
}
void shm_send_tensor_list(int64_t handle,
const std::vector<torch::Tensor>& tensor_list,
int64_t dst) {
CPU_KERNEL_GUARD_IN(shm_send_tensor_list)
shm_send_tensor_list_impl(
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), tensor_list);
CPU_KERNEL_GUARD_OUT(shm_send_tensor_list)
}
std::vector<torch::Tensor> shm_recv_tensor_list(int64_t handle, int64_t src) {
CPU_KERNEL_GUARD_IN(shm_recv_tensor_list)
auto tensor_list = shm_recv_tensor_list_impl(
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), src);
CPU_KERNEL_GUARD_OUT(shm_recv_tensor_list)
return tensor_list;
}
int64_t init_shm_manager(const std::string& name, const int64_t group_size,
const int64_t rank) {
return SHMManager::create_singleton_instance(name, group_size, rank);
}
std::string join_shm_manager(int64_t handle, const std::string& name) {
auto shm_manager = SHMManager::get_singleton_instance(handle);
TORCH_CHECK(shm_manager);
shm_manager->join(name);
return shm_manager->get_shm_ctx()->to_string();
}

View File

@ -22,6 +22,26 @@ void mla_decode_kvcache(torch::Tensor& out, torch::Tensor& query,
torch::Tensor& kv_cache, double scale,
torch::Tensor& block_tables, torch::Tensor& seq_lens);
int64_t init_shm_manager(const std::string& name, const int64_t group_size,
const int64_t rank);
std::string join_shm_manager(int64_t handle, const std::string& name);
void shm_allreduce(int64_t handle, torch::Tensor& data);
void shm_gather(int64_t handle, torch::Tensor& data,
const std::optional<std::vector<torch::Tensor>>& outputs,
int64_t dst);
void shm_all_gather(int64_t handle, const torch::Tensor& data,
torch::Tensor& output);
void shm_send_tensor_list(int64_t handle,
const std::vector<torch::Tensor>& tensor_list,
int64_t dst);
std::vector<torch::Tensor> shm_recv_tensor_list(int64_t handle, int64_t src);
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops
@ -131,6 +151,29 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#endif
// SHM CCL
#ifdef __AVX512F__
ops.def("init_shm_manager(str name, int group_size, int rank) -> int",
&init_shm_manager);
ops.def("join_shm_manager(int handle, str name) -> str", &join_shm_manager);
ops.def("shm_allreduce(int handle, Tensor! data) -> ()");
ops.impl("shm_allreduce", torch::kCPU, &shm_allreduce);
ops.def(
"shm_gather(int handle, Tensor data, Tensor[](a!)? outputs, int dst) -> "
"()");
ops.impl("shm_gather", torch::kCPU, &shm_gather);
ops.def(
"shm_all_gather(int handle, Tensor data, Tensor! output) -> "
"()");
ops.impl("shm_all_gather", torch::kCPU, &shm_all_gather);
ops.def(
"shm_send_tensor_list(int handle, Tensor[](a) tensor_list, int dst) -> "
"()");
ops.impl("shm_send_tensor_list", torch::kCPU, &shm_send_tensor_list);
ops.def("shm_recv_tensor_list(int handle, int src) -> Tensor[](a)",
&shm_recv_tensor_list);
#endif
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {

View File

@ -18,7 +18,7 @@ std::string init_cpu_threads_env(const std::string& cpu_ids) {
#ifndef VLLM_NUMA_DISABLED
std::string init_cpu_threads_env(const std::string& cpu_ids) {
bitmask* omp_cpu_mask = numa_parse_cpustring(cpu_ids.c_str());
bitmask* omp_cpu_mask = numa_parse_cpustring_all(cpu_ids.c_str());
TORCH_CHECK(omp_cpu_mask->size > 0);
std::vector<int> omp_cpu_ids;
omp_cpu_ids.reserve(omp_cpu_mask->size);

View File

@ -145,7 +145,8 @@ torch::Tensor permute_cols(torch::Tensor const& A, torch::Tensor const& perm);
#endif
torch::Tensor ggml_dequantize(torch::Tensor W, int64_t type, int64_t m,
int64_t n);
int64_t n,
std::optional<at::ScalarType> const& dtype);
torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, torch::Tensor X,
int64_t type, int64_t row);

View File

@ -94,8 +94,8 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __
dfloat2 v;
dequantize_kernel(vx, ib, iqs, v);
y[iybs + iqs + 0] = v.x;
y[iybs + iqs + y_offset] = v.y;
y[iybs + iqs + 0] = convert_from_half<dst_t>(v.x);
y[iybs + iqs + y_offset] = convert_from_half<dst_t>(v.y);
}
template<typename dst_t>
@ -114,10 +114,10 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
half dall = __low2half(x[i].dm);
half dmin = __high2half(x[i].dm);
y[l+ 0] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+0] & 0xF) * ((q >> 0) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+0] >> 4)));
y[l+32] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+2] & 0xF) * ((q >> 2) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+2] >> 4)));
y[l+64] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+4] & 0xF) * ((q >> 4) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+4] >> 4)));
y[l+96] = __hsub(__hmul(dall, __int2half_rn((x[i].scales[is+6] & 0xF) * ((q >> 6) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+6] >> 4)));
y[l+ 0] = convert_from_half<dst_t>(__hsub(__hmul(dall, __int2half_rn((x[i].scales[is+0] & 0xF) * ((q >> 0) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+0] >> 4))));
y[l+32] = convert_from_half<dst_t>(__hsub(__hmul(dall, __int2half_rn((x[i].scales[is+2] & 0xF) * ((q >> 2) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+2] >> 4))));
y[l+64] = convert_from_half<dst_t>(__hsub(__hmul(dall, __int2half_rn((x[i].scales[is+4] & 0xF) * ((q >> 4) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+4] >> 4))));
y[l+96] = convert_from_half<dst_t>(__hsub(__hmul(dall, __int2half_rn((x[i].scales[is+6] & 0xF) * ((q >> 6) & 3))), __hmul(dmin, __int2half_rn(x[i].scales[is+6] >> 4))));
}
template<typename dst_t>
@ -148,7 +148,9 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
const uint8_t * q = x[i].qs + 32*n;
const uint8_t * hm = x[i].hmask;
for (int l = l0; l < l0+4; ++l) y[l] = __hmul(dl, __int2half_rn((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)));
for (int l = l0; l < l0+4; ++l) {
y[l] = convert_from_half<dst_t>(__hmul(dl, __int2half_rn((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4))));
}
}
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
@ -188,8 +190,8 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
const half d2 = __hmul(dall, __int2half_rn(sc));
const half m2 = __hmul(dmin, __int2half_rn(m));
for (int l = 0; l < n; ++l) {
y[l + 0] = __hsub(__hmul(d1, __int2half_rn(q[l] & 0xF)), m1);
y[l +32] = __hsub(__hmul(d2, __int2half_rn(q[l] >> 4)), m2);
y[l + 0] = convert_from_half<dst_t>(__hsub(__hmul(d1, __int2half_rn(q[l] & 0xF)), m1));
y[l +32] = convert_from_half<dst_t>(__hsub(__hmul(d2, __int2half_rn(q[l] >> 4)), m2));
}
}
@ -220,11 +222,11 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
const half d2 = __hmul(dall, __int2half_rn(sc)); const half m2 = __hmul(dmin, __int2half_rn(m));
uint8_t hm = 1 << (2*il);
y[ 0] = __hsub(__hmul(d1, __int2half_rn((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0))), m1);
y[ 1] = __hsub(__hmul(d1, __int2half_rn((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0))), m1);
y[ 0] = convert_from_half<dst_t>(__hsub(__hmul(d1, __int2half_rn((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0))), m1));
y[ 1] = convert_from_half<dst_t>(__hsub(__hmul(d1, __int2half_rn((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0))), m1));
hm <<= 1;
y[32] = __hsub(__hmul(d2, __int2half_rn((ql[0] >> 4) + (qh[0] & hm ? 16 : 0))), m2);
y[33] = __hsub(__hmul(d2, __int2half_rn((ql[1] >> 4) + (qh[1] & hm ? 16 : 0))), m2);
y[32] = convert_from_half<dst_t>(__hsub(__hmul(d2, __int2half_rn((ql[0] >> 4) + (qh[0] & hm ? 16 : 0))), m2));
y[33] = convert_from_half<dst_t>(__hsub(__hmul(d2, __int2half_rn((ql[1] >> 4) + (qh[1] & hm ? 16 : 0))), m2));
}
template<typename dst_t>
@ -247,10 +249,10 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
const uint8_t qh = x[i].qh[32*ip + il];
const int8_t * sc = x[i].scales + is;
y[ 0] = __hmul(d, __int2half_rn(sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32)));
y[32] = __hmul(d, __int2half_rn(sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32)));
y[64] = __hmul(d, __int2half_rn(sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32)));
y[96] = __hmul(d, __int2half_rn(sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32)));
y[ 0] = convert_from_half<dst_t>(__hmul(d, __int2half_rn(sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32))));
y[32] = convert_from_half<dst_t>(__hmul(d, __int2half_rn(sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32))));
y[64] = convert_from_half<dst_t>(__hmul(d, __int2half_rn(sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32))));
y[96] = convert_from_half<dst_t>(__hmul(d, __int2half_rn(sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32))));
}
template<typename dst_t>
@ -269,7 +271,7 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
const uint32_t aux32 = q2[2] | (q2[3] << 16);
const float d = __half2float(x[i].d) * (0.5f + (aux32 >> 28)) * 0.25f;
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f));
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
template<typename dst_t>
@ -286,7 +288,7 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
const float d = __half2float(x[i].d) * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f));
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
@ -303,7 +305,7 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
const float d = __half2float(x[i].d) * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
for (int j = 0; j < 8; ++j) y[j] = __float2half(d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f));
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
template<typename dst_t>
@ -324,8 +326,8 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
const float d = __half2float(x[i].d) * (0.5f + (aux32 >> 28)) * 0.5f;
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
for (int j = 0; j < 4; ++j) {
y[j+0] = __float2half(d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f));
y[j+4] = __float2half(d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f));
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
}
@ -345,8 +347,8 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
const float d = __half2float(x[i].d) * (0.5f + ((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf)) * 0.5f;
const uint8_t signs = x[i].signs[4*ib + il];
for (int j = 0; j < 4; ++j) {
y[j+0] = __float2half(d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f));
y[j+4] = __float2half(d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f));
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
}
@ -367,7 +369,7 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
grid32[0] &= 0x0f0f0f0f;
for (int j = 0; j < 8; ++j) {
y[j] = __float2half(d * (q[j] + delta));
y[j] = d * (q[j] + delta);
}
}
@ -392,7 +394,7 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
grid32[0] &= 0x0f0f0f0f;
for (int j = 0; j < 8; ++j) {
y[j] = __float2half(d * (q[j] + delta));
y[j] = d * (q[j] + delta);
}
}
@ -409,8 +411,8 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst
const uint8_t * q4 = x[ib].qs + 4*il;
const float d = __half2float(x[ib].d);
for (int j = 0; j < 4; ++j) {
y[j+ 0] = __float2half(d * kvalues_iq4nl[q4[j] & 0xf]);
y[j+16] = __float2half(d * kvalues_iq4nl[q4[j] >> 4]);
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
}
}
@ -427,8 +429,8 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
const float d = __half2float(x[i].d) * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
for (int j = 0; j < 4; ++j) {
y[j+ 0] = __float2half(d * kvalues_iq4nl[q4[j] & 0xf]);
y[j+16] = __float2half(d * kvalues_iq4nl[q4[j] >> 4]);
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
}
}
@ -522,7 +524,8 @@ static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k,
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
}
static to_fp16_cuda_t ggml_get_to_fp16_cuda(int64_t type) {
template<typename dst_t>
static to_cuda_ggml_t<dst_t> ggml_get_to_cuda(int64_t type) {
switch (type) {
case 2:
return dequantize_block_cuda<QK4_0, QR4_0, dequantize_q4_0>;

View File

@ -1063,7 +1063,8 @@ static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
typedef void (*to_fp16_cuda_t)(const void * __restrict__ x, dfloat * __restrict__ y, int k, cudaStream_t stream);
template<typename dst_t>
using to_cuda_ggml_t = void (*)(const void * __restrict__ x, dst_t * __restrict__ y, int k, cudaStream_t stream);
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
typedef void (*load_tiles_cuda_t)(
@ -1075,6 +1076,25 @@ typedef float (*vec_dot_q_mul_mat_cuda_t)(
// Utility function
template<typename dst_t>
static __device__ __forceinline__ dst_t convert_from_half(half val) {
return val;
}
template<>
__device__ __forceinline__ c10::BFloat16 convert_from_half<c10::BFloat16>(half val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
return __float2bfloat16(__half2float(val));
#else
return __half2float(val);
#endif // defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
}
template<>
__device__ __forceinline__ float convert_from_half<float>(half val) {
return __half2float(val);
}
#if defined(USE_ROCM)
#ifndef __has_builtin

View File

@ -71,14 +71,19 @@ static void quantize_row_q8_1_cuda(const scalar_t* x, void* vy, const int kx,
}
torch::Tensor ggml_dequantize(torch::Tensor W, // quant weight
int64_t type, int64_t m, int64_t n) {
int64_t type, int64_t m, int64_t n,
std::optional<at::ScalarType> const& dtype) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(W));
auto options =
torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
auto dtype_ = dtype.value_or(torch::kFloat16);
auto options = torch::TensorOptions().dtype(dtype_).device(W.device());
at::Tensor DW = torch::empty({m, n}, options);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(type);
to_fp16_cuda((void*)W.data_ptr(), (half*)DW.data_ptr(), m * n, stream);
VLLM_DISPATCH_FLOATING_TYPES(DW.scalar_type(), "ggml_dequantize", [&] {
auto to_cuda = ggml_get_to_cuda<scalar_t>(type);
to_cuda((void*)W.data_ptr(), (scalar_t*)DW.data_ptr(), m * n, stream);
});
return DW;
}

