Compare commits

...

14 Commits

Author SHA1 Message Date
01e389cd94 fix 2025-10-16 16:48:51 +00:00
9decb2a5b1 Merge remote-tracking branch 'test/nixl-ptp-gt-dtp' into woosuk/router-nixl 2025-10-16 16:34:15 +00:00
8935ca208d Merge branch 'main' into woosuk/test-router 2025-10-16 00:32:13 +00:00
dddad8a81c minor 2025-10-14 22:41:25 +00:00
7f783b8a4a merge 2025-10-14 22:39:55 +00:00
1dc9df9842 more integration tests
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-13 14:20:41 +00:00
b8d520232f fix mla
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-13 14:01:34 +00:00
6601c9c5be add and update tests
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-10 10:30:38 +00:00
9f38fed93c clean up
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-09 15:43:43 +00:00
7bb3861faf hacky
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-09 13:24:04 +00:00
684c9b7b6d init
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-08 17:50:07 +00:00
5d45b77124 docs
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-08 14:12:35 +00:00
84dfd367a1 review
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-08 12:56:04 +00:00
1a1c81ca2f init
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-08 10:29:47 +00:00
10 changed files with 633 additions and 199 deletions

View File

@ -649,5 +649,65 @@ async def test_serving_chat_did_set_correct_cache_salt(model_type):
req.cache_salt = "test_salt"
with suppress(Exception):
await serving_chat.create_chat_completion(req)
engine_prompt = serving_chat._process_inputs.await_args_list[1].args[1]
assert engine_prompt.get("cache_salt") == "test_salt"
assert mock_engine.generate.call_args.args[0]["cache_salt"] == "test_salt"
@pytest.mark.asyncio
async def test_serving_chat_data_parallel_rank_extraction():
"""Test that data_parallel_rank is properly extracted from header and passed to engine."""
mock_engine = MagicMock(spec=MQLLMEngineClient)
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
models = OpenAIServingModels(engine_client=mock_engine,
base_model_paths=BASE_MODEL_PATHS,
model_config=MockModelConfig())
serving_chat = OpenAIServingChat(mock_engine,
MockModelConfig(),
models,
response_role="assistant",
chat_template=CHAT_TEMPLATE,
chat_template_content_format="auto",
request_logger=None)
# Test when data_parallel_rank is present in header
req = ChatCompletionRequest(
model=MODEL_NAME,
messages=[{
"role": "user",
"content": "what is 1+1?"
}],
)
# Mock request with X-data-parallel-rank header
mock_raw_request = MagicMock()
mock_raw_request.headers = {"X-data-parallel-rank": "2"}
mock_raw_request.state = MagicMock()
with suppress(Exception):
await serving_chat.create_chat_completion(req, mock_raw_request)
# Verify that data_parallel_rank was passed to engine.generate
assert 'data_parallel_rank' in mock_engine.generate.call_args.kwargs
assert mock_engine.generate.call_args.kwargs['data_parallel_rank'] == 2
# Test when data_parallel_rank is not present (defaults to None)
req_no_dp = ChatCompletionRequest(
model=MODEL_NAME,
messages=[{
"role": "user",
"content": "what is 2+2?"
}],
)
# Mock request with no header
mock_raw_request_no_dp = MagicMock()
mock_raw_request_no_dp.headers = {}
mock_raw_request_no_dp.state = MagicMock()
with suppress(Exception):
await serving_chat.create_chat_completion(req_no_dp, mock_raw_request_no_dp)
# Verify that data_parallel_rank defaults to None
assert 'data_parallel_rank' in mock_engine.generate.call_args.kwargs
assert mock_engine.generate.call_args.kwargs['data_parallel_rank'] is None

View File

@ -34,15 +34,21 @@ else
fi
# Models to run
MODELS=(
"Qwen/Qwen3-0.6B"
)
MODEL_NAMES=${MODEL_NAMES:-}
if [[ -n "$MODEL_NAMES" ]]; then
MODELS=("$MODEL_NAMES")
else
MODELS=(
"Qwen/Qwen3-0.6B"
)
fi
# Number of prefill and decode instances to create
NUM_PREFILL_INSTANCES=${NUM_PREFILL_INSTANCES:-1} # Default to 1
NUM_DECODE_INSTANCES=${NUM_DECODE_INSTANCES:-1} # Default to 1
PREFILLER_TP_SIZE=${PREFILLER_TP_SIZE:-1}
DECODER_TP_SIZE=${DECODER_TP_SIZE:-1}
GPU_MEMORY_UTILIZATION=${GPU_MEMORY_UTILIZATION:-0.2}
# Find the git repository root directory
GIT_ROOT=$(git rev-parse --show-toplevel)
@ -130,7 +136,7 @@ run_tests_for_model() {
vllm serve $model_name \
--port $PORT \
--enforce-eager \
--gpu-memory-utilization 0.2 \
--gpu-memory-utilization $GPU_MEMORY_UTILIZATION \
--tensor-parallel-size $PREFILLER_TP_SIZE \
--kv-transfer-config '$KV_CONFIG'"
@ -171,7 +177,7 @@ run_tests_for_model() {
vllm serve $model_name \
--port $PORT \
--enforce-eager \
--gpu-memory-utilization 0.2 \
--gpu-memory-utilization $GPU_MEMORY_UTILIZATION \
--tensor-parallel-size $DECODER_TP_SIZE \
--kv-transfer-config '$KV_CONFIG'"

View File

@ -12,7 +12,11 @@ FILTER = "exact_match,strict-match"
RTOL = 0.03
# Model-specific expected values
EXPECTED_VALUES = {"Qwen/Qwen3-0.6B": 0.41, "deepseek-ai/deepseek-vl2-small": 0.59}
EXPECTED_VALUES = {
"Qwen/Qwen3-0.6B": 0.41,
"deepseek-ai/deepseek-vl2-small": 0.59,
"deepseek-ai/DeepSeek-V2-Lite-Chat": 0.65,
}
SIMPLE_PROMPT = (
"The best part about working on vLLM is that I got to meet so many people across "

