mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Compare commits
2 Commits
d31f7844f8
...
codex/remo
Author | SHA1 | Date | |
---|---|---|---|
85013bf094 | |||
07665f8679 |
@ -50,8 +50,8 @@ ALLOWED_FILES = set([
|
||||
# cloudpickle
|
||||
'vllm/worker/worker_base.py',
|
||||
'vllm/executor/mp_distributed_executor.py',
|
||||
'vllm/executor/ray_distributed_executor.py',
|
||||
'vllm/entrypoints/llm.py',
|
||||
'vllm/v1/executor/ray_distributed_executor.py',
|
||||
'tests/utils.py',
|
||||
# pickle and cloudpickle
|
||||
'vllm/utils/__init__.py',
|
||||
|
@ -433,9 +433,9 @@ class LLMEngine:
|
||||
f"ExecutorBase. Got {distributed_executor_backend}.")
|
||||
executor_class = distributed_executor_backend
|
||||
elif distributed_executor_backend == "ray":
|
||||
from vllm.executor.ray_distributed_executor import (
|
||||
RayDistributedExecutor)
|
||||
executor_class = RayDistributedExecutor
|
||||
raise RuntimeError(
|
||||
"The Ray distributed executor is only available in the v1 "
|
||||
"engine. Enable it by setting 'VLLM_USE_V1=1'.")
|
||||
elif distributed_executor_backend == "mp":
|
||||
from vllm.executor.mp_distributed_executor import (
|
||||
MultiprocessingDistributedExecutor)
|
||||
|
@ -1,699 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import cloudpickle
|
||||
import msgspec
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.executor.executor_base import (
|
||||
DistributedExecutorBase) # yapf: disable
|
||||
from vllm.executor.msgspec_utils import encode_hook
|
||||
from vllm.executor.ray_utils import (RayWorkerWrapper, initialize_ray_cluster,
|
||||
ray)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.ray.ray_env import get_env_vars_to_copy
|
||||
from vllm.sequence import ExecuteModelRequest
|
||||
from vllm.utils import (_run_task_with_lock, get_distributed_init_method,
|
||||
get_ip, get_open_port, make_async)
|
||||
|
||||
if ray is not None:
|
||||
from ray.actor import ActorHandle
|
||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
||||
else:
|
||||
ActorHandle = None
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ray.util.placement_group import PlacementGroup
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class RayWorkerMetaData:
|
||||
"""
|
||||
Metadata for a Ray worker.
|
||||
The order of ray worker creation can be random,
|
||||
and we need to reset the rank after creating all workers.
|
||||
"""
|
||||
worker: ActorHandle
|
||||
created_rank: int
|
||||
adjusted_rank: int = -1
|
||||
ip: str = ""
|
||||
|
||||
|
||||
class RayDistributedExecutor(DistributedExecutorBase):
|
||||
"""Ray-based distributed executor"""
|
||||
|
||||
# These env vars are worker-specific, therefore are NOT copied
|
||||
# from the driver to the workers
|
||||
WORKER_SPECIFIC_ENV_VARS = {
|
||||
"VLLM_HOST_IP", "VLLM_HOST_PORT", "LOCAL_RANK", "CUDA_VISIBLE_DEVICES"
|
||||
}
|
||||
|
||||
# These non-vLLM env vars are copied from the driver to workers
|
||||
ADDITIONAL_ENV_VARS = {"HF_TOKEN", "HUGGING_FACE_HUB_TOKEN"}
|
||||
|
||||
uses_ray: bool = True
|
||||
|
||||
def _init_executor(self) -> None:
|
||||
self.forward_dag: Optional[ray.dag.CompiledDAG] = None
|
||||
if envs.VLLM_USE_V1:
|
||||
# V1 uses SPMD worker and compiled DAG
|
||||
os.environ["VLLM_USE_RAY_SPMD_WORKER"] = "1"
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG"] = "1"
|
||||
|
||||
# For TPU or XPU, avoid compiling NVIDIA's NCCL
|
||||
if current_platform.is_tpu() or current_platform.is_xpu():
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE"] = "shm"
|
||||
|
||||
# If the env var is set, it uses the Ray's compiled DAG API
|
||||
# which optimizes the control plane overhead.
|
||||
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
|
||||
# Currently, this requires USE_RAY_SPMD_WORKER=True.
|
||||
self.use_ray_compiled_dag = envs.VLLM_USE_RAY_COMPILED_DAG
|
||||
# If the env var is set, then we do not distinguish between the
|
||||
# "driver worker" vs other workers. Also, the rank 0 worker will
|
||||
# be executed in a remote Ray worker. Currently this requires
|
||||
# USE_RAY_COMPILED_DAG=True.
|
||||
self.use_ray_spmd_worker = envs.VLLM_USE_RAY_SPMD_WORKER
|
||||
if self.use_ray_compiled_dag:
|
||||
assert self.use_ray_spmd_worker, (
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1 requires "
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
if self.use_ray_spmd_worker:
|
||||
# TODO: Support SPMD worker for non-DAG Ray executor.
|
||||
assert self.use_ray_compiled_dag, (
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1 requires "
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1")
|
||||
|
||||
assert self.uses_ray
|
||||
initialize_ray_cluster(self.parallel_config)
|
||||
placement_group = self.parallel_config.placement_group
|
||||
|
||||
# Disable Ray usage stats collection.
|
||||
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
|
||||
if ray_usage != "1":
|
||||
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
|
||||
|
||||
# Create the parallel GPU workers.
|
||||
self._init_workers_ray(placement_group)
|
||||
|
||||
self.input_encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
|
||||
self.output_decoder = msgspec.msgpack.Decoder(
|
||||
Optional[List[SamplerOutput]])
|
||||
self.use_v1 = envs.VLLM_USE_V1
|
||||
|
||||
self.pp_locks: Optional[List[asyncio.Lock]] = None
|
||||
if not self.use_ray_compiled_dag:
|
||||
self.driver_exec_method = make_async(
|
||||
self.driver_worker.execute_method)
|
||||
|
||||
def shutdown(self) -> None:
|
||||
if logger:
|
||||
# Somehow logger can be None here.
|
||||
logger.info(
|
||||
"Shutting down Ray distributed executor. If you see error log "
|
||||
"from logging.cc regarding SIGTERM received, please ignore "
|
||||
"because this is the expected termination process in Ray.")
|
||||
if hasattr(self, "forward_dag") and self.forward_dag is not None:
|
||||
self.forward_dag.teardown()
|
||||
import ray
|
||||
for worker in self.workers:
|
||||
ray.kill(worker)
|
||||
self.forward_dag = None
|
||||
|
||||
def _configure_ray_workers_use_nsight(self,
|
||||
ray_remote_kwargs) -> Dict[str, Any]:
|
||||
# If nsight profiling is enabled, we need to set the profiling
|
||||
# configuration for the ray workers as runtime env.
|
||||
runtime_env = ray_remote_kwargs.setdefault("runtime_env", {})
|
||||
runtime_env.update({
|
||||
"nsight": {
|
||||
"t": "cuda,cudnn,cublas",
|
||||
"o": "'worker_process_%p'",
|
||||
"cuda-graph-trace": "node",
|
||||
}
|
||||
})
|
||||
|
||||
return ray_remote_kwargs
|
||||
|
||||
# child class could overwrite this to return actual env vars.
|
||||
def _get_env_vars_to_be_updated(self):