View File

@ -272,6 +272,7 @@ __launch_bounds__(NUM_THREADS, 5) void paged_attention_ll4mi_QKV_mfma16_kernel(
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
@ -291,6 +292,13 @@ __launch_bounds__(NUM_THREADS, 5) void paged_attention_ll4mi_QKV_mfma16_kernel(
const int rowid = laneid / 16;
const auto seq_idx = blockIdx.x;
// NOTE queries with sequence len > 1 are prefills and taken care by another
// kernel.
if (query_start_loc_ptr != nullptr &&
(query_start_loc_ptr[seq_idx + 1] - query_start_loc_ptr[seq_idx]) != 1) {
return;
}
const auto partition_idx = blockIdx.y;
constexpr int T_PAR_SIZE = 256; // token partition size set to 256
@ -377,9 +385,10 @@ __launch_bounds__(NUM_THREADS, 5) void paged_attention_ll4mi_QKV_mfma16_kernel(
// fetch Q in shared across warps and then write to registers
const int local_qhead_idx = 4 * warpid + rowid;
const int global_qhead_idx = wg_start_head_idx + local_qhead_idx;
const int64_t seq_idx64 = static_cast<int64_t>(seq_idx);
const int64_t query_start_off = static_cast<int64_t>(
query_start_loc_ptr ? query_start_loc_ptr[seq_idx] : seq_idx);
const scalar_t* q_ptr =
q + seq_idx64 * q_stride + global_qhead_idx * HEAD_SIZE;
q + query_start_off * q_stride + global_qhead_idx * HEAD_SIZE;
const int qhead_element = lane16id * CONTIGUOUS_SCALAR_ELEMS_16B;
if ((local_qhead_idx < GQA_RATIO) && (qhead_element < HEAD_SIZE)) {
@ -777,6 +786,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
@ -794,6 +804,12 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
const int lane4id = laneid % 4;
const auto seq_idx = blockIdx.x;
// NOTE queries with sequence len > 1 are prefills and taken care by another
// kernel.
if (query_start_loc_ptr != nullptr &&
(query_start_loc_ptr[seq_idx + 1] - query_start_loc_ptr[seq_idx] != 1)) {
return;
}
const auto partition_idx = blockIdx.y;
const auto partition_size = blockDim.x;
const auto max_num_partitions = gridDim.y;
@ -882,9 +898,11 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
}
// fetch q elements
// every 4 lanes fetch 8 elems, so warp fetches 8*16 = 128 elems
// every 4 lanes fetch 8 elems, so warp fetches 8*16 = 128 elemsc
const int64_t query_start_off = static_cast<int64_t>(
query_start_loc_ptr ? query_start_loc_ptr[seq_idx] : seq_idx);
const scalar_t* q_ptr =
q + seq_idx * q_stride + wg_start_head_idx * HEAD_SIZE;
q + query_start_off * q_stride + wg_start_head_idx * HEAD_SIZE;
const _B16x8* q_ptrh8 = reinterpret_cast<const _B16x8*>(q_ptr);
const int qhead_elemh8 = laneid / 4;
@ -1267,10 +1285,19 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
// max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_partitions) {
const auto num_heads = gridDim.x;
const auto head_idx = blockIdx.x;
const auto seq_idx = blockIdx.y;
// NOTE queries with sequence len > 1 are prefills and taken care by another
// kernel.
if (query_start_loc_ptr != nullptr &&
(query_start_loc_ptr[seq_idx + 1] - query_start_loc_ptr[seq_idx] != 1)) {
return;
}
const int context_len = context_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
[[maybe_unused]] constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
@ -1439,7 +1466,9 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
__fdividef(1.0f, shared_global_exp_sum + 1e-6f);
acc *= inv_global_exp_sum;
OUTT* out_ptr = out + static_cast<int64_t>(seq_idx) * num_heads * HEAD_SIZE +
const int64_t query_start_off = static_cast<int64_t>(
query_start_loc_ptr ? query_start_loc_ptr[seq_idx] : seq_idx);
OUTT* out_ptr = out + query_start_off * num_heads * HEAD_SIZE +
static_cast<int64_t>(head_idx) * HEAD_SIZE;
if constexpr (std::is_same<OUTT, bit8_t>::value) {
out_ptr[threadIdx.x] =
@ -1466,6 +1495,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma16_kernel(
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
@ -1492,6 +1522,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
@ -1515,6 +1546,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
const float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_partitions) {
UNREACHABLE_CODE
}
@ -1522,34 +1554,34 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
#endif // defined(__HIP__MI300_MI250__) TODO: Add NAVI support
#define LAUNCH_CUSTOM_ATTENTION_MFMA16(GQA_RATIO) \
paged_attention_ll4mi_QKV_mfma16_kernel<T, KVT, KV_DTYPE, OUTT, BLOCK_SIZE, \
HEAD_SIZE, NTHR, ALIBI_ENABLED, \
GQA_RATIO> \
<<<grid, block, 0, stream>>>( \
query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq, \
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, \
exp_sums_ptr, max_logits_ptr, tmp_out_ptr, out_ptr, max_ctx_blocks, \
k_scale_ptr, v_scale_ptr);
#define LAUNCH_CUSTOM_ATTENTION_MFMA16(GQA_RATIO) \
paged_attention_ll4mi_QKV_mfma16_kernel<T, KVT, KV_DTYPE, OUTT, BLOCK_SIZE, \
HEAD_SIZE, NTHR, ALIBI_ENABLED, \
GQA_RATIO> \
<<<grid, block, 0, stream>>>( \
query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, context_lens_ptr, query_start_loc_ptr, \
max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, kv_block_stride, \
kv_head_stride, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, out_ptr, \
max_ctx_blocks, k_scale_ptr, v_scale_ptr);
#define LAUNCH_CUSTOM_ATTENTION_MFMA4(GQA_RATIO) \
paged_attention_ll4mi_QKV_mfma4_kernel<T, KVT, KV_DTYPE, OUTT, BLOCK_SIZE, \
HEAD_SIZE, NTHR, ALIBI_ENABLED, \
GQA_RATIO> \
<<<grid, block, 0, stream>>>( \
query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq, \
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, \
exp_sums_ptr, max_logits_ptr, tmp_out_ptr, out_ptr, max_ctx_blocks, \
k_scale_ptr, v_scale_ptr);
#define LAUNCH_CUSTOM_ATTENTION_MFMA4(GQA_RATIO) \
paged_attention_ll4mi_QKV_mfma4_kernel<T, KVT, KV_DTYPE, OUTT, BLOCK_SIZE, \
HEAD_SIZE, NTHR, ALIBI_ENABLED, \
GQA_RATIO> \
<<<grid, block, 0, stream>>>( \
query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, context_lens_ptr, query_start_loc_ptr, \
max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, kv_block_stride, \
kv_head_stride, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, out_ptr, \
max_ctx_blocks, k_scale_ptr, v_scale_ptr);
#define LAUNCH_CUSTOM_REDUCTION(NPAR_LOOPS) \
paged_attention_ll4mi_reduce_kernel<T, OUTT, HEAD_SIZE, HEAD_SIZE, \
PARTITION_SIZE, NPAR_LOOPS> \
<<<reduce_grid, reduce_block, 0, stream>>>( \
out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, \
context_lens_ptr, max_num_partitions);
context_lens_ptr, query_start_loc_ptr, max_num_partitions);
template <typename T, typename KVT, vllm::Fp8KVCacheDataType KV_DTYPE,
int BLOCK_SIZE, int HEAD_SIZE, typename OUTT, int PARTITION_SIZE_OLD,
@ -1559,9 +1591,10 @@ void paged_attention_custom_launcher(
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, const int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& context_lens,
int max_context_len, const std::optional<torch::Tensor>& alibi_slopes,
torch::Tensor& k_scale, torch::Tensor& v_scale) {
int num_seqs = query.size(0);
const std::optional<torch::Tensor>& query_start_loc, int max_context_len,
const std::optional<torch::Tensor>& alibi_slopes, torch::Tensor& k_scale,
torch::Tensor& v_scale) {
int num_seqs = block_tables.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
@ -1569,6 +1602,13 @@ void paged_attention_custom_launcher(
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
// NOTE: query start location is optional for V0 decode should not be used.
// If batch contains mix of prefills and decode, prefills should be skipped.
const int* query_start_loc_ptr =
query_start_loc
? reinterpret_cast<const int*>(query_start_loc.value().data_ptr())
: nullptr;
// NOTE: alibi_slopes is optional.
const float* alibi_slopes_ptr =
alibi_slopes
@ -1700,8 +1740,8 @@ void paged_attention_custom_launcher(
paged_attention_custom_launcher<T, KVT, KV_DTYPE, BLK_SIZE, HEAD_SIZE, T, \
PSIZE, ALIBI_ENABLED>( \
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
num_kv_heads, scale, block_tables, context_lens, max_context_len, \
alibi_slopes, k_scale, v_scale);
num_kv_heads, scale, block_tables, context_lens, query_start_loc, \
max_context_len, alibi_slopes, k_scale, v_scale);
#define CALL_CUSTOM_LAUNCHER_ALIBI(T, KVT, KV_DTYPE, BLK_SIZE, HEAD_SIZE, \
PSIZE) \
@ -1750,6 +1790,7 @@ void paged_attention(
double scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
const std::optional<torch::Tensor>& query_start_loc, // [num_seqs]
int64_t block_size, int64_t max_context_len,
const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, torch::Tensor& k_scale,

View File

@ -7,8 +7,9 @@ void paged_attention(torch::Tensor& out, torch::Tensor& exp_sums,
torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads,
double scale, torch::Tensor& block_tables,
torch::Tensor& context_lens, int64_t block_size,
int64_t max_context_len,
torch::Tensor& context_lens,
const std::optional<torch::Tensor>& query_start_loc,
int64_t block_size, int64_t max_context_len,
const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
torch::Tensor& v_scale);

View File

@ -23,7 +23,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, rocm_ops) {
" Tensor query, Tensor key_cache,"
" Tensor value_cache, int num_kv_heads,"
" float scale, Tensor block_tables,"
" Tensor context_lens, int block_size,"
" Tensor context_lens,"
" Tensor? query_start_loc,"
" int block_size,"
" int max_context_len,"
" Tensor? alibi_slopes,"
" str kv_cache_dtype,"

View File

@ -295,7 +295,9 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
#endif
// Dequantization for GGML.
ops.def("ggml_dequantize(Tensor W, int type, SymInt m, SymInt n) -> Tensor");
ops.def(
"ggml_dequantize(Tensor W, int type, SymInt m, SymInt n, ScalarType? "
"dtype) -> Tensor");
ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize);
// mmvq kernel for GGML.

View File

@ -38,7 +38,7 @@ RUN microdnf install -y openssl-devel dnf \
&& ln -sf /usr/lib64/libatomic.so.1 /usr/lib64/libatomic.so \
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
&& python -m pip install -U pip uv \
&& uv pip install wheel build "setuptools<70" setuptools_scm setuptools_rust meson-python cmake ninja cython scikit_build_core scikit_build \
&& uv pip install wheel build "setuptools<70" setuptools_scm setuptools_rust meson-python 'cmake<4' ninja cython scikit_build_core scikit_build \
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
&& curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y \
&& cd /tmp && touch control
@ -238,7 +238,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
&& python -m pip install -U pip uv --no-cache \
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
&& make -C /numactl install \
&& uv pip install cmake \
&& uv pip install 'cmake<4' \
&& cmake --install /lapack/build \
&& uv pip uninstall cmake

View File

@ -22,6 +22,7 @@ Compute Resources:
- Databricks
- DeepInfra
- Google Cloud
- Intel
- Lambda Lab
- Nebius
- Novita AI

View File

@ -1,6 +1,6 @@
# Tool Calling
vLLM currently supports named function calling, as well as the `auto` and `none` options for the `tool_choice` field in the chat completion API. The `tool_choice` option `required` is **not yet supported** but [on the roadmap](gh-issue:13002).
vLLM currently supports named function calling, as well as the `auto`, `required` (as of `vllm>=0.8.3`) and `none` options for the `tool_choice` field in the chat completion API.
## Quickstart
@ -91,6 +91,12 @@ For best results, we recommend ensuring that the expected output format / schema
To use a named function, you need to define the functions in the `tools` parameter of the chat completion request, and
specify the `name` of one of the tools in the `tool_choice` parameter of the chat completion request.
## Required Function Calling
vLLM supports the `tool_choice='required'` option in the chat completion API. Similar to the named function calling, it also uses guided decoding, so this is enabled by default and will work with any supported model. The required guided decoding features (JSON schema with `anyOf`) are currently only supported in the V0 engine with the guided decoding backend `outlines`. However, support for alternative decoding backends are on the [roadmap](https://docs.vllm.ai/en/latest/getting_started/v1_user_guide.html#feature-model) for the V1 engine.
When tool_choice='required' is set, the model is guaranteed to generate one or more tool calls based on the specified tool list in the `tools` parameter. The number of tool calls depends on the user's query. The output format strictly follows the schema defined in the `tools` parameter.
## Automatic Function Calling
To enable this feature, you should set the following flags:

View File

@ -272,12 +272,14 @@ $ python examples/offline_inference/basic/basic.py
- Decouple the HTTP serving components from the inference components. In a GPU backend configuration, the HTTP serving and tokenization tasks operate on the CPU, while inference runs on the GPU, which typically does not pose a problem. However, in a CPU-based setup, the HTTP serving and tokenization can cause significant context switching and reduced cache efficiency. Therefore, it is strongly recommended to segregate these two components for improved performance.
- On CPU based setup with NUMA enabled, the memory access performance may be largely impacted by the [topology](https://github.com/intel/intel-extension-for-pytorch/blob/main/docs/tutorials/performance_tuning/tuning_guide.inc.md#non-uniform-memory-access-numa). For NUMA architecture, two optimizations are to recommended: Tensor Parallel or Data Parallel.
- On CPU based setup with NUMA enabled, the memory access performance may be largely impacted by the [topology](https://github.com/intel/intel-extension-for-pytorch/blob/main/docs/tutorials/performance_tuning/tuning_guide.inc.md#non-uniform-memory-access-numa). For NUMA architecture, Tensor Parallel is a option for better performance.
- Using Tensor Parallel for a latency constraints deployment: following GPU backend design, a Megatron-LM's parallel algorithm will be used to shard the model, based on the number of NUMA nodes (e.g. TP = 2 for a two NUMA node system). With [TP feature on CPU](gh-pr:6125) merged, Tensor Parallel is supported for serving and offline inferencing. In general each NUMA node is treated as one GPU card. Below is the example script to enable Tensor Parallel = 2 for serving:
- Tensor Parallel is supported for serving and offline inferencing. In general each NUMA node is treated as one GPU card. Below is the example script to enable Tensor Parallel = 2 for serving:
```console
VLLM_CPU_KVCACHE_SPACE=40 VLLM_CPU_OMP_THREADS_BIND="0-31|32-63" vllm serve meta-llama/Llama-2-7b-chat-hf -tp=2 --distributed-executor-backend mp
```
- Using Data Parallel for maximum throughput: to launch an LLM serving endpoint on each NUMA node along with one additional load balancer to dispatch the requests to those endpoints. Common solutions like [Nginx](#nginxloadbalancer) or HAProxy are recommended. Anyscale Ray project provides the feature on LLM [serving](https://docs.ray.io/en/latest/serve/index.html). Here is the example to setup a scalable LLM serving with [Ray Serve](https://github.com/intel/llm-on-ray/blob/main/docs/setup.inc.md).
- For each thread id list in `VLLM_CPU_OMP_THREADS_BIND`, users should guarantee threads in the list belong to a same NUMA node.
- Meanwhile, users should also take care of memory capacity of each NUMA node. The memory usage of each TP rank is the sum of `weight shard size` and `VLLM_CPU_KVCACHE_SPACE`, if it exceeds the capacity of a single NUMA node, TP worker will be killed due to out-of-memory.