View File

@ -0,0 +1,43 @@
#!/usr/bin/env bash
set -euo pipefail
# Utility to run integration tests sequentially with varying TP configurations.
# If FLASHINFER is set, reruns all tests with VLLM_ATTENTION_BACKEND=FLASHINFER.
SCRIPT="tests/v1/kv_connector/nixl_integration/run_accuracy_test.sh"
# Define test configurations
configs=(
"PREFILLER_TP_SIZE=2 DECODER_TP_SIZE=2"
"PREFILLER_TP_SIZE=1 DECODER_TP_SIZE=2"
"PREFILLER_TP_SIZE=2 DECODER_TP_SIZE=1"
"GPU_MEMORY_UTILIZATION=0.6 MODEL_NAMES=deepseek-ai/DeepSeek-V2-Lite-Chat" # MLA case
# TP greater than num heads
)
run_tests() {
local label=$1
local extra_env=$2
echo "=== Running tests (${label}) ==="
for cfg in "${configs[@]}"; do
echo "-> Running with ${cfg} ${extra_env:+and ${extra_env}}"
# Use 'env' to safely set variables without eval
if ! env ${extra_env} ${cfg} bash "${SCRIPT}"; then
echo "❌ Test failed for config: ${cfg} ${extra_env:+(${extra_env})}"
exit 1
fi
done
echo "✅ All ${label} tests passed!"
}
# Run base tests
run_tests "default backend" ""
# Check if FLASHINFER is set (non-empty)
if [[ -n "${FLASHINFER:-}" ]]; then
echo "FLASHINFER is set, rerunning with VLLM_ATTENTION_BACKEND=FLASHINFER"
run_tests "FLASHINFER backend" "VLLM_ATTENTION_BACKEND=FLASHINFER"
else
echo "FLASHINFER not set, skipping FLASHINFER runs."
fi

View File

@ -308,21 +308,42 @@ class FakeNixlConnectorWorker(NixlConnectorWorker):
assert expected_engine_id == self.REMOTE_ENGINE_ID
remote_agent_name = self.add_remote_agent(
NixlAgentMetadata(
engine_id=self.REMOTE_ENGINE_ID,
agent_metadata=FakeNixlWrapper.AGENT_METADATA,
kv_caches_base_addr=[0],
num_blocks=1,
block_lens=self.block_len_per_layer,
attn_backend_name=self.backend_name,
# `self.kv_cache_layout` is only forced to HND when vllm engine
# is started. We mock HND here.
kv_cache_layout="HND",
),
remote_tp_size=remote_tp_size,
)
return {0: remote_agent_name}
# Adjust remote block length metadata to satisfy heterogeneous TP
# invariants enforced during handshake validation.
remote_block_lens = list(self.block_len_per_layer)
tp_ratio = self.kv_info.tp_ratio(remote_tp_size=remote_tp_size)
if remote_tp_size > self.world_size:
# P TP > D TP case, block_len of remote is smaller
remote_block_lens = [
block_len // (-tp_ratio) for block_len in remote_block_lens
]
elif remote_tp_size < self.world_size:
remote_block_lens = [
block_len * tp_ratio for block_len in remote_block_lens
]
# When remote tp_size > local tp_size, handshake with multiple
# remote ranks.
num_hanshakes = 1 if tp_ratio > 0 else -tp_ratio
remote_agents: dict[int, str] = {}
for remote_tp_rank in range(num_hanshakes):
remote_agent_name = self.add_remote_agent(
NixlAgentMetadata(
engine_id=self.REMOTE_ENGINE_ID,
agent_metadata=FakeNixlWrapper.AGENT_METADATA,
kv_caches_base_addr=[0],
num_blocks=1,
block_lens=remote_block_lens,
attn_backend_name=self.backend_name,
# `self.kv_cache_layout` is only forced to HND when vllm engine
# is started. We mock HND here.
kv_cache_layout="HND",
),
remote_tp_rank=remote_tp_rank,
remote_tp_size=remote_tp_size,
)
remote_agents[remote_tp_rank] = remote_agent_name
return remote_agents
class TestNixlHandshake:
@ -353,7 +374,13 @@ class TestNixlHandshake:
vllm_config, connector.engine_id, hand_shake_latency=0
)
assert isinstance(connector.connector_worker.nixl_wrapper, FakeNixlWrapper)
connector.connector_worker.nixl_wrapper.set_cycles_before_xfer_done(3)
worker = connector.connector_worker
worker.nixl_wrapper.set_cycles_before_xfer_done(3)
# simulate handshake
worker.dst_xfer_side_handles = {
FakeNixlConnectorWorker.REMOTE_ENGINE_ID: {0: 1}
}
worker.kv_cache_layout = "HND"
num_xfers = 4
while True:
# For the same request_id, initiate multiple xfers across different
@ -465,6 +492,70 @@ class TestNixlHandshake:
return
raise TimeoutError("Took too long to complete async handshake.")
@patch(
"vllm.distributed.kv_transfer.kv_connector.v1.nixl_connector.NixlWrapper",
FakeNixlWrapper,
)
@pytest.mark.parametrize("local_tp_size", [1, 2])
def test_prefill_tp_size_greater_than_decode_tp_size(
self, local_tp_size: int, dist_init
):
"""
Verify remote TP > local TP handshake succeeds with different
remote configurations.
"""
vllm_config = create_vllm_config()
local_tp_size = 1
vllm_config.parallel_config.tensor_parallel_size = local_tp_size
connector = NixlConnector(vllm_config, KVConnectorRole.WORKER)
connector.connector_worker = FakeNixlConnectorWorker(
vllm_config, connector.engine_id, hand_shake_latency=0
)
worker = connector.connector_worker
# Minimal local registration params used by add_remote_agent
worker.slot_size_per_layer = [4096]
worker.block_len_per_layer = [4096 * worker.block_size]
worker.num_blocks = 1
worker.dst_num_blocks[worker.engine_id] = worker.num_blocks
worker.src_blocks_data = [(0, worker.block_len_per_layer[0], worker.tp_rank)]
def check_handshake(remote_tp_size: int):
tp_ratio = remote_tp_size // local_tp_size
assert set(remote_agents.keys()) == set(range(tp_ratio))
remote_engine_id = worker.REMOTE_ENGINE_ID
assert worker._tp_size[remote_engine_id] == remote_tp_size
assert -tp_ratio == worker.kv_info.tp_ratio(remote_engine_id)
# ensure src_xfer_side_chunked_handles is populated with tpratio chunks
assert -tp_ratio in worker.src_xfer_side_chunked_handles
assert len(worker.src_xfer_side_chunked_handles[-tp_ratio]) == tp_ratio
assert remote_engine_id in worker.dst_xfer_side_handles
assert set(worker.dst_xfer_side_handles[remote_engine_id].keys()) == set(
range(tp_ratio)
)
remote_agents = worker._nixl_handshake(
host="localhost",
port=1234,
remote_tp_size=2,
expected_engine_id=worker.REMOTE_ENGINE_ID,
)
check_handshake(2)
# NOTE flexiblity: a second remote with higher number of ranks
# is discovered
worker.REMOTE_ENGINE_ID = "remote_engine_2"
remote_agents = worker._nixl_handshake(
host="localhost",
port=1234,
remote_tp_size=6,
expected_engine_id=worker.REMOTE_ENGINE_ID,
)
check_handshake(6)
@patch(
"vllm.distributed.kv_transfer.kv_connector.v1.nixl_connector.NixlWrapper",
FakeNixlWrapper,
@ -565,12 +656,9 @@ class TestNixlHandshake:
kv_cache_layout=mismatched_layout,
)
# We don't check layout for homogeneous TP and MLA for now, as the
# whole block is moved.
with pytest.raises(RuntimeError):
# mismatched layout is expected to fail
worker.add_remote_agent(meta, remote_tp_size=2)
# Layout check done for both homogeneous and heterogeneous TP.
with pytest.raises(AssertionError):
worker.add_remote_agent(meta, remote_tp_size=2)
worker.add_remote_agent(meta, remote_tp_size=1)
@patch(
@ -1180,7 +1268,8 @@ def test_shutdown_cleans_up_resources(dist_init):
):
worker._recving_transfers = {"req1": [(123, time.perf_counter())]}
worker.src_xfer_side_handle = 456
worker.dst_xfer_side_handles = {"engine1": 789}
worker.src_xfer_side_chunked_handles = {-2: [456]}
worker.dst_xfer_side_handles = {"engine1": {0: 789}}
worker._remote_agents = {"engine1": {0: "agent1"}}
worker._registered_descs = ["desc1", "desc2"]
@ -1194,7 +1283,7 @@ def test_shutdown_cleans_up_resources(dist_init):
mock_listener.join.assert_called_once_with(timeout=0)
mock_rel_xfer.assert_called_once_with(123)
assert mock_rel_dlist.call_count == 2
assert mock_rel_dlist.call_count == 3
mock_rel_dlist.assert_any_call(456) # src handle
mock_rel_dlist.assert_any_call(789) # dst handle
mock_rem_agent.assert_called_once_with("agent1")

