mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Compare commits
2 Commits
efcb786d52
...
c11d1e6781
Author | SHA1 | Date | |
---|---|---|---|
c11d1e6781 | |||
e696f78e05 |
@ -27,7 +27,7 @@ class InputBatch:
|
||||
# batch_idx -> num_scheduled_tokens
|
||||
num_scheduled_tokens: np.ndarray
|
||||
total_num_tokens: int
|
||||
max_num_tokens: int
|
||||
max_query_len: int
|
||||
num_reqs: int
|
||||
|
||||
attn_metadata: dict[str, Any]
|
||||
@ -91,3 +91,53 @@ def prepare_inputs(
|
||||
query_start_loc[num_reqs + 1:].fill(cu_num_tokens)
|
||||
# Fill unused with 0 for full cuda graph mode.
|
||||
seq_lens[num_reqs:].fill(0)
|
||||
|
||||
|
||||
def prepare_spec_decode(
|
||||
# Inputs
|
||||
query_start_loc: np.ndarray, # [B + 1]
|
||||
num_draft_tokens: np.ndarray, # [B]
|
||||
# Outputs
|
||||
cu_num_draft_tokens: np.ndarray, # [B]
|
||||
logits_indices: np.ndarray, # [N + B]
|
||||
target_logits_indices: np.ndarray, # [N]
|
||||
bonus_logits_indices: np.ndarray, # [B]
|
||||
) -> int: # N
|
||||
# Inputs:
|
||||
# query_start_loc: [ 0, 4, 104, 107, 207, 209]
|
||||
# num_draft_tokens: [ 3, 0, 2, 0, 1]
|
||||
# Outputs:
|
||||
# cu_num_draft_tokens: [ 3, 3, 5, 5, 6]
|
||||
# logits_indices: [ 0, 1, 2, 3, 103, 104, 105, 106,
|
||||
# 206, 207, 208]
|
||||
# target_logits_indices: [ 0, 1, 2, 5, 6, 9]
|
||||
# bonus_logits_indices: [ 3, 4, 7, 8, 10]
|
||||
# return: 6 (total number of draft tokens)
|
||||
|
||||
cu_num_draft = 0
|
||||
cu_num_sample = 0
|
||||
num_reqs = num_draft_tokens.shape[0]
|
||||
for i in range(num_reqs):
|
||||
q_end_idx = query_start_loc[i + 1]
|
||||
draft_len = num_draft_tokens[i]
|
||||
|
||||
# The last draft_len + 1 query tokens are used for sampling.
|
||||
sample_len = draft_len + 1
|
||||
sample_start_idx = cu_num_sample
|
||||
sample_end_idx = sample_start_idx + sample_len
|
||||
logits_indices[sample_start_idx:sample_end_idx] = (np.arange(
|
||||
q_end_idx - sample_len, q_end_idx))
|
||||
|
||||
# For each query, the first draft_len tokens need target logits for
|
||||
# rejection sampling. The draft_len + 1th token is used for bonus token.
|
||||
draft_start_idx = cu_num_draft
|
||||
draft_end_idx = draft_start_idx + draft_len
|
||||
target_logits_indices[draft_start_idx:draft_end_idx] = (np.arange(
|
||||
sample_start_idx, sample_end_idx - 1))
|
||||
bonus_logits_indices[i] = sample_end_idx - 1
|
||||
|
||||
cu_num_draft += draft_len
|
||||
cu_num_draft_tokens[i] = cu_num_draft
|
||||
cu_num_sample += sample_len
|
||||
|
||||
return cu_num_draft
|
||||
|
@ -77,7 +77,8 @@ from vllm.v1.spec_decode.metadata import SpecDecodeMetadata
|
||||
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
|
||||
from vllm.v1.utils import CpuGpuBuffer
|
||||
from vllm.v1.worker.gpu_block_table import BlockTables
|
||||
from vllm.v1.worker.gpu_input_batch import InputBatch, prepare_inputs
|
||||
from vllm.v1.worker.gpu_input_batch import (InputBatch, prepare_inputs,
|
||||
prepare_spec_decode)
|
||||
from vllm.v1.worker.gpu_worker_states import RequestState
|
||||
from vllm.v1.worker.kv_connector_model_runner_mixin import (
|
||||
KVConnectorModelRunnerMixin, KVConnectorOutput)
|
||||
@ -241,6 +242,15 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
(self.max_num_tokens, self.hidden_size),
|
||||
dtype=self.dtype,
|
||||
device=self.device)
|
||||
self.cu_num_draft_tokens = self._make_buffer(self.max_num_reqs,
|
||||
dtype=torch.int32)
|
||||
self.spec_logits_indices = self._make_buffer(self.max_num_tokens +
|
||||
self.max_num_reqs,
|
||||
dtype=torch.int32)
|
||||
self.target_logits_indices = self._make_buffer(self.max_num_tokens,
|
||||
dtype=torch.int32)
|
||||
self.bonus_logits_indices = self._make_buffer(self.max_num_reqs,
|
||||
dtype=torch.int32)
|
||||
|
||||
# Only relevant for models using M-RoPE (e.g, Qwen2-VL)
|
||||
if self.uses_mrope:
|
||||
@ -272,13 +282,6 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
self.idx_mapping = self._make_buffer(self.max_num_reqs,
|
||||
dtype=torch.int32)