View File

@ -12,7 +12,7 @@ There are no pre-built wheels or images for this device, so you must build vLLM
- OS: `macOS Sonoma` or later
- SDK: `XCode 15.4` or later with Command Line Tools
- Compiler: `Apple Clang >= 15.0.0`
- Compiler: `Apple Clang >= 15.0.0` and `Apple Clang < 17.0.0`
## Set up using Python
@ -51,6 +51,14 @@ If the build has error like the following snippet where standard C++ headers can
1 error generated.
```
If run with error like the following snippet you need to check clang version and install a compatible version.
```text
AttributeError: '_OpNamespace' '_C' object has no attribute 'silu_and_mul'
```
More information can be found in <gh-issue:15941>.
## Set up using Docker
### Pre-built images

View File

@ -31,7 +31,7 @@ Currently, there are no pre-built ROCm wheels.
```console
# Install PyTorch
$ pip uninstall torch -y
$ pip install --no-cache-dir --pre torch --index-url https://download.pytorch.org/whl/rocm6.3
$ pip install --no-cache-dir --pre torch --index-url https://download.pytorch.org/whl/nightly/rocm6.3
```
1. Install [Triton flash attention for ROCm](https://github.com/ROCm/triton)

View File

@ -218,6 +218,11 @@ See [this page](#generative-models) for more information on how to use generativ
* `baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.
* ✅︎
* ✅︎
- * `BambaForCausalLM`
* Bamba
* `ibm-ai-platform/Bamba-9B-fp8`, `ibm-ai-platform/Bamba-9B`
*
*
- * `BloomForCausalLM`
* BLOOM, BLOOMZ, BLOOMChat
* `bigscience/bloom`, `bigscience/bloomz`, etc.
@ -883,7 +888,7 @@ See [this page](#generative-models) for more information on how to use generativ
* `mistralai/Mistral-Small-3.1-24B-Instruct-2503`, etc.
*
* ✅︎
*
* ✅︎
- * `MllamaForConditionalGeneration`
* Llama 3.2
* T + I<sup>+</sup>

View File

@ -0,0 +1,93 @@
# SPDX-License-Identifier: Apache-2.0
"""
Validates the loading of a model saved with the sharded_state format.
This script demonstrates how to load a model that was previously saved
using save_sharded_state.py and validates it by running inference.
Example usage:
(First need to save a sharded_state mode)
python save_sharded_state.py \
--model /path/to/load \
--quantization deepspeedfp \
--tensor-parallel-size 8 \
--output /path/to/save/sharded/modele
python load_sharded_state.py \
--model /path/to/saved/sharded/model \
--load-format sharded_state \
--quantization deepspeedfp \
--tensor-parallel-size 8 \
--prompt "Hello, my name is" \
--max-tokens 50
"""
import dataclasses
from vllm import LLM, EngineArgs, SamplingParams
from vllm.utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
# Add engine arguments
EngineArgs.add_cli_args(parser)
# Override default load_format for clarity
parser.set_defaults(load_format="sharded_state")
# Add validation arguments
parser.add_argument("--prompt",
type=str,
default="Hello, world!",
help="Prompt for validation")
parser.add_argument("--max-tokens",
type=int,
default=100,
help="Maximum number of tokens to generate")
parser.add_argument("--temperature",
type=float,
default=0.7,
help="Sampling temperature")
parser.add_argument("--top-p",
type=float,
default=1.0,
help="Top-p sampling parameter")
return parser.parse_args()
def main():
args = parse_args()
engine_args = EngineArgs.from_cli_args(args)
print(f"Loading model from {engine_args.model} "
f"using format {engine_args.load_format}")
print(f"Tensor parallel size: {engine_args.tensor_parallel_size}")
# Load the model using engine args
llm = LLM(**dataclasses.asdict(engine_args))
# Prepare sampling parameters
sampling_params = SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
max_tokens=args.max_tokens,
)
print("\nRunning inference:")
print(f"Prompt: {args.prompt}")
# Generate completion
outputs = llm.generate(args.prompt, sampling_params)
# Display generated text
print("\nGenerated outputs:")
for output in outputs:
generated_text = output.outputs[0].text
print("-" * 50)
print(f"Full output: {args.prompt}{generated_text}")
print("-" * 50)
if __name__ == "__main__":
main()

View File

@ -57,10 +57,25 @@ def main(args):
# Prepare output directory
Path(args.output).mkdir(exist_ok=True)
# Dump worker states to output directory
model_executor = llm.llm_engine.model_executor
model_executor.save_sharded_state(path=args.output,
pattern=args.file_pattern,
max_size=args.max_file_size)
# Check which engine version is being used
is_v1_engine = hasattr(llm.llm_engine, "engine_core")
if is_v1_engine:
# For V1 engine, we need to use engine_core.save_sharded_state
print("Using V1 engine save path")
llm.llm_engine.engine_core.save_sharded_state(
path=args.output,
pattern=args.file_pattern,
max_size=args.max_file_size)
else:
# For V0 engine
print("Using V0 engine save path")
model_executor = llm.llm_engine.model_executor
model_executor.save_sharded_state(path=args.output,
pattern=args.file_pattern,
max_size=args.max_file_size)
# Copy metadata files to output directory
for file in os.listdir(model_path):
if os.path.splitext(file)[1] not in (".bin", ".pt", ".safetensors"):

View File

@ -23,10 +23,14 @@ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Use `distributed_executor_backend="external_launcher"` so that
# this llm engine/instance only creates one worker.
# it is important to set an explicit seed to make sure that
# all ranks have the same random seed, so that sampling can be
# deterministic across ranks.
llm = LLM(
model="facebook/opt-125m",
tensor_parallel_size=2,
distributed_executor_backend="external_launcher",
seed=0,
)
outputs = llm.generate(prompts, sampling_params)

View File

@ -0,0 +1,136 @@
# SPDX-License-Identifier: Apache-2.0
"""
To run this example, you can start the vLLM server
without any specific flags:
```bash
VLLM_USE_V1=0 vllm serve unsloth/Llama-3.2-1B-Instruct \
--guided-decoding-backend outlines
```
This example demonstrates how to generate chat completions
using the OpenAI Python client library.
"""
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for"
", e.g. 'San Francisco'",
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the "
"city is in, e.g. 'CA' which would mean 'California'",
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["city", "state", "unit"],
},
},
},
{
"type": "function",
"function": {
"name": "get_forecast",
"description": "Get the weather forecast for a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to get the forecast for, e.g. 'New York'",
},
"state": {
"type":
"string",
"description":
"The two-letter abbreviation for the state, e.g. 'NY'",
},
"days": {
"type":
"integer",
"description":
"Number of days to get the forecast for (1-7)",
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["city", "state", "days", "unit"],
},
},
},
]
messages = [
{
"role": "user",
"content": "Hi! How are you doing today?"
},
{
"role": "assistant",
"content": "I'm doing well! How can I help you?"
},
{
"role":
"user",
"content":
"Can you tell me what the current weather is in Dallas \
and the forecast for the next 5 days, in fahrenheit?",
},
]
chat_completion = client.chat.completions.create(
messages=messages,
model=model,
tools=tools,
tool_choice="required",
stream=True # Enable streaming response
)
for chunk in chat_completion:
if chunk.choices and chunk.choices[0].delta.tool_calls:
print(chunk.choices[0].delta.tool_calls)
chat_completion = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
tool_choice="required")
print(chat_completion.choices[0].message.tool_calls)

0
format.sh Normal file → Executable file
View File

View File

@ -7,6 +7,7 @@ tqdm
blake3
py-cpuinfo
transformers >= 4.50.3
huggingface-hub[hf_xet] >= 0.30.0 # Required for Xet downloads.
tokenizers >= 0.19.1 # Required for Llama 3.
protobuf # Required by LlamaTokenizer.
fastapi[standard] >= 0.115.0 # Required by FastAPI's form models in the OpenAI API server's audio transcriptions endpoint.
@ -21,7 +22,7 @@ lm-format-enforcer >= 0.10.11, < 0.11
llguidance >= 0.7.9, < 0.8.0; platform_machine == "x86_64" or platform_machine == "arm64" or platform_machine == "aarch64"
outlines == 0.1.11
lark == 1.2.2
xgrammar == 0.1.16; platform_machine == "x86_64" or platform_machine == "aarch64"
xgrammar == 0.1.17; platform_machine == "x86_64" or platform_machine == "aarch64"
typing_extensions >= 4.10
filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317
partial-json-parser # used for parsing partial JSON outputs

View File

@ -29,8 +29,9 @@ matplotlib # required for qwen-vl test
mistral_common[opencv] >= 1.5.4 # required for pixtral test
opencv-python-headless >= 4.11.0 # required for video test
datamodel_code_generator # required for minicpm3 test
lm-eval[api]==0.4.4 # required for model evaluation test
lm-eval[api]==0.4.8 # required for model evaluation test
transformers==4.50.3
huggingface-hub[hf_xet]>=0.30.0 # Required for Xet downloads.
# quantization
bitsandbytes>=0.45.3
buildkite-test-collector==0.1.9

View File

@ -152,14 +152,17 @@ genson==1.3.0
# via datamodel-code-generator
h11==0.14.0
# via httpcore
hf-xet==0.1.4
# via huggingface-hub
hiredis==3.0.0
# via tensorizer
httpcore==1.0.6
# via httpx
httpx==0.27.2
# via -r requirements/test.in
huggingface-hub==0.26.2
huggingface-hub==0.30.1
# via
# -r requirements/test.in
# accelerate
# datasets
# evaluate
@ -219,7 +222,7 @@ librosa==0.10.2.post1
# via -r requirements/test.in
llvmlite==0.44.0
# via numba
lm-eval==0.4.4
lm-eval==0.4.8
# via -r requirements/test.in
lxml==5.3.0
# via sacrebleu

View File

@ -17,9 +17,10 @@ ray[data]
--find-links https://storage.googleapis.com/libtpu-releases/index.html
--find-links https://storage.googleapis.com/jax-releases/jax_nightly_releases.html
--find-links https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
torch @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-2.8.0.dev20250328-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-2.8.0.dev20250328-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-2.8.0.dev20250328-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250328-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250328-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250328-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
torch @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-2.8.0.dev20250403-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-2.8.0.dev20250403-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-2.8.0.dev20250403-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250403-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250403-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250403-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"

View File

@ -155,6 +155,24 @@ def test_end_to_end(monkeypatch: pytest.MonkeyPatch, model: str, use_v1: bool):
llm.wake_up()
output2 = llm.generate(prompt, sampling_params)
# cmp output
assert output[0].outputs[0].text == output2[0].outputs[0].text
llm.sleep(level=1)
llm.wake_up(tags=["weights"])
free_gpu_bytes_wake_up_w, total = torch.cuda.mem_get_info()
used_bytes = total - free_gpu_bytes_wake_up_w - used_bytes_baseline
# should just reallocate memory for weights (1B model, ~2GiB weights)
if use_v1:
assert used_bytes < 10 * GiB_bytes
else:
assert used_bytes < 6 * GiB_bytes
# now allocate kv cache memory
llm.wake_up(tags=["kv_cache"])
output3 = llm.generate(prompt, sampling_params)
# cmp output
assert output[0].outputs[0].text == output3[0].outputs[0].text

View File

@ -13,18 +13,24 @@ import pytest
from vllm.platforms import current_platform
MODEL_NAME = "Qwen/Qwen2-1.5B-Instruct"
MODEL_NAMES = [
"Qwen/Qwen2-1.5B-Instruct",
"google/gemma-3-1b-it",
]
NUM_CONCURRENT = 500
TASK = "gsm8k"
FILTER = "exact_match,strict-match"
RTOL = 0.03
EXPECTED_VALUE = 0.58
EXPECTED_VALUES = {
"Qwen/Qwen2-1.5B-Instruct": 0.58,
"google/gemma-3-1b-it": 0.25,
}
def run_test(more_args=None):
def run_test(model_name, more_args=None):
"""Run the end to end accuracy test."""
model_args = f"pretrained={MODEL_NAME},max_model_len=4096"
model_args = f"pretrained={model_name},max_model_len=4096"
if more_args is not None:
model_args = "{},{}".format(model_args, more_args)
@ -37,9 +43,12 @@ def run_test(more_args=None):
)
measured_value = results["results"][TASK][FILTER]
assert (measured_value - RTOL < EXPECTED_VALUE
and measured_value + RTOL > EXPECTED_VALUE
), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"
assert model_name in EXPECTED_VALUES, (
f"Cannot find the expected value for the model {model_name=}")
expected_value = EXPECTED_VALUES[model_name]
assert (measured_value - RTOL < expected_value
and measured_value + RTOL > expected_value
), f"Expected: {expected_value} | Measured: {measured_value}"
# TODO: [AlexM] Fix it with new CI/CD tests
@ -49,7 +58,8 @@ TPU_TP_TEST_STR = "" #"tensor_parallel_size=4"
@pytest.mark.skipif(not current_platform.is_cuda()
and not current_platform.is_tpu(),
reason="V1 is currently only supported on CUDA and TPU")
def test_lm_eval_accuracy_v1_engine(monkeypatch: pytest.MonkeyPatch):
@pytest.mark.parametrize("model", MODEL_NAMES)
def test_lm_eval_accuracy_v1_engine(model, monkeypatch: pytest.MonkeyPatch):
"""Run with the V1 Engine."""
with monkeypatch.context() as m:
@ -64,7 +74,7 @@ def test_lm_eval_accuracy_v1_engine(monkeypatch: pytest.MonkeyPatch):
if TPU_TP_TEST_STR:
more_args += ",{}".format(TPU_TP_TEST_STR)
run_test(more_args)
run_test(model, more_args)
def test_lm_eval_accuracy_v0_engine(monkeypatch: pytest.MonkeyPatch):
@ -72,4 +82,4 @@ def test_lm_eval_accuracy_v0_engine(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
run_test()
run_test("Qwen/Qwen2-1.5B-Instruct")

View File

@ -11,7 +11,7 @@ import pytest
import pytest_asyncio
import requests
import torch
from openai import BadRequestError
from openai import BadRequestError, OpenAI
from ...utils import RemoteOpenAIServer
from .test_completion import zephyr_lora_added_tokens_files # noqa: F401
@ -786,56 +786,135 @@ async def test_named_tool_use(client: openai.AsyncOpenAI, is_v1_server: bool,
@pytest.mark.asyncio
async def test_required_tool_use_not_yet_supported(client: openai.AsyncOpenAI,
sample_json_schema):
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_required_tool_use(client: openai.AsyncOpenAI,
is_v1_server: bool, model_name: str):
if is_v1_server:
pytest.skip("sample_json_schema has features unsupported on V1")
pytest.skip(
"tool_choice='required' requires features unsupported on V1")
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {sample_json_schema}"
}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description":
"The city to find the weather for, e.g. 'Vienna'",
"default": "Vienna",
},
"country": {
"type":
"string",
"description":
"The country that the city is in, e.g. 'Austria'",
},
"unit": {
"type": "string",
"description":
"The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["country", "unit"],
},
},
},
{
"type": "function",
"function": {
"name": "get_forecast",
"description": "Get the weather forecast for a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description":
"The city to get the forecast for, e.g. 'Vienna'",
"default": "Vienna",
},
"country": {
"type":
"string",
"description":
"The country that the city is in, e.g. 'Austria'",
},
"days": {
"type":
"integer",
"description":
"Number of days to get the forecast for (1-7)",
},
"unit": {
"type": "string",
"description":
"The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["country", "days", "unit"],
},
},
},
]
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}],
tool_choice="required")
messages = [
{
"role": "user",
"content": "Hi! How are you doing today?"
},
{
"role": "assistant",
"content": "I'm doing well! How can I help you?"
},
{
"role":
"user",
"content":
"Can you tell me what the current weather is in Berlin and the "\
"forecast for the next 5 days, in fahrenheit?",
},
]
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_completion_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}],
tool_choice="auto")
# Non-streaming test
chat_completion = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice="required",
extra_body=dict(guided_decoding_backend="outlines"),
)
assert chat_completion.choices[0].message.tool_calls is not None
assert len(chat_completion.choices[0].message.tool_calls) > 0
# Streaming test
stream = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice="required",
extra_body=dict(guided_decoding_backend="outlines"),
stream=True,
)
output = []
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
assert len(output) > 0
@pytest.mark.asyncio
async def test_inconsistent_tool_choice_and_tools(client: openai.AsyncOpenAI,
is_v1_server: bool,
sample_json_schema):
if is_v1_server:
@ -1054,7 +1133,7 @@ async def test_long_seed(client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_http_chat_wo_model_name(server: RemoteOpenAIServer):
async def test_http_chat_no_model_name_with_curl(server: RemoteOpenAIServer):
url = f"http://localhost:{server.port}/v1/chat/completions"
headers = {
"Content-Type": "application/json",
@ -1075,10 +1154,35 @@ async def test_http_chat_wo_model_name(server: RemoteOpenAIServer):
response = requests.post(url, headers=headers, json=data)
response_data = response.json()
print(response_data)
assert response_data.get("model") == MODEL_NAME
choice = response_data.get("choices")[0]
message = choice.get("message")
assert message is not None
content = message.get("content")
assert content is not None
assert len(content) > 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME, ""])
async def test_http_chat_no_model_name_with_openai(server: RemoteOpenAIServer,
model_name: str):
openai_api_key = "EMPTY"