View File

@ -1,5 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import contextlib
import copy
import logging
@ -36,7 +38,6 @@ from vllm.distributed.parallel_state import (
get_tensor_model_parallel_world_size,
get_tp_group,
)
from vllm.distributed.utils import divide
from vllm.forward_context import ForwardContext
from vllm.logger import init_logger
from vllm.platforms import current_platform
@ -513,6 +514,88 @@ class NixlConnectorScheduler:
class NixlConnectorWorker:
"""Implementation of Worker side methods"""
@dataclass
class KVInfo:
tp_size: int
tp_rank: int
remote_tp_size: dict[EngineId, int]
is_mla: bool
total_num_kv_heads: int
def tp_ratio(
self,
remote_engine_id: Optional[EngineId] = None,
remote_tp_size: Optional[int] = None,
) -> int:
"""
Calculate the tensor parallel ratio between local and remote TP.
We can think of it as the number of local TP workers-per-remote TP
workers. Local workers will read from the same remote TP worker in
groups of size `tp_ratio`. If remote tp_size > local tp_size, the
ratio is flipped (remote_size/local_size) and the returned value is
negative.
"""
if remote_tp_size is None:
assert remote_engine_id is not None
remote_tp_size = self.remote_tp_size[remote_engine_id]
if self.tp_size >= remote_tp_size:
assert self.tp_size % remote_tp_size == 0, (
f"Local tensor parallel size {self.tp_size} is not divisible "
f"by remote tensor parallel size {remote_tp_size}."
)
return self.tp_size // remote_tp_size
else:
assert remote_tp_size % self.tp_size == 0, (
f"Remote tensor parallel size {remote_tp_size} is not divisible "
f"by local tensor parallel size {self.tp_size}."
)
# P TP > D TP case, return the ratio as negative
return -remote_tp_size // self.tp_size
def is_kv_replicated(
self, engine_id: Optional[EngineId] = None, tp_size: Optional[int] = None
) -> bool:
"""
Whether the KV cache is replicated across TP workers due to the
number of TP workers being greater than the number of KV heads.
"""
if tp_size is None:
assert engine_id is not None
tp_size = self.remote_tp_size[engine_id]
return tp_size // self.total_num_kv_heads >= 1
def replicates_kv_cache(
self,
remote_engine_id: Optional[EngineId] = None,
remote_tp_size: Optional[int] = None,
) -> bool:
# MLA is always replicated as the hidden dim can't be split.
return self.is_mla or self.is_kv_replicated(
remote_engine_id, remote_tp_size
)
def get_target_remote_ranks(
self,
remote_engine_id: Optional[EngineId] = None,
remote_tp_size: Optional[int] = None,
) -> list[int]:
"""
Get the remote TP rank (on P) that the current local TP rank
(on D) will read from. When remote tp_size > local tp_size, we
read from multiple remote ranks.
"""
tp_ratio = self.tp_ratio(remote_engine_id, remote_tp_size)
if tp_ratio > 0:
return [self.tp_rank // tp_ratio]
else:
# P TP > D TP case, D reads from |tp_ratio| remote workers.
tp_ratio = -tp_ratio
if self.replicates_kv_cache(remote_engine_id, remote_tp_size):
# When cache is replicated on remote, we only need to read
# from one remote (they all have the same cache).
return [self.tp_rank * tp_ratio]
return [self.tp_rank * tp_ratio + i for i in range(tp_ratio)]
def __init__(self, vllm_config: VllmConfig, engine_id: str):
if NixlWrapper is None:
logger.error("NIXL is not available")
@ -601,8 +684,10 @@ class NixlConnectorWorker:
self.copy_blocks: CopyBlocksOp | None = None
# Map of engine_id -> kv_caches_base_addr. For TP case, each local
# rank will still only pull from a single remote TP worker.
self.kv_caches_base_addr: dict[EngineId, list[int]] = {}
# rank may pull from multiple remote TP workers.
self.kv_caches_base_addr: defaultdict[EngineId, dict[int, list[int]]] = (
defaultdict(dict)
)
# Number of NIXL regions. Currently one region per cache
# (so 1 per layer for MLA, otherwise 2 per layer)
@ -611,8 +696,13 @@ class NixlConnectorWorker:
# nixl_prepped_dlist_handle.
self.src_xfer_side_handle: int = 0
# Populated dynamically during handshake based on remote configuration.
# Keep track of regions at different tp_ratio values. tp_ratio->handles
self.src_xfer_side_chunked_handles: dict[int, list[int]] = {}
# Map of engine_id -> nixl_prepped_dlist_handle (int)].
self.dst_xfer_side_handles: dict[EngineId, int] = {}
self.dst_xfer_side_handles: defaultdict[EngineId, dict[int, int]] = defaultdict(
dict
)
# Map of engine_id -> num_blocks. All ranks in the same deployment will
# have the same number of blocks.
@ -646,7 +736,6 @@ class NixlConnectorWorker:
# Protects _handshake_futures and _remote_agents.
self._handshake_lock = threading.RLock()
self.vllm_config = vllm_config
self.block_size = vllm_config.cache_config.block_size
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
@ -678,6 +767,14 @@ class NixlConnectorWorker:
self.consumer_notification_counts_by_req = defaultdict[ReqId, int](int)
self.xfer_stats = NixlKVConnectorStats()
self.kv_info = self.KVInfo(
tp_size=self.world_size,
tp_rank=self.tp_rank,
remote_tp_size=self._tp_size, # shared state
is_mla=self.use_mla,
total_num_kv_heads=self.model_config.get_total_num_kv_heads(),
)
@staticmethod
def _nixl_handshake_listener(
metadata: NixlAgentMetadata,
@ -717,52 +814,53 @@ class NixlConnectorWorker:
start_time = time.perf_counter()
# NOTE(rob): we need each rank to have a unique port. This is
# a hack to keep us moving. We will switch when moving to etcd
# or where we have a single ZMQ socket in the scheduler.
# Handshake only with the remote TP rank that current local rank will
# pull from. With homogeneous TP it happens to be the same rank_i.
tp_ratio = self._tp_size[self.engine_id] // remote_tp_size
p_remote_rank = self.tp_rank // tp_ratio
path = make_zmq_path("tcp", host, port + p_remote_rank)
