mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Compare commits
1 Commits
d31f7844f8
...
remove-reg
Author | SHA1 | Date | |
---|---|---|---|
36ccdcad2c |
@ -227,16 +227,6 @@ steps:
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_regression
|
||||
commands:
|
||||
- pip install modelscope
|
||||
- pytest -v -s test_regression.py
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
- label: Engine Test # 10min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
|
@ -1,78 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Containing tests that check for regressions in vLLM's behavior.
|
||||
|
||||
It should include tests that are reported by users and making sure they
|
||||
will never happen again.
|
||||
|
||||
"""
|
||||
import gc
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="In V1, we reject tokens > max_seq_len")
|
||||
def test_duplicated_ignored_sequence_group():
|
||||
"""https://github.com/vllm-project/vllm/issues/1655"""
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.01,
|
||||
top_p=0.1,
|
||||
max_tokens=256)
|
||||
llm = LLM(model="distilbert/distilgpt2",
|
||||
max_num_batched_tokens=4096,
|
||||
tensor_parallel_size=1)
|
||||
prompts = ["This is a short prompt", "This is a very long prompt " * 1000]
|
||||
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
||||
|
||||
assert len(prompts) == len(outputs)
|
||||
|
||||
|
||||
def test_max_tokens_none():
|
||||
sampling_params = SamplingParams(temperature=0.01,
|
||||
top_p=0.1,
|
||||
max_tokens=None)
|
||||
llm = LLM(model="distilbert/distilgpt2",
|
||||
max_num_batched_tokens=4096,
|
||||
tensor_parallel_size=1)
|
||||
prompts = ["Just say hello!"]
|
||||
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
||||
|
||||
assert len(prompts) == len(outputs)
|
||||
|
||||
|
||||
def test_gc():
|
||||
llm = LLM(model="distilbert/distilgpt2", enforce_eager=True)
|
||||
del llm
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# The memory allocated for model and KV cache should be released.
|
||||
# The memory allocated for PyTorch and others should be less than 50MB.
|
||||
# Usually, it's around 10MB.
|
||||
allocated = torch.cuda.memory_allocated()
|
||||
assert allocated < 50 * 1024 * 1024
|
||||
|
||||
|
||||
def test_model_from_modelscope(monkeypatch: pytest.MonkeyPatch):
|
||||
# model: https://modelscope.cn/models/qwen/Qwen1.5-0.5B-Chat/summary
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_MODELSCOPE", "True")
|
||||
# Don't use HF_TOKEN for ModelScope repos, otherwise it will fail
|
||||
# with 400 Client Error: Bad Request.
|
||||
m.setenv("HF_TOKEN", "")
|
||||
llm = LLM(model="qwen/Qwen1.5-0.5B-Chat")
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
assert len(outputs) == 4
|
Reference in New Issue
Block a user