openai_api_base = f"http://localhost:{server.port}/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
messages = [
{
"role": "user",
"content": "Hello, vLLM!"
},
]
response = client.chat.completions.create(
model="", # empty string
messages=messages,
)
assert response.model == MODEL_NAME

View File

@ -13,9 +13,12 @@ import requests
from prometheus_client.parser import text_string_to_metric_families
from transformers import AutoTokenizer
from vllm import version
from ...utils import RemoteOpenAIServer
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
PREV_MINOR_VERSION = version._prev_minor_version()
@pytest.fixture(scope="module", params=[True, False])
@ -55,6 +58,7 @@ def default_server_args():
"",
"--enable-chunked-prefill",
"--disable-frontend-multiprocessing",
f"--show-hidden-metrics-for-version={PREV_MINOR_VERSION}",
])
def server(use_v1, default_server_args, request):
if request.param:
@ -129,7 +133,9 @@ async def test_metrics_counts(server: RemoteOpenAIServer,
# Loop over all expected metric_families
for metric_family, suffix_values_list in EXPECTED_VALUES.items():
if use_v1 and metric_family not in EXPECTED_METRICS_V1:
if ((use_v1 and metric_family not in EXPECTED_METRICS_V1)
or (not server.show_hidden_metrics
and metric_family in HIDDEN_DEPRECATED_METRICS)):
continue
found_metric = False
@ -165,10 +171,10 @@ async def test_metrics_counts(server: RemoteOpenAIServer,
EXPECTED_METRICS = [
"vllm:num_requests_running",
"vllm:num_requests_swapped",
"vllm:num_requests_swapped", # deprecated
"vllm:num_requests_waiting",
"vllm:gpu_cache_usage_perc",
"vllm:cpu_cache_usage_perc",
"vllm:cpu_cache_usage_perc", # deprecated
"vllm:time_to_first_token_seconds_sum",
"vllm:time_to_first_token_seconds_bucket",
"vllm:time_to_first_token_seconds_count",
@ -268,6 +274,11 @@ EXPECTED_METRICS_V1 = [
"vllm:request_decode_time_seconds_count",
]
HIDDEN_DEPRECATED_METRICS = [
"vllm:num_requests_swapped",
"vllm:cpu_cache_usage_perc",
]
@pytest.mark.asyncio
async def test_metrics_exist(server: RemoteOpenAIServer,
@ -282,7 +293,9 @@ async def test_metrics_exist(server: RemoteOpenAIServer,
assert response.status_code == HTTPStatus.OK
for metric in (EXPECTED_METRICS_V1 if use_v1 else EXPECTED_METRICS):
assert metric in response.text
if (not server.show_hidden_metrics
and metric not in HIDDEN_DEPRECATED_METRICS):
assert metric in response.text
def test_metrics_exist_run_batch(use_v1: bool):

View File

@ -25,16 +25,37 @@ def test_sleep_mode():
"VLLM_SERVER_DEV_MODE": "1",
"CUDA_VISIBLE_DEVICES": "0"
}) as remote_server:
response = requests.post(remote_server.url_for("/sleep"),
response = requests.post(remote_server.url_for("sleep"),
params={"level": "1"})
assert response.status_code == 200
response = requests.get(remote_server.url_for("/is_sleeping"))
response = requests.get(remote_server.url_for("is_sleeping"))
assert response.status_code == 200
assert response.json().get("is_sleeping") is True
response = requests.post(remote_server.url_for("/wake_up"))
response = requests.post(remote_server.url_for("wake_up"))
assert response.status_code == 200
response = requests.get(remote_server.url_for("/is_sleeping"))
response = requests.get(remote_server.url_for("is_sleeping"))
assert response.status_code == 200
assert response.json().get("is_sleeping") is False
# test wake up with tags
response = requests.post(remote_server.url_for("sleep"),
params={"level": "1"})
assert response.status_code == 200
response = requests.post(remote_server.url_for("wake_up"),
params={"tags": ["weights"]})
assert response.status_code == 200
# is sleeping should be false after waking up any part of the engine
response = requests.get(remote_server.url_for("is_sleeping"))
assert response.status_code == 200
assert response.json().get("is_sleeping") is True
response = requests.post(remote_server.url_for("wake_up"),
params={"tags": ["kv_cache"]})
assert response.status_code == 200
response = requests.get(remote_server.url_for("is_sleeping"))
assert response.status_code == 200
assert response.json().get("is_sleeping") is False

View File

@ -9,8 +9,11 @@ import torch
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.fused_moe.fused_moe import (
deep_gemm_moe_fp8, fused_topk, moe_align_block_size)
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
deep_gemm_moe_fp8)
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
moe_align_block_size)
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
from vllm.platforms import current_platform
@ -357,7 +360,7 @@ def fp8_perm(m, idx):
return m[idx, ...]
def test_moe_permute(a, a_s, topk_ids, num_groups, topk, block_m):
def _moe_permute(a, a_s, topk_ids, num_groups, topk, block_m):
M, K = a.shape
sorted_token_ids, m_indices, num_pad = moe_align_block_size(
@ -376,7 +379,7 @@ def test_moe_permute(a, a_s, topk_ids, num_groups, topk, block_m):
return a, a_s, m_indices, inv_perm
def test_moe_unpermute(out, inv_perm, topk, K, topk_weight):
def _moe_unpermute(out, inv_perm, topk, K, topk_weight):
M = topk_weight.shape[0]
out = out[inv_perm, ...]
tmp_out = out.view(-1, topk, K)
@ -398,8 +401,8 @@ def deep_gemm_w8a8_block_fp8_moe(M, K, a, w1, w2, w1_s, w2_s, score, topk,
a_q, a_s = per_token_group_quant_fp8(a, block_m)
a_q, a_s, m_indices, inv_perm = test_moe_permute(a_q, a_s, topk_ids,
num_groups, topk, block_m)
a_q, a_s, m_indices, inv_perm = _moe_permute(a_q, a_s, topk_ids,
num_groups, topk, block_m)
inter_out = torch.zeros((a_q.shape[0], N * 2),
dtype=torch.bfloat16,
@ -416,7 +419,7 @@ def deep_gemm_w8a8_block_fp8_moe(M, K, a, w1, w2, w1_s, w2_s, score, topk,
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(
(act_out_q, act_out_s), (w2, w2_s), out, m_indices)
final_out = test_moe_unpermute(out, inv_perm, topk, K, topk_weight)
final_out = _moe_unpermute(out, inv_perm, topk, K, topk_weight)
return final_out
@ -437,7 +440,7 @@ def test_w8a8_block_fp8_deep_gemm_fused_moe(M, N, K, E, topk, seed):
pytest.skip(
f"Skipping test; bad size m={M}, n={N}, k={K}, topk={topk}, E={E}")
if (N <= 512):
if N <= 512:
pytest.skip("Skipping N <= 512 until performance issues solved.")
vllm_config = VllmConfig()

View File

@ -4,8 +4,8 @@ import torch
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.fused_moe import (cutlass_moe_fp8,
fused_experts,
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
from vllm.model_executor.layers.fused_moe.fused_moe import (fused_experts,
fused_topk)
from vllm.platforms import current_platform
@ -131,9 +131,9 @@ def test_cutlass_moe_no_graph(
c_strides2,
a1_scale=a_scale1)
print(triton_output)
print(cutlass_output)
print("*")
#print(triton_output)
#print(cutlass_output)
#print("*")
torch.testing.assert_close(triton_output,
cutlass_output,
@ -234,9 +234,9 @@ def test_cutlass_moe_cuda_graph(
graph.replay()
torch.cuda.synchronize()
print(triton_output)
print(cutlass_output)
print("*")
#print(triton_output)
#print(cutlass_output)
#print("*")
torch.testing.assert_close(triton_output,
cutlass_output,

View File

@ -15,7 +15,8 @@ def test_ggml_opcheck(quant_type):
qweight = torch.randint(0, 100, shape, device='cuda', dtype=torch.uint8)
m = qweight.shape[0]
n = qweight.shape[1] // type_size * block_size
opcheck(torch.ops._C.ggml_dequantize, (qweight, quant_type, m, n))
opcheck(torch.ops._C.ggml_dequantize,
(qweight, quant_type, m, n, torch.float16))
x = torch.rand((m, 512), device='cuda', dtype=torch.float16)
opcheck(torch.ops._C.ggml_mul_mat_a8,

View File

@ -65,7 +65,7 @@ QUANT_TYPES = [
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", [torch.half])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("quant_type", QUANT_TYPES)
@torch.inference_mode()
def test_dequantize(hidden_size: int, dtype: torch.dtype,
@ -78,7 +78,7 @@ def test_dequantize(hidden_size: int, dtype: torch.dtype,
ref_output = torch.tensor(dequantize(tensor.data, quant_type),
device="cuda").to(dtype)
output = ops.ggml_dequantize(torch.tensor(tensor.data, device="cuda"),
quant_type, *list(shape)).to(dtype)
quant_type, *list(shape), dtype)
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=4e-2)

View File

@ -164,6 +164,7 @@ def test_contexted_kv_attention(
block_table,
b_start_loc,
b_seq_len,
MAX_CTX_LEN,
max_input_len,
k_scale,
v_scale,
@ -180,6 +181,7 @@ def test_contexted_kv_attention(
block_table,
b_start_loc,
b_seq_len,
MAX_CTX_LEN,
max_input_len,
k_scale,
v_scale,
@ -397,6 +399,7 @@ def test_contexted_kv_attention_alibi(
block_table,
b_start_loc,
b_seq_len,
MAX_CTX_LEN,
max_input_len,
k_scale,
v_scale,
@ -413,6 +416,7 @@ def test_contexted_kv_attention_alibi(
block_table,
b_start_loc,
b_seq_len,
MAX_CTX_LEN,
max_input_len,
k_scale,
v_scale,

View File

@ -2,7 +2,6 @@
import tempfile
from collections import OrderedDict
from typing import TypedDict
from unittest.mock import MagicMock, patch
import pytest
@ -26,28 +25,6 @@ from vllm.model_executor.models.interfaces import SupportsLoRA
from vllm.platforms import current_platform
class ContextIDInfo(TypedDict):
lora_id: int
context_length: str
class ContextInfo(TypedDict):
lora: str
context_length: str
LONG_LORA_INFOS: list[ContextIDInfo] = [{
"lora_id": 1,
"context_length": "16k",
}, {
"lora_id": 2,
"context_length": "16k",
}, {
"lora_id": 3,
"context_length": "32k",
}]
@pytest.fixture()
def should_do_global_cleanup_after_test(request) -> bool:
"""Allow subdirectories to skip global cleanup by overriding this fixture.

View File

@ -59,7 +59,7 @@ DEVICES = ([
# prefill stage(True) or decode stage(False)
STAGES = [True, False]
NUM_RANDOM_SEEDS = 10
NUM_RANDOM_SEEDS = 6
VOCAB_PARALLEL_EMBEDDING_TEST_NUM_RANDOM_SEEDS = 128

View File

@ -153,20 +153,3 @@ def test_llama_lora_tp4_fully_sharded_loras(sql_lora_files):
enable_chunked_prefill=True,
)
generate_and_test(llm, sql_lora_files)
@multi_gpu_test(num_gpus=4)
@create_new_process_for_each_test()
def test_llama_lora_tp4_fully_sharded_enable_bias(sql_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=4,
fully_sharded_loras=True,
enable_lora_bias=True,
enable_chunked_prefill=True,
)
generate_and_test(llm, sql_lora_files)

View File

@ -58,7 +58,6 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@create_new_process_for_each_test()
def test_minicpmv_lora(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,

View File

@ -1,7 +1,10 @@
# SPDX-License-Identifier: Apache-2.0
import pytest
import vllm
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
from ..utils import create_new_process_for_each_test, multi_gpu_test
@ -44,7 +47,6 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
return generated_texts
@create_new_process_for_each_test()
def test_ilama_lora(ilama_lora_files):
llm = vllm.LLM(MODEL_PATH,
max_model_len=1024,
@ -63,6 +65,8 @@ def test_ilama_lora(ilama_lora_files):
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
@pytest.mark.skipif(current_platform.is_cuda_alike(),
reason="Skipping to avoid redundant model tests")
@multi_gpu_test(num_gpus=4)
@create_new_process_for_each_test()
def test_ilama_lora_tp4(ilama_lora_files):
@ -84,6 +88,8 @@ def test_ilama_lora_tp4(ilama_lora_files):
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
@pytest.mark.skipif(current_platform.is_cuda_alike(),
reason="Skipping to avoid redundant model tests")
@multi_gpu_test(num_gpus=4)
@create_new_process_for_each_test()
def test_ilama_lora_tp4_fully_sharded_loras(ilama_lora_files):

View File

@ -64,9 +64,11 @@ def test_reshape_and_cache(num_tokens, n_kv_head, d_head, num_blocks,
key_cache = torch.zeros_like(key_cache_cpu, device=device)
value_cache = torch.zeros_like(value_cache_cpu, device=device)
slot_mapping = slot_mapping_cpu.to(device)
kv_cache = torch.stack([key_cache, value_cache])
# Run vectorized implementation on XLA device
reshape_and_cache(key, value, key_cache, value_cache, slot_mapping)
reshape_and_cache(key, value, kv_cache, slot_mapping)
key_cache, value_cache = torch.unbind(kv_cache, dim=0)
# Move results back to CPU for comparison
key_cache_result = key_cache.cpu()

View File

@ -258,13 +258,13 @@ def sample_inputs(
value[start_loc:end_loc])
cur_ctx += block_size
block_id += 1
kv_cache = torch.stack([k_cache, v_cache])
return (
query,
k,
v,
k_cache,
v_cache,
kv_cache,
block_table,
key,
value,
@ -361,8 +361,7 @@ def test_contexted_kv_attention(
query,
k_active,
v_active,
k_cache,
v_cache,
kv_cache,
block_table,
key,
value,
@ -439,8 +438,7 @@ def test_contexted_kv_attention(
query = query.unsqueeze(0).permute(0, 2, 3, 1).contiguous()
k = k.unsqueeze(0).permute(0, 2, 3, 1).contiguous()
v = v.unsqueeze(0).permute(0, 2, 1, 3).contiguous()
k_cache = k_cache.permute(0, 2, 1, 3).contiguous()
v_cache = v_cache.permute(0, 2, 1, 3).contiguous()
kv_cache = kv_cache.permute(0, 1, 3, 2, 4).contiguous()
# transform block table
active_block_table = get_active_block_tables(
@ -487,8 +485,7 @@ def test_contexted_kv_attention(
query.to(device=device),
k.to(device=device),
v.to(device=device),
k_cache.to(device=device),
v_cache.to(device=device),
kv_cache.to(device=device),
active_block_table.to(device=device),
attn_mask.to(device=device),
)

View File

@ -43,7 +43,8 @@ def test_chat_completion_request_with_no_tools():
assert request.tool_choice == 'none'
def test_chat_completion_request_with_tool_choice_but_no_tools():
@pytest.mark.parametrize('tool_choice', ['auto', 'required'])
def test_chat_completion_request_with_tool_choice_but_no_tools(tool_choice):
with pytest.raises(ValueError,
match="When using `tool_choice`, `tools` must be set."):
ChatCompletionRequest.model_validate({
@ -54,7 +55,7 @@ def test_chat_completion_request_with_tool_choice_but_no_tools():
'model':
'facebook/opt-125m',
'tool_choice':
'auto'
tool_choice
})
with pytest.raises(ValueError,
@ -67,7 +68,7 @@ def test_chat_completion_request_with_tool_choice_but_no_tools():
'model':
'facebook/opt-125m',
'tool_choice':
'auto',
tool_choice,
'tools':
None
})

View File

@ -0,0 +1,336 @@
# SPDX-License-Identifier: Apache-2.0
import json
import re
from copy import deepcopy
from unittest.mock import MagicMock
import pytest
from pydantic import TypeAdapter
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
ChatCompletionToolsParam)
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
EXAMPLE_TOOLS = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for"
", e.g. 'San Francisco'",
},
},
"required": ["city"],
"additionalProperties": False
},
},
"strict": True
},
{
"type": "function",
"function": {
"name": "get_forecast",
"description": "Get the weather forecast for a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to get the forecast for, e.g. 'New York'",
},
"days": {
"type":
"integer",
"description":
"Number of days to get the forecast for (1-7)",
},
},
"required": ["city", "days"],
"additionalProperties": False
},
},
"strict": True
},
]
def _compile_and_check(tools: list[ChatCompletionToolsParam], sample_output,
should_match: bool):
self = MagicMock(tool_choice="required", tools=tools)
schema = ChatCompletionRequest._get_guided_json_from_tool(self)
assert isinstance(schema, dict)
# use build_regex_from_schema used in JSONLogitsProcessor to create Guide
from outlines_core.fsm.json_schema import build_regex_from_schema
regex = build_regex_from_schema(json.dumps(schema))
compiled = re.compile(regex)
matches = compiled.fullmatch(json.dumps(sample_output)) is not None
assert matches == should_match
VALID_TOOL_OUTPUTS = [
([{
"name": "get_current_weather",
"parameters": {
"city": "Vienna"
}
}], True),
([{
"name": "get_current_weather",
"parameters": {
"city": "Vienna"
}
}, {
"name": "get_current_weather",
"parameters": {
"city": "Berlin"
}
}], True),
([{
"name": "get_forecast",
"parameters": {
"city": "Vienna",
"days": 7
}
}], True),
([{
"name": "get_forecast",
"parameters": {
"city": "Vienna",
"days": 7
}
}, {
"name": "get_current_weather",
"parameters": {
"city": "Vienna"
}
}], True),
([{
"name": "get_forecast",
"parameters": {
"city": "Vienna",
"days": 7
}
}, {
"name": "get_current_weather",
"parameters": {
"city": "Vienna"
}
}, {
"name": "get_forecast",
"parameters": {
"city": "Berlin",
"days": 7
}
}, {
"name": "get_current_weather",
"parameters": {
"city": "Berlin"
}
}], True),
]
VALID_TOOLS = [t[0] for t in VALID_TOOL_OUTPUTS]
@pytest.mark.parametrize(
"sample_output, should_match",
VALID_TOOL_OUTPUTS + [
(None, False),
([], False), # empty list cannot be generated
({}, False), # empty object cannot be generated
([{}], False), # list with empty object cannot be generated
(
[{ # function without required parameters cannot be generated
"name": "get_current_weather"
}],
False),
(
[{ # function without required parameters cannot be generated
"name": "get_current_weather",
"parameters": {}
}],
False),
(
[{ # function without required parameters cannot be generated
"name": "get_current_weather",
"parameters": None
}],
False),
(
{ # tool call without lists cannot be generated
"name": "get_current_weather",
"parameters": {
"city": "Vienna"
}
},
False),
(
[{ # tool call with extra parameters cannot be generated
"name": "get_current_weather",
"parameters": {
"city": "Vienna",
"extra": "value"
}
}],
False),
(
[{ # tool call where parameters are first cannot be generated
"parameters": {
"city": "Vienna"
},
"name": "get_current_weather"
}],
False),
(
[{ # tool call without all required parameters cannot be generated
"name": "get_forecast",
"parameters": {
"city": "Vienna"
}
}],
False),
( # tool call with incorrect name/parameters cannot be generated
[{
"name": "get_weather",
"parameters": {
"city": "Vienna",
"days": 7
}
}], False),
( # tool call with both valid and empty function cannot be generated
[{
"name": "get_current_weather",
"parameters": {
"city": "Vienna"
}
}, {}], False),
])
