Compare commits

..

44 Commits

Author SHA1 Message Date
936da0f740 update
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-19 23:30:15 +00:00
20098c10d9 Remove global CUDA graph pool
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-09-19 23:27:51 +00:00
ee7a66dd9a allow disable flashinfer prefill (#25276)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-19 22:59:41 +00:00
431535b522 Enable modelopt gemma3 nvfp4/fp8, make workflow more robust (#22771)
Signed-off-by: Zhiyu Cheng <zhiyuc@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-19 22:40:33 +00:00
711e912946 [Compile] Fix Compile Warning for Ignoring MIN_BLOCK_PER_SM (#25193)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-19 16:23:19 -06:00
e69e0b8b5f [Frontend] Responses API messages out, just harmony for now (#24985)
Signed-off-by: Alec Solder <alecs@fb.com>
Co-authored-by: Alec Solder <alecs@fb.com>
Co-authored-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-09-19 21:40:16 +00:00
ddc9048394 Fix: Correct FusedMoE layer reference in auto_round quantization (#24818)
Signed-off-by: David-Wen <18927700430@163.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-09-19 20:44:24 +00:00
b1a63d1b3b [BugFix] Make FlashInferMetadataBuilder non-blocking (#25040)
Signed-off-by: Julien Lin <jullin@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-09-19 20:36:34 +00:00
48ecb4438b [Perf] Use FlashInfer RoPE for RotaryEmbedding.forward_cuda when available (#21126)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-09-19 14:06:49 -06:00
e57fc15971 Specify platform in pip-compile pre-commit hook so it runs on MacOS (#25273)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 12:43:33 -07:00
4bdf400218 [Bugfix] Fix chunked a2_scales in modular kernels (#25264)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-09-19 19:42:01 +00:00
7852b82b93 [Bugfix] GPT OSS Attritbute error on H100 (#25228)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-09-19 13:14:09 -06:00
a2a5f79e09 Optimize triton unified attention performance for sliding window attention (#24390)
Signed-off-by: zixi-qi <qizixi@meta.com>
2025-09-19 13:07:26 -06:00
c59a0eca42 [KV offload][4/N] Offloading KV connector (#22595)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 19:07:17 +00:00
b716ab93a7 [bugfix] fix structured outputs key missing issue from #24929 (#25195)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-09-19 18:37:57 +00:00
138f0d1e75 [Docs] add __init__.py to vllm/model_executor/layers/quantization/compressed_tensors/transform (#24974)
Signed-off-by: samzong <samzong.lu@gmail.com>
2025-09-19 18:32:27 +00:00
2506ce5189 [Core][Prefix Hash] Fix prefix hash metrics sliding window maintainance (#24990)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-09-19 12:22:53 -06:00
47fd08aaf9 [CI/Build] fix test function_calling (#25072)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-09-19 12:16:32 -06:00
12aed7e453 Encoder model support for the Transformers backend (#25174)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 19:15:22 +01:00
d90e212a3a Remove Redundant Assignment in Qwen3_VisionPatchMerger (#25224)
Signed-off-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Junhong <liujunhong11@huawei.com>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-09-19 12:15:13 -06:00
2821986450 [Core] Modify the initialization parameters of the lora manager (#25249)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-09-19 18:01:28 +00:00
6c117cff7d [Frontend] Pass API server count to each process (#23717)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-20 01:15:19 +08:00
7ac67ea525 [KV offload][3/N] Add worker-side CPU support (#21448)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 09:53:45 -07:00
ce75e15373 refactor(benchmarks): add type annotations to wait_for_endpoint parameters (#25218)
Signed-off-by: samzong <samzong.lu@gmail.com>
2025-09-19 16:36:52 +00:00
aed16879a9 Move ModelConfig from config/__init__.py to config/model.py (#25252)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 16:22:33 +00:00
cf278ff3b2 Update CODEOWNERS (#25269)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 09:12:55 -07:00
838d7116ba [Qwen] Remove cuda hard-code in qwen3 next (#25243)
Signed-off-by: Icey <1790571317@qq.com>
2025-09-19 12:25:12 +00:00
5089fd749c [V0 Deprecation] Remove V0 logic from get_input_embeddings interface (#25242)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-19 11:10:52 +00:00
a3d087adec [P/D][Nixl] Introduce KVTransferMetrics and aggregation strategy (#22188)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-09-19 11:09:14 +00:00
058525b997 Move PoolerConfig from config/__init__.py to config/pooler.py (#25181)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-09-19 11:02:55 +00:00
1dfea5f4a9 [Bugfix][Perf] Misc fixes for Qwen3 VL (#25238)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-19 10:46:16 +00:00
cea91a32f2 [Kernel][Performance] Add Triton kernel for Qwen3-VL interleaved MRoPE (#25055)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 10:27:49 +00:00
a684c0124c [bugfix] fix MHA for models like OpenGVLab/InternVL3_5-38B (#25146)
Signed-off-by: Yan Ma <yan.ma@intel.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 08:45:06 +00:00
f2718d2948 [Misc] Cleanup test conftest for deprecated encoder-decoder models (#25231)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-19 07:44:56 +00:00
825fdb11ad [Bugfix][CPU] Add placeholder to avoid import errors when using fused_moe ops on platforms without triton (#25137)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-19 07:41:12 +00:00
8c1d4acbfe [CPU] Disable oneDNN linear on non-x86 platforms (#25166)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-09-19 07:27:22 +00:00
486c5599e3 [Build] Update Xgrammar to 0.1.24 to get a CVE fix (#25188)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-09-19 14:27:17 +08:00
a6149aa587 [OOT] Support sync_model_loading for OOT (#25126)
Signed-off-by: Chendi Xue <Chendi.Xue@intel.com>
2025-09-19 05:41:53 +00:00
6c8a3c099b [Docs] Fix griffe warnings in vllm/multimodal (#25216)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-09-18 22:10:44 -07:00
31a8a2a7bc [Misc] Clean up MM profiling warnings (#25222)
Signed-off-by: Roger Wang <hey@rogerw.io>
2025-09-19 04:46:57 +00:00
1a0a04dae9 [Perf] Optimize memory peak during EAGLE model loading. (#24585)
Signed-off-by: Chen Ding <candy.dc@alibaba-inc.com>
2025-09-19 03:31:16 +00:00
6d8246aaff [gpt-oss] Add ResponseReasoningPartAddedEvent, ResponseReasoningPartDoneEvent for streaming (#24938)
Signed-off-by: Andrew Xia <axia@meta.com>
2025-09-18 19:11:59 -07:00
9d1c50a5ac [KV offload][2/N] Introduce LRU-based CPU offloading management (#20075)
Signed-off-by: Or Ozeri <oro@il.ibm.com>
2025-09-19 00:20:51 +00:00
9a4600e4dc [CORE] Prompt Embeddings Support for v1 Engine (#24278)
Signed-off-by: Andrew Sansom <andrew@protopia.ai>
Signed-off-by: Andrew Sansom <qthequartermasterman@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-09-19 08:03:09 +08:00
165 changed files with 6963 additions and 3575 deletions