|
||||
return self._env_vars_for_all_workers
|
||||
|
||||
def _init_workers_ray(self, placement_group: "PlacementGroup",
|
||||
**ray_remote_kwargs):
|
||||
num_gpus = envs.VLLM_RAY_PER_WORKER_GPUS
|
||||
|
||||
# The driver dummy worker does not actually use any resources.
|
||||
# It holds the resource for the driver worker.
|
||||
self.driver_dummy_worker: Optional[RayWorkerWrapper] = None
|
||||
# The remaining workers are the actual ray actors.
|
||||
self.workers: List[RayWorkerWrapper] = []
|
||||
|
||||
# Used in ray compiled DAG: indexed first by PP rank,
|
||||
# and then TP rank. In other words, the inner list is
|
||||
# the TP group of workers for a PP rank.
|
||||
self.pp_tp_workers: List[List[RayWorkerWrapper]] = []
|
||||
|
||||
if self.parallel_config.ray_workers_use_nsight:
|
||||
ray_remote_kwargs = self._configure_ray_workers_use_nsight(
|
||||
ray_remote_kwargs)
|
||||
|
||||
logger.info("use_ray_spmd_worker: %s", self.use_ray_spmd_worker)
|
||||
|
||||
# Create the workers.
|
||||
bundle_indices: List[int]
|
||||
if envs.VLLM_RAY_BUNDLE_INDICES:
|
||||
# Use the bundle indices specified by the user.
|
||||
bundle_indices = list(
|
||||
map(int, envs.VLLM_RAY_BUNDLE_INDICES.split(",")))
|
||||
assert len(bundle_indices) == self.parallel_config.world_size, \
|
||||
("VLLM_RAY_BUNDLE_INDICES must have the same size"
|
||||
f" as the world size, but got {bundle_indices=} "
|
||||
f"and {self.parallel_config.world_size=}")
|
||||
assert len(set(bundle_indices)) == len(bundle_indices), \
|
||||
("VLLM_RAY_BUNDLE_INDICES cannot have duplicate values,"
|
||||
f" but got {bundle_indices=}")
|
||||
else:
|
||||
# use the first N bundles that have GPU resources.
|
||||
bundle_indices = []
|
||||
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
|
||||
if bundle.get(current_platform.ray_device_key, 0):
|
||||
bundle_indices.append(bundle_id)
|
||||
bundle_indices = bundle_indices[:self.parallel_config.world_size]
|
||||
|
||||
worker_metadata: List[RayWorkerMetaData] = []
|
||||
driver_ip = get_ip()
|
||||
for rank, bundle_id in enumerate(bundle_indices):
|
||||
scheduling_strategy = PlacementGroupSchedulingStrategy(
|
||||
placement_group=placement_group,
|
||||
placement_group_capture_child_tasks=True,
|
||||
placement_group_bundle_index=bundle_id,
|
||||
)
|
||||
|
||||
if current_platform.ray_device_key == "GPU":
|
||||
# NV+AMD GPUs, and Intel XPUs
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=num_gpus,
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
else:
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=0,
|
||||
resources={current_platform.ray_device_key: num_gpus},
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
worker_metadata.append(
|
||||
RayWorkerMetaData(worker=worker, created_rank=rank))
|
||||
|
||||
worker_ips = ray.get([
|
||||
each.worker.get_node_ip.remote() # type: ignore[attr-defined]
|
||||
for each in worker_metadata
|
||||
])
|
||||
|
||||
for each, ip in zip(worker_metadata, worker_ips):
|
||||
each.ip = ip
|
||||
|
||||
if not self.use_ray_spmd_worker:
|
||||
for i, each in enumerate(worker_metadata):
|
||||
# find and remove the dummy worker from the list
|
||||
worker = each.worker
|
||||
worker_ip = each.ip
|
||||
if self.driver_dummy_worker is None and worker_ip == driver_ip:
|
||||
# If the worker is on the same node as the driver, we use it
|
||||
# as the resource holder for the driver process.
|
||||
self.driver_dummy_worker = worker
|
||||
self.driver_worker = RayWorkerWrapper(
|
||||
vllm_config=self.vllm_config, rpc_rank=0)
|
||||
worker_metadata.pop(i)
|
||||
break
|
||||
|
||||
logger.debug("workers: %s", worker_metadata)
|
||||
logger.debug("driver_dummy_worker: %s", self.driver_dummy_worker)
|
||||
if not self.use_ray_spmd_worker and self.driver_dummy_worker is None:
|
||||
raise ValueError(
|
||||
"Ray does not allocate any GPUs on the driver node."
|
||||
f"Driver IP: {driver_ip}, worker IPs: {worker_ips}."
|
||||
"Consider adjusting the Ray placement group or running "
|
||||
"the driver on a GPU node.")
|
||||
|
||||
ip_counts: Dict[str, int] = {}
|
||||
for ip in worker_ips:
|
||||
ip_counts[ip] = ip_counts.get(ip, 0) + 1
|
||||
|
||||
def sort_by_driver_then_worker_ip(item: RayWorkerMetaData):
|
||||
"""
|
||||
Sort the workers based on 3 properties:
|
||||
1. If the worker is on the same node as the driver (vllm engine),
|
||||
it should be placed first.
|
||||
2. Then, if the worker is on a node with fewer workers, it should
|
||||
be placed first.
|
||||
3. Finally, if the work is on a node with smaller IP address, it
|
||||
should be placed first.
|
||||
"""
|
||||
ip = item.ip
|
||||
return (0 if ip == driver_ip else 1, ip_counts[ip], ip)
|
||||
|
||||
# After sorting, the workers on the same node will be
|
||||
# close to each other, and the workers on the driver
|
||||
# node will be placed first.
|
||||
sorted_worker_metadata = sorted(worker_metadata,
|
||||
key=sort_by_driver_then_worker_ip)
|
||||
start_rank = 0 if self.use_ray_spmd_worker else 1
|
||||
for i, item in enumerate(sorted_worker_metadata):
|
||||
item.adjusted_rank = i + start_rank
|
||||
self.workers = [item.worker for item in sorted_worker_metadata]
|
||||
rerank_mapping = {
|
||||
item.created_rank: item.adjusted_rank
|
||||
for item in sorted_worker_metadata
|
||||
}
|
||||
self._run_workers("adjust_rank", rerank_mapping)
|
||||
|
||||
# Get the set of GPU IDs used on each node.
|
||||
worker_node_and_gpu_ids = []
|
||||
for worker in [self.driver_dummy_worker] + self.workers:
|
||||
if worker is None:
|
||||
# driver_dummy_worker can be None when using ray spmd worker.
|
||||
continue
|
||||
worker_node_and_gpu_ids.append(
|
||||
ray.get(worker.get_node_and_gpu_ids.remote()) \
|
||||
) # type: ignore
|
||||
|
||||
node_workers = defaultdict(list) # node id -> list of worker ranks
|
||||
node_gpus = defaultdict(list) # node id -> list of gpu ids
|
||||
|
||||
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids):
|
||||
node_workers[node_id].append(i)
|
||||
# `gpu_ids` can be a list of strings or integers.
|
||||
# convert them to integers for consistency.
|
||||
# NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs),
|
||||
# string sorting is not sufficient.
|
||||
# see https://github.com/vllm-project/vllm/issues/5590
|
||||
gpu_ids = [int(x) for x in gpu_ids]
|
||||
node_gpus[node_id].extend(gpu_ids)
|
||||
for node_id, gpu_ids in node_gpus.items():
|
||||
node_gpus[node_id] = sorted(gpu_ids)
|
||||
|
||||
all_ips = set(worker_ips + [driver_ip])
|
||||
n_ips = len(all_ips)
|
||||
n_nodes = len(node_workers)
|
||||
|
||||
if n_nodes != n_ips:
|
||||
raise RuntimeError(
|
||||
f"Every node should have a unique IP address. Got {n_nodes}"
|
||||
f" nodes with node ids {list(node_workers.keys())} and "
|
||||
f"{n_ips} unique IP addresses {all_ips}. Please check your"
|
||||
" network configuration. If you set `VLLM_HOST_IP`"
|
||||
" environment variable, make sure it is unique for"
|
||||
" each node.")