logger.debug(
"Querying metadata on path: %s at remote rank %s", path, p_remote_rank
# When target instance TP > local TP, we need to perform multiple
# handshakes. Do it in a single background job for simplicity.
# Regardless, only handshake with the remote TP rank(s) that current
# local rank will read from. Note that With homogeneous TP,
# this happens to be the same single rank_i.
p_remote_ranks = self.kv_info.get_target_remote_ranks(
remote_tp_size=remote_tp_size
)
# Send query for the request.
with zmq_ctx(zmq.REQ, path) as sock:
# Set receive timeout to 5 seconds to avoid hanging on dead server
sock.setsockopt(zmq.RCVTIMEO, 5000) # milliseconds
sock.send(GET_META_MSG)
metadata_bytes = sock.recv()
decoder = msgspec.msgpack.Decoder(NixlAgentMetadata)
metadata = decoder.decode(metadata_bytes)
got_metadata_time = time.perf_counter()
logger.debug(
"NIXL handshake: get metadata took: %s", got_metadata_time - start_time
remote_rank_to_agent_name = {}
for remote_rank in p_remote_ranks:
path = make_zmq_path("tcp", host, port + remote_rank)
logger.warning(
"Querying metadata on path: %s at remote rank %s", path, remote_rank
)
# Ensure engine id matches.
if metadata.engine_id != expected_engine_id:
raise RuntimeError(
f"Remote NIXL agent engine ID mismatch. "
f"Expected {expected_engine_id},"
f"received {metadata.engine_id}."
# Send query for the request.
with zmq_ctx(zmq.REQ, path) as sock:
# Set receive timeout to 5 seconds to avoid hanging on dead server
sock.setsockopt(zmq.RCVTIMEO, 5000) # milliseconds
sock.send(GET_META_MSG)
metadata_bytes = sock.recv()
decoder = msgspec.msgpack.Decoder(NixlAgentMetadata)
metadata = decoder.decode(metadata_bytes)
got_metadata_time = time.perf_counter()
logger.debug(
"NIXL handshake: get metadata took: %s", got_metadata_time - start_time
)
# Register Remote agent.
remote_agent_name = self.add_remote_agent(
metadata, p_remote_rank, remote_tp_size
)
setup_agent_time = time.perf_counter()
logger.debug(
"NIXL handshake: add agent took: %s",
setup_agent_time - got_metadata_time,
)
# Ensure engine id matches.
if metadata.engine_id != expected_engine_id:
raise RuntimeError(
f"Remote NIXL agent engine ID mismatch. "
f"Expected {expected_engine_id},"
f"received {metadata.engine_id}."
)
# Remote rank -> agent name.
return {p_remote_rank: remote_agent_name}
# Register Remote agent.
remote_agent_name = self.add_remote_agent(
metadata, remote_rank, remote_tp_size
)
setup_agent_time = time.perf_counter()
logger.debug(
"NIXL handshake: add agent took: %s",
setup_agent_time - got_metadata_time,
)
remote_rank_to_agent_name[remote_rank] = remote_agent_name
return remote_rank_to_agent_name
def initialize_host_xfer_buffer(self, kv_caches: dict[str, torch.Tensor]) -> None:
"""
@ -916,7 +1014,7 @@ class NixlConnectorWorker:
assert len(self.block_len_per_layer) == len(seen_base_addresses)
assert self.num_blocks != 0
self.kv_caches_base_addr[self.engine_id] = seen_base_addresses
self.kv_caches_base_addr[self.engine_id][self.tp_rank] = seen_base_addresses
self.num_regions = len(caches_data)
self.num_layers = len(xfer_buffers.keys())
@ -942,7 +1040,7 @@ class NixlConnectorWorker:
self.num_regions *= 2
# Register local/src descr for NIXL xfer.
blocks_data = []
self.src_blocks_data = []
for i, base_addr in enumerate(seen_base_addresses):
kv_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
# NOTE With heter-TP, more blocks are prepared than what are
@ -954,7 +1052,7 @@ class NixlConnectorWorker:
block_offset = block_id * self.block_len_per_layer[i]
addr = base_addr + block_offset
# (addr, len, device id)
blocks_data.append((addr, kv_block_len, self.tp_rank))
self.src_blocks_data.append((addr, kv_block_len, self.tp_rank))
if self._use_flashinfer:
# Separate and interleave K/V regions to maintain the same
@ -965,15 +1063,17 @@ class NixlConnectorWorker:
addr = base_addr + block_offset
# Register addresses for V cache (K registered first).
v_addr = addr + kv_block_len
blocks_data.append((v_addr, kv_block_len, self.tp_rank))
self.src_blocks_data.append((v_addr, kv_block_len, self.tp_rank))
logger.debug(
"Created %s blocks for src engine %s and rank %s",
len(blocks_data),
len(self.src_blocks_data),
self.engine_id,
self.tp_rank,
)
descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
descs = self.nixl_wrapper.get_xfer_descs(
self.src_blocks_data, self.nixl_memory_type
)
# NIXL_INIT_AGENT to be used for preparations of local descs.
self.src_xfer_side_handle = self.nixl_wrapper.prep_xfer_dlist(
"NIXL_INIT_AGENT", descs
@ -981,13 +1081,11 @@ class NixlConnectorWorker:
# TODO(mgoin): Hybrid memory allocator is currently disabled for
# models with local attention (Llama 4). Can remove this once enabled.
if self.vllm_config.model_config.hf_config.model_type == "llama4":
if self.model_config.hf_config.model_type == "llama4":
from transformers import Llama4TextConfig
assert isinstance(
self.vllm_config.model_config.hf_text_config, Llama4TextConfig
)
llama4_config = self.vllm_config.model_config.hf_text_config
assert isinstance(self.model_config.hf_text_config, Llama4TextConfig)
llama4_config = self.model_config.hf_text_config
no_rope_layers = llama4_config.no_rope_layers
chunk_size = llama4_config.attention_chunk_size
chunk_block_size = math.ceil(chunk_size / self.block_size)
@ -1007,7 +1105,7 @@ class NixlConnectorWorker:
metadata = NixlAgentMetadata(
engine_id=self.engine_id,
agent_metadata=self.nixl_wrapper.get_agent_metadata(),
kv_caches_base_addr=self.kv_caches_base_addr[self.engine_id],
kv_caches_base_addr=self.kv_caches_base_addr[self.engine_id][self.tp_rank],
num_blocks=self.num_blocks,
block_lens=self.block_len_per_layer,
attn_backend_name=self.backend_name,