13
.github/CODEOWNERS vendored
View File

@ -66,18 +66,25 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/models/test_transformers.py @hmellor
# Docs
/docs @hmellor
/docs/mkdocs @hmellor
/docs/**/*.yml @hmellor
/requirements/docs.txt @hmellor
.readthedocs.yaml @hmellor
mkdocs.yaml @hmellor
# Linting
.markdownlint.yaml @hmellor
.pre-commit-config.yaml @hmellor
# CPU
/vllm/v1/worker/^cpu @bigPYJ1151
/vllm/v1/worker/cpu* @bigPYJ1151
/csrc/cpu @bigPYJ1151
/vllm/platforms/cpu.py @bigPYJ1151
/cmake/cpu_extension.cmake @bigPYJ1151
/docker/Dockerfile.cpu @bigPYJ1151
# Intel GPU
/vllm/v1/worker/^xpu @jikunshang
/vllm/v1/worker/xpu* @jikunshang
/vllm/platforms/xpu.py @jikunshang
/docker/Dockerfile.xpu @jikunshang

View File

@ -49,7 +49,7 @@ repos:
rev: 0.6.17
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:

View File

@ -11,13 +11,13 @@ from datetime import datetime
from typing import Any
import torch
import triton
from tqdm import tqdm
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
_w8a8_block_fp8_matmul,
)
from vllm.platforms import current_platform
from vllm.triton_utils import triton
from vllm.utils import FlexibleArgumentParser
mp.set_start_method("spawn", force=True)

View File

@ -0,0 +1,38 @@
#pragma once
#include <cuda_runtime_api.h>
#include <algorithm>
// maximum blocks per SM cap
#ifndef VLLM_LAUNCH_BLOCKS_CAP
#define VLLM_LAUNCH_BLOCKS_CAP 4
#endif
// compile-time estimate of max threads per SM for launch bounds.
#ifndef VLLM_MAX_THREADS_PER_SM
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 300
#define VLLM_MAX_THREADS_PER_SM 1536
#else
#define VLLM_MAX_THREADS_PER_SM 2048
#endif
#endif
// compute the number of blocks per SM to request in __launch_bounds__
#define VLLM_BLOCKS_DIV(VAL) (VLLM_MAX_THREADS_PER_SM / (VAL))
#define VLLM_CLAMP_BLOCKS_PER_SM(VAL) \
(((VAL) <= 0) \
? 1 \
: (((VAL) < VLLM_LAUNCH_BLOCKS_CAP) ? (VAL) : VLLM_LAUNCH_BLOCKS_CAP))
#define VLLM_BLOCKS_PER_SM(BLOCK_THREADS) \
VLLM_CLAMP_BLOCKS_PER_SM(VLLM_BLOCKS_DIV(BLOCK_THREADS))
// runtime-time helper to compute blocks/SM
static inline int vllm_runtime_blocks_per_sm(int block_threads) {
int device = -1;
cudaGetDevice(&device);
int max_threads_per_sm = VLLM_MAX_THREADS_PER_SM;
cudaDeviceGetAttribute(&max_threads_per_sm,
cudaDevAttrMaxThreadsPerMultiProcessor, device);
int blocks = (block_threads > 0) ? (max_threads_per_sm / block_threads) : 1;
return VLLM_CLAMP_BLOCKS_PER_SM(blocks);
}

View File

@ -26,6 +26,7 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "launch_bounds_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
@ -63,7 +64,7 @@ __inline__ __device__ PackedVec<Type> compute_silu_mul(PackedVec<Type>& vec,
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void __launch_bounds__(1024, 4)
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
silu_mul_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out,
uint32_t* SFout) {
@ -131,7 +132,8 @@ void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d]
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024));
int const numBlocksPerSM = 2048 / block.x;
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
VLLM_DISPATCH_HALF_TYPES(

View File

@ -26,12 +26,13 @@
#include "dispatch_utils.h"
#include "nvfp4_utils.cuh"
#include "launch_bounds_utils.h"
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(512, 4)
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
@ -129,7 +130,7 @@ __global__ void __launch_bounds__(512, 4)
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void __launch_bounds__(1024, 4)
__global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout,
uint32_t* input_offset_by_experts,
@ -233,8 +234,9 @@ void quant_impl(void* output, void* output_scale, void* input,
int const workSizePerRow = k / ELTS_PER_THREAD;
int const totalWorkSize = m_topk * workSizePerRow;
dim3 block(std::min(workSizePerRow, 512));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
// Get number of blocks per SM
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
dim3 grid(std::min(static_cast<int>((totalWorkSize + block.x - 1) / block.x),
multiProcessorCount * numBlocksPerSM));
while (grid.x <= multiProcessorCount && block.x > 64) {

View File

@ -26,13 +26,14 @@
#include "dispatch_utils.h"
#include "cuda_utils.h"
#include "launch_bounds_utils.h"
#include "nvfp4_utils.cuh"
namespace vllm {
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false>
__global__ void __launch_bounds__(512, 4)
__global__ void __launch_bounds__(512, VLLM_BLOCKS_PER_SM(512))
cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in,
float const* SFScale, uint32_t* out, uint32_t* SFout) {
using PackedVec = PackedVec<Type>;
@ -75,8 +76,9 @@ void invokeFP4Quantization(int m, int n, T const* input, float const* SFScale,
// Grid, Block size.
// Each thread converts 8 values.
dim3 block(std::min(int(n / ELTS_PER_THREAD), 512));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
// Get number of blocks per SM
int const numBlocksPerSM =
vllm_runtime_blocks_per_sm(static_cast<int>(block.x));
dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM));
// Launch the cvt kernel.