|
||||
|
||||
# Set environment variables for the driver and workers.
|
||||
all_args_to_update_environment_variables = [{
|
||||
current_platform.device_control_env_var:
|
||||
",".join(map(str, node_gpus[node_id])),
|
||||
} for (node_id, _) in worker_node_and_gpu_ids]
|
||||
|
||||
# Environment variables to copy from driver to workers
|
||||
env_vars_to_copy = get_env_vars_to_copy(
|
||||
exclude_vars=self.WORKER_SPECIFIC_ENV_VARS,
|
||||
additional_vars=set(current_platform.additional_env_vars).union(
|
||||
self.ADDITIONAL_ENV_VARS),
|
||||
destination="workers")
|
||||
|
||||
# Copy existing env vars to each worker's args
|
||||
for args in all_args_to_update_environment_variables:
|
||||
# TODO: refactor platform-specific env vars
|
||||
for name in env_vars_to_copy:
|
||||
if name in os.environ:
|
||||
args[name] = os.environ[name]
|
||||
|
||||
self._env_vars_for_all_workers = (
|
||||
all_args_to_update_environment_variables)
|
||||
|
||||
self._run_workers("update_environment_variables",
|
||||
self._get_env_vars_to_be_updated())
|
||||
|
||||
if len(node_gpus) == 1:
|
||||
# in single node case, we don't need to get the IP address.
|
||||
# the loopback address is sufficient
|
||||
# NOTE: a node may have several IP addresses, one for each
|
||||
# network interface. `get_ip()` might return any of them,
|
||||
# while they might not work for communication inside the node
|
||||
# if the network setup is complicated. Using the loopback address
|
||||
# solves this issue, as it always works for communication inside
|
||||
# the node.
|
||||
driver_ip = "127.0.0.1"
|
||||
distributed_init_method = get_distributed_init_method(
|
||||
driver_ip, get_open_port())
|
||||
|
||||
# Initialize the actual workers inside worker wrapper.
|
||||
all_kwargs = []
|
||||
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids):
|
||||
local_rank = node_workers[node_id].index(rank)
|
||||
kwargs = dict(
|
||||
vllm_config=self.vllm_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
distributed_init_method=distributed_init_method,
|
||||
is_driver_worker=(not self.parallel_config)
|
||||
or (rank % self.parallel_config.tensor_parallel_size == 0),
|
||||
)
|
||||
all_kwargs.append(kwargs)
|
||||
self._run_workers("init_worker", all_kwargs)
|
||||
|
||||
self._run_workers("init_device")
|
||||
self._run_workers("load_model",
|
||||
max_concurrent_workers=self.parallel_config.
|
||||
max_parallel_loading_workers)
|
||||
|
||||
if self.use_ray_spmd_worker:
|
||||
for pp_rank in range(self.parallel_config.pipeline_parallel_size):
|
||||
self.pp_tp_workers.append([])
|
||||
for tp_rank in range(
|
||||
self.parallel_config.tensor_parallel_size):
|
||||
# PP=2, TP=4
|
||||
# pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]]
|
||||
rank = (pp_rank * self.parallel_config.tensor_parallel_size
|
||||
) + tp_rank
|
||||
assert len(self.pp_tp_workers[pp_rank]) == tp_rank
|
||||
assert pp_rank < len(self.pp_tp_workers)
|
||||
self.pp_tp_workers[pp_rank].append(self.workers[rank])
|
||||
|
||||
# This is the list of workers that are rank 0 of each TP group EXCEPT
|
||||
# global rank 0. These are the workers that will broadcast to the
|
||||
# rest of the workers.
|
||||
self.tp_driver_workers: List[RayWorkerWrapper] = []
|
||||
# This is the list of workers that are not drivers and not the first
|
||||
# worker in a TP group. These are the workers that will be
|
||||
# broadcasted to.
|
||||
self.non_driver_workers: List[RayWorkerWrapper] = []
|
||||
|
||||
# Enforce rank order for correct rank to return final output.
|
||||
for index, worker in enumerate(self.workers):
|
||||
# The driver worker is rank 0 and not in self.workers.
|
||||
rank = index + 1
|
||||
if rank % self.parallel_config.tensor_parallel_size == 0:
|
||||
self.tp_driver_workers.append(worker)
|
||||
else:
|
||||
self.non_driver_workers.append(worker)
|
||||
|
||||
def _driver_execute_model(
|
||||
self, execute_model_req: Optional[ExecuteModelRequest]
|
||||
) -> Optional[List[SamplerOutput]]:
|
||||
"""Run execute_model in the driver worker.
|
||||
|
||||
Passing None will cause the driver to stop the model execution
|
||||
loop running in each of the remote workers.
|
||||
"""
|
||||
assert not self.use_ray_spmd_worker, (
|
||||
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
return self.driver_worker.execute_method("execute_model",
|
||||
execute_model_req)
|
||||
|
||||
def execute_model(
|
||||
self,
|
||||
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
||||
if not self.use_ray_spmd_worker:
|
||||
return super().execute_model(execute_model_req)
|
||||
|
||||
if self.forward_dag is None:
|
||||
self.forward_dag = self._compiled_ray_dag(enable_asyncio=False)
|
||||
|
||||
if self.use_v1:
|
||||
serialized_data = execute_model_req
|
||||
else:
|
||||
serialized_data = self.input_encoder.encode(execute_model_req)
|
||||
outputs = ray.get(self.forward_dag.execute(serialized_data))
|
||||
if self.use_v1:
|
||||
output = outputs[0]
|
||||
else:
|
||||
output = self.output_decoder.decode(outputs[0])
|
||||
return output
|
||||
|
||||
def _run_workers(
|
||||
self,
|
||||
method: Union[str, Callable],
|
||||
*args,
|
||||
async_run_tensor_parallel_workers_only: bool = False,
|
||||
max_concurrent_workers: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> Any:
|
||||
"""Runs the given method on all workers. Can be used in the following
|
||||
ways:
|
||||
|
||||
Args:
|
||||
- async_run_tensor_parallel_workers_only: If True the method will be
|
||||
run only in the remote TP workers, not the driver worker.
|
||||
It will also be run asynchronously and return a list of futures
|
||||
rather than blocking on the results.
|
||||
- args/kwargs: All workers share the same args/kwargs
|
||||
"""
|
||||
if isinstance(method, str):
|
||||
sent_method = method
|
||||
else:
|
||||
sent_method = cloudpickle.dumps(method)
|
||||
del method
|
||||
if self.use_ray_spmd_worker:
|
||||
assert not async_run_tensor_parallel_workers_only, (
|
||||
"async_run_tensor_parallel_workers_only is not supported for "
|
||||
"spmd mode.")
|
||||
|
||||
if max_concurrent_workers:
|
||||
raise NotImplementedError(
|
||||
"max_concurrent_workers is not supported yet.")
|
||||
|
||||
# Start the ray workers first.
|
||||
ray_workers = self.workers
|
||||
if async_run_tensor_parallel_workers_only:
|
||||
ray_workers = self.non_driver_workers
|
||||
ray_worker_outputs = [
|
||||
worker.execute_method.remote(sent_method, *args, **kwargs)
|
||||
for worker in ray_workers
|
||||
]
|
||||
|
||||
if async_run_tensor_parallel_workers_only:
|
||||
# Just return futures
|
||||
return ray_worker_outputs
|
||||
|
||||
driver_worker_output = []
|
||||
# In SPMD mode, the driver worker is the same as any other worker,
|
||||
# so we only explicitly execute on the driver worker if using a
|
||||
# non-SPMD worker class.
|
||||
if not self.use_ray_spmd_worker:
|
||||
# Start the driver worker after all the ray workers.
|
||||
driver_worker_output = [
|
||||
self.driver_worker.execute_method(sent_method, *args, **kwargs)
|
||||
]
|
||||
|
||||
# Get the results of the ray workers.
|
||||
if self.workers:
|
||||
ray_worker_outputs = ray.get(ray_worker_outputs)
|
||||
|
||||
return driver_worker_output + ray_worker_outputs
|
||||
|
||||
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
|
||||
"""Wait for futures returned from _run_workers() with
|
||||
async_run_remote_workers_only to complete."""