@ -1035,10 +1133,12 @@ class NixlConnectorWorker:
In particular, handle both homogeneous and heterogeneous TP. The former
requires local rank_i to read from remote rank_i.
The latter, assuming D.world_size > P.world_size, requires that two or
more local TP worker share the xfer from a single TP worker.
The latter, in the case of D.world_size < P.world_size, requires that a
local (D) TP worker reads from multiple remote (P) TP workers.
Conversely, assuming D.world_size > P.world_size, two or more local TP
workers will read from a single remote TP worker.
Here's an example (non-MLA case):
Here's an example for the last case described above (non-MLA):
rank_offset p_remote_tp_rank
(kv split no)
@ -1070,107 +1170,91 @@ class NixlConnectorWorker:
engine_id = nixl_agent_meta.engine_id
# TODO re-evaluate refreshing for scaling/recovery
if remote_tp_rank in self._remote_agents.get(engine_id, {}):
logger.warning(
"Remote agent with engine_id %s and rank"
"%s already exchanged metadata, skip handshake.",
engine_id,
remote_tp_rank,
)
return self._remote_agents[engine_id][remote_tp_rank]
### Register remote agent metadata
if engine_id not in self._tp_size:
self._tp_size[engine_id] = remote_tp_size
else:
assert self._tp_size[engine_id] == remote_tp_size
# TODO We may eventually want to skip enforcing the same attn backend.
assert nixl_agent_meta.attn_backend_name == self.backend_name
remote_agent_name = self.nixl_wrapper.add_remote_agent(
nixl_agent_meta.agent_metadata
)
# Number of D TP workers reading from a single P TP worker. This is
# 1 when P and D `--tensor-parallel-size` match.
tp_ratio = divide(self._tp_size[self.engine_id], self._tp_size[engine_id])
assert tp_ratio > 0, "Decode TP cannot be smaller than prefill TP"
assert not self._use_pallas or tp_ratio == 1, (
"TPU (pallas_v1) DOES NOT support heterogeneous TP yet."
)
# Handle tp_size>num_kv_heads: replicate KV cache.
total_num_kv_heads = self.model_config.get_total_num_kv_heads()
is_kv_replicated = self._tp_size[engine_id] // total_num_kv_heads >= 1
remote_block_len = nixl_agent_meta.block_lens[0]
if nixl_agent_meta.kv_cache_layout != self.kv_cache_layout:
if (
self.vllm_config.kv_transfer_config is not None
and self.vllm_config.kv_transfer_config.enable_permute_local_kv
and nixl_agent_meta.kv_cache_layout == "HND"
):
logger.info(
"Remote is HND and local is NHD, enabled additional permute "
"on local device KV."
)
self.enable_permute_local_kv = True
else:
raise RuntimeError(
"Heterogeneous TP expects same kv_cache_layout. "
"Or enable experimental feature to use HND to NHD support by "
"setting 'enable_permute_local_kv'=True in --kv-transfer-config."
)
if self.use_mla or is_kv_replicated:
# With replicated KV cache, only the number of blocks can differ.
assert self.block_len_per_layer == nixl_agent_meta.block_lens, (
"KV cache sizes must match between P and D when replicated"
)
remote_block_size = remote_block_len // (self.slot_size_per_layer[0])
else:
# When MLA is not used, this is a list of the same block length
for block_len in nixl_agent_meta.block_lens:
assert block_len == remote_block_len, (
"All remote layers must have the same block size"
)
remote_block_size = remote_block_len // (
self.slot_size_per_layer[0] * tp_ratio
)
if self._use_flashinfer:
# With flashinfer, KV are sent in the same message.
remote_block_size //= 2
if tp_ratio > 1:
# Heterogeneous TP expects same kv_cache_layout.
if nixl_agent_meta.kv_cache_layout == "NHD":
raise ValueError(
"Heterogeneous TP is not supported for remote with NHD."
)
if self.device_type == "xpu":
raise ValueError("Heterogeneous TP is not supported on XPU")
assert remote_block_len == self.block_len_per_layer[0] * tp_ratio, (
"Remote P worker KV layer cache must be of shape [2, N, "
"local_kv_heads*tp_ratio, block_size, head_dim] and same dtype."
)
assert self.block_size == remote_block_size, (
"Remote P worker with different page/block size is not supported "
f"{self.block_size=}, {remote_block_size=}"
)
# Create dst descs and xfer side handles. TP workers have same #blocks.
if engine_id in self.dst_num_blocks:
assert self.dst_num_blocks[engine_id] == nixl_agent_meta.num_blocks
else:
# Create dst descs and xfer side handles. TP workers have same #blocks
# so we only register once per engine_id.
if engine_id not in self.dst_num_blocks:
self.dst_num_blocks[engine_id] = nixl_agent_meta.num_blocks
# Keep track of remote agent kv caches base addresses.
self.kv_caches_base_addr[engine_id][remote_tp_rank] = (
nixl_agent_meta.kv_caches_base_addr
)
self._validate_remote_agent_handshake(nixl_agent_meta, remote_tp_size)
# This is 1 when P and D `--tensor-parallel-size` match. Otherwise,
# this is the ratio between the two sizes.
tp_ratio = self.kv_info.tp_ratio(engine_id)
# Handle tp_size>num_kv_heads: replicate KV cache.
indexes_into_remote = (
not self.kv_info.replicates_kv_cache(engine_id) and tp_ratio > 0
)
logger.debug(
"Registering remote agent (%s, rank %s) memory regions with tp_ratio %s",
engine_id,
remote_tp_rank,
tp_ratio,
)
### (Optional) Register local agent memory regions.
# MLA-optimization: only prepare one region.
if (
tp_ratio < 0
and not self.use_mla
and tp_ratio not in self.src_xfer_side_chunked_handles
):
# Remote tp_size > local tp_size: read from multiple remote ranks.
# Logically "split" own regions into |tp_ratio| chunks. Mind that
# we only do this once per remote tp_size (replica-friendly).
self.src_xfer_side_chunked_handles[tp_ratio] = []
for i in range(-tp_ratio):
blocks_data = []
for memory_region in self.src_blocks_data:
addr, local_block_len, own_tp_rank = memory_region
# Computing block len layer by layer allows for different
# block sizes to be used.
remote_block_len = local_block_len // (-tp_ratio)