View File

@ -59,7 +59,7 @@ enabling the corresponding APIs:
#### Predefined models
If the [Pooler][vllm.model_executor.layers.pooler.Pooler] defined by the model accepts `pooler_config`,
you can override some of its attributes via the `--override-pooler-config` option.
you can override some of its attributes via the `--pooler-config` option.
#### Converted models
@ -75,7 +75,7 @@ the pooler assigned to each task has the following attributes by default:
When loading [Sentence Transformers](https://huggingface.co/sentence-transformers) models,
its Sentence Transformers configuration file (`modules.json`) takes priority over the model's defaults.
You can further customize this via the `--override-pooler-config` option,
You can further customize this via the `--pooler-config` option,
which takes priority over both the model's and Sentence Transformers's defaults.
## Offline Inference

View File

@ -17,9 +17,24 @@ These models are what we list in [supported-text-models][supported-text-models]
### Transformers
vLLM also supports model implementations that are available in Transformers. This does not currently work for all models, but most decoder language models and common vision language models are supported! Vision-language models currently accept only image inputs. Support for video inputs will be added in future releases.
vLLM also supports model implementations that are available in Transformers. You should expect the performance of a Transformers model implementation used in vLLM to be within <1% of the performance of a dedicated vLLM model implementation. We call this feature the "Transformers backend".
To check if the modeling backend is Transformers, you can simply do this:
Currently, the Transformers backend works for the following:
- Modalities: embedding models, language models and vision-language models*
- Architectures: encoder-only, decoder-only
- Attention types: full attention and/or sliding attention
_*Vision-language models currently accept only image inputs. Support for video inputs will be added in a future release._
If the Transformers model implementation follows all the steps in [writing a custom model](#writing-custom-models) then, when used with the Transformers backend, it will be compatible with the following features of vLLM:
- All the features listed in the [compatibility matrix](../features/compatibility_matrix.md#feature-x-feature)
- Any combination of the following vLLM parallelisation schemes:
- Pipeline parallel
- Tensor parallel
Checking if the modeling backend is Transformers is as simple as:
```python
from vllm import LLM
@ -27,16 +42,12 @@ llm = LLM(model=...) # Name or path of your model
llm.apply_model(lambda model: print(type(model)))
```
If it is `TransformersForCausalLM` or `TransformersForMultimodalLM` then it means it's based on Transformers!
If the printed type starts with `Transformers...` then it's using the Transformers model implementation!
!!! tip
You can force the use of `TransformersForCausalLM` by setting `model_impl="transformers"` for [offline-inference](../serving/offline_inference.md) or `--model-impl transformers` for the [openai-compatible-server](../serving/openai_compatible_server.md).
If a model has a vLLM implementation but you would prefer to use the Transformers implementation via the Transformers backend, set `model_impl="transformers"` for [offline inference](../serving/offline_inference.md) or `--model-impl transformers` for the [online serving](../serving/openai_compatible_server.md).
!!! note
vLLM may not fully optimise the Transformers implementation so you may see degraded performance if comparing a native model to a Transformers model in vLLM.
!!! note
In case of vision language models if you are loading with `dtype="auto"`, vLLM loads the whole model with config's `dtype` if it exists. In contrast the native Transformers will respect the `dtype` attribute of each backbone in the model. That might cause a slight difference in performance.
For vision-language models, if you are loading with `dtype="auto"`, vLLM loads the whole model with config's `dtype` if it exists. In contrast the native Transformers will respect the `dtype` attribute of each backbone in the model. That might cause a slight difference in performance.
#### Custom models
@ -66,10 +77,11 @@ This section details the necessary modifications to make to a Transformers compa
To make your model compatible with the Transformers backend, it needs:
1. `kwargs` passed down through all modules from `MyModel` to `MyAttention`.
1. If your model is encoder-only, you must also add `is_causal = False` to `MyAttention`.
2. `MyAttention` must use `ALL_ATTENTION_FUNCTIONS` to call attention.
3. `MyModel` must contain `_supports_attention_backend = True`.
<details>
<details class="code">
<summary>modeling_my_model.py</summary>
```python
@ -78,6 +90,7 @@ from transformers import PreTrainedModel
from torch import nn
class MyAttention(nn.Module):
is_causal = False # Only do this for encoder-only models
def forward(self, hidden_states, **kwargs):
...
@ -101,13 +114,13 @@ Here is what happens in the background when this model is loaded:
1. The config is loaded.
2. `MyModel` Python class is loaded from the `auto_map` in config, and we check that the model `is_backend_compatible()`.
3. `MyModel` is loaded into `TransformersForCausalLM` or `TransformersForMultimodalLM` (see <gh-file:vllm/model_executor/models/transformers.py>) which sets `self.config._attn_implementation = "vllm"` so that vLLM's attention layer is used.
3. `MyModel` is loaded into one of the Transformers backend classes in <gh-file:vllm/model_executor/models/transformers.py> which sets `self.config._attn_implementation = "vllm"` so that vLLM's attention layer is used.
That's it!
For your model to be compatible with vLLM's tensor parallel and/or pipeline parallel features, you must add `base_model_tp_plan` and/or `base_model_pp_plan` to your model's config class:
<details>
<details class="code">
<summary>configuration_my_model.py</summary>
```python
@ -457,7 +470,7 @@ These models primarily support the [`LLM.embed`](./pooling_models.md#llmembed) A
!!! note
`ssmits/Qwen2-7B-Instruct-embed-base` has an improperly defined Sentence Transformers config.
You need to manually set mean pooling by passing `--override-pooler-config '{"pooling_type": "MEAN"}'`.
You need to manually set mean pooling by passing `--pooler-config '{"pooling_type": "MEAN"}'`.
!!! note
For `Alibaba-NLP/gte-Qwen2-*`, you need to enable `--trust-remote-code` for the correct tokenizer to be loaded.
@ -552,7 +565,7 @@ If your model is not in the above list, we will try to automatically convert the
!!! important
For process-supervised reward models such as `peiyi9979/math-shepherd-mistral-7b-prm`, the pooling config should be set explicitly,
e.g.: `--override-pooler-config '{"pooling_type": "STEP", "step_tag_id": 123, "returned_token_ids": [456, 789]}'`.
e.g.: `--pooler-config '{"pooling_type": "STEP", "step_tag_id": 123, "returned_token_ids": [456, 789]}'`.
#### Token Classification