|
||||
ray.get(parallel_worker_tasks)
|
||||
|
||||
def _check_ray_cgraph_installation(self):
|
||||
import importlib.metadata
|
||||
|
||||
from packaging import version
|
||||
|
||||
required_version = version.parse("2.43.0")
|
||||
current_version = version.parse(importlib.metadata.version("ray"))
|
||||
if current_version < required_version:
|
||||
raise ValueError(f"Ray version {required_version} is "
|
||||
f"required, but found {current_version}")
|
||||
|
||||
import importlib.util
|
||||
cgraph_spec = importlib.util.find_spec(
|
||||
"ray.experimental.compiled_dag_ref")
|
||||
if cgraph_spec is None:
|
||||
raise ValueError("Ray Compiled Graph is not installed. "
|
||||
"Run `pip install ray[cgraph]` to install it.")
|
||||
|
||||
cupy_spec = importlib.util.find_spec("cupy")
|
||||
if (cupy_spec is None
|
||||
and envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "nccl"):
|
||||
raise ValueError(
|
||||
"cupy is not installed but required since "
|
||||
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE is set to 'nccl'. "
|
||||
"Run `pip install ray[cgraph]` and check cupy installation.")
|
||||
|
||||
def _compiled_ray_dag(self, enable_asyncio: bool):
|
||||
assert self.parallel_config.use_ray
|
||||
self._check_ray_cgraph_installation()
|
||||
# Enlarge the default value of "RAY_CGRAPH_get_timeout" to 300 seconds
|
||||
# (it is 10 seconds by default). This is a Ray environment variable to
|
||||
# control the timeout of getting result from a compiled graph execution,
|
||||
# i.e., the distributed execution that includes model forward runs and
|
||||
# intermediate tensor communications, in the case of vllm.
|
||||
# Note: we should set this env var before importing
|
||||
# ray.dag, otherwise it will not take effect.
|
||||
os.environ.setdefault("RAY_CGRAPH_get_timeout", "300") # noqa: SIM112
|
||||
from ray.dag import InputNode, MultiOutputNode
|
||||
logger.info("RAY_CGRAPH_get_timeout is set to %s",
|
||||
os.environ["RAY_CGRAPH_get_timeout"]) # noqa: SIM112
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE)
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
channel_type = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
if channel_type not in ("auto", "nccl", "shm"):
|
||||
raise ValueError(
|
||||
"Invalid value for VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: "
|
||||
f"{channel_type}. Valid values are: 'auto', 'nccl', or 'shm'.")
|
||||
|
||||
with InputNode() as input_data:
|
||||
# Example DAG: PP=2, TP=4
|
||||
#
|
||||
# For V0:
|
||||
# ExecuteModelRequest -> 0 -> (ExecuteModelReq, IntermediateTensors) -> 4 -> SamplerOutput # noqa: E501
|
||||
# ExecuteModelRequest -> 1 -> (ExecuteModelReq, IntermediateTensors) -> 5 -> SamplerOutput # noqa: E501
|
||||
# ExecuteModelRequest -> 2 -> (ExecuteModelReq, IntermediateTensors) -> 6 -> SamplerOutput # noqa: E501
|
||||
# ExecuteModelRequest -> 3 -> (ExecuteModelReq, IntermediateTensors) -> 7 -> SamplerOutput # noqa: E501
|
||||
#
|
||||
# For V1:
|
||||
# SchedulerOutput -> 0 -> (SchedulerOutput, IntermediateTensors) -> 4 -> ModelRunnerOutput # noqa: E501
|
||||
# SchedulerOutput -> 1 -> (SchedulerOutput, IntermediateTensors) -> 5 -> ModelRunnerOutput # noqa: E501
|
||||
# SchedulerOutput -> 2 -> (SchedulerOutput, IntermediateTensors) -> 6 -> ModelRunnerOutput # noqa: E501
|
||||
# SchedulerOutput -> 3 -> (SchedulerOutput, IntermediateTensors) -> 7 -> ModelRunnerOutput # noqa: E501
|
||||
|
||||
# All workers in the first TP group will take in the
|
||||
# ExecuteModelRequest as input.
|
||||
outputs = [input_data for _ in self.pp_tp_workers[0]]
|
||||
for pp_rank, tp_group in enumerate(self.pp_tp_workers):
|
||||
# Each PP worker takes in the output of the previous PP worker,
|
||||
# and the TP group executes in SPMD fashion.
|
||||
if self.use_v1:
|
||||
outputs = [
|
||||
worker.execute_model_ray.
|
||||
bind( # type: ignore[attr-defined]
|
||||
outputs[i]) for i, worker in enumerate(tp_group)
|
||||
]
|
||||
else:
|
||||
outputs = [
|
||||
worker.execute_model_spmd.
|
||||
bind( # type: ignore[attr-defined]
|
||||
outputs[i]) for i, worker in enumerate(tp_group)
|
||||
]
|
||||
|
||||
last_pp_rank = len(self.pp_tp_workers) - 1
|
||||
if (pp_rank < last_pp_rank and
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE != "shm"):
|
||||
# Specify how intermediate tensors should be passed
|
||||
# between pp stages, no need to specify for the last
|
||||
# pp stage or when using shared memory (the default).
|
||||
transport = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
outputs = [
|
||||
output.with_tensor_transport(transport=transport)
|
||||
for output in outputs
|
||||
]
|
||||
|
||||
forward_dag = MultiOutputNode(outputs)
|
||||
|
||||
if envs.VLLM_USE_RAY_WRAPPED_PP_COMM:
|
||||
from ray.experimental.channel.accelerator_context import (
|
||||
register_accelerator_context)
|
||||
|
||||
from vllm.distributed.device_communicators.ray_communicator import (
|
||||
RayPPCommunicator)
|
||||
register_accelerator_context(torch_module_name="cuda",
|
||||
communicator_cls=RayPPCommunicator)
|
||||
logger.info("Using RayPPCommunicator "
|
||||
"(which wraps vLLM _PP GroupCoordinator) "
|
||||
"for Ray Compiled Graph communication.")
|
||||
else:
|
||||
logger.info("Using Ray's NCCL communicator for "
|
||||
"Ray Compiled Graph communication.")
|
||||
|
||||
return forward_dag.experimental_compile(
|
||||
enable_asyncio=enable_asyncio,
|
||||
_overlap_gpu_communication=envs.