def test_guided_json(sample_output, should_match):
_compile_and_check(tools=TypeAdapter(
list[ChatCompletionToolsParam]).validate_python(EXAMPLE_TOOLS),
sample_output=sample_output,
should_match=should_match)
def update_parameters_none(
tool: ChatCompletionToolsParam) -> ChatCompletionToolsParam:
tool.function.parameters = None
return tool
def update_parameters_empty_dict(
tool: ChatCompletionToolsParam) -> ChatCompletionToolsParam:
tool.function.parameters = {}
return tool
@pytest.mark.parametrize(
"sample_output, should_match",
[
(None, False),
([], False), # empty list cannot be generated
({}, False), # empty object cannot be generated
([{}], False), # list with empty object cannot be generated
(
[{ # function without required parameters cannot be generated
"name": "get_current_weather"
}],
False),
(
[{ # function without required parameters cannot be generated
"name": "get_current_weather",
"parameters": None
}],
False),
(
[{ # function with extra parameters cannot be generated
"name": "get_current_weather",
"parameters": {
"extra": "value"
}
}],
False),
(
[{ # only function with empty parameters object is valid
"name": "get_current_weather",
"parameters": {}
}],
True),
])
@pytest.mark.parametrize(
"update_parameters",
[update_parameters_none, update_parameters_empty_dict])
def test_guided_json_without_parameters(sample_output, should_match,
update_parameters):
updated_tools = [deepcopy(EXAMPLE_TOOLS[0])]
tools = TypeAdapter(
list[ChatCompletionToolsParam]).validate_python(updated_tools)
tools = list(map(update_parameters, tools))
assert all([
tool.function.parameters is None or tool.function.parameters == {}
for tool in tools
])
_compile_and_check(tools=tools,
sample_output=sample_output,
should_match=should_match)
@pytest.mark.parametrize("output", VALID_TOOLS)
@pytest.mark.parametrize("empty_params", [False, True])
@pytest.mark.parametrize("delta_len", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
def test_streaming_output_valid(output, empty_params, delta_len):
self = MagicMock()
output = deepcopy(output)
if empty_params:
output = [{"name": o["name"], "parameters": {}} for o in output]
output_json = json.dumps(output)
previous_text = ""
function_name_returned = False
messages = []
for i in range(0, len(output_json), delta_len):
delta_text = output_json[i:i + delta_len]
current_text = previous_text + delta_text
delta_message, function_name_returned = (
OpenAIServingChat.extract_tool_call_required_streaming(
self,
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
function_name_returned=function_name_returned))
if delta_message:
messages.append(delta_message)
previous_text = current_text
assert len(messages) > 0
combined_messages = "["
for message in messages:
if message.tool_calls[0].function.name:
if len(combined_messages) > 1:
combined_messages += "},"
combined_messages += '{"name": "' + \
message.tool_calls[0].function.name + \
'", "parameters": ' + \
message.tool_calls[0].function.arguments
else:
combined_messages += message.tool_calls[0].function.arguments
combined_messages += "}]"
assert json.loads(combined_messages) == output
assert json.dumps(json.loads(combined_messages)) == output_json

View File

@ -30,7 +30,7 @@ def test_tpu_compilation():
n=N,
max_tokens=16)
llm = LLM(model="Qwen/Qwen2.5-1.5B-Instruct",
llm = LLM(model="Qwen/Qwen2-1.5B-Instruct",
max_num_batched_tokens=256,
max_model_len=256,
max_num_seqs=32,

View File

@ -104,6 +104,9 @@ class RemoteOpenAIServer:
self.host = str(args.host or 'localhost')
self.port = int(args.port)
self.show_hidden_metrics = \
args.show_hidden_metrics_for_version is not None
# download the model before starting the server to avoid timeout
is_local = os.path.isdir(model)
if not is_local:

View File

@ -671,10 +671,7 @@ def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
assert running_req.num_tokens_with_spec == 2 + len(spec_tokens[i])
# No draft or accepted tokens counted yet
assert engine_core_outputs.scheduler_stats.spec_decoding_stats is not None
stats = engine_core_outputs.scheduler_stats.spec_decoding_stats
assert stats.num_draft_tokens == 0
assert stats.num_accepted_tokens == 0
assert engine_core_outputs.scheduler_stats.spec_decoding_stats is None
# Schedule the speculated tokens for validation
output = scheduler.schedule()
@ -702,7 +699,11 @@ def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
engine_core_outputs = scheduler.update_from_output(output,
model_runner_output)
assert engine_core_outputs.scheduler_stats.spec_decoding_stats is not None
stats = engine_core_outputs.scheduler_stats.spec_decoding_stats
assert stats.num_draft_tokens == expected[0]
assert stats.num_accepted_tokens == expected[1]
scheduler_stats = engine_core_outputs.scheduler_stats
if expected[0] == 0:
assert scheduler_stats.spec_decoding_stats is None
else:
assert scheduler_stats.spec_decoding_stats is not None
stats = scheduler_stats.spec_decoding_stats
assert stats.num_draft_tokens == expected[0]
assert stats.num_accepted_tokens == expected[1]

View File

@ -125,17 +125,9 @@ def test_structured_output(
print(generated_text)
assert generated_text is not None
# Parse to verify it is valid JSON
# Parse to verify it is a valid JSON object
parsed_json = json.loads(generated_text)
allowed_types: tuple[type, ...] = (dict, )
if guided_decoding_backend.startswith("xgrammar"):
# TODO - we are currently too permissive with xgrammar and
# allow # any valid json (typically comes back as a list or
# object). We can fix this by specifying a jsonschema of
# {"type": "object"}, # but we need this fix in a release
# first: https://github.com/mlc-ai/xgrammar/pull/264
allowed_types = (dict, list)
assert isinstance(parsed_json, allowed_types)
assert isinstance(parsed_json, dict)
#
# Test 3: test a jsonschema incompatible with xgrammar

View File

@ -0,0 +1,98 @@
# SPDX-License-Identifier: Apache-2.0
from unittest.mock import ANY, patch
import torch
from vllm.attention.backends.abstract import AttentionType
from vllm.v1.attention.backends.pallas import (NUM_KV_PAGES_PER_BLOCK,
NUM_QUERIES_PER_BLOCK,
PallasAttentionBackendImpl,
PallasMetadata)
def test_ragged_paged_attention():
# We verify that the kernel inputs such as sliding_window, etc. are passed
# in from the model correctly.
# The correctness of the paged attention kernel is tested in the kernel
# library.
num_heads = 4
head_size = 128
scale = 1.0
num_kv_heads = 4
sliding_window = 128
logits_soft_cap = 50.0
attn_impl = PallasAttentionBackendImpl(
num_heads=num_heads,
head_size=head_size,
scale=scale,
num_kv_heads=num_kv_heads,
alibi_slopes=None,
sliding_window=sliding_window,
kv_cache_dtype="auto",
logits_soft_cap=logits_soft_cap,
attn_type=AttentionType.DECODER,
)
mock_vmem_limit_bytes = 1024
attn_impl.vmem_limit_bytes = mock_vmem_limit_bytes
class FakeAttentionLayer:
_k_scale_float: float
_v_scale_float: float
layer = FakeAttentionLayer()
layer._k_scale_float = 1.0
layer._v_scale_float = 1.0
num_tokens = 16
num_blocks = 1024
block_size = 16
query = torch.zeros(num_tokens, num_heads * head_size)
key = torch.zeros(num_tokens, num_kv_heads * head_size)
value = torch.zeros(num_tokens, num_kv_heads * head_size)
kv_cache = torch.zeros(num_blocks, block_size, num_kv_heads * 2, head_size)
slot_mapping = torch.zeros(num_tokens, dtype=torch.int64)
max_num_reqs = 8
max_num_blocks_per_req = 8
block_tables = torch.zeros((max_num_reqs, max_num_blocks_per_req),
dtype=torch.int32)
context_lens = torch.ones((max_num_reqs, ), dtype=torch.int32)
query_lens = [1] * max_num_reqs
query_start_loc = torch.cumsum(torch.tensor([0] + query_lens,
dtype=torch.int32),
dim=0,
dtype=torch.int32)
num_seqs = torch.tensor([max_num_reqs], dtype=torch.int32)
attn_metadata = PallasMetadata(
slot_mapping=slot_mapping,
block_tables=block_tables,
context_lens=context_lens,
query_start_loc=query_start_loc,
num_seqs=num_seqs,
)
with patch("torch.ops.xla.ragged_paged_attention"
) as mock_ragged_paged_attention:
attn_impl.forward(
layer=layer,
query=query,
key=key,
value=value,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
mock_ragged_paged_attention.assert_called_once_with(
ANY, # query
ANY, # kv_cache
ANY, # context_lens
ANY, # block_tables
ANY, # query_start_loc
ANY, # num_seqs
num_kv_pages_per_block=NUM_KV_PAGES_PER_BLOCK,
num_queries_per_block=NUM_QUERIES_PER_BLOCK,
vmem_limit_bytes=mock_vmem_limit_bytes,
use_kernel=True,
sm_scale=scale,
sliding_window=sliding_window,
soft_cap=logits_soft_cap,
)

View File

@ -0,0 +1,132 @@
# SPDX-License-Identifier: Apache-2.0
import math
import pytest
import torch
from vllm.platforms import current_platform
from vllm.v1.sample.ops.topk_topp_sampler import apply_top_k_top_p_tpu
if not current_platform.is_tpu():
pytest.skip("This test needs a TPU.", allow_module_level=True)
import torch_xla.core.xla_model as xm
BATCH_SIZE = 1024
VOCAB_SIZE = 128 * 1024
TOLERANCE = 1e-6
def test_topp_result_sums_past_p():
with torch.device(xm.xla_device()):
xm.set_rng_state(seed=33)
logits = torch.rand((BATCH_SIZE, VOCAB_SIZE))
probs = logits.softmax(dim=-1)
# Random top-p values between 0 and 1.
p = torch.rand((BATCH_SIZE, ))
# Set p=1 for ~50% of requests in the batch (top-p disabled).
p.masked_fill_(torch.randint(0, 2, (BATCH_SIZE, ), dtype=bool), 1)
no_op_k = torch.tensor([VOCAB_SIZE])
logits_masked = apply_top_k_top_p_tpu(logits=logits.clone(),
k=no_op_k,
p=p)
# Verify that the masked logit's probability sums to at least p.
probs.masked_fill_(logits_masked.isinf(), 0)
masked_prob_sum = probs.sum(dim=-1)
xm.mark_step()
# Perform assertion on CPU.
assert torch.all(torch.ge(masked_prob_sum.cpu() + TOLERANCE, p.cpu()))
def test_topp_basic():
with torch.device(xm.xla_device()):
logits = torch.tensor([[math.log(0.2),
math.log(0.3),
math.log(0.5)],
[math.log(0.5),
math.log(0.1),
math.log(0.4)]])
result = apply_top_k_top_p_tpu(logits=logits.clone(),
k=torch.tensor([3, 3]),
p=torch.tensor([0.79, 0.79]))
xm.mark_step()
# Expect the smallest elements to be dropped.
expected_result = logits.clone().cpu()
expected_result[0, 0] = float("-inf")
expected_result[1, 1] = float("-inf")
assert torch.allclose(expected_result, result.cpu())
def test_topp_select_all():
with torch.device(xm.xla_device()):
logits = torch.tensor([[math.log(0.2),
math.log(0.3),
math.log(0.5)],
[math.log(0.5),
math.log(0.1),
math.log(0.4)]])
result = apply_top_k_top_p_tpu(logits=logits.clone(),
k=torch.tensor([3, 3]),
p=torch.tensor([1.0, 1.0]))
xm.mark_step()
assert torch.allclose(logits.cpu(), result.cpu())
def test_topp_with_ties():
with torch.device(xm.xla_device()):
# Input has multiple math.log(0.3).
logits = torch.tensor(
[[math.log(0.3),
math.log(0.3),
math.log(0.3),
math.log(0.1)]])
result = apply_top_k_top_p_tpu(logits=logits.clone(),
k=torch.tensor([4]),
p=torch.tensor([0.2]))
xm.mark_step()
# All tie values are included in the top-p set. Tie breaking is left
# to be done during final sampling (all tie tokens have equal
# probability of being chosen).
expected_result = logits.clone().cpu()
expected_result[0, 3] = float("-inf")
assert torch.allclose(expected_result, result.cpu())
def test_both_topk_topp():
with torch.device(xm.xla_device()):
logits = torch.tensor([[math.log(0.2),
math.log(0.3),
math.log(0.5)],
[math.log(0.5),
math.log(0.1),
math.log(0.4)]])
# Set k=1 for the first batch.
result = apply_top_k_top_p_tpu(logits=logits.clone(),
k=torch.tensor([1, 3]),
p=torch.tensor([0.79, 0.79]))
xm.mark_step()
# Since for the first batch k=1, expect only the largest element gets
# selected.
expected_result = logits.clone().cpu()
expected_result[0, 0] = float("-inf")
expected_result[0, 1] = float("-inf")
expected_result[1, 1] = float("-inf")
assert torch.allclose(expected_result, result.cpu())

View File

@ -18,5 +18,5 @@ if ! [ -x "$(command -v shellcheck)" ]; then
export PATH="$PATH:$(pwd)/shellcheck-${scversion}"
fi
# TODO - fix warnings in .buildkite/run-amd-test.sh
find . -name "*.sh" ".git" -prune -not -path "./.buildkite/run-amd-test.sh" -print0 | xargs -0 -I {} sh -c 'git check-ignore -q "{}" || shellcheck -s bash "{}"'
# TODO - fix warnings in .buildkite/scripts/hardware_ci/run-amd-test.sh
find . -name "*.sh" ".git" -prune -not -path "./.buildkite/scripts/hardware_ci/run-amd-test.sh" -print0 | xargs -0 -I {} sh -c 'git check-ignore -q "{}" || shellcheck -s bash "{}"'

View File

@ -4,9 +4,10 @@
# version library first. Such assumption is critical for some customization.
from .version import __version__, __version_tuple__ # isort:skip
import os
import torch
# The environment variables override should be imported before any other
# modules to ensure that the environment variables are set before any
# other modules are imported.
import vllm.env_override # isort:skip # noqa: F401
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
@ -23,19 +24,6 @@ from vllm.outputs import (ClassificationOutput, ClassificationRequestOutput,
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
# set some common config/environment variables that should be set
# for all processes created by vllm and all processes
# that interact with vllm workers.
# they are executed whenever `import vllm` is called.
# see https://github.com/NVIDIA/nccl/issues/1234
os.environ['NCCL_CUMEM_ENABLE'] = '0'
# see https://github.com/vllm-project/vllm/issues/10480
os.environ['TORCHINDUCTOR_COMPILE_THREADS'] = '1'
# see https://github.com/vllm-project/vllm/issues/10619
torch._inductor.config.compile_threads = 1
__all__ = [
"__version__",
"__version_tuple__",

View File

@ -110,6 +110,7 @@ def paged_attention_rocm(
scale: float,
block_tables: torch.Tensor,
seq_lens: torch.Tensor,
query_start_loc: Optional[torch.Tensor],
block_size: int,
max_seq_len: int,
alibi_slopes: Optional[torch.Tensor],
@ -120,8 +121,9 @@ def paged_attention_rocm(
torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
key_cache, value_cache, num_kv_heads,
scale, block_tables, seq_lens,
block_size, max_seq_len, alibi_slopes,
kv_cache_dtype, k_scale, v_scale)
query_start_loc, block_size, max_seq_len,
alibi_slopes, kv_cache_dtype, k_scale,
v_scale)
def mla_decode_kvcache_cpu(
@ -436,9 +438,12 @@ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
if hasattr(torch.ops._C, "ggml_dequantize"):
@register_fake("_C::ggml_dequantize")
def _ggml_dequantize_fake(W: torch.Tensor, quant_type: int,
m: torch.SymInt,
n: torch.SymInt) -> torch.Tensor:
def _ggml_dequantize_fake(
W: torch.Tensor,
quant_type: int,
m: torch.SymInt,
n: torch.SymInt,
dtype: Optional[torch.dtype] = None) -> torch.Tensor:
return torch.empty((m, n), dtype=torch.float16, device=W.device)
@register_fake("_C::ggml_mul_mat_vec_a8")
@ -1097,9 +1102,9 @@ def marlin_qqq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
# gguf
def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int,
n: int) -> torch.Tensor:
return torch.ops._C.ggml_dequantize(W, quant_type, m, n)
def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
dtype: Optional[torch.dtype]) -> torch.Tensor:
return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
def ggml_mul_mat_vec_a8(

View File

@ -17,16 +17,13 @@ from vllm.attention.ops.paged_attn import (PagedAttention,
PagedAttentionMetadata)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.platforms.rocm import use_rocm_custom_paged_attention
if TYPE_CHECKING:
from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata
logger = init_logger(__name__)
_PARTITION_SIZE_ROCM = 256
_GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
_ON_NAVI = "gfx1" in _GPU_ARCH
_ON_MI250_MI300 = any(arch in _GPU_ARCH for arch in ["gfx90a", "gfx942"])
class ROCmFlashAttentionBackend(AttentionBackend):
@ -790,9 +787,9 @@ class ROCmFlashAttentionImpl(AttentionImpl):
num_seqs, num_heads, head_size = decode_query.shape
block_size = value_cache.shape[3]
gqa_ratio = num_heads // self.num_kv_heads
use_custom = _use_rocm_custom_paged_attention(
use_custom = use_rocm_custom_paged_attention(
decode_query.dtype, head_size, block_size, gqa_ratio,
decode_meta.max_decode_seq_len)
decode_meta.max_decode_seq_len, self.sliding_window)
if use_custom:
max_seq_len = (decode_meta.max_decode_seq_len if self.attn_type
!= AttentionType.ENCODER_DECODER else
@ -817,6 +814,8 @@ class ROCmFlashAttentionImpl(AttentionImpl):
out = output[num_prefill_tokens:]
else:
out = output
query_start_loc = None
ops.paged_attention_rocm(
out,
exp_sums,
@ -833,6 +832,7 @@ class ROCmFlashAttentionImpl(AttentionImpl):
decode_meta.seq_lens_tensor
if self.attn_type != AttentionType.ENCODER_DECODER else
decode_meta.encoder_seq_lens_tensor,
query_start_loc,
block_size,
max_seq_len,
self.alibi_slopes,
@ -898,15 +898,3 @@ def _sdpa_attention(
start = end
return output
def _use_rocm_custom_paged_attention(qtype: torch.dtype, head_size: int,
block_size: int, gqa_ratio: int,
max_seq_len: int) -> bool:
# rocm custom page attention not support on navi (gfx1*)
return (_ON_MI250_MI300 and not _ON_NAVI
and (qtype == torch.half or qtype == torch.bfloat16)
and (head_size == 64 or head_size == 128)
and (block_size == 16 or block_size == 32)
and (gqa_ratio >= 1 and gqa_ratio <= 16) and max_seq_len <= 32768
and envs.VLLM_ROCM_CUSTOM_PAGED_ATTN)

View File

@ -10,6 +10,9 @@ import torch
import triton
import triton.language as tl
from vllm import _custom_ops as ops
from vllm.platforms.rocm import use_rocm_custom_paged_attention
from .prefix_prefill import context_attention_fwd
@ -33,26 +36,26 @@ def kernel_paged_attention_2d(
num_query_heads: tl.constexpr, # int
num_queries_per_kv: tl.constexpr, # int
num_queries_per_kv_padded: tl.constexpr, # int
block_table_stride: tl.constexpr, # int
query_stride_0: tl.constexpr, # int