View File

@ -42,7 +42,7 @@ python client.py
### Server Configuration
The key parameters for chunked processing are in the `--override-pooler-config`:
The key parameters for chunked processing are in the `--pooler-config`:
```json
{

View File

@ -13,7 +13,7 @@ Prerequisites:
# MEAN pooling (processes all chunks, recommended for complete coverage)
vllm serve intfloat/multilingual-e5-large \
--override-pooler-config \
--pooler-config \
'{"pooling_type": "MEAN", "normalize": true, ' \
'"enable_chunked_processing": true, "max_embed_len": 3072000}' \
--served-model-name multilingual-e5-large \
@ -23,7 +23,7 @@ Prerequisites:
# OR CLS pooling (native CLS within chunks, MEAN aggregation across chunks)
vllm serve BAAI/bge-large-en-v1.5 \
--override-pooler-config \
--pooler-config \
'{"pooling_type": "CLS", "normalize": true, ' \
'"enable_chunked_processing": true, "max_embed_len": 1048576}' \
--served-model-name bge-large-en-v1.5 \

View File

@ -103,7 +103,7 @@ POOLER_CONFIG="{\"pooling_type\": \"$POOLING_TYPE\", \"normalize\": true, \"enab
vllm serve "$MODEL_NAME" \
--tensor-parallel-size "$GPU_COUNT" \
--enforce-eager \
--override-pooler-config "$POOLER_CONFIG" \
--pooler-config "$POOLER_CONFIG" \
--served-model-name ${MODEL_CODE} \
--api-key "$API_KEY" \
--trust-remote-code \

View File

@ -1,8 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import dataclasses
import json
import logging
import os
@ -327,12 +325,7 @@ def main():
if args.command == "serialize":
eng_args_dict = {f.name: getattr(args, f.name) for f in
dataclasses.fields(EngineArgs)}
engine_args = EngineArgs.from_cli_args(
argparse.Namespace(**eng_args_dict)
)
engine_args = EngineArgs.from_cli_args(args)
input_dir = tensorizer_dir.rstrip('/')
suffix = args.suffix if args.suffix else uuid.uuid4().hex

View File

@ -24,7 +24,7 @@ outlines_core == 0.2.11
# required for outlines backend disk cache
diskcache == 5.6.3
lark == 1.2.2
xgrammar == 0.1.23; platform_machine == "x86_64" or platform_machine == "aarch64" or platform_machine == "arm64"
xgrammar == 0.1.24; platform_machine == "x86_64" or platform_machine == "aarch64" or platform_machine == "arm64"
typing_extensions >= 4.10
filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317
partial-json-parser # used for parsing partial JSON outputs

View File

@ -1,5 +1,5 @@
# This file was autogenerated by uv via the following command:
# uv pip compile requirements/test.in -o requirements/test.txt --index-strategy unsafe-best-match --torch-backend cu128
# uv pip compile requirements/test.in -o requirements/test.txt --index-strategy unsafe-best-match --torch-backend cu128 --python-platform x86_64-manylinux_2_28
absl-py==2.1.0
# via rouge-score
accelerate==1.0.1

View File

@ -76,11 +76,6 @@ def test_models(
model_executor: str,
enable_prompt_embeds: bool,
) -> None:
if enable_prompt_embeds and envs.is_set(
"VLLM_USE_V1") and envs.VLLM_USE_V1:
pytest.skip("enable_prompt_embeds is not supported in v1.")
if not envs.VLLM_USE_V1:
if async_scheduling:
pytest.skip("async_scheduling only supported in v1.")
@ -164,11 +159,6 @@ def test_models_distributed(
extra_env: dict[str, str],
enable_prompt_embeds: bool,
) -> None:
if enable_prompt_embeds and envs.is_set(
"VLLM_USE_V1") and envs.VLLM_USE_V1:
pytest.skip("enable_prompt_embeds is not supported in v1.")
if test_suite != TARGET_TEST_SUITE:
pytest.skip(f"Skip test for {test_suite}")

View File

@ -39,7 +39,8 @@ from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.config import ConvertOption, RunnerOption, _get_and_verify_dtype
from vllm.config.model import (ConvertOption, RunnerOption,
_get_and_verify_dtype)
from vllm.connections import global_http_connection
from vllm.distributed import (cleanup_dist_env_and_memory,
init_distributed_environment,
@ -244,39 +245,6 @@ class DecoderPromptType(Enum):
EMPTY_STR = 3
@pytest.fixture
def example_encoder_decoder_prompts(
) -> dict[DecoderPromptType, list[ExplicitEncoderDecoderPrompt]]:
'''
Returns an encoder prompt list and a decoder prompt list, wherein each pair
of same-index entries in both lists corresponds to an (encoder prompt,
decoder prompt) tuple.
Returns:
* Encoder prompt list
* Decoder prompt list (reverse of encoder prompt list)
'''
encoder_prompts = []
for filename in _TEST_PROMPTS:
encoder_prompts += _read_prompts(filename)
custom_decoder_prompts = encoder_prompts[::-1]
empty_str_decoder_prompts = [""] * len(encoder_prompts)
none_decoder_prompts = [None] * len(encoder_prompts)
# NONE decoder prompt type
return {
DecoderPromptType.NONE:
zip_enc_dec_prompts(encoder_prompts, none_decoder_prompts),
DecoderPromptType.EMPTY_STR:
zip_enc_dec_prompts(encoder_prompts, empty_str_decoder_prompts),
DecoderPromptType.CUSTOM:
zip_enc_dec_prompts(encoder_prompts, custom_decoder_prompts),
}
@pytest.fixture
def example_long_prompts() -> list[str]:
prompts = []
@ -690,68 +658,6 @@ class HfRunner:
return [(output_ids, output_str, output_logprobs)
for output_ids, output_str, output_logprobs in outputs]
def generate_encoder_decoder_greedy_logprobs_limit(
self,
encoder_decoder_prompts: list[ExplicitEncoderDecoderPrompt[str, str]],
max_tokens: int,
num_logprobs: Optional[int],
images: Optional[PromptImageInput] = None,
**kwargs: Any,
) -> list[TokensTextLogprobs]:
'''
Greedy logprobs generation for vLLM encoder/decoder models
'''
all_logprobs: list[list[dict[int, float]]] = []
all_output_ids: list[list[int]] = []
all_output_strs: list[str] = []
for i, (encoder_prompt, decoder_prompt) in enumerate(
to_enc_dec_tuple_list(encoder_decoder_prompts)):
processor_kwargs: dict[str, Any] = {
"text": encoder_prompt,
"return_tensors": "pt",
}
if images is not None and images[i] is not None:
processor_kwargs["images"] = images[i]
encoder_inputs = self.processor(**processor_kwargs)
encoder_inputs = self.wrap_device(encoder_inputs)
if decoder_prompt is None:
decoder_input_ids = None
else:
decoder_inputs = self.tokenizer(decoder_prompt,
return_tensors="pt")
decoder_input_ids = self.wrap_device(decoder_inputs.input_ids)
output = self.model.generate(
decoder_input_ids=decoder_input_ids,