|
||||
VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
def __del__(self):
|
||||
self.shutdown()
|
||||
|
||||
async def execute_model_async(
|
||||
self,
|
||||
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
||||
if not self.use_ray_spmd_worker:
|
||||
return await super().execute_model_async(execute_model_req)
|
||||
|
||||
if self.forward_dag is None:
|
||||
self.forward_dag = self._compiled_ray_dag(enable_asyncio=True)
|
||||
|
||||
serialized_data = self.input_encoder.encode(execute_model_req)
|
||||
dag_future = await self.forward_dag.execute_async(serialized_data)
|
||||
output = await dag_future[0]
|
||||
return self.output_decoder.decode(output)
|
||||
|
||||
async def _driver_execute_model_async(
|
||||
self,
|
||||
execute_model_req: Optional[ExecuteModelRequest] = None
|
||||
) -> List[SamplerOutput]:
|
||||
assert not self.use_ray_spmd_worker, (
|
||||
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
if not self.tp_driver_workers:
|
||||
return await self.driver_exec_method("execute_model",
|
||||
execute_model_req)
|
||||
if self.pp_locks is None:
|
||||
# This locks each pipeline parallel stage so multiple virtual
|
||||
# engines can't execute on the same stage at the same time
|
||||
# We create the locks here to avoid creating them in the constructor
|
||||
# which uses a different asyncio loop.
|
||||
self.pp_locks = [
|
||||
asyncio.Lock()
|
||||
for _ in range(self.parallel_config.pipeline_parallel_size)
|
||||
]
|
||||
|
||||
tasks = [
|
||||
asyncio.create_task(
|
||||
_run_task_with_lock(self.driver_exec_method, self.pp_locks[0],
|
||||
"execute_model", execute_model_req))
|
||||
]
|
||||
for pp_rank, driver_worker in enumerate(self.tp_driver_workers,
|
||||
start=1):
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
_run_task_with_lock(driver_worker.execute_method.remote,
|
||||
self.pp_locks[pp_rank],
|
||||
"execute_model", execute_model_req)))
|
||||
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
# Only the last PP stage has the final results.
|
||||
return results[-1]
|
||||
|
||||
async def _start_worker_execution_loop(self):
|
||||
assert not self.use_ray_spmd_worker, (
|
||||
"worker loop is disabled for VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
coros = [
|
||||
worker.execute_method.remote("start_worker_execution_loop")
|
||||
for worker in self.non_driver_workers
|
||||
]
|
||||
return await asyncio.gather(*coros)
|
||||
|
||||
def check_health(self) -> None:
|
||||
# Assume that the Ray workers are healthy.
|
||||
# TODO: check the health of the Ray workers
|
||||
return
|
@ -1,62 +1,165 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import threading
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import Future
|
||||
from typing import Optional, Union
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import cloudpickle
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.distributed.kv_transfer.kv_connector.utils import KVOutputAggregator
|
||||
from vllm.executor.ray_distributed_executor import ( # noqa
|
||||
RayDistributedExecutor as RayDistributedExecutorV0)
|
||||
from vllm.executor.executor_base import DistributedExecutorBase
|
||||
from vllm.executor.msgspec_utils import encode_hook
|
||||
from vllm.executor.ray_utils import (RayWorkerWrapper, initialize_ray_cluster,
|
||||
ray)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.ray.ray_env import get_env_vars_to_copy
|
||||
from vllm.sequence import ExecuteModelRequest
|
||||
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
|
||||
make_async)
|
||||
from vllm.v1.core.sched.output import SchedulerOutput
|
||||
from vllm.v1.engine import ReconfigureDistributedRequest, ReconfigureRankType
|
||||
from vllm.v1.executor.abstract import Executor
|
||||
from vllm.v1.outputs import ModelRunnerOutput
|
||||
|
||||
try: # msgspec is optional at runtime but required for serialization.
|
||||
import msgspec
|
||||
except ImportError: # pragma: no cover - msgspec is an optional dependency.
|
||||
msgspec = None # type: ignore
|
||||
|
||||
if ray is not None:
|
||||
from ray.actor import ActorHandle
|
||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
||||
else:
|
||||
ActorHandle = None
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ray.util.placement_group import PlacementGroup
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class FutureWrapper(Future):
|
||||
"""A wrapper around Ray output reference to meet the interface
|
||||
of .execute_model(): The top level (core busy loop) expects .result() api
|
||||
to block and return a single output.
|
||||
|
||||
If aggregator is provided, the outputs from all workers are aggregated upon
|
||||
the result() call. If not only the first worker's output is returned.
|
||||
@dataclass
|
||||
class RayWorkerMetaData:
|
||||
"""
|
||||
Metadata for a Ray worker.
|
||||
The order of ray worker creation can be random,
|
||||
and we need to reset the rank after creating all workers.
|
||||
"""
|
||||
|
||||
def __init__(self, refs, aggregator: Optional[KVOutputAggregator] = None):
|
||||
worker: ActorHandle
|
||||
created_rank: int
|
||||
adjusted_rank: int = -1
|
||||
ip: str = ""
|
||||
|
||||
|
||||
class FutureWrapper(Future):
|
||||
"""Future compatible wrapper around Ray object references."""
|
||||
|
||||
def __init__(self,
|
||||
refs,
|
||||
aggregator: Optional[KVOutputAggregator] = None) -> None:
|
||||
super().__init__()
|
||||
self.refs = refs
|
||||
self.aggregator = aggregator
|
||||
self._refs = refs
|
||||
self._aggregator = aggregator
|
||||
# Resolve the Ray object references off-thread so that the driver event
|
||||
# loop is not blocked and Future callbacks fire when the result is
|
||||
# ready.
|
||||
threading.Thread(target=self._resolve, daemon=True).start()
|
||||
|
||||
def result(self, timeout=None):
|
||||
if timeout is not None:
|
||||
raise NotImplementedError("timeout is not supported")
|
||||
def cancel(self) -> bool: # pragma: no cover - cancellation unsupported.
|
||||
return False
|
||||
|
||||
if self.aggregator is None:
|
||||
return self.refs[0].get()
|
||||
|
||||
outputs = [ref.get() for ref in self.refs]
|
||||
return self.aggregator.aggregate(outputs, output_rank=0)
|
||||
def _resolve(self) -> None:
|
||||
try:
|
||||
if ray is None:
|
||||
raise RuntimeError("Ray is required to resolve distributed "
|
||||
"results.")
|
||||
outputs = ray.get(self._refs)
|
||||
if self._aggregator is None:
|
||||
result = outputs[0]
|
||||
else:
|
||||
result = self._aggregator.aggregate(outputs, output_rank=0)
|
||||
self.set_result(result)
|
||||
except BaseException as exc: # pragma: no cover - Ray errors propagated.
|
||||
self.set_exception(exc)
|
||||
finally:
|
||||
self._refs = None
|
||||
self._aggregator = None
|
||||
|
||||
|
||||
class RayDistributedExecutor(RayDistributedExecutorV0, Executor):
|
||||
"""Ray distributed executor using Ray Compiled Graphs."""
|
||||
class RayDistributedExecutor(DistributedExecutorBase, Executor):
|
||||
"""Ray-based distributed executor for the v1 engine."""
|
||||
|
||||
# These env vars are worker-specific, therefore are NOT copied
|
||||
# from the driver to the workers
|
||||
WORKER_SPECIFIC_ENV_VARS = {
|
||||
"VLLM_HOST_IP", "VLLM_HOST_PORT", "LOCAL_RANK", "CUDA_VISIBLE_DEVICES"
|
||||
}
|
||||
|
||||
# These non-vLLM env vars are copied from the driver to workers
|
||||
ADDITIONAL_ENV_VARS = {"HF_TOKEN", "HUGGING_FACE_HUB_TOKEN"}
|
||||
|
||||
uses_ray: bool = True
|
||||
supports_pp: bool = True
|
||||
|
||||
def _init_executor(self) -> None:
|
||||
super()._init_executor()
|
||||
self.forward_dag: Optional[ray.dag.CompiledDAG] = None # type: ignore
|
||||
# V1 executor always relies on the SPMD worker implementation which in
|
||||
# turn requires the compiled DAG API.
|
||||
os.environ["VLLM_USE_RAY_SPMD_WORKER"] = "1"
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG"] = "1"
|
||||
|
||||
# For TPU or XPU, avoid compiling NVIDIA's NCCL
|
||||
if current_platform.is_tpu() or current_platform.is_xpu():
|
||||
os.environ["VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE"] = "shm"