addr = addr + i * remote_block_len
blocks_data.append((addr, remote_block_len, own_tp_rank))
descs = self.nixl_wrapper.get_xfer_descs(
blocks_data, self.nixl_memory_type
)
handle = self.nixl_wrapper.prep_xfer_dlist("NIXL_INIT_AGENT", descs)
self.src_xfer_side_chunked_handles[tp_ratio].append(handle)
### Register remote agent memory regions
blocks_data = []
# With homogeneous TP, D pulls the whole kv cache from corresponding
# rank. With heterogeneous TP, prepare the descriptors by splitting the
# P KV cache along kv_head dim, of D worker's kv_head size (D>P).
# Eg. PTP1 DTP2 => P0 KV:[block0-KV_0 | block0-KV_1..].
self.kv_caches_base_addr[engine_id] = nixl_agent_meta.kv_caches_base_addr
assert len(nixl_agent_meta.kv_caches_base_addr) == len(self.block_len_per_layer)
# Register all remote blocks, but only the corresponding kv heads.
for i, base_addr in enumerate(nixl_agent_meta.kv_caches_base_addr):
kv_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
# Read our whole local region size from remote.
local_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
if tp_ratio < 0 and not self.use_mla:
# Remote tp is bigger: read a chunk of local region from remote
local_block_len = local_block_len // (-tp_ratio)
rank_offset = (
self.tp_rank % tp_ratio * kv_block_len
if not (self.use_mla or is_kv_replicated)
else 0
self.tp_rank % tp_ratio * local_block_len if indexes_into_remote else 0
)
for block_id in range(nixl_agent_meta.num_blocks):
block_offset = block_id * nixl_agent_meta.block_lens[i]
@ -1179,7 +1263,7 @@ class NixlConnectorWorker:
# self.block_len == remote_block_len//tp_ratio bytes.
addr = base_addr + block_offset + rank_offset
# (addr, len, device id)
blocks_data.append((addr, kv_block_len, remote_tp_rank))
blocks_data.append((addr, local_block_len, remote_tp_rank))
if self._use_flashinfer:
# With FlashInfer index V separately to allow head splitting.
@ -1187,7 +1271,7 @@ class NixlConnectorWorker:
block_offset = block_id * nixl_agent_meta.block_lens[i]
addr = base_addr + block_offset + rank_offset
v_addr = addr + nixl_agent_meta.block_lens[i] // 2
blocks_data.append((v_addr, kv_block_len, remote_tp_rank))
blocks_data.append((v_addr, local_block_len, remote_tp_rank))
logger.debug(
"Created %s blocks for dst engine %s with remote rank %s and local rank %s",
@ -1199,12 +1283,87 @@ class NixlConnectorWorker:
# Register with NIXL.
descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
self.dst_xfer_side_handles[engine_id] = self.nixl_wrapper.prep_xfer_dlist(
remote_agent_name, descs
self.dst_xfer_side_handles[engine_id][remote_tp_rank] = (
self.nixl_wrapper.prep_xfer_dlist(remote_agent_name, descs)
)
return remote_agent_name
def _validate_remote_agent_handshake(
self, nixl_agent_meta: NixlAgentMetadata, remote_tp_size: int
):
"""
Validate the remote agent handshake metadata ensuring the
invariants hold true.
"""
remote_engine_id = nixl_agent_meta.engine_id
assert self._tp_size[remote_engine_id] == remote_tp_size
# TODO We may eventually want to skip enforcing the same attn backend.
assert nixl_agent_meta.attn_backend_name == self.backend_name
assert nixl_agent_meta.kv_cache_layout == self.kv_cache_layout
tp_ratio = self.kv_info.tp_ratio(remote_engine_id)
assert not self._use_pallas or tp_ratio == 1, (
"TPU (pallas_v1) DOES NOT support heterogeneous TP yet."
)
# Num kv_heads > tp_size and P TP > D TP case, not supported
assert not (tp_ratio < 0 and self.kv_info.is_kv_replicated(remote_engine_id))
# Block len can only vary across layers when using MLA.
remote_block_len = nixl_agent_meta.block_lens[0]
if self.kv_info.replicates_kv_cache(remote_engine_id):
# With replicated KV cache, only the number of blocks can differ.
assert self.block_len_per_layer == nixl_agent_meta.block_lens, (
"KV cache sizes must match between P and D when replicated"
)
remote_block_size = remote_block_len // (self.slot_size_per_layer[0])
else:
if tp_ratio != 1 and self.device_type == "xpu":
# XPU uses NHD, hence it does not support splitting on H
raise ValueError("Heterogeneous TP is not supported on XPU")
# When MLA is not used, this is a list of the same block length
for block_len in nixl_agent_meta.block_lens:
assert block_len == remote_block_len, (
"All remote layers must have the same block size"
)
if tp_ratio > 0:
# Remote NHD/H'D*tp_ratio=N -page_size-
remote_block_size = remote_block_len // (
self.slot_size_per_layer[0] * tp_ratio
)
# Remote tp is smaller: remote block_len size is bigger
assert remote_block_len == self.block_len_per_layer[0] * tp_ratio, (
"Remote P worker KV layer cache must be of shape [2, N, "
"local_kv_heads*tp_ratio, page_size, head_dim] and same dtype."
) # noqa: E501
else:
# Remote NHD/(H'D/tp_ratio)=N -page_size-
remote_block_size = remote_block_len // (
self.slot_size_per_layer[0] // (-tp_ratio)
)
# Remote tp is bigger: remote block_len size is smaller
assert remote_block_len == self.block_len_per_layer[0] // (-tp_ratio), (
"Remote P worker KV layer cache must be of shape [2, N, "
"local_kv_heads/tp_ratio, page_size, head_dim] and same dtype."
) # noqa: E501
if self._use_flashinfer:
# With flashinfer, KV are sent in the same message.
remote_block_size //= 2
# We may allow it in the future with logical kvcache manager block_size
assert self.block_size == remote_block_size, (
"Remote P worker with different page/block size is not supported "
f"{self.block_size=}, {remote_block_size=}"
)
# TP workers (handhshakes with same remote) have same #blocks.
assert self.dst_num_blocks[remote_engine_id] == nixl_agent_meta.num_blocks
# Same number of regions/~layers.
assert len(nixl_agent_meta.kv_caches_base_addr) == len(self.block_len_per_layer)