use_cache=True,
do_sample=False,
max_new_tokens=max_tokens,
output_hidden_states=True,
return_dict_in_generate=True,
**encoder_inputs,
**kwargs,
)
(
seq_logprobs_lst,
output_len,
) = self._hidden_states_to_logprobs(output.decoder_hidden_states,
num_logprobs)
all_logprobs.append(seq_logprobs_lst)
seq_ids = output.sequences[0]
output_ids = seq_ids[-output_len:]
all_output_ids.append(output_ids.tolist())
all_output_strs.append(self.tokenizer.decode(output_ids))
outputs = zip(all_output_ids, all_output_strs, all_logprobs)
return [(output_ids, output_str, output_logprobs)
for output_ids, output_str, output_logprobs in outputs]
def encode(self, prompts: list[str], *args,
**kwargs) -> list[list[torch.Tensor]]:
return self.model.encode(prompts, *args, **kwargs)
@ -940,26 +846,6 @@ class VllmRunner:
if sampling_params.prompt_logprobs is None else
toks_str_logsprobs_prompt_logprobs)
def generate_encoder_decoder_w_logprobs(
self,
encoder_decoder_prompts: list[ExplicitEncoderDecoderPrompt[str, str]],
sampling_params: SamplingParams,
) -> Union[list[TokensTextLogprobs],
list[TokensTextLogprobsPromptLogprobs]]:
'''
Logprobs generation for vLLM encoder/decoder models
'''
assert sampling_params.logprobs is not None
req_outputs = self.llm.generate(encoder_decoder_prompts,
sampling_params=sampling_params)
toks_str_logsprobs_prompt_logprobs = (
self._final_steps_generate_w_logprobs(req_outputs))
# Omit prompt logprobs if not required by sampling params
return ([x[0:-1] for x in toks_str_logsprobs_prompt_logprobs]
if sampling_params.prompt_logprobs is None else
toks_str_logsprobs_prompt_logprobs)
def generate_greedy(
self,
prompts: Union[list[str], list[torch.Tensor]],
@ -1037,29 +923,6 @@ class VllmRunner:
return perplexities
def generate_encoder_decoder_greedy_logprobs(
self,
encoder_decoder_prompts: list[ExplicitEncoderDecoderPrompt[str, str]],
max_tokens: int,
num_logprobs: Optional[int],
num_prompt_logprobs: Optional[int] = None,
skip_special_tokens: bool = True,
) -> Union[list[TokensTextLogprobs],
list[TokensTextLogprobsPromptLogprobs]]:
greedy_logprobs_params = SamplingParams(
temperature=0.0,
max_tokens=max_tokens,
logprobs=num_logprobs,
prompt_logprobs=(num_prompt_logprobs),
skip_special_tokens=skip_special_tokens,
)
'''
Greedy logprobs generation for vLLM encoder/decoder models
'''
return self.generate_encoder_decoder_w_logprobs(
encoder_decoder_prompts, greedy_logprobs_params)
def generate_beam_search(
self,
prompts: list[str],

View File

@ -14,7 +14,7 @@ from typing import Literal, NamedTuple, Optional
import pytest
from vllm.config import _FLOAT16_NOT_SUPPORTED_MODELS, RunnerOption
from vllm.config.model import _FLOAT16_NOT_SUPPORTED_MODELS, RunnerOption
from vllm.logger import init_logger
from vllm.transformers_utils.config import get_config

View File

@ -36,7 +36,6 @@ def default_server_args() -> list[str]:
"--enforce-eager",
# Prompt Embeds server args
"--enable-prompt-embeds",
"--no-enable-chunked-prefill",
]

View File

@ -287,6 +287,57 @@ async def test_stateful_multi_turn(client: OpenAI, model_name: str):
assert response3.status == "completed"
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_streaming_types(client: OpenAI, model_name: str):
prompts = [
"tell me a story about a cat in 20 words",
]
# this links the "done" type with the "start" type
# so every "done" type should have a corresponding "start" type
# and every open block should be closed by the end of the stream
pairs_of_event_types = {
"response.completed": "response.created",
"response.output_item.done": "response.output_item.added",
"response.content_part.done": "response.content_part.added",
"response.output_text.done": "response.output_text.delta",
"response.web_search_call.done": "response.web_search_call.added",
"response.reasoning_text.done": "response.reasoning_text.delta",
"response.reasoning_part.done": "response.reasoning_part.added",
}
for prompt in prompts:
response = await client.responses.create(
model=model_name,
input=prompt,
reasoning={"effort": "low"},
tools=[],
stream=True,
background=False,
)
stack_of_event_types = []
async for event in response:
if event.type == 'response.created':
stack_of_event_types.append(event.type)
elif event.type == 'response.completed':
assert stack_of_event_types[-1] == pairs_of_event_types[
event.type]
stack_of_event_types.pop()
if event.type.endswith("added"):
stack_of_event_types.append(event.type)
elif event.type.endswith("delta"):
if stack_of_event_types[-1] == event.type:
continue
stack_of_event_types.append(event.type)
elif event.type.endswith("done"):
assert stack_of_event_types[-1] == pairs_of_event_types[
event.type]
stack_of_event_types.pop()
assert len(stack_of_event_types) == 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("background", [True, False])
@ -343,7 +394,10 @@ async def test_streaming(client: OpenAI, model_name: str, background: bool):
assert event.item_id == current_item_id
# verify content_index_id is correct
if event.type == "response.content_part.added":
if event.type in [
"response.content_part.added",
"response.reasoning_part.added"
]:
assert event.content_index != current_content_index
current_content_index = event.content_index
elif event.type in [
@ -461,6 +515,7 @@ async def test_function_calling(client: OpenAI, model_name: str):
model=model_name,
input="What's the weather like in Paris today?",
tools=tools,
temperature=0.0,
)
assert response is not None
assert response.status == "completed"
@ -689,3 +744,18 @@ async def test_function_calling_full_history(client: OpenAI, model_name: str):
assert response_2 is not None
assert response_2.status == "completed"
assert response_2.output_text is not None
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_output_messages_enabled(client: OpenAI, model_name: str,
server):
response = await client.responses.create(
model=model_name,
input="What is the capital of South Korea?",
extra_body={"enable_response_messages": True})
assert response is not None
assert response.status == "completed"
assert len(response.input_messages) > 0
assert len(response.output_messages) > 0