query_stride_1: tl.constexpr, # int, should be equal to head_size
output_stride_0: tl.constexpr, # int
output_stride_1: tl.constexpr, # int, should be equal to head_size
block_table_stride: tl.int64, # int
query_stride_0: tl.int64, # int
query_stride_1: tl.int64, # int, should be equal to head_size
output_stride_0: tl.int64, # int
output_stride_1: tl.int64, # int, should be equal to head_size
BLOCK_SIZE: tl.constexpr, # int
HEAD_SIZE: tl.constexpr, # int
HEAD_SIZE_PADDED: tl.constexpr, # int, must be power of 2
USE_ALIBI_SLOPES: tl.constexpr, # bool
SLIDING_WINDOW: tl.constexpr, # int
x: tl.constexpr, # int
stride_k_cache_0: tl.constexpr, # int
stride_k_cache_1: tl.constexpr, # int
stride_k_cache_2: tl.constexpr, # int
stride_k_cache_3: tl.constexpr, # int
stride_k_cache_4: tl.constexpr, # int
stride_v_cache_0: tl.constexpr, # int
stride_v_cache_1: tl.constexpr, # int
stride_v_cache_2: tl.constexpr, # int
stride_v_cache_3: tl.constexpr, # int
stride_k_cache_0: tl.int64, # int
stride_k_cache_1: tl.int64, # int
stride_k_cache_2: tl.int64, # int
stride_k_cache_3: tl.int64, # int
stride_k_cache_4: tl.int64, # int
stride_v_cache_0: tl.int64, # int
stride_v_cache_1: tl.int64, # int
stride_v_cache_2: tl.int64, # int
stride_v_cache_3: tl.int64, # int
filter_by_query_len: tl.constexpr, # bool
query_start_len_ptr, # [num_seqs+1]
):
@ -212,6 +215,7 @@ def chunked_prefill_paged_decode(
block_table,
query_start_loc,
seq_lens,
max_seq_len,
max_query_len,
k_scale,
v_scale,
@ -240,6 +244,7 @@ def chunked_prefill_paged_decode(
b_loc=block_table,
b_start_loc=query_start_loc,
b_seq_len=seq_lens,
max_seq_len=max_seq_len,
max_input_len=max_query_len,
k_scale=k_scale,
v_scale=v_scale,
@ -275,43 +280,87 @@ def chunked_prefill_paged_decode(
num_queries_per_kv_padded = max(triton.next_power_of_2(num_queries_per_kv),
16)
kernel_paged_attention_2d[(
num_seqs,
num_kv_heads,
)](
output_ptr=output,
query_ptr=query,
key_cache_ptr=key_cache,
value_cache_ptr=value_cache,
block_tables_ptr=block_table,
seq_lens_ptr=seq_lens,
alibi_slopes_ptr=alibi_slopes,
scale=sm_scale,
k_scale=k_scale,
v_scale=v_scale,
num_query_heads=num_query_heads,
num_queries_per_kv=num_queries_per_kv,
num_queries_per_kv_padded=num_queries_per_kv_padded,
block_table_stride=block_table.stride(0),
query_stride_0=query.stride(0),
query_stride_1=query.stride(1),
output_stride_0=output.stride(0),
output_stride_1=output.stride(1),
BLOCK_SIZE=block_size,
HEAD_SIZE=head_size,
HEAD_SIZE_PADDED=triton.next_power_of_2(head_size),
USE_ALIBI_SLOPES=use_alibi_slopes,
SLIDING_WINDOW=sliding_window,
x=key_cache.shape[4],
stride_k_cache_0=key_cache.stride(0),
stride_k_cache_1=key_cache.stride(1),
stride_k_cache_2=key_cache.stride(2),
stride_k_cache_3=key_cache.stride(3),
stride_k_cache_4=key_cache.stride(4),
stride_v_cache_0=value_cache.stride(0),
stride_v_cache_1=value_cache.stride(1),
stride_v_cache_2=value_cache.stride(2),
stride_v_cache_3=value_cache.stride(3),
filter_by_query_len=True,
query_start_len_ptr=query_start_loc,
)
use_custom = use_rocm_custom_paged_attention(query.dtype, head_size,
block_size,
num_queries_per_kv,
max_seq_len, sliding_window)
if use_custom:
_PARTITION_SIZE_ROCM = 256
max_num_partitions = ((max_seq_len + _PARTITION_SIZE_ROCM - 1) //
_PARTITION_SIZE_ROCM)
assert _PARTITION_SIZE_ROCM % block_size == 0
total_num_seq = query.shape[0]
tmp_output = torch.empty(
size=(total_num_seq, num_query_heads, max_num_partitions,
head_size),
dtype=output.dtype,
device=output.device,
)
exp_sums = torch.empty(
size=(total_num_seq, num_query_heads, max_num_partitions),
dtype=torch.float32,
device=output.device,
)
max_logits = torch.empty_like(exp_sums)
ops.paged_attention_rocm(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale=sm_scale,
block_tables=block_table,
seq_lens=seq_lens,
query_start_loc=query_start_loc,
block_size=block_size,
max_seq_len=max_seq_len,
alibi_slopes=alibi_slopes,
kv_cache_dtype=kv_cache_dtype,
k_scale=k_scale,
v_scale=v_scale,
)
else:
kernel_paged_attention_2d[(
num_seqs,
num_kv_heads,
)](
output_ptr=output,
query_ptr=query,
key_cache_ptr=key_cache,
value_cache_ptr=value_cache,
block_tables_ptr=block_table,
seq_lens_ptr=seq_lens,
alibi_slopes_ptr=alibi_slopes,
scale=sm_scale,
k_scale=k_scale,
v_scale=v_scale,
num_query_heads=num_query_heads,
num_queries_per_kv=num_queries_per_kv,
num_queries_per_kv_padded=num_queries_per_kv_padded,
block_table_stride=block_table.stride(0),
query_stride_0=query.stride(0),
query_stride_1=query.stride(1),
output_stride_0=output.stride(0),
output_stride_1=output.stride(1),
BLOCK_SIZE=block_size,
HEAD_SIZE=head_size,
HEAD_SIZE_PADDED=triton.next_power_of_2(head_size),
USE_ALIBI_SLOPES=use_alibi_slopes,
SLIDING_WINDOW=sliding_window,
x=key_cache.shape[4],
stride_k_cache_0=key_cache.stride(0),
stride_k_cache_1=key_cache.stride(1),
stride_k_cache_2=key_cache.stride(2),
stride_k_cache_3=key_cache.stride(3),
stride_k_cache_4=key_cache.stride(4),
stride_v_cache_0=value_cache.stride(0),
stride_v_cache_1=value_cache.stride(1),
stride_v_cache_2=value_cache.stride(2),
stride_v_cache_3=value_cache.stride(3),
filter_by_query_len=True,
query_start_len_ptr=query_start_loc,
)

View File

@ -144,8 +144,7 @@ def transform_block_tables_for_indirect_load(
def load_kv_tile_from_cache(
cur_k_tile,
cur_v_tile,
key_cache,
value_cache,
kv_cache,
block_tables,
large_k_tile_idx,
num_blocks_per_large_tile,
@ -169,8 +168,8 @@ def load_kv_tile_from_cache(
for load_idx in nl.affine_range(num_loads):
i_p = nl.arange(B_P_SIZE)[:, None]
i_f = nl.arange(tiled_block_size * B_D_SIZE)[None, :]
loaded = nl.load(key_cache[block_tables[load_idx, i_p,
large_k_tile_idx], i_f])
loaded = nl.load(kv_cache[0, block_tables[load_idx, i_p,
large_k_tile_idx], i_f])
if cur_k_tile.dtype != loaded.dtype:
loaded = nl.copy(loaded, dtype=cur_k_tile.dtype)
# Transpose SBUF tensor using PE
@ -185,7 +184,7 @@ def load_kv_tile_from_cache(
# load value cache
for load_idx in nl.affine_range(num_loads):
loaded = nl.load(value_cache[block_tables[load_idx, i_p,
loaded = nl.load(kv_cache[1, block_tables[load_idx, i_p,
large_k_tile_idx], i_f])
if cur_v_tile.dtype != loaded.dtype:
loaded = nl.copy(loaded, dtype=cur_v_tile.dtype)
@ -418,8 +417,7 @@ def flash_paged_attention(
query,
key,
value,
key_cache,
value_cache,
kv_cache,
block_tables,
mask,
softmax_scale=None,
@ -434,8 +432,7 @@ def flash_paged_attention(
- query: shape (1, n_heads, d, seq_q)
- key: shape (1, n_kv_heads, d, seq_k)
- value: shape (1, n_kv_heads, seq_v, d)
- key_cache: (num_blocks, n_kv_heads, block_size, d)
- value_cache: (num_blocks, n_kv_heads, block_size, d)
- kv_cache: (2, num_blocks, n_kv_heads, block_size, d)
- block_tables: (num_active_blocks, )
- mask: (seq_q, num_active_blocks * block_size + seq_q)
- o: shape (1, n_heads, seq_q, d)
@ -444,7 +441,7 @@ def flash_paged_attention(
- We use continuous batching by default, so the batch dimension is
always 1, and different requests are concatenated along sequence
dimension.
- We use paged cache blocks (key_cache, value_cache) to store KV cache.
- We use paged cache blocks (kv_cache) to store KV cache.
IO tensor dtypes:
- This kernel assumes all IO tensors have the same dtype except for
@ -475,15 +472,13 @@ def flash_paged_attention(
b, h, d, seqlen_q = query.shape
B_D_SIZE = d
n_tile_q = seqlen_q // B_P_SIZE # since q will be loaded on tensor engine
num_blocks, k_h, block_size, _ = key_cache.shape
_, num_blocks, k_h, block_size, _ = kv_cache.shape
q_h_per_k_h = h // k_h
assert b == 1, f"invalid batch size {b=}"
assert d <= 128, f" we do not support head_dim > 128, got head dim {d=}"
cache_shape = (num_blocks, k_h, block_size, d)
assert (tuple(key_cache.shape) == cache_shape
), f"{key_cache.shape=} mismatch, expect {cache_shape}"
assert (tuple(value_cache.shape) == cache_shape
), f"{value_cache.shape=} mismatch, expect {cache_shape}"
cache_shape = (2, num_blocks, k_h, block_size, d)
assert (tuple(kv_cache.shape) == cache_shape
), f"{kv_cache.shape=} mismatch, expect {cache_shape}"
assert key is None or tuple(key.shape) == (
1,
k_h,
@ -580,13 +575,13 @@ def flash_paged_attention(
head_id=head_id,
)
# Flatten KV cache to be 2D for loading into SBUF
# Flatten KV cache to be 3D for loading into SBUF
new_cache_shape = (
2,
num_blocks * k_h * block_size_tiling_factor,
tiled_block_size * d,
)
key_cache = key_cache.reshape(new_cache_shape)
value_cache = value_cache.reshape(new_cache_shape)
kv_cache = kv_cache.reshape(new_cache_shape)
# Global Flash Attention accumulators
o_buffer = nl.zeros(
@ -621,8 +616,7 @@ def flash_paged_attention(
load_kv_tile_from_cache(
cur_k_tile=cur_k_tile,
cur_v_tile=cur_v_tile,
key_cache=key_cache,
value_cache=value_cache,
kv_cache=kv_cache,
block_tables=block_tables_sbuf,
large_k_tile_idx=large_k_tile_idx,
num_blocks_per_large_tile=num_blocks_per_large_tile,
@ -821,8 +815,7 @@ def flash_attn_varlen_nkifunc(
query,
key,
value,
key_cache,
value_cache,
kv_cache,
block_table,
attn_mask,
n_kv_head=None,
@ -838,8 +831,7 @@ def flash_attn_varlen_nkifunc(
- query: (1, n_heads, d, seq_q)
- key: (1, n_kv_heads, d, seq_k)
- value: (1, n_kv_heads, seq_v, d)
- key_cache: (n_blocks, n_kv_heads, block_size, d)
- value_cache: (n_blocks, n_kv_heads, block_size, d)
- kv_cache: (2, n_blocks, n_kv_heads, block_size, d)
- block_tables: (n_active_blocks, )
- attn_mask: (seq_q, n_active_blocks * block_size + seq_q)
@ -849,17 +841,17 @@ def flash_attn_varlen_nkifunc(
for better DMA throughput
"""
if n_kv_head is None:
n_kv_head = key_cache.shape[1]
assert key_cache.shape[1] == n_kv_head
n_kv_head = kv_cache.shape[2]
assert kv_cache.shape[0] == 2
assert kv_cache.shape[2] == n_kv_head
if head_size is None:
head_size = key_cache.shape[-1]
head_size = kv_cache.shape[-1]
kwargs = dict(
query=query,
key=key,
value=value,
key_cache=key_cache,
value_cache=value_cache,
kv_cache=kv_cache,
block_tables=block_table,
mask=attn_mask,
softmax_scale=1.0 / (head_size**0.5),
@ -874,8 +866,7 @@ def flash_attn_varlen_nkifunc(
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
kv_cache: torch.Tensor,
slot_mapping: torch.Tensor,
) -> None:
"""
@ -886,29 +877,29 @@ def reshape_and_cache(
(num_tokens, n_kv_head, d_head)
value (torch.Tensor): Value tensor with shape
(num_tokens, n_kv_head, d_head)
key_cache (torch.Tensor): Key cache tensor with shape
(num_blocks, n_kv_head, block_size, d_head)
value_cache (torch.Tensor): Value cache tensor with shape
(num_blocks, n_kv_head, block_size, d_head)
kv_cache (torch.Tensor): Key/value cache tensor with shape
(2, num_blocks, n_kv_head, block_size, d_head)
slot_mapping (torch.Tensor): Mapping tensor indicating cache positions
with shape (num_tokens)
Returns:
None: Updates the key_cache and value_cache tensors in-place
None: Updates the kv_cache tensor in-place
"""
block_size = key_cache.size(2)
block_size = kv_cache.size(3)
n_kv_head = key.size(1)
# Calculate indices with explicit floor division
block_indices = torch.div(slot_mapping, block_size, rounding_mode="floor")
block_offsets = slot_mapping % block_size
# Update caches using index_put_
key_cache.index_put_(
(block_indices.unsqueeze(1),
torch.arange(key_cache.size(1),
device=key.device), block_offsets.unsqueeze(1)), key)
# Create the head indices tensor
head_indices = torch.arange(n_kv_head, device=key.device)
value_cache.index_put_(
(block_indices.unsqueeze(1),
torch.arange(value_cache.size(1),
device=value.device), block_offsets.unsqueeze(1)), value)
# Update caches using index_put_
kv_cache.index_put_(
(torch.tensor([0], device=key.device), block_indices[:, None],
head_indices[None, :], block_offsets[:, None]), key)
kv_cache.index_put_(
(torch.tensor([1], device=key.device), block_indices[:, None],
head_indices[None, :], block_offsets[:, None]), value)

View File

@ -209,6 +209,7 @@ class PagedAttention:
v_scale: torch.Tensor,
) -> torch.Tensor:
output = torch.empty_like(query)
max_seq_len = None
context_attention_fwd(
query,
key,
@ -221,6 +222,7 @@ class PagedAttention:
# query_start_loc is (batch_size + 1,)
query_start_loc,
seq_lens_tensor,
max_seq_len,
max_query_len,
k_scale,
v_scale,

View File

@ -725,6 +725,7 @@ if triton.__version__ >= "2.1.0":
b_loc,
b_start_loc,
b_seq_len,
max_seq_len,
max_input_len,
k_scale: torch.Tensor,
v_scale: torch.Tensor,
@ -752,7 +753,7 @@ if triton.__version__ >= "2.1.0":
assert (v_cache.dtype == torch.uint8)
if kv_cache_dtype in ("fp8", "fp8_e4m3"):
target_dtype = torch.float8_e4m3fn
target_dtype = current_platform.fp8_dtype()
elif kv_cache_dtype == "fp8_e5m2":
target_dtype = torch.float8_e5m2
else:

View File

@ -29,7 +29,7 @@ from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import (QUANTIZATION_METHODS,
get_quantization_config)
from vllm.model_executor.models import ModelRegistry
from vllm.platforms import CpuArchEnum
from vllm.platforms import CpuArchEnum, current_platform
from vllm.sampling_params import GuidedDecodingParams
from vllm.tracing import is_otel_available, otel_import_error_traceback
from vllm.transformers_utils.config import (
@ -684,6 +684,13 @@ class ModelConfig:
self.max_seq_len_to_capture = self.max_model_len
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
self.max_model_len)
ROCM_UNSUPPORTED_MODELS = ['mllama']
if (self.hf_config.model_type in ROCM_UNSUPPORTED_MODELS
and not self.enforce_eager and current_platform.is_rocm()):
logger.warning(
"CUDA graph is not supported for %s on ROCm yet, fallback "
"to the eager mode.", self.hf_config.model_type)
self.enforce_eager = True
def _verify_bnb_config(self) -> None:
"""
@ -761,6 +768,12 @@ class ModelConfig:
self,
parallel_config: "ParallelConfig",
) -> None:
if parallel_config.distributed_executor_backend == "external_launcher":
assert self.seed is not None, (
"Seed must be set when using external launcher backend to "
"make sure sampling results are the same across workers.")
total_num_attention_heads = getattr(self.hf_text_config,
"num_attention_heads", 0)
tensor_parallel_size = parallel_config.tensor_parallel_size
@ -1613,13 +1626,12 @@ class ParallelConfig:
if self.use_ray:
from vllm.executor import ray_utils
ray_utils.assert_ray_available()
device_capability = current_platform.get_device_capability()
if (current_platform.is_rocm() and device_capability is not None
and device_capability < (9, 4)):
if not current_platform.use_custom_allreduce():
self.disable_custom_all_reduce = True
logger.info(
"Disabled the custom all-reduce kernel because it is not "
"supported on AMD GPUs older than MI300X.")
"supported on current platform.")
if self.ray_workers_use_nsight and not self.use_ray:
raise ValueError("Unable to use nsight profiling unless workers "
"run with Ray.")
@ -1869,7 +1881,10 @@ class DeviceConfig:
from vllm.platforms import current_platform
self.device_type = current_platform.device_type
if not self.device_type:
raise RuntimeError("Failed to infer device type")
raise RuntimeError(
"Failed to infer device type, please set "
"the environment variable `VLLM_LOGGING_LEVEL=DEBUG` "
"to turn on verbose logging to help debug the issue.")
else:
# Device type is assigned explicitly
self.device_type = device
@ -2434,9 +2449,9 @@ class LoRAConfig:
f"max_loras ({self.max_loras})")
def verify_with_cache_config(self, cache_config: CacheConfig):
# TODO LoRA supports CPU offload.
if cache_config.cpu_offload_gb > 0:
raise ValueError("CPU offload is not supported with LoRA yet.")
if cache_config.cpu_offload_gb > 0 and not envs.VLLM_USE_V1:
raise ValueError(
"V0 LoRA does not support CPU offload, please use V1.")
def verify_with_model_config(self, model_config: ModelConfig):
if self.lora_dtype in (None, "auto"):

View File

@ -208,22 +208,28 @@ class CuMemAllocator:
gc.collect()
torch.cuda.empty_cache()
def wake_up(self):
def wake_up(self, tags: Optional[list[str]] = None) -> None:
"""
Wake up the allocator from sleep mode.
All data that is previously offloaded will be loaded back to GPU
memory, and the rest of the data will have empty memory."""
All data that is previously offloaded will be loaded back to GPU
memory, and the rest of the data will have empty memory.
:param tags: The tags of the memory allocation that will be loaded
back to GPU memory. If None, all memory allocation will be loaded
back to GPU memory.
"""
for ptr, data in self.pointer_to_data.items():
handle = data.handle
create_and_map(handle)
if data.cpu_backup_tensor is not None:
cpu_backup_tensor = data.cpu_backup_tensor
if cpu_backup_tensor is not None:
size_in_bytes = cpu_backup_tensor.numel(
) * cpu_backup_tensor.element_size()
cpu_ptr = cpu_backup_tensor.data_ptr()
libcudart.cudaMemcpy(ptr, cpu_ptr, size_in_bytes)
data.cpu_backup_tensor = None
if tags is None or data.tag in tags:
handle = data.handle
create_and_map(handle)
if data.cpu_backup_tensor is not None:
cpu_backup_tensor = data.cpu_backup_tensor
if cpu_backup_tensor is not None:
size_in_bytes = cpu_backup_tensor.numel(
) * cpu_backup_tensor.element_size()
cpu_ptr = cpu_backup_tensor.data_ptr()
libcudart.cudaMemcpy(ptr, cpu_ptr, size_in_bytes)
data.cpu_backup_tensor = None
@contextmanager
def use_memory_pool(self, tag: Optional[str] = None):

View File

@ -1,10 +1,14 @@
# SPDX-License-Identifier: Apache-2.0
from typing import Optional
import os
from typing import List, Optional
import torch
from torch.distributed import ProcessGroup
from vllm.platforms import current_platform
from vllm.platforms.interface import CpuArchEnum
from .base_device_communicator import DeviceCommunicatorBase
@ -16,19 +20,120 @@ class CpuCommunicator(DeviceCommunicatorBase):
device_group: Optional[ProcessGroup] = None,
unique_name: str = ""):