|
||||
|
||||
# OPTIMIZATION: Cache the tensors rather than creating them every step.
|
||||
# Keep in int64 to avoid overflow with long context
|
||||
self.arange_np = np.arange(max(self.max_num_reqs + 1,
|
||||
self.max_model_len,
|
||||
self.max_num_tokens),
|
||||
dtype=np.int64)
|
||||
|
||||
# Layer pairings for cross-layer KV sharing.
|
||||
# If an Attention layer `layer_name` is in the keys of this dict, it
|
||||
# means this layer will perform attention using the keys and values
|
||||
@ -529,26 +532,6 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
dummy_modality = mm_budget.get_modality_with_max_tokens()
|
||||
return self._get_mm_dummy_batch(dummy_modality, num_seqs)
|
||||
|
||||
def _get_cumsum_and_arange(
|
||||
self,
|
||||
num_tokens: np.ndarray,
|
||||
cumsum_dtype: Optional[np.dtype] = None,
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""Get the cumulative sum and batched arange of the given array.
|
||||
# E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])
|
||||
# Equivalent to but faster than:
|
||||
# np.concatenate([np.arange(n) for n in num_tokens])
|
||||
"""
|
||||
# Step 1. [2, 5, 3] -> [2, 7, 10]
|
||||
cu_num_tokens = np.cumsum(num_tokens, dtype=cumsum_dtype)
|
||||
total_num_tokens = cu_num_tokens[-1]
|
||||
# Step 2. [2, 7, 10] -> [0, 0, 2, 2, 2, 2, 2, 7, 7, 7]
|
||||
cumsums_offsets = np.repeat(cu_num_tokens - num_tokens, num_tokens)
|
||||
# Step 3. [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
|
||||
arange = self.arange_np[:total_num_tokens] - cumsums_offsets
|
||||
|
||||
return cu_num_tokens, arange
|
||||
|
||||
def _prepare_inputs(
|
||||
self,
|
||||
scheduler_output: "SchedulerOutput",
|
||||
@ -632,7 +615,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
if draft_token_ids:
|
||||
num_draft_tokens[i] = len(draft_token_ids)
|
||||
spec_decode_metadata = self._calc_spec_decode_metadata(
|
||||
num_draft_tokens, self.query_start_loc.np[1:num_reqs + 1])
|
||||
num_draft_tokens)
|
||||
logits_indices = spec_decode_metadata.logits_indices
|
||||
|
||||
logits_indices_padded = None
|
||||
@ -751,7 +734,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
idx_mapping_np=idx_mapping_np,
|
||||
num_reqs=num_reqs,
|
||||
total_num_tokens=total_num_scheduled_tokens,
|
||||
max_num_tokens=max_num_scheduled_tokens,
|
||||
max_query_len=max_num_scheduled_tokens,
|
||||
attn_metadata=attn_metadata,
|
||||
spec_decode_metadata=spec_decode_metadata,
|
||||
spec_decode_common_attn_metadata=spec_decode_common_attn_metadata,
|
||||
@ -905,55 +888,23 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
def _calc_spec_decode_metadata(
|
||||
self,
|
||||
num_draft_tokens: np.ndarray,
|
||||
cu_num_scheduled_tokens: np.ndarray,
|
||||
) -> SpecDecodeMetadata:
|
||||
# Inputs:
|
||||
# cu_num_scheduled_tokens: [ 4, 104, 107, 207, 209]
|
||||
# num_draft_tokens: [ 3, 0, 2, 0, 1]
|
||||
# Outputs:
|
||||
# cu_num_draft_tokens: [ 3, 3, 5, 5, 6]
|
||||
# logits_indices: [ 0, 1, 2, 3, 103, 104, 105, 106,
|
||||
# 206, 207, 208]
|
||||
# target_logits_indices: [ 0, 1, 2, 5, 6, 9]
|
||||
# bonus_logits_indices: [ 3, 4, 7, 8, 10]
|
||||
num_reqs = num_draft_tokens.shape[0]
|
||||
total_num_draft_tokens = prepare_spec_decode(
|
||||
self.query_start_loc.np,
|
||||
num_draft_tokens,
|
||||
self.cu_num_draft_tokens.np,
|
||||
self.logits_indices.np,
|
||||
self.target_logits_indices.np,
|
||||
self.bonus_logits_indices.np,
|
||||
)