View File

@ -216,7 +216,7 @@ def server_with_chunked_processing():
"--enforce-eager",
"--max-model-len",
"512", # Set smaller max_model_len to trigger chunking mechanism
'--override-pooler-config',
'--pooler-config',
('{"pooling_type": "MEAN", "normalize": true, '
'"enable_chunked_processing": true, "max_embed_len": 10000}'),
"--gpu-memory-utilization",

View File

@ -60,7 +60,7 @@ def test_api_server_process_manager_init(api_server_args, with_stats_update):
global WORKER_RUNTIME_SECONDS
WORKER_RUNTIME_SECONDS = 0.5
# Copy the args to avoid mutating the
# Copy the args to avoid mutating them
args = api_server_args.copy()
if not with_stats_update:

View File

@ -83,7 +83,7 @@ def ref_paged_attn(
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("sliding_window", [None, 256])
@pytest.mark.parametrize("sliding_window", [None, 64, 128, 256])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("soft_cap", [None, 50.0])
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)

View File

@ -1,9 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import NamedTuple
import pytest
import torch
from packaging.version import Version
from transformers import AutoConfig
from transformers import __version__ as TRANSFORMERS_VERSION
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.platforms import current_platform
@ -15,6 +18,7 @@ def generate_test_data(num_tokens: int, num_q_heads: int, num_kv_heads: int,
head_size: int, max_position_embeddings: int,
dtype: torch.dtype, device: torch.device):
"""Generate test data for given configuration."""
current_platform.seed_everything(42)
# Create 2D positions (3, num_tokens) for multimodal case
positions = torch.randint(0,
max_position_embeddings // 4, (3, num_tokens),
@ -33,22 +37,37 @@ def generate_test_data(num_tokens: int, num_q_heads: int, num_kv_heads: int,
return positions, query, key
def unroll_model_tp_dict(model_tp_dict):
return [(model_name, tp_size)
for model_name, tp_sizes in model_tp_dict.items()
for tp_size in tp_sizes]
class MRoPETestInfo(NamedTuple):
model_name: str
# https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L1317
atol: float = 1e-2
rtol: float = 1.6e-2
marks: list[pytest.MarkDecorator] = []
model_tp_dict = {
"Qwen/Qwen2-VL-7B-Instruct": [1, 2],
"Qwen/Qwen2-VL-72B-Instruct": [1, 2],
"Qwen/Qwen2.5-VL-72B-Instruct": [1, 2],
"zai-org/GLM-4.1V-9B-Thinking": [1, 2],
}
TRANSFORMERS_BASE_VERSION = Version(TRANSFORMERS_VERSION).base_version
# https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L1317
dtype_atol_rtol_list = [
[torch.bfloat16, 1e-2, 1.6e-2],
MODELS_TO_TEST = [
MRoPETestInfo(model_name="zai-org/GLM-4.1V-9B-Thinking"),
MRoPETestInfo(model_name="Qwen/Qwen2-VL-7B-Instruct"),
MRoPETestInfo(model_name="Qwen/Qwen2-VL-72B-Instruct"),
MRoPETestInfo(model_name="Qwen/Qwen2.5-VL-72B-Instruct"),
MRoPETestInfo(
model_name="Qwen/Qwen3-VL-4B-Instruct",
marks=[
pytest.mark.skipif(
Version(TRANSFORMERS_BASE_VERSION) < Version("4.57.0"),
reason="Qwen3-VL only available after Transformers v4.57",
)
]),
MRoPETestInfo(
model_name="Qwen/Qwen3-VL-30B-A3B-Instruct",
marks=[
pytest.mark.skipif(
Version(TRANSFORMERS_BASE_VERSION) < Version("4.57.0"),
reason="Qwen3-VL only available after Transformers v4.57",
)
]),
]
num_tokens_list = [11, 8192]
@ -56,20 +75,29 @@ num_tokens_list = [11, 8192]
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
reason="Skipping CUDA/ROCm only tests.")
@pytest.mark.parametrize("model_name, tp_size",
unroll_model_tp_dict(model_tp_dict))
@pytest.mark.parametrize("dtype, atol, rtol", dtype_atol_rtol_list)
@pytest.mark.parametrize("model_info, model_name", [
pytest.param(test_config, test_config.model_name, marks=test_config.marks)
for test_config in MODELS_TO_TEST
])
@pytest.mark.parametrize("tp_size", [1, 2])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("num_tokens", num_tokens_list)
def test_mrope(model_name, tp_size, dtype, atol, rtol, num_tokens):
def test_mrope(model_name: str, model_info: MRoPETestInfo, tp_size: int,
dtype: torch.dtype, num_tokens: int):
atol = model_info.atol
rtol = model_info.rtol
config = AutoConfig.from_pretrained(model_name)
config = config.get_text_config()
# get the model config
total_num_kv_heads = config.num_key_value_heads
total_num_heads = config.num_attention_heads
num_heads = total_num_heads // tp_size
num_kv_heads = max(1, total_num_kv_heads // tp_size)
head_dim = config.hidden_size // total_num_heads
head_dim = (config.head_dim if hasattr(config, "head_dim") else
config.hidden_size // total_num_heads)
is_neox_style = True
rope_theta = config.rope_theta
@ -111,24 +139,30 @@ def test_mrope(model_name, tp_size, dtype, atol, rtol, num_tokens):
@pytest.mark.skipif(not current_platform.is_cuda_alike(),
reason="Skipping CUDA/ROCm only tests.")
@pytest.mark.parametrize(
"model_name, tp_size",
unroll_model_tp_dict({
"Qwen/Qwen2-VL-7B-Instruct": [1, 2],
"zai-org/GLM-4.1V-9B-Thinking": [1, 2]
}))
@pytest.mark.parametrize("dtype, atol, rtol", dtype_atol_rtol_list)
@pytest.mark.parametrize("num_tokens", [4])
def test_mrope_torch_compile_tracing(model_name, tp_size, dtype, atol, rtol,
num_tokens):
@pytest.mark.parametrize("model_info, model_name", [
pytest.param(test_config, test_config.model_name, marks=test_config.marks)
for test_config in MODELS_TO_TEST
])
@pytest.mark.parametrize("tp_size", [1, 2])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("num_tokens", num_tokens_list)
def test_mrope_torch_compile_tracing(model_name: str,
model_info: MRoPETestInfo, tp_size: int,
dtype: torch.dtype, num_tokens: int):
atol = model_info.atol
rtol = model_info.rtol
config = AutoConfig.from_pretrained(model_name)
config = config.get_text_config()
# get the model config
total_num_kv_heads = config.num_key_value_heads
total_num_heads = config.num_attention_heads
num_heads = total_num_heads // tp_size
num_kv_heads = max(1, total_num_kv_heads // tp_size)
head_dim = config.hidden_size // total_num_heads
head_dim = (config.head_dim if hasattr(config, "head_dim") else
config.hidden_size // total_num_heads)
is_neox_style = True