super().__init__(cpu_group, device, device_group, unique_name)
self.ipex_available = False
self.dist_module = torch.distributed
try:
import intel_extension_for_pytorch as ipex
self.ipex_available = True
self.dist_module = ipex.distributed
except ImportError:
"""
Intel IPEX not found. Falling back to PyTorch native
all_reduce for CPU (e.g. MacOS)
"""
pass
if current_platform.get_cpu_architecture() == CpuArchEnum.X86:
self.dist_module = _CPUSHMDistributed(self)
def all_reduce(self, input_):
self.dist_module.all_reduce(input_, group=self.device_group)
return input_
def gather(self,
input_: torch.Tensor,
dst: int = 0,
dim: int = -1) -> Optional[torch.Tensor]:
"""
NOTE: We assume that the input tensor is on the same device across
all the ranks.
NOTE: `dst` is the local rank of the destination rank.
"""
world_size = self.world_size
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
# Allocate output tensor.
if self.rank_in_group == dst:
gather_list = [torch.empty_like(input_) for _ in range(world_size)]
else:
gather_list = None
# Gather.
self.dist_module.gather(input_,
gather_list,
dst=self.ranks[dst],
group=self.device_group)
if self.rank_in_group == dst:
output_tensor = torch.cat(gather_list, dim=dim)
else:
output_tensor = None
return output_tensor
def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
input_size = input_.size()
# NOTE: we have to use concat-style all-gather here,
# stack-style all-gather has compatibility issues with
# torch.compile . see https://github.com/pytorch/pytorch/issues/138795
output_size = (input_size[0] * self.world_size, ) + input_size[1:]
# Allocate output tensor.
output_tensor = torch.empty(output_size,
dtype=input_.dtype,
device=input_.device)
# All-gather.
self.dist_module.all_gather_into_tensor(output_tensor,
input_,
group=self.device_group)
# Reshape
output_tensor = output_tensor.reshape((self.world_size, ) + input_size)
output_tensor = output_tensor.movedim(0, dim)
output_tensor = output_tensor.reshape(input_size[:dim] +
(self.world_size *
input_size[dim], ) +
input_size[dim + 1:])
return output_tensor
class _CPUSHMDistributed:
def __init__(self, communicator: CpuCommunicator):
instance_identifier = os.environ["VLLM_DIST_IDENT"]
self.communicator = communicator
group_ranks = [str(rank) for rank in self.communicator.ranks]
shm_group_identifier = f"[{'-'.join(group_ranks)}]"
self.group_name = f"{instance_identifier}-{shm_group_identifier}-cpushm"
self.handle = self._init_cpu_shm()
def _init_cpu_shm(self) -> int:
handle = torch.ops._C.init_shm_manager(
self.group_name,
self.communicator.world_size,
self.communicator.rank,
)
torch.distributed.barrier(self.communicator.device_group)
torch.ops._C.join_shm_manager(
handle,
self.group_name,
)
torch.distributed.barrier(self.communicator.device_group)
return handle
def all_reduce(self,
input: torch.Tensor,
group: Optional[ProcessGroup] = None) -> None:
torch.ops._C.shm_allreduce(self.handle, input)
def gather(self,
input: torch.Tensor,
gather_list: Optional[List[torch.Tensor]],
dst: int = -1,
group: Optional[ProcessGroup] = None) -> None:
# Note: different from the torch gather, here we use local dst rank.
torch.ops._C.shm_gather(self.handle, input, gather_list,
torch.distributed.get_group_rank(group, dst))
def all_gather_into_tensor(self,
output: torch.Tensor,
input: torch.Tensor,
group: Optional[ProcessGroup] = None) -> None:
torch.ops._C.shm_all_gather(self.handle, input, output)

View File

@ -22,6 +22,8 @@ if current_platform.is_tpu():
import torch_xla.core.xla_model as xm
import torch_xla.runtime as xr
from torch_xla._internal import pjrt
from torch_xla.distributed.xla_multiprocessing import (
create_optimized_replica_groups)
if USE_RAY:
from vllm.executor import ray_utils
@ -79,9 +81,12 @@ class TpuCommunicator(DeviceCommunicatorBase):
pjrt.initialize_multiprocess(local_rank, local_world_size)
xr._init_world_size_ordinal()
self.groups = create_optimized_replica_groups()
def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
return xm.all_reduce(xm.REDUCE_SUM, input_)
# TODO: Remove the groups specification after XLA compiler can support
# auto-reordering the ring order for all-reduce.
return xm.all_reduce(xm.REDUCE_SUM, input_, groups=self.groups)
def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
assert dim == -1, "TPUs only support dim=-1 for all-gather."

View File

@ -119,11 +119,13 @@ def all_reduce_fake(tensor: torch.Tensor, group_name: str) -> torch.Tensor:
if supports_custom_op():
from vllm.platforms import current_platform
direct_register_custom_op(
op_name="all_reduce",
op_func=all_reduce,
mutates_args=[],
fake_impl=all_reduce_fake,
dispatch_key=current_platform.dispatch_key,
)
@ -219,7 +221,8 @@ class GroupCoordinator:
self.cpu_group, 1 << 22, 6)
from vllm.platforms import current_platform
self.use_custom_op_call = current_platform.is_cuda_alike()
self.use_custom_op_call = (current_platform.is_cuda_alike()
or current_platform.is_tpu())
@property
def first_rank(self):

View File

@ -1521,8 +1521,9 @@ class EngineArgs:
# PP is supported on V1 with Ray distributed executor,
# but off for MP distributed executor for now.
if (self.pipeline_parallel_size > 1
and self.distributed_executor_backend == "mp"
and _warn_or_fallback("PP (MP distributed executor)")):
and self.distributed_executor_backend != "ray"):
name = "Pipeline Parallelism without Ray distributed executor"
_raise_or_fallback(feature_name=name, recommend_to_remove=False)
return False
# ngram is supported on V1, but off by default for now.

View File

@ -1225,8 +1225,8 @@ class AsyncLLMEngine(EngineClient):
async def sleep(self, level: int = 1) -> None:
self.engine.sleep(level)
async def wake_up(self) -> None:
self.engine.wake_up()
async def wake_up(self, tags: Optional[list[str]] = None) -> None:
self.engine.wake_up(tags)
async def is_sleeping(self) -> bool:
return self.engine.is_sleeping()

View File

@ -1938,10 +1938,10 @@ class LLMEngine:
"Sleep mode is not enabled in the model config")
self.model_executor.sleep(level=level)
def wake_up(self) -> None:
def wake_up(self, tags: Optional[list[str]] = None) -> None:
assert self.vllm_config.model_config.enable_sleep_mode, (
"Sleep mode is not enabled in the model config")
self.model_executor.wake_up()
self.model_executor.wake_up(tags)
def is_sleeping(self) -> bool:
return self.model_executor.is_sleeping

View File

@ -52,6 +52,11 @@ class Metrics:
max_model_len = vllm_config.model_config.max_model_len
# Use this flag to hide metrics that were deprecated in
# a previous release and which will be removed future
self.show_hidden_metrics = \
vllm_config.observability_config.show_hidden_metrics
# System stats
# Scheduler State
self.gauge_scheduler_running = self._gauge_cls(
@ -76,14 +81,15 @@ class Metrics:
)
# Deprecated in 0.8 - KV cache offloading is not used in V1
# TODO: in 0.9, only enable if show_hidden_metrics=True
self.gauge_scheduler_swapped = self._gauge_cls(
name="vllm:num_requests_swapped",
documentation=(
"Number of requests swapped to CPU. "
"DEPRECATED: KV cache offloading is not used in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
# Hidden in 0.9, due to be removed in 0.10
if self.show_hidden_metrics:
self.gauge_scheduler_swapped = self._gauge_cls(
name="vllm:num_requests_swapped",
documentation=(
"Number of requests swapped to CPU. "
"DEPRECATED: KV cache offloading is not used in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
# KV Cache Usage in %
self.gauge_gpu_cache_usage = self._gauge_cls(
@ -93,34 +99,33 @@ class Metrics:
multiprocess_mode="sum")
# Deprecated in 0.8 - KV cache offloading is not used in V1
# TODO: in 0.9, only enable if show_hidden_metrics=True
self.gauge_cpu_cache_usage = self._gauge_cls(
name="vllm:cpu_cache_usage_perc",
documentation=(
"CPU KV-cache usage. 1 means 100 percent usage. "
"DEPRECATED: KV cache offloading is not used in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
# Deprecated in 0.8 - KV cache offloading is not used in V1
# TODO: in 0.9, only enable if show_hidden_metrics=True
self.gauge_cpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:cpu_prefix_cache_hit_rate",
documentation=(
"CPU prefix cache block hit rate. "
"DEPRECATED: KV cache offloading is not used in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
# Hidden in 0.9, due to be removed in 0.10
if self.show_hidden_metrics:
self.gauge_cpu_cache_usage = self._gauge_cls(
name="vllm:cpu_cache_usage_perc",
documentation=(
"CPU KV-cache usage. 1 means 100 percent usage. "
"DEPRECATED: KV cache offloading is not used in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_cpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:cpu_prefix_cache_hit_rate",
documentation=(
"CPU prefix cache block hit rate. "
"DEPRECATED: KV cache offloading is not used in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
# Deprecated in 0.8 - replaced by queries+hits counters in V1
# TODO: in 0.9, only enable if show_hidden_metrics=True
self.gauge_gpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:gpu_prefix_cache_hit_rate",
documentation=("GPU prefix cache block hit rate. "
"DEPRECATED: use vllm:gpu_prefix_cache_queries and "
"vllm:gpu_prefix_cache_queries in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
# Hidden in 0.9, due to be removed in 0.10
if self.show_hidden_metrics:
self.gauge_gpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:gpu_prefix_cache_hit_rate",
documentation=("GPU prefix cache block hit rate. "
"DEPRECATED: use vllm:gpu_prefix_cache_queries "
"and vllm:gpu_prefix_cache_queries in V1"),
labelnames=labelnames,
multiprocess_mode="sum")
# Iteration stats
self.counter_num_preemption = self._counter_cls(
@ -198,33 +203,35 @@ class Metrics:
labelnames=labelnames,
buckets=request_latency_buckets)
# Deprecated in 0.8 - duplicates vllm:request_queue_time_seconds:
# TODO: in 0.9, only enable if show_hidden_metrics=True
self.histogram_time_in_queue_request = self._histogram_cls(
name="vllm:time_in_queue_requests",
documentation=(
"Histogram of time the request spent in the queue in seconds. "
"DEPRECATED: use vllm:request_queue_time_seconds instead."),
labelnames=labelnames,
buckets=request_latency_buckets)
# Hidden in 0.9, due to be removed in 0.10
if self.show_hidden_metrics:
self.histogram_time_in_queue_request = self._histogram_cls(
name="vllm:time_in_queue_requests",
documentation=
("Histogram of time the request spent in the queue in seconds. "
"DEPRECATED: use vllm:request_queue_time_seconds instead."),
labelnames=labelnames,
buckets=request_latency_buckets)
# Deprecated in 0.8 - use prefill/decode/inference time metrics
# TODO: in 0.9, only enable if show_hidden_metrics=True
self.histogram_model_forward_time_request = self._histogram_cls(
name="vllm:model_forward_time_milliseconds",
documentation=(
"Histogram of time spent in the model forward pass in ms. "
"DEPRECATED: use prefill/decode/inference time metrics instead."
),
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
self.histogram_model_execute_time_request = self._histogram_cls(
name="vllm:model_execute_time_milliseconds",
documentation=(
"Histogram of time spent in the model execute function in ms."
"DEPRECATED: use prefill/decode/inference time metrics instead."
),
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
# Hidden in 0.9, due to be removed in 0.10
if self.show_hidden_metrics:
self.histogram_model_forward_time_request = self._histogram_cls(
name="vllm:model_forward_time_milliseconds",
documentation=
("Histogram of time spent in the model forward pass in ms. "
"DEPRECATED: use prefill/decode/inference time metrics instead"
),
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
self.histogram_model_execute_time_request = self._histogram_cls(
name="vllm:model_execute_time_milliseconds",
documentation=
("Histogram of time spent in the model execute function in ms."
"DEPRECATED: use prefill/decode/inference time metrics instead"
),
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
# Metadata
self.histogram_num_prompt_tokens_request = self._histogram_cls(
@ -543,11 +550,6 @@ class PrometheusStatLogger(StatLoggerBase):
self.metrics = self._metrics_cls(labelnames=list(labels.keys()),
vllm_config=vllm_config)
# Use this flag to hide metrics that were deprecated in
# a previous release and which will be removed future
self.show_hidden_metrics = \
vllm_config.observability_config.show_hidden_metrics
def _log_gauge(self, gauge, data: Union[int, float]) -> None:
# Convenience function for logging to gauge.
gauge.labels(**self.labels).set(data)
@ -580,18 +582,20 @@ class PrometheusStatLogger(StatLoggerBase):
# System state data
self._log_gauge(self.metrics.gauge_scheduler_running,
stats.num_running_sys)
self._log_gauge(self.metrics.gauge_scheduler_swapped,
stats.num_swapped_sys)
if self.metrics.show_hidden_metrics:
self._log_gauge(self.metrics.gauge_scheduler_swapped,
stats.num_swapped_sys)
self._log_gauge(self.metrics.gauge_scheduler_waiting,
stats.num_waiting_sys)
self._log_gauge(self.metrics.gauge_gpu_cache_usage,
stats.gpu_cache_usage_sys)
self._log_gauge(self.metrics.gauge_cpu_cache_usage,
stats.cpu_cache_usage_sys)
self._log_gauge(self.metrics.gauge_cpu_prefix_cache_hit_rate,
stats.cpu_prefix_cache_hit_rate)
self._log_gauge(self.metrics.gauge_gpu_prefix_cache_hit_rate,
stats.gpu_prefix_cache_hit_rate)
if self.metrics.show_hidden_metrics:
self._log_gauge(self.metrics.gauge_cpu_cache_usage,
stats.cpu_cache_usage_sys)
self._log_gauge(self.metrics.gauge_cpu_prefix_cache_hit_rate,
stats.cpu_prefix_cache_hit_rate)
self._log_gauge(self.metrics.gauge_gpu_prefix_cache_hit_rate,
stats.gpu_prefix_cache_hit_rate)
# Including max-lora in metric, in future this property of lora
# config maybe extended to be dynamic.
lora_info = {
@ -629,12 +633,15 @@ class PrometheusStatLogger(StatLoggerBase):
stats.time_prefill_requests)
self._log_histogram(self.metrics.histogram_decode_time_request,
stats.time_decode_requests)
self._log_histogram(self.metrics.histogram_time_in_queue_request,
stats.time_in_queue_requests)
self._log_histogram(self.metrics.histogram_model_forward_time_request,
stats.model_forward_time_requests)
self._log_histogram(self.metrics.histogram_model_execute_time_request,
stats.model_execute_time_requests)
if self.metrics.show_hidden_metrics:
self._log_histogram(self.metrics.histogram_time_in_queue_request,
stats.time_in_queue_requests)
self._log_histogram(
self.metrics.histogram_model_forward_time_request,
stats.model_forward_time_requests)
self._log_histogram(
self.metrics.histogram_model_execute_time_request,
stats.model_execute_time_requests)
# Metadata
finished_reason_counter = CollectionsCounter(
stats.finished_reason_requests)

View File

@ -133,8 +133,9 @@ class RPCSleepRequest(Enum):
SLEEP_LEVEL_2 = 2
class RPCWakeUpRequest(Enum):
WAKE_UP = 1
@dataclass
class RPCWakeUpRequest:
tags: Optional[list[str]] = None
@dataclass

View File

@ -697,10 +697,10 @@ class MQLLMEngineClient(EngineClient):
return await self._send_one_way_rpc_request(
request=RPCSleepRequest(level), socket=self.input_socket)
async def wake_up(self) -> None:
async def wake_up(self, tags: Optional[list[str]] = None) -> None:
"""Wake up the engine"""
return await self._send_one_way_rpc_request(
request=RPCWakeUpRequest.WAKE_UP, socket=self.input_socket)
request=RPCWakeUpRequest(tags), socket=self.input_socket)
async def is_sleeping(self) -> bool:
"""Check whether the engine is sleeping"""

View File

@ -274,7 +274,7 @@ class MQLLMEngine:
elif isinstance(request, RPCSleepRequest):
self.sleep(request.value)
elif isinstance(request, RPCWakeUpRequest):
self.wake_up()
self.wake_up(request.tags)
elif isinstance(request, RPCIsSleepingRequest):
self._handle_is_sleeping_request(request)
else:
@ -415,8 +415,8 @@ class MQLLMEngine:
def sleep(self, level: int = 1) -> None:
self.engine.sleep(level)
def wake_up(self) -> None:
self.engine.wake_up()
def wake_up(self, tags: Optional[list[str]] = None) -> None:
self.engine.wake_up(tags)
def is_sleeping(self) -> bool:
return self.engine.is_sleeping()

View File

@ -282,7 +282,7 @@ class EngineClient(ABC):
...
@abstractmethod
async def wake_up(self) -> None:
async def wake_up(self, tags: Optional[list[str]] = None) -> None:
"""Wake up the engine"""
...

View File

@ -1200,26 +1200,35 @@ class LLM:
The caller should guarantee that no requests are being processed
during the sleep period, before `wake_up` is called.
:param level: The sleep level. Level 1 sleep will offload the model
weights and discard the kv cache. The content of kv cache is
forgotten. Level 1 sleep is good for sleeping and waking up the
engine to run the same model again. The model weights are backed
up in CPU memory. Please make sure there's enough CPU memory to
store the model weights. Level 2 sleep will discard both the model
weights and the kv cache. The content of both the model weights
and kv cache is forgotten. Level 2 sleep is good for sleeping and
waking up the engine to run a different model or update the model,
where previous model weights are not needed. It reduces CPU memory
pressure.
Args:
level: The sleep level. Level 1 sleep will offload the model
weights and discard the kv cache. The content of kv cache
is forgotten. Level 1 sleep is good for sleeping and waking
up the engine to run the same model again. The model weights
are backed up in CPU memory. Please make sure there's enough
CPU memory to store the model weights. Level 2 sleep will
discard both the model weights and the kv cache. The content
of both the model weights and kv cache is forgotten. Level 2
sleep is good for sleeping and waking up the engine to run a