|
||||
|
||||
# These flags configure the worker setup.
|
||||
self.use_ray_compiled_dag = envs.VLLM_USE_RAY_COMPILED_DAG
|
||||
self.use_ray_spmd_worker = envs.VLLM_USE_RAY_SPMD_WORKER
|
||||
if self.use_ray_compiled_dag:
|
||||
assert self.use_ray_spmd_worker, (
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1 requires "
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1")
|
||||
if self.use_ray_spmd_worker:
|
||||
assert self.use_ray_compiled_dag, (
|
||||
"VLLM_USE_RAY_SPMD_WORKER=1 requires "
|
||||
"VLLM_USE_RAY_COMPILED_DAG=1")
|
||||
|
||||
assert self.uses_ray
|
||||
initialize_ray_cluster(self.parallel_config)
|
||||
placement_group = self.parallel_config.placement_group
|
||||
|
||||
# Disable Ray usage stats collection.
|
||||
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
|
||||
if ray_usage != "1":
|
||||
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
|
||||
|
||||
# Create the parallel GPU workers.
|
||||
self._init_workers_ray(placement_group)
|
||||
|
||||
# msgspec is only required when compiled DAG is disabled which is not
|
||||
# expected for V1, but initialize the codec for completeness.
|
||||
if msgspec is not None:
|
||||
self.input_encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
|
||||
self.output_decoder = msgspec.msgpack.Decoder(
|
||||
Optional[List[SamplerOutput]])
|
||||
else: # pragma: no cover - msgspec should normally be available.
|
||||
self.input_encoder = None
|
||||
self.output_decoder = None
|
||||
|
||||
# KV connector setup
|
||||
self.has_connector = self.vllm_config.kv_transfer_config is not None
|
||||
|
||||
@property
|
||||
def max_concurrent_batches(self) -> int:
|
||||
"""Ray distributed executor supports pipeline parallelism,
|
||||
meaning that it allows PP size batches to be executed concurrently.
|
||||
"""
|
||||
"""Ray distributed executor supports pipeline parallelism."""
|
||||
if self.scheduler_config.async_scheduling:
|
||||
return 2
|
||||
return self.parallel_config.pipeline_parallel_size
|
||||
@ -66,43 +169,443 @@ class RayDistributedExecutor(RayDistributedExecutorV0, Executor):
|
||||
scheduler_output: SchedulerOutput,
|
||||
non_block: bool = False,
|
||||
) -> Union[ModelRunnerOutput, Future[ModelRunnerOutput]]:
|
||||
"""Execute the model on the Ray workers.
|
||||
"""Execute the model on the Ray workers."""
|
||||
|
||||
Args:
|
||||
scheduler_output: The scheduler output to execute.
|
||||
non_block: If True, the method will return a Future.
|
||||
|
||||
Returns:
|
||||
The model runner output.
|
||||
"""
|
||||
# Build the compiled DAG for the first time.
|
||||
if self.forward_dag is None: # type: ignore
|
||||
if self.forward_dag is None:
|
||||
self.forward_dag = self._compiled_ray_dag(enable_asyncio=False)
|
||||
|
||||
refs = self.forward_dag.execute(scheduler_output) # type: ignore
|
||||
refs = self.forward_dag.execute(scheduler_output)
|
||||
|
||||
if not self.has_connector:
|
||||
# Get output only from a single worker (output_rank)
|
||||
# When PP is not used, we block here until the result is available.
|
||||
if not non_block:
|
||||
return refs[0].get()
|
||||
|
||||
# When PP is used, we return a FutureWrapper immediately so that
|
||||
# the scheduler can yield to the next batch.
|
||||
return FutureWrapper(refs)
|
||||
|
||||
# Get output from all workers when connector is present
|
||||
assert self.kv_output_aggregator is not None, (
|
||||
"KVOutputAggregator must be initialized when kv transfer is "
|
||||
"configured")
|
||||
|
||||
if not non_block:
|
||||
# Block and get results from all workers
|
||||
outputs = [ref.get() for ref in refs]
|
||||
return self.kv_output_aggregator.aggregate(outputs)
|
||||
|
||||
# Return a future that will aggregate outputs from all workers
|
||||
return FutureWrapper(refs, self.kv_output_aggregator)
|
||||
|
||||
def reinitialize_distributed(
|
||||
self, reconfig_request: ReconfigureDistributedRequest) -> None:
|
||||
self._run_workers("reinitialize_distributed", reconfig_request)
|
||||
if reconfig_request.new_data_parallel_rank == \
|
||||
ReconfigureRankType.SHUTDOWN_CURRENT_RANK:
|
||||
ReconfigureRankType.SHUTDOWN_CURRENT_RANK:
|
||||
self.shutdown()
|
||||
|
||||
def shutdown(self) -> None:
|
||||
if logger:
|
||||
# Somehow logger can be None here.
|
||||
logger.info(
|
||||
"Shutting down Ray distributed executor. If you see error log "
|
||||
"from logging.cc regarding SIGTERM received, please ignore "
|
||||
"because this is the expected termination process in Ray.")
|
||||
if hasattr(self, "forward_dag") and self.forward_dag is not None:
|
||||
self.forward_dag.teardown()
|
||||
import ray as _ray
|
||||
for worker in self.workers:
|
||||
_ray.kill(worker)
|
||||
self.forward_dag = None
|
||||
|
||||
def _configure_ray_workers_use_nsight(self,
|
||||
ray_remote_kwargs) -> Dict[str, Any]:
|
||||
# If nsight profiling is enabled, we need to set the profiling
|
||||
# configuration for the ray workers as runtime env.
|
||||
runtime_env = ray_remote_kwargs.setdefault("runtime_env", {})
|
||||
runtime_env.update({
|
||||
"nsight": {
|
||||
"t": "cuda,cudnn,cublas",
|
||||
"o": "'worker_process_%p'",
|
||||
"cuda-graph-trace": "node",
|
||||
}
|
||||
})
|
||||
|
||||
return ray_remote_kwargs
|
||||
|
||||
# child class could overwrite this to return actual env vars.
|
||||
def _get_env_vars_to_be_updated(self):
|
||||
return self._env_vars_for_all_workers
|
||||
|
||||
def _init_workers_ray(self, placement_group: "PlacementGroup",
|
||||
**ray_remote_kwargs):
|
||||
num_gpus = envs.VLLM_RAY_PER_WORKER_GPUS
|
||||
|
||||
# Ray actors that perform all model execution.
|
||||
self.workers: List[RayWorkerWrapper] = []
|
||||
|
||||
# Used in ray compiled DAG: indexed first by PP rank,
|
||||
# and then TP rank. In other words, the inner list is
|
||||
# the TP group of workers for a PP rank.
|
||||
self.pp_tp_workers: List[List[RayWorkerWrapper]] = []
|
||||
|
||||
if self.parallel_config.ray_workers_use_nsight:
|
||||
ray_remote_kwargs = self._configure_ray_workers_use_nsight(
|
||||
ray_remote_kwargs)
|
||||
|
||||
logger.info("use_ray_spmd_worker: %s", self.use_ray_spmd_worker)
|
||||
|
||||
# Create the workers.
|
||||
bundle_indices: List[int]
|
||||
if envs.VLLM_RAY_BUNDLE_INDICES:
|
||||
# Use the bundle indices specified by the user.
|
||||
bundle_indices = list(
|
||||
map(int, envs.VLLM_RAY_BUNDLE_INDICES.split(",")))
|
||||
assert len(bundle_indices) == self.parallel_config.world_size, \
|
||||
("VLLM_RAY_BUNDLE_INDICES must have the same size"
|
||||
f" as the world size, but got {bundle_indices=} "
|
||||
f"and {self.parallel_config.world_size=}")
|
||||
assert len(set(bundle_indices)) == len(bundle_indices), \
|
||||
("VLLM_RAY_BUNDLE_INDICES cannot have duplicate values,"
|
||||
f" but got {bundle_indices=}")
|
||||
else:
|
||||
# use the first N bundles that have GPU resources.
|
||||
bundle_indices = []
|
||||
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
|
||||
if bundle.get(current_platform.ray_device_key, 0):
|
||||
bundle_indices.append(bundle_id)
|
||||
bundle_indices = bundle_indices[:self.parallel_config.world_size]
|
||||
|
||||
worker_metadata: List[RayWorkerMetaData] = []
|
||||
driver_ip = get_ip()
|
||||
for rank, bundle_id in enumerate(bundle_indices):
|
||||
scheduling_strategy = PlacementGroupSchedulingStrategy(
|
||||
placement_group=placement_group,
|
||||
placement_group_capture_child_tasks=True,
|
||||
placement_group_bundle_index=bundle_id,
|
||||
)
|
||||
|
||||
if current_platform.ray_device_key == "GPU":
|
||||
# NV+AMD GPUs, and Intel XPUs
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=num_gpus,
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
else:
|
||||
worker = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=0,
|
||||
resources={current_platform.ray_device_key: num_gpus},
|
||||
scheduling_strategy=scheduling_strategy,
|
||||
**ray_remote_kwargs,
|
||||
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
||||
rpc_rank=rank)
|
||||
worker_metadata.append(
|
||||
RayWorkerMetaData(worker=worker, created_rank=rank))
|
||||
|
||||
worker_ips = ray.get([
|
||||
each.worker.get_node_ip.remote() # type: ignore[attr-defined]
|
||||
for each in worker_metadata
|
||||
])
|
||||
|
||||
for each, ip in zip(worker_metadata, worker_ips):
|
||||
each.ip = ip
|
||||
|
||||
logger.debug("workers: %s", worker_metadata)
|
||||
|
||||
ip_counts: Dict[str, int] = {}
|
||||
for ip in worker_ips:
|
||||
ip_counts[ip] = ip_counts.get(ip, 0) + 1
|
||||
|
||||
def sort_by_driver_then_worker_ip(item: RayWorkerMetaData):
|
||||
"""
|
||||
Sort the workers based on 3 properties:
|
||||
1. If the worker is on the same node as the driver (vllm engine),
|
||||
it should be placed first.
|
||||
2. Then, if the worker is on a node with fewer workers, it should
|
||||
be placed first.
|
||||
3. Finally, if the work is on a node with smaller IP address, it
|
||||
should be placed first.
|
||||
"""
|
||||
|
||||
ip = item.ip
|
||||
return (0 if ip == driver_ip else 1, ip_counts[ip], ip)
|
||||
|
||||
# After sorting, the workers on the same node will be
|
||||
# close to each other, and the workers on the driver
|
||||
# node will be placed first.
|
||||
sorted_worker_metadata = sorted(worker_metadata,
|
||||
key=sort_by_driver_then_worker_ip)
|
||||
start_rank = 0
|
||||
for i, item in enumerate(sorted_worker_metadata):
|
||||
item.adjusted_rank = i + start_rank
|
||||
self.workers = [item.worker for item in sorted_worker_metadata]
|
||||
rerank_mapping = {
|
||||
item.created_rank: item.adjusted_rank
|
||||
for item in sorted_worker_metadata
|
||||
}
|
||||
self._run_workers("adjust_rank", rerank_mapping)
|
||||
|
||||
# Get the set of GPU IDs used on each node.
|
||||
worker_node_and_gpu_ids = []
|
||||
for worker in self.workers:
|
||||
worker_node_and_gpu_ids.append(
|
||||
ray.get(worker.get_node_and_gpu_ids.remote())
|
||||
) # type: ignore
|
||||
|
||||
node_workers = defaultdict(list) # node id -> list of worker ranks
|
||||
node_gpus = defaultdict(list) # node id -> list of gpu ids
|
||||
|
||||
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids):
|
||||
node_workers[node_id].append(i)
|
||||
# `gpu_ids` can be a list of strings or integers.
|
||||
# convert them to integers for consistency.
|
||||
# NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs),
|
||||
# string sorting is not sufficient.
|
||||
# see https://github.com/vllm-project/vllm/issues/5590
|
||||
gpu_ids = [int(x) for x in gpu_ids]
|
||||
node_gpus[node_id].extend(gpu_ids)
|
||||
for node_id, gpu_ids in node_gpus.items():
|
||||
node_gpus[node_id] = sorted(gpu_ids)
|
||||
|
||||
all_ips = set(worker_ips + [driver_ip])
|
||||
n_ips = len(all_ips)
|
||||
n_nodes = len(node_workers)
|
||||
|
||||
if n_nodes != n_ips:
|
||||
raise RuntimeError(
|
||||
f"Every node should have a unique IP address. Got {n_nodes}"
|
||||
f" nodes with node ids {list(node_workers.keys())} and "
|
||||
f"{n_ips} unique IP addresses {all_ips}. Please check your"
|
||||
" network configuration. If you set `VLLM_HOST_IP`"
|
||||
" environment variable, make sure it is unique for"
|
||||
" each node.")
|
||||
|
||||
# Set environment variables for the driver and workers.
|
||||
all_args_to_update_environment_variables = [{
|
||||
current_platform.device_control_env_var:
|
||||
",".join(map(str, node_gpus[node_id])),
|
||||
} for (node_id, _) in worker_node_and_gpu_ids]
|
||||
|
||||
# Environment variables to copy from driver to workers
|
||||
env_vars_to_copy = get_env_vars_to_copy(
|
||||
exclude_vars=self.WORKER_SPECIFIC_ENV_VARS,
|
||||
additional_vars=set(current_platform.additional_env_vars).union(
|
||||
self.ADDITIONAL_ENV_VARS),
|
||||
destination="workers")
|
||||
|
||||
# Copy existing env vars to each worker's args
|
||||
for args in all_args_to_update_environment_variables:
|
||||
# TODO: refactor platform-specific env vars
|
||||
for name in env_vars_to_copy:
|
||||
if name in os.environ:
|
||||
args[name] = os.environ[name]
|
||||
|
||||
self._env_vars_for_all_workers = (
|
||||
all_args_to_update_environment_variables)
|
||||
|
||||
self._run_workers("update_environment_variables",
|
||||
self._get_env_vars_to_be_updated())
|
||||
|
||||
if len(node_gpus) == 1:
|
||||
# in single node case, we don't need to get the IP address.
|
||||
# the loopback address is sufficient
|
||||
# NOTE: a node may have several IP addresses, one for each
|
||||
# network interface. `get_ip()` might return any of them,
|
||||
# while they might not work for communication inside the node
|
||||
# if the network setup is complicated. Using the loopback address
|
||||
# solves this issue, as it always works for communication inside
|
||||
# the node.
|
||||
driver_ip = "127.0.0.1"
|
||||
distributed_init_method = get_distributed_init_method(
|
||||
driver_ip, get_open_port())
|
||||
|
||||
# Initialize the actual workers inside worker wrapper.
|
||||
all_kwargs = []
|
||||
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids):
|
||||
local_rank = node_workers[node_id].index(rank)
|
||||
kwargs = dict(
|
||||
vllm_config=self.vllm_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
distributed_init_method=distributed_init_method,
|
||||
is_driver_worker=(not self.parallel_config)
|
||||
or (rank % self.parallel_config.tensor_parallel_size == 0),
|
||||
)
|
||||
all_kwargs.append(kwargs)
|
||||
self._run_workers("init_worker", all_kwargs)
|
||||
|
||||
self._run_workers("init_device")
|
||||
self._run_workers("load_model",
|
||||
max_concurrent_workers=self.parallel_config.