rope_theta = config.rope_theta
max_position = config.max_position_embeddings

View File

@ -11,7 +11,8 @@ import pytest
import torch
import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm.config import VllmConfig, current_platform, set_current_vllm_config
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.platforms import current_platform
from vllm.utils import has_deep_ep, has_deep_gemm, has_pplx
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe

View File

@ -8,11 +8,12 @@ import torch
from safetensors.torch import load_file
from torch import nn
from vllm.config import ModelConfig, VllmConfig
from vllm.config.lora import LoRAConfig
from vllm.lora.layers import (ColumnParallelLinearWithLoRA,
MergedColumnParallelLinearWithLoRA,
RowParallelLinearWithLoRA)
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.lora_weights import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.models import (LoRAMapping, LoRAModel, LoRAModelManager,
LRUCacheLoRAModelManager)
from vllm.lora.peft_helper import PEFTHelper
@ -435,10 +436,19 @@ def test_lru_cache_worker_adapter_manager(dist_init, dummy_model, device,
target_modules=["layer1.dense1", "dense2"],
lora_dtype=DEFAULT_DTYPE,
)
model_config = ModelConfig(max_model_len=16)
vllm_config = VllmConfig(model_config=model_config,
lora_config=lora_config)
vllm_config.scheduler_config.max_num_seqs = 4
vllm_config.scheduler_config.max_num_batched_tokens = 2
worker_adapter_manager = LRUCacheWorkerLoRAManager(
4, 2,
dummy_model.unpadded_vocab_size - lora_config.lora_extra_vocab_size,
lora_config, device, EMBEDDING_MODULES, EMBEDDING_PADDING_MODULES)
vllm_config, device, EMBEDDING_MODULES, EMBEDDING_PADDING_MODULES)
worker_adapter_manager.max_num_seqs = 4
worker_adapter_manager.max_num_batched_tokens = 2
worker_adapter_manager.create_lora_manager(dummy_model)
mapping = LoRAMapping([], [])
@ -517,10 +527,20 @@ def test_worker_adapter_manager(dist_init, dummy_model_gate_up, device,
max_cpu_loras=4,
max_loras=4,
lora_dtype=DEFAULT_DTYPE)
worker_adapter_manager = WorkerLoRAManager(
4, 2, dummy_model_gate_up.unpadded_vocab_size -
lora_config.lora_extra_vocab_size, lora_config, device,
EMBEDDING_MODULES, EMBEDDING_PADDING_MODULES)
model_config = ModelConfig(max_model_len=16)
vllm_config = VllmConfig(model_config=model_config,
lora_config=lora_config)
vllm_config.scheduler_config.max_num_seqs = 4
vllm_config.scheduler_config.max_num_batched_tokens = 2
worker_adapter_manager = WorkerLoRAManager(vllm_config, device,
EMBEDDING_MODULES,
EMBEDDING_PADDING_MODULES)
worker_adapter_manager.vocab_size = (
dummy_model_gate_up.unpadded_vocab_size -
lora_config.lora_extra_vocab_size)
worker_adapter_manager.create_lora_manager(dummy_model_gate_up)
dummy_lora_files = f"{tmp_path}/lora_adapter"

View File

@ -9,7 +9,7 @@ from typing import Optional, Union
import torch
from safetensors.torch import save_file
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.lora_weights import LoRALayerWeights, PackedLoRALayerWeights
class DummyLoRAManager:

View File

@ -125,12 +125,6 @@ def test_models(hf_runner, vllm_runner, example_prompts, model: str,
# in parts of the operators
pytest.skip(f"Skipping '{model}' model test with AITER kernel.")
# Note: can be removed when
# https://github.com/vllm-project/vllm/pull/24278 finished
if current_platform.is_cpu() and use_prompt_embeds:
pytest.skip("Skipping use_prompt_embeds=True with "
"V1-only CPU backend.")
with hf_runner(model) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)

View File

@ -58,7 +58,7 @@ def test_models(
vllm_extra_kwargs = {}
if model == "ssmits/Qwen2-7B-Instruct-embed-base":
vllm_extra_kwargs["override_pooler_config"] = \
vllm_extra_kwargs["pooler_config"] = \
PoolerConfig(pooling_type="MEAN", normalize=False)
max_model_len: Optional[int] = 512

View File

@ -1,6 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.config.pooler import PoolerConfig
from vllm.platforms import current_platform
@ -99,7 +100,7 @@ def test_gemma_multimodal(
convert="classify",
load_format="auto",
hf_overrides=update_config,
override_pooler_config={"pooling_type": "LAST"},
pooler_config=PoolerConfig(pooling_type="LAST"),
max_model_len=512,
enforce_eager=True,
tensor_parallel_size=1,

View File

@ -24,18 +24,18 @@ def test_classify_models_using_activation(
dtype: str,
) -> None:
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
override_pooler_config=PoolerConfig(
activation=False)) as vllm_model:
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(activation=False)) as vllm_model:
wo_activation_out = vllm_model.classify(example_prompts)
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
override_pooler_config=PoolerConfig(
activation=True)) as vllm_model:
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(activation=True)) as vllm_model:
w_activation_out = vllm_model.classify(example_prompts)
for wo_activation, w_activation in zip(wo_activation_out,
@ -43,9 +43,8 @@ def test_classify_models_using_activation(
wo_activation = torch.tensor(wo_activation)
w_activation = torch.tensor(w_activation)
assert not torch.allclose(
wo_activation, w_activation,
atol=1e-2), "override_pooler_config is not working"
assert not torch.allclose(wo_activation, w_activation,
atol=1e-2), "pooler_config is not working"
assert torch.allclose(softmax(wo_activation), w_activation,
1e-3 if dtype == "float" else 1e-2)
@ -65,23 +64,22 @@ def test_embed_models_using_normalize(
dtype: str,
) -> None:
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
override_pooler_config=PoolerConfig(
normalize=False)) as vllm_model:
wo_normalize = torch.tensor(vllm_model.embed(example_prompts))
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
override_pooler_config=PoolerConfig(normalize=True)) as vllm_model:
pooler_config=PoolerConfig(normalize=False)) as vllm_model:
wo_normalize = torch.tensor(vllm_model.embed(example_prompts))
with vllm_runner(model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(normalize=True)) as vllm_model:
w_normalize = torch.tensor(vllm_model.embed(example_prompts))
assert not torch.allclose(