def sync_recved_kv_to_device(self, req_id: str, meta: ReqMeta):
"""copy recved kv from host buffer to device."""
assert self.use_host_buffer
@ -1384,7 +1543,7 @@ class NixlConnectorWorker:
"""
done_req_ids: set[str] = set()
for req_id, handles in list(transfers.items()):
in_progress = False
in_progress = []
for handle, _xfer_stime in handles:
xfer_state = self.nixl_wrapper.check_xfer_state(handle)
if xfer_state == "DONE":
@ -1393,7 +1552,7 @@ class NixlConnectorWorker:
self.xfer_stats.record_transfer(res)
self.nixl_wrapper.release_xfer_handle(handle)
elif xfer_state == "PROC":
in_progress = True
in_progress.append((handle, _xfer_stime))
continue
else:
# transfer failed - mark blocks as invalid
@ -1410,8 +1569,11 @@ class NixlConnectorWorker:
self.nixl_wrapper.release_xfer_handle(handle)
self.xfer_stats.record_failed_transfer()
if not in_progress:
# Only report request as completed when all transfers are done.
done_req_ids.add(req_id)
del transfers[req_id]
else:
transfers[req_id] = in_progress
return done_req_ids
def start_load_kv(self, metadata: NixlConnectorMetadata):
@ -1466,17 +1628,37 @@ class NixlConnectorWorker:
self._reqs_to_send[req_id] = expiration_time
def _read_blocks_for_req(self, req_id: str, meta: ReqMeta):
logger.debug(
"Remote agent %s available, calling _read_blocks for req %s",
meta.remote_engine_id,
req_id,
)
self._read_blocks(
request_id=req_id,
dst_engine_id=meta.remote_engine_id,
local_block_ids=meta.local_block_ids,
remote_block_ids=meta.remote_block_ids,
)
remote_ranks = self.kv_info.get_target_remote_ranks(meta.remote_engine_id)
tp_ratio = self.kv_info.tp_ratio(meta.remote_engine_id)
# D may have to perform multiple reads from different remote ranks.
for i, remote_rank in enumerate(remote_ranks):
logger.debug(
"Remote agent %s available, calling _read_blocks"
" on remote rank %s for req %s",
meta.remote_engine_id,
remote_rank,
req_id,
)
if tp_ratio < 0 and not self.use_mla:
# Remote tp_size > local tp_size: we must perform multiple
# reads. Get the memory chunk onto which we will write to.
local_xfer_side_handle = self.src_xfer_side_chunked_handles[tp_ratio][i]
else:
# Single read from remote, we write to the whole memory region.
local_xfer_side_handle = self.src_xfer_side_handle
# Destination handle: remote_engine_id -> remote_rank -> handle.
remote_xfer_side_handle = self.dst_xfer_side_handles[meta.remote_engine_id][
remote_rank
]
self._read_blocks(
request_id=req_id,
dst_engine_id=meta.remote_engine_id,
local_block_ids=meta.local_block_ids,
remote_block_ids=meta.remote_block_ids,
remote_rank=remote_rank,
local_xfer_side_handle=local_xfer_side_handle,
remote_xfer_side_handle=remote_xfer_side_handle,
)
def _read_blocks(
self,
@ -1484,7 +1666,14 @@ class NixlConnectorWorker:
remote_block_ids: list[int],
dst_engine_id: str,
request_id: str,
remote_rank: int,
local_xfer_side_handle: int,
remote_xfer_side_handle: int,
):
"""
Post a READ xfer request from a single local worker to a single
remote worker.
"""
# NOTE(rob): having the staging blocks be on the READER side is
# not going to work well (since we will have to call rearrange tensors).
# after we detect the txn is complete (which means we cannot make the
@ -1497,14 +1686,14 @@ class NixlConnectorWorker:
# Number of D TP workers that will read from dst P. Propagate tp_ratio
# on notification so that dst worker can wait before freeing blocks.
tp_ratio = self._tp_size[self.engine_id] // self._tp_size[dst_engine_id]
# Cap to 1 when P TP > D TP: only a single rank will read from remote.
tp_ratio = max(1, self.kv_info.tp_ratio(dst_engine_id))
notif_id = f"{request_id}:{tp_ratio}".encode()
# Full prefix cache hit: do not need to read remote blocks,
# just notify P worker that we have the blocks we need.
num_local_blocks = len(local_block_ids)
if num_local_blocks == 0:
remote_rank = self.tp_rank // tp_ratio
agent_name = self._remote_agents[dst_engine_id][remote_rank]
try:
self.nixl_wrapper.send_notif(agent_name, notif_msg=notif_id)
@ -1524,10 +1713,6 @@ class NixlConnectorWorker:
if num_local_blocks < num_remote_blocks:
remote_block_ids = remote_block_ids[-num_local_blocks:]
# Get side handles.
local_xfer_side_handle = self.src_xfer_side_handle
remote_xfer_side_handle = self.dst_xfer_side_handles[dst_engine_id]
# NOTE (nicolo) With homogeneous TP, each TP worker loads KV from
# corresponding rank. With heterogeneous TP, fixing D>P, the D tp
# workers will issue xfers to parts of the P worker remote kv caches.
@ -1680,15 +1865,20 @@ class NixlConnectorWorker:
if self._nixl_handshake_listener_t is not None:
self._nixl_handshake_listener_t.join(timeout=0)
self._nixl_handshake_listener_t = None
for handles in self._recving_transfers.values():
for handle, _ in handles:
for rcv_handles in self._recving_transfers.values():
for handle, _ in rcv_handles:
self.nixl_wrapper.release_xfer_handle(handle)
self._recving_transfers.clear()
if self.src_xfer_side_handle:
self.nixl_wrapper.release_dlist_handle(self.src_xfer_side_handle)
self.src_xfer_side_handle = 0
for dst_xfer_side_handle in self.dst_xfer_side_handles.values():
self.nixl_wrapper.release_dlist_handle(dst_xfer_side_handle)
for handles in self.src_xfer_side_chunked_handles.values():
for handle in handles:
self.nixl_wrapper.release_dlist_handle(handle)
self.src_xfer_side_chunked_handles.clear()
for dst_xfer_side_handles in self.dst_xfer_side_handles.values():
for dst_xfer_side_handle in dst_xfer_side_handles.values():
self.nixl_wrapper.release_dlist_handle(dst_xfer_side_handle)
self.dst_xfer_side_handles.clear()
for remote_agents in self._remote_agents.values():
for agent_name in remote_agents.values():