|
||||
max_parallel_loading_workers)
|
||||
|
||||
for pp_rank in range(self.parallel_config.pipeline_parallel_size):
|
||||
self.pp_tp_workers.append([])
|
||||
for tp_rank in range(self.parallel_config.tensor_parallel_size):
|
||||
# PP=2, TP=4
|
||||
# pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]]
|
||||
rank = (pp_rank * self.parallel_config.tensor_parallel_size
|
||||
) + tp_rank
|
||||
assert len(self.pp_tp_workers[pp_rank]) == tp_rank
|
||||
assert pp_rank < len(self.pp_tp_workers)
|
||||
self.pp_tp_workers[pp_rank].append(self.workers[rank])
|
||||
|
||||
def _driver_execute_model(
|
||||
self, execute_model_req: Optional[ExecuteModelRequest]
|
||||
) -> Optional[List[SamplerOutput]]:
|
||||
raise RuntimeError(
|
||||
"RayDistributedExecutor only supports compiled DAG execution "
|
||||
"and does not expose a separate driver worker loop.")
|
||||
|
||||
def _run_workers(
|
||||
self,
|
||||
method: Union[str, Callable],
|
||||
*args,
|
||||
async_run_tensor_parallel_workers_only: bool = False,
|
||||
max_concurrent_workers: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> Any:
|
||||
"""Runs the given method on all workers."""
|
||||
|
||||
if isinstance(method, str):
|
||||
sent_method = method
|
||||
else:
|
||||
sent_method = cloudpickle.dumps(method)
|
||||
del method
|
||||
if self.use_ray_spmd_worker:
|
||||
assert not async_run_tensor_parallel_workers_only, (
|
||||
"async_run_tensor_parallel_workers_only is not supported for "
|
||||
"spmd mode.")
|
||||
|
||||
if max_concurrent_workers:
|
||||
raise NotImplementedError(
|
||||
"max_concurrent_workers is not supported yet.")
|
||||
|
||||
# Start the ray workers first.
|
||||
ray_worker_outputs = [
|
||||
worker.execute_method.remote(sent_method, *args, **kwargs)
|
||||
for worker in self.workers
|
||||
]
|
||||
|
||||
if not self.workers:
|
||||
return []
|
||||
|
||||
# Get the results of the ray workers.
|
||||
return ray.get(ray_worker_outputs)
|
||||
|
||||
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
|
||||
"""Wait for futures returned from _run_workers()."""
|
||||
ray.get(parallel_worker_tasks)
|
||||
|
||||
def _check_ray_cgraph_installation(self):
|
||||
import importlib.metadata
|
||||
|
||||
from packaging import version
|
||||
|
||||
required_version = version.parse("2.43.0")
|
||||
current_version = version.parse(importlib.metadata.version("ray"))
|
||||
if current_version < required_version:
|
||||
raise ValueError(f"Ray version {required_version} is "
|
||||
f"required, but found {current_version}")
|
||||
|
||||
import importlib.util
|
||||
cgraph_spec = importlib.util.find_spec(
|
||||
"ray.experimental.compiled_dag_ref")
|
||||
if cgraph_spec is None:
|
||||
raise ValueError("Ray Compiled Graph is not installed. "
|
||||
"Run `pip install ray[cgraph]` to install it.")
|
||||
|
||||
cupy_spec = importlib.util.find_spec("cupy")
|
||||
if (cupy_spec is None
|
||||
and envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "nccl"):
|
||||
raise ValueError(
|
||||
"cupy is not installed but required since "
|
||||
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE is set to 'nccl'. "
|
||||
"Run `pip install ray[cgraph]` and check cupy installation.")
|
||||
|
||||
def _compiled_ray_dag(self, enable_asyncio: bool):
|
||||
assert self.parallel_config.use_ray
|
||||
self._check_ray_cgraph_installation()
|
||||
# Enlarge the default value of "RAY_CGRAPH_get_timeout" to 300 seconds
|
||||
os.environ.setdefault("RAY_CGRAPH_get_timeout", "300") # noqa: SIM112
|
||||
from ray.dag import InputNode, MultiOutputNode
|
||||
logger.info("RAY_CGRAPH_get_timeout is set to %s",
|
||||
os.environ["RAY_CGRAPH_get_timeout"]) # noqa: SIM112
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE)
|
||||
logger.info("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM = %s",
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
channel_type = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
if channel_type not in ("auto", "nccl", "shm"):
|
||||
raise ValueError(
|
||||
"Invalid value for VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: "
|
||||
f"{channel_type}. Valid values are: 'auto', 'nccl', or 'shm'.")
|
||||
|
||||
with InputNode() as input_data:
|
||||
# Example DAG: PP=2, TP=4
|
||||
# SchedulerOutput -> 0 -> (SchedulerOutput, IntermediateTensors) ->
|
||||
# 4 -> ModelRunnerOutput, etc.
|
||||
outputs = [input_data for _ in self.pp_tp_workers[0]]
|
||||
for pp_rank, tp_group in enumerate(self.pp_tp_workers):
|
||||
outputs = [
|
||||
worker.execute_model_ray.
|
||||
bind( # type: ignore[attr-defined]
|
||||
outputs[i]) for i, worker in enumerate(tp_group)
|
||||
]
|
||||
|
||||
last_pp_rank = len(self.pp_tp_workers) - 1
|
||||
if (pp_rank < last_pp_rank and
|
||||
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE != "shm"):
|
||||
transport = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
|
||||
outputs = [
|
||||
output.with_tensor_transport(transport=transport)
|
||||
for output in outputs
|
||||
]
|
||||
|
||||
forward_dag = MultiOutputNode(outputs)
|
||||
|
||||
if envs.VLLM_USE_RAY_WRAPPED_PP_COMM:
|
||||
from ray.experimental.channel.accelerator_context import (
|
||||
register_accelerator_context)
|
||||
|
||||
from vllm.distributed.device_communicators.ray_communicator import (
|
||||
RayPPCommunicator)
|
||||
register_accelerator_context(torch_module_name="cuda",
|
||||
communicator_cls=RayPPCommunicator)
|
||||
logger.info("Using RayPPCommunicator "
|
||||
"(which wraps vLLM _PP GroupCoordinator) "
|
||||
"for Ray Compiled Graph communication.")
|
||||
else:
|
||||
logger.info("Using Ray's NCCL communicator for "
|
||||
"Ray Compiled Graph communication.")
|
||||
|
||||
return forward_dag.experimental_compile(
|
||||
enable_asyncio=enable_asyncio,
|
||||
_overlap_gpu_communication=envs.
|
||||
VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
|
||||
|
||||
def __del__(self):
|
||||
self.shutdown()
|
||||
|
||||
async def execute_model_async(
|
||||
self,
|
||||
scheduler_output: SchedulerOutput) -> ModelRunnerOutput:
|
||||
return await make_async(self.execute_model)(scheduler_output)
|
||||
|
||||
async def _driver_execute_model_async(
|
||||
self,
|
||||
execute_model_req: Optional[ExecuteModelRequest] = None
|
||||
) -> List[SamplerOutput]:
|
||||
raise RuntimeError(
|
||||
"RayDistributedExecutor only supports compiled DAG execution "
|
||||
"and does not expose a separate driver worker loop.")
|
||||
|
||||
async def _start_worker_execution_loop(self):
|
||||
raise RuntimeError(
|
||||
"RayDistributedExecutor only supports compiled DAG execution "
|
||||
"and does not expose a separate driver worker loop.")
|
||||
|
||||
def check_health(self) -> None:
|
||||
# Assume that the Ray workers are healthy.
|
||||
# TODO: check the health of the Ray workers
|
||||
return
|
||||
|
Reference in New Issue
Block a user