wo_normalize, w_normalize,
atol=1e-2), "override_pooler_config normalize is not working"
atol=1e-2), "pooler_config normalize is not working"
assert torch.allclose(
F.normalize(wo_normalize, p=2, dim=-1), w_normalize,
atol=1e-2), "w_normal should be close to normal(wo_normal)."
@ -102,18 +100,16 @@ def test_reward_models_using_softmax(
dtype: str,
) -> None:
with vllm_runner(
model,
max_model_len=1024,
dtype=dtype,
override_pooler_config=PoolerConfig(softmax=False)) as vllm_model:
with vllm_runner(model,
max_model_len=1024,
dtype=dtype,
pooler_config=PoolerConfig(softmax=False)) as vllm_model:
wo_softmax = vllm_model.encode(example_prompts)
with vllm_runner(
model,
max_model_len=1024,
dtype=dtype,
override_pooler_config=PoolerConfig(softmax=True)) as vllm_model:
with vllm_runner(model,
max_model_len=1024,
dtype=dtype,
pooler_config=PoolerConfig(softmax=True)) as vllm_model:
w_softmax = vllm_model.encode(example_prompts)
for wo, w in zip(wo_softmax, w_softmax):
@ -121,7 +117,7 @@ def test_reward_models_using_softmax(
w = torch.tensor(w)
assert not torch.allclose(
wo, w, atol=1e-2), "override_pooler_config softmax is not working"
wo, w, atol=1e-2), "pooler_config softmax is not working"
assert torch.allclose(
softmax(wo), w,
atol=1e-2), "w_softmax should be close to softmax(wo_softmax)."

View File

@ -7,7 +7,6 @@ from unittest.mock import patch
import pytest
from vllm import LLM
from vllm.config import ModelImpl
from vllm.engine.llm_engine import LLMEngine as V0LLMEngine
from vllm.utils import GiB_bytes
from vllm.v1.core.kv_cache_utils import get_kv_cache_configs
@ -111,8 +110,8 @@ def can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch,
# these tests seem to produce leftover memory
gpu_memory_utilization=0.80,
load_format="dummy",
model_impl=ModelImpl.TRANSFORMERS
if model_arch in _TRANSFORMERS_BACKEND_MODELS else ModelImpl.VLLM,
model_impl="transformers"
if model_arch in _TRANSFORMERS_BACKEND_MODELS else "vllm",
hf_overrides=hf_overrides_fn,
max_num_seqs=model_info.max_num_seqs)

View File

@ -9,7 +9,7 @@ from vllm.platforms import current_platform
from ..conftest import HfRunner, VllmRunner
from ..utils import multi_gpu_test, prep_prompts
from .utils import check_logprobs_close
from .utils import check_embeddings_close, check_logprobs_close
def check_implementation(
@ -165,6 +165,40 @@ def test_embed_loading(vllm_runner, model):
assert model_config.using_transformers_backend()
@pytest.mark.parametrize(
"model",
[
# Encoder model
"BAAI/bge-base-en-v1.5",
])
def test_embed_correctness(hf_runner, vllm_runner, example_prompts, model):
import transformers
from packaging.version import Version
installed = Version(transformers.__version__)
required = Version("4.57.0.dev0")
if installed < required:
pytest.skip("Encoder models with the Transformers backend require "
f"transformers>={required}, but got {installed}")
with vllm_runner(model, max_model_len=512,
model_impl="transformers") as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
assert model_config.using_transformers_backend()
vllm_outputs = vllm_model.embed(example_prompts)
with hf_runner(model, is_sentence_transformer=True) as hf_model:
hf_outputs = hf_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
@pytest.mark.parametrize(
"model",
["jason9693/Qwen2.5-1.5B-apeach"],

View File

@ -207,25 +207,19 @@ def test_get_pooling_config():
model_id = "sentence-transformers/all-MiniLM-L12-v2"
model_config = ModelConfig(model_id)
pooling_config = model_config._init_pooler_config()
assert pooling_config is not None
assert pooling_config.normalize
assert pooling_config.pooling_type == PoolingType.MEAN.name
assert model_config.pooler_config is not None
assert model_config.pooler_config.normalize
assert model_config.pooler_config.pooling_type == PoolingType.MEAN.name
@pytest.mark.skipif(current_platform.is_rocm(),
reason="Xformers backend is not supported on ROCm.")
def test_get_pooling_config_from_args():
model_id = "sentence-transformers/all-MiniLM-L12-v2"
model_config = ModelConfig(model_id)
pooler_config = PoolerConfig(pooling_type="CLS", normalize=True)
model_config = ModelConfig(model_id, pooler_config=pooler_config)
override_pooler_config = PoolerConfig(pooling_type='CLS', normalize=True)
model_config.override_pooler_config = override_pooler_config
pooling_config = model_config._init_pooler_config()
assert pooling_config is not None
assert asdict(pooling_config) == asdict(override_pooler_config)
assert asdict(model_config.pooler_config) == asdict(pooler_config)
@pytest.mark.parametrize(

View File

@ -513,27 +513,27 @@ def test_hash_request_tokens_no_mm_inputs(hash_fn):
assert block_hashes[1] == hash_fn((block_hashes[0], (3, 4, 5), None))
def _stats(requests: int, queries: int, hits: int) -> PrefixCacheStats:
return PrefixCacheStats(requests=requests, queries=queries, hits=hits)
def test_metrics():
"""
Test the prefix caching metrics.
"""
def stats(requests, queries, hits):
return PrefixCacheStats(requests=requests, queries=queries, hits=hits)
metrics = PrefixCachingMetrics(max_recent_requests=5)
assert metrics.hit_rate == 0.0
metrics.observe(stats(1, 20, 9))
metrics.observe(_stats(1, 20, 9))
# 9 / 20 = 0.45
assert metrics.hit_rate == 0.45
metrics.observe(stats(4, 80, 16))
metrics.observe(_stats(4, 80, 16))
# 25 / 100 = 0.25
assert metrics.hit_rate == 0.25
metrics.observe(stats(1, 10, 2))
metrics.observe(_stats(1, 10, 2))
# Remove (20, 9) and add (10, 2): 18 / 90 = 0.2
assert metrics.aggregated_requests == 5
@ -549,6 +549,38 @@ def test_metrics():
assert not metrics.query_queue
def test_metrics_empty_stats():
"""
Test the prefix caching metrics with empty stats.
"""
metrics = PrefixCachingMetrics(max_recent_requests=5)
metrics.observe(_stats(0, 0, 0))
metrics.observe(_stats(1, 20, 9))
metrics.observe(_stats(0, 0, 0))
metrics.observe(_stats(4, 80, 16))
metrics.observe(_stats(0, 0, 0))
metrics.observe(_stats(1, 10, 2))
# Remove (20, 9) and add (10, 2): 18 / 90 = 0.2
assert metrics.aggregated_requests == 5
assert metrics.aggregated_query_total == 90
assert metrics.aggregated_query_hit == 18
assert metrics.hit_