View File

@ -386,6 +386,24 @@ async def get_server_load_metrics(request: Request):
return JSONResponse(content={"server_load": request.app.state.server_load_metrics})
@router.get("/get_server_info")
async def get_server_info(raw_request: Request):
"""Returns server information including DP size for router"""
config = raw_request.app.state.vllm_config
# Extract dp_size from parallel_config
dp_size = 1 # Default value
if hasattr(config, 'parallel_config') and hasattr(config.parallel_config, 'data_parallel_size'):
dp_size = config.parallel_config.data_parallel_size
server_info = {
"vllm_config": str(config),
"dp_size": dp_size
}
return JSONResponse(content=server_info)
@router.get("/ping", response_class=Response)
@router.post("/ping", response_class=Response)
async def ping(raw_request: Request) -> Response:

View File

@ -264,6 +264,9 @@ class OpenAIServingChat(OpenAIServing):
if raw_request:
raw_request.state.request_metadata = request_metadata
# Extract data_parallel_rank from header (router can inject it)
data_parallel_rank = self._get_data_parallel_rank(raw_request)
# Schedule the request and get the result generator.
generators: list[AsyncGenerator[RequestOutput, None]] = []
try:
@ -331,6 +334,7 @@ class OpenAIServingChat(OpenAIServing):
priority=request.priority,
prompt_text=prompt_text,
tokenization_kwargs=tokenization_kwargs,
data_parallel_rank=data_parallel_rank,
)
generators.append(generator)

View File

@ -141,6 +141,10 @@ class OpenAIServingCompletion(OpenAIServing):
logger.exception("Error in preprocessing prompt inputs")
return self.create_error_response(str(e))
# Extract data_parallel_rank from header (router can inject it)
data_parallel_rank = self._get_data_parallel_rank(raw_request)
# Schedule the request and get the result generator.
generators: list[AsyncGenerator[RequestOutput, None]] = []
try:
@ -224,6 +228,7 @@ class OpenAIServingCompletion(OpenAIServing):
priority=request.priority,
prompt_text=prompt_text,
tokenization_kwargs=tokenization_kwargs,
data_parallel_rank=data_parallel_rank,
)
generators.append(generator)

View File

@ -1297,6 +1297,21 @@ class OpenAIServing:
return raw_request.headers.get("X-Request-Id", default)
@staticmethod
def _get_data_parallel_rank(raw_request: Request | None) -> int | None:
"""Pulls the data parallel rank from a header, if provided"""
if raw_request is None:
return None
rank_str = raw_request.headers.get("X-data-parallel-rank")
if rank_str is None:
return None
try:
return int(rank_str)
except ValueError:
return None
@staticmethod
def _get_decoded_token(
logprob: Logprob,