|
||||
|
||||
# Compute the logits indices.
|
||||
# [4, 1, 3, 1, 2]
|
||||
num_sampled_tokens = num_draft_tokens + 1
|
||||
|
||||
# Step 1. cu_num_sampled_tokens: [4, 5, 8, 9, 11]
|
||||
# arange: [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
|
||||
cu_num_sampled_tokens, arange = self._get_cumsum_and_arange(
|
||||
num_sampled_tokens, cumsum_dtype=np.int32)
|
||||
# Step 2. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
|
||||
logits_indices = np.repeat(
|
||||
cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
|
||||
# Step 3. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
|
||||
logits_indices += arange
|
||||
|
||||
# Compute the bonus logits indices.
|
||||
bonus_logits_indices = cu_num_sampled_tokens - 1
|
||||
|
||||
# Compute the draft logits indices.
|
||||
# cu_num_draft_tokens: [3, 3, 5, 5, 6]
|
||||
# arange: [0, 1, 2, 0, 1, 0]
|
||||
cu_num_draft_tokens, arange = self._get_cumsum_and_arange(
|
||||
num_draft_tokens, cumsum_dtype=np.int32)
|
||||
# [0, 0, 0, 5, 5, 9]
|
||||
target_logits_indices = np.repeat(
|
||||
cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
|
||||
# [0, 1, 2, 5, 6, 9]
|
||||
target_logits_indices += arange
|
||||
|
||||
# TODO: Optimize the CPU -> GPU copy.
|
||||
cu_num_draft_tokens = torch.from_numpy(cu_num_draft_tokens).to(
|
||||
self.device, non_blocking=True)
|
||||
logits_indices = torch.from_numpy(logits_indices).to(self.device,
|
||||
non_blocking=True)
|
||||
target_logits_indices = torch.from_numpy(target_logits_indices).to(
|
||||
self.device, non_blocking=True)
|
||||
bonus_logits_indices = torch.from_numpy(bonus_logits_indices).to(
|
||||
self.device, non_blocking=True)
|
||||
cu_num_draft_tokens = self.cu_num_draft_tokens.copy_to_gpu(num_reqs)
|
||||
logits_indices = self.logits_indices.copy_to_gpu(
|
||||
num_reqs + total_num_draft_tokens)
|
||||
target_logits_indices = self.target_logits_indices.copy_to_gpu(
|
||||
total_num_draft_tokens)
|
||||
bonus_logits_indices = self.bonus_logits_indices.copy_to_gpu(num_reqs)
|
||||
|
||||
# Compute the draft token ids.
|
||||
# draft_token_indices: [ 1, 2, 3, 105, 106, 208]
|
||||
@ -1412,10 +1363,10 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
intermediate_tensors = self.sync_and_slice_intermediate_tensors(
|
||||
num_input_tokens, intermediate_tensors, True)
|
||||
|
||||
uniform_decode = (input_batch.max_num_tokens
|
||||
uniform_decode = (input_batch.max_query_len
|
||||
== self.uniform_decode_query_len
|
||||
and num_scheduled_tokens
|
||||
== input_batch.num_reqs * input_batch.max_num_tokens)
|
||||
== input_batch.num_reqs * input_batch.max_query_len)
|
||||
batch_descriptor = BatchDescriptor(num_tokens=num_input_tokens,
|
||||
uniform_decode=uniform_decode)
|
||||
cudagraph_runtime_mode, batch_descriptor = \
|
||||
@ -1669,7 +1620,8 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
target_hidden_states = hidden_states[:num_scheduled_tokens]
|
||||
else:
|
||||
# TODO(woosuk): Refactor this.
|
||||
num_draft_tokens = input_batch.spec_decode_metadata.num_draft_tokens
|
||||
num_draft_tokens = (
|
||||
input_batch.spec_decode_metadata.num_draft_tokens)
|
||||
num_rejected_tokens = [
|
||||
n + 1 - len(sampled_token_ids[i]) if n > 0 else 0
|
||||
for i, n in enumerate(num_draft_tokens)
|
||||
|
Reference in New Issue
Block a user