different model or update the model, where previous model
weights are not needed. It reduces CPU memory pressure.
"""
self.reset_prefix_cache()
self.llm_engine.sleep(level=level)
def wake_up(self):
def wake_up(self, tags: Optional[list[str]] = None):
"""
Wake up the engine from sleep mode. See the :meth:`sleep` method
for more details."""
self.llm_engine.wake_up()
for more details.
Args:
tags: An optional list of tags to reallocate the engine memory
for specific memory allocations. Values must be in
("weights", "kv_cache",). If None, all memory is reallocated.
wake_up should be called with all tags (or None) before the
engine is used again.
"""
self.llm_engine.wake_up(tags)
# LEGACY
def _convert_v1_inputs(

View File

@ -705,7 +705,6 @@ if envs.VLLM_SERVER_DEV_MODE:
async def sleep(raw_request: Request):
# get POST params
level = raw_request.query_params.get("level", "1")
logger.info("sleep the engine with level %s", level)
await engine_client(raw_request).sleep(int(level))
# FIXME: in v0 with frontend multiprocessing, the sleep command
# is sent but does not finish yet when we return a response.
@ -713,8 +712,12 @@ if envs.VLLM_SERVER_DEV_MODE:
@router.post("/wake_up")
async def wake_up(raw_request: Request):
logger.info("wake up the engine")
await engine_client(raw_request).wake_up()
tags = raw_request.query_params.getlist("tags")
if tags == []:
# set to None to wake up all tags if no tags are provided
tags = None
logger.info("wake up the engine with tags: %s", tags)
await engine_client(raw_request).wake_up(tags)
# FIXME: in v0 with frontend multiprocessing, the wake-up command
# is sent but does not finish yet when we return a response.
return Response(status_code=200)

View File

@ -61,7 +61,7 @@ class OpenAIBaseModel(BaseModel):
field_names = set()
for field_name, field in cls.model_fields.items():
field_names.add(field_name)
if alias := getattr(field, 'alias', None):
if alias := getattr(field, "alias", None):
field_names.add(alias)
cls.field_names = field_names
@ -70,7 +70,8 @@ class OpenAIBaseModel(BaseModel):
logger.warning(
"The following fields were present in the request "
"but ignored: %s",
data.keys() - field_names)
data.keys() - field_names,
)
return result
@ -234,8 +235,12 @@ class ChatCompletionRequest(OpenAIBaseModel):
temperature: Optional[float] = None
top_p: Optional[float] = None
tools: Optional[list[ChatCompletionToolsParam]] = None
tool_choice: Optional[Union[Literal["none"], Literal["auto"],
ChatCompletionNamedToolChoiceParam]] = "none"
tool_choice: Optional[Union[
Literal["none"],
Literal["auto"],
Literal["required"],
ChatCompletionNamedToolChoiceParam,
]] = "none"
# NOTE this will be ignored by vLLM -- the model determines the behavior
parallel_tool_calls: Optional[bool] = False
@ -340,24 +345,28 @@ class ChatCompletionRequest(OpenAIBaseModel):
description=(
"If specified, will override the default guided decoding backend "
"of the server for this specific request. If set, must be either "
"'outlines' / 'lm-format-enforcer'"))
"'outlines' / 'lm-format-enforcer'"),
)
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default whitespace pattern "
"for guided json decoding."))
"for guided json decoding."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."))
"if the served model does not use priority scheduling."),
)
request_id: str = Field(
default_factory=lambda: f"{random_uuid()}",
description=(
"The request_id related to this request. If the caller does "
"not set it, a random_uuid will be generated. This id is used "
"through out the inference process and return in response."))
"through out the inference process and return in response."),
)
logits_processors: Optional[LogitsProcessors] = Field(
default=None,
description=(
@ -415,13 +424,15 @@ class ChatCompletionRequest(OpenAIBaseModel):
ignore_eos=self.ignore_eos,
temperature=temperature,
length_penalty=self.length_penalty,
include_stop_str_in_output=self.include_stop_str_in_output)
include_stop_str_in_output=self.include_stop_str_in_output,
)
def to_sampling_params(
self,
default_max_tokens: int,
logits_processor_pattern: Optional[str],
default_sampling_params: Optional[dict] = None) -> SamplingParams:
self,
default_max_tokens: int,
logits_processor_pattern: Optional[str],
default_sampling_params: Optional[dict] = None,
) -> SamplingParams:
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
max_tokens = self.max_completion_tokens or self.max_tokens
@ -475,7 +486,8 @@ class ChatCompletionRequest(OpenAIBaseModel):
grammar=self.guided_grammar,
json_object=guided_json_object,
backend=self.guided_decoding_backend,
whitespace_pattern=self.guided_whitespace_pattern)
whitespace_pattern=self.guided_whitespace_pattern,
)
return SamplingParams.from_optional(
n=self.n,
@ -522,6 +534,41 @@ class ChatCompletionRequest(OpenAIBaseModel):
tool = tools[tool_name]
return tool.parameters
if self.tool_choice == "required":
# Pydantic schema generation cannot be used since the JSON schema
# has to be constructed for a specific instantiation of a tool list
# so that parameters of a function are correctly generated
# based on the chosen function name
def get_tool_schema(tool: ChatCompletionToolsParam) -> dict:
return {
"properties": {
"name": {
"type": "string",
"enum": [tool.function.name]
},
# parameters are always generated as '{}' in the final
# output if they are missing from the request
# (i.e. are None or '{}') so the schema is
# updated to produce an empty object in that case
"parameters": tool.function.parameters
if tool.function.parameters else {
"type": "object",
"properties": {}
}
},
"required": ["name", "parameters"]
}
json_schema = {
"type": "array",
"minItems": 1,
"items": {
"type": "object",
"anyOf": [get_tool_schema(tool) for tool in self.tools]
}
}
return json_schema
return None
@model_validator(mode="before")
@ -572,8 +619,11 @@ class ChatCompletionRequest(OpenAIBaseModel):
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
# you can only either use guided decoding or tools, not both
if guide_count > 1 and data.get("tool_choice",
"none") not in ("none", "auto"):
if guide_count > 1 and data.get("tool_choice", "none") not in (
"none",
"auto",
"required",
):
raise ValueError(
"You can only either use guided decoding or tools, not both.")
return data
@ -602,12 +652,15 @@ class ChatCompletionRequest(OpenAIBaseModel):
"When using `tool_choice`, `tools` must be set.")
# make sure that tool choice is either a named tool
# OR that it's set to "auto"
if data["tool_choice"] != "auto" and not isinstance(
data["tool_choice"], dict):
raise ValueError(
"`tool_choice` must either be a named tool, \"auto\", "
"or \"none\".")
# OR that it's set to "auto" or "required"
if data["tool_choice"] not in [
"auto", "required"
] and not isinstance(data["tool_choice"], dict):
raise NotImplementedError(
f'Invalid value for `tool_choice`: {data["tool_choice"]}! '\
'Only named tools, "none", "auto" or "required" '\
'are supported.'
)
# ensure that if "tool_choice" is specified as an object,
# it matches a valid tool
@ -722,18 +775,21 @@ class CompletionRequest(OpenAIBaseModel):
description=(
"If specified, will override the default guided decoding backend "
"of the server for this specific request. If set, must be one of "
"'outlines' / 'lm-format-enforcer'"))
"'outlines' / 'lm-format-enforcer'"),
)
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default whitespace pattern "
"for guided json decoding."))
"for guided json decoding."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."))
"if the served model does not use priority scheduling."),
)
logits_processors: Optional[LogitsProcessors] = Field(
default=None,
description=(
@ -745,6 +801,7 @@ class CompletionRequest(OpenAIBaseModel):
"arguments. For example: {'qualname': "
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
"{'param': 'value'}}."))
return_tokens_as_token_ids: Optional[bool] = Field(
default=None,
description=(
@ -789,13 +846,15 @@ class CompletionRequest(OpenAIBaseModel):
ignore_eos=self.ignore_eos,
temperature=temperature,
length_penalty=self.length_penalty,
include_stop_str_in_output=self.include_stop_str_in_output)
include_stop_str_in_output=self.include_stop_str_in_output,
)
def to_sampling_params(
self,
default_max_tokens: int,
logits_processor_pattern: Optional[str],
default_sampling_params: Optional[dict] = None) -> SamplingParams:
self,
default_max_tokens: int,
logits_processor_pattern: Optional[str],
default_sampling_params: Optional[dict] = None,
) -> SamplingParams:
max_tokens = self.max_tokens
if default_sampling_params is None:
@ -844,7 +903,8 @@ class CompletionRequest(OpenAIBaseModel):
grammar=self.guided_grammar,
json_object=guided_json_object,
backend=self.guided_decoding_backend,
whitespace_pattern=self.guided_whitespace_pattern)
whitespace_pattern=self.guided_whitespace_pattern,
)
return SamplingParams.from_optional(
n=self.n,
@ -942,7 +1002,8 @@ class EmbeddingCompletionRequest(OpenAIBaseModel):
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."))
"if the served model does not use priority scheduling."),
)
# doc: end-embedding-extra-params
@ -995,7 +1056,8 @@ class EmbeddingChatRequest(OpenAIBaseModel):
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."))
"if the served model does not use priority scheduling."),
)
# doc: end-chat-embedding-extra-params
@model_validator(mode="before")
@ -1034,7 +1096,8 @@ class ScoreRequest(OpenAIBaseModel):
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."))
"if the served model does not use priority scheduling."),
)
# doc: end-score-extra-params
@ -1059,7 +1122,8 @@ class RerankRequest(OpenAIBaseModel):
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."))
"if the served model does not use priority scheduling."),
)
# doc: end-rerank-extra-params

View File

@ -2,13 +2,16 @@
import asyncio
import json
import re
import time
from collections.abc import AsyncGenerator, AsyncIterator
from collections.abc import Sequence as GenericSequence
from typing import Callable, Final, Optional, Union
import jinja2
import partial_json_parser
from fastapi import Request
from pydantic import TypeAdapter
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
@ -21,8 +24,8 @@ from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaFunctionCall, DeltaMessage,
DeltaToolCall, ErrorResponse, FunctionCall, PromptTokenUsageInfo,
RequestResponseMetadata, ToolCall, UsageInfo)
DeltaToolCall, ErrorResponse, FunctionCall, FunctionDefinition,
PromptTokenUsageInfo, RequestResponseMetadata, ToolCall, UsageInfo)
from vllm.entrypoints.openai.serving_engine import (OpenAIServing,
clamp_prompt_logprobs)
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
@ -150,12 +153,6 @@ class OpenAIServingChat(OpenAIServing):
tool_parser = self.tool_parser
# validation for OpenAI tools
# tool_choice = "required" is not supported
if request.tool_choice == "required":
return self.create_error_response(
"tool_choice = \"required\" is not supported!")
if isinstance(tokenizer, MistralTokenizer):
# because of issues with pydantic we need to potentially
# re-serialize the tool_calls field of the request
@ -277,6 +274,122 @@ class OpenAIServingChat(OpenAIServing):
return self.response_role
return request.messages[-1]["role"]
@staticmethod
def _bracket_level(s: str, opening='{', closing='}') -> int:
"""
Calculate the current level of nested brackets in a given string.
"""
level = 0
for char in s:
if char == opening:
level += 1
elif char == closing:
level -= 1
return level
@staticmethod
def _filter_delta_text(delta_text: str,
previous_text: str) -> tuple[str, bool]:
# remove last '},' of the tool definition stemming from the
# "name"/"parameters" outer object or closing ']' of the tool list
# count occurrences of opening and closing curly braces and
# once level 0 is reached stop outputting text
# if 0 is reached while parsing the delta_text we know the current
# tool will finish in this current iteration
bracket_level = OpenAIServingChat._bracket_level(previous_text)
updated_delta, passed_zero = "", False
for c in delta_text:
if c == '{':
bracket_level += 1
passed_zero = bracket_level == 0
elif c == '}':
bracket_level -= 1
passed_zero = bracket_level == 0
if bracket_level != 0:
updated_delta += c
else:
# if a comma is reached at level 0 we can stop
if c == ',':
break
return updated_delta, passed_zero
def extract_tool_call_required_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
function_name_returned: bool,
) -> tuple[Optional[DeltaMessage], bool]:
try:
obj = partial_json_parser.loads(current_text)
except partial_json_parser.core.exceptions.MalformedJSON:
logger.debug('not enough tokens to parse into JSON yet')
obj = None
# check if the current text is a valid array
# containing a partial tool calling object
# if not repeat
if obj is None or not isinstance(obj, list) or not len(obj) > 0:
function_name_returned = False
delta_message = None
else:
_, finishes_previous_tool = OpenAIServingChat._filter_delta_text(
delta_text, previous_text)
# take the last tool call from the generated list
current_tool_call = obj[-1]
# once parameters have been generated the name is complete as well
if not finishes_previous_tool and ("name" not in current_tool_call
or "parameters"
not in current_tool_call):
function_name_returned = False
delta_message = None
else:
if not function_name_returned:
# get partly generated arguments from the latest tool call
param_match = re.search(r'.*"parameters":\s*(.*)',
current_text)
arguments = param_match.group(1) if param_match else ""
arguments, _ = OpenAIServingChat._filter_delta_text(
arguments, previous_text)
# if this iteration finishes a previous tool call but a
# new incomplete tool is already generated, take the
# previous from the list
if (finishes_previous_tool
and "parameters" not in current_tool_call):
current_tool_call = obj[-2]
function_name_returned = True
delta_message = DeltaMessage(tool_calls=[
DeltaToolCall(function=DeltaFunctionCall(
name=current_tool_call["name"],
arguments=arguments),
index=len(obj) - 1,
type="function")
])
else:
delta_text, _ = OpenAIServingChat._filter_delta_text(
delta_text, previous_text)
if delta_text != "":
delta_message = DeltaMessage(tool_calls=[
DeltaToolCall(
function=DeltaFunctionCall(
# OpenAI API returns None
# instead of name every time
name=None,
arguments=delta_text),
index=len(obj) - 1,
type="function")
])
else:
delta_message = None
return delta_message, function_name_returned
async def chat_completion_stream_generator(
self,
request: ChatCompletionRequest,
@ -312,6 +425,7 @@ class OpenAIServingChat(OpenAIServing):
self._should_stream_with_reasoning_parsing(request))
all_previous_token_ids: Optional[list[list[int]]]
function_name_returned: Optional[list[bool]] = None
# Only one of these will be used, thus previous_texts and
# all_previous_token_ids will not be used twice in the same iteration.
@ -322,6 +436,10 @@ class OpenAIServingChat(OpenAIServing):
# For reasoning parser and tool call all enabled
added_content_delta_arr = [False] * num_choices
reasoning_end_arr = [False] * num_choices
elif request.tool_choice == "required":
previous_texts = [""] * num_choices
function_name_returned = [False] * num_choices
all_previous_token_ids = None
else:
previous_texts, all_previous_token_ids = None, None
@ -521,6 +639,23 @@ class OpenAIServingChat(OpenAIServing):
index=i)
])
elif request.tool_choice == "required":
assert previous_texts is not None
assert function_name_returned is not None
previous_text = previous_texts[i]
current_text = previous_text + delta_text
fn_name_returned = function_name_returned[i]
delta_message, function_name_returned[i] = (
self.extract_tool_call_required_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
function_name_returned=fn_name_returned))
# update the previous values for the next iteration
previous_texts[i] = current_text
# handle streaming deltas for tools with "auto" tool choice
# and reasoning parser
elif tool_choice_auto and self.enable_reasoning:
@ -821,10 +956,10 @@ class OpenAIServingChat(OpenAIServing):
# if auto tools are not enabled, and a named tool choice using
# outlines is not being used
if (not self.enable_auto_tools
or not self.tool_parser) and not isinstance(
request.tool_choice,
ChatCompletionNamedToolChoiceParam):
if (not self.enable_auto_tools or not self.tool_parser) and \
(not isinstance(request.tool_choice,
ChatCompletionNamedToolChoiceParam
) and request.tool_choice != "required"):
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
@ -845,6 +980,24 @@ class OpenAIServingChat(OpenAIServing):
arguments=content))
])
elif request.tool_choice and request.tool_choice == "required":
tool_call_class = MistralToolCall if isinstance(
tokenizer, MistralTokenizer) else ToolCall
# the fields of FunctionDefinition are a superset of the
# tool call outputs and can be used for parsing
tool_calls = TypeAdapter(
list[FunctionDefinition]).validate_json(output.text)
message = ChatMessage(
role=role,
content="",
tool_calls=[
tool_call_class(function=FunctionCall(
name=tool_call.name,
arguments=json.dumps(tool_call.parameters)))
for tool_call in tool_calls
])
# if the request doesn't use tool choice
# OR specifies to not use a tool
elif not request.tool_choice or request.tool_choice == "none":

View File

@ -537,7 +537,7 @@ class OpenAIServing:
lora_request: Optional[LoRARequest] = None) -> str:
if lora_request:
return lora_request.lora_name
if model_name is None:
if not model_name:
return self.models.base_model_paths[0].name
return model_name

Some files were not shown because too many files have changed in this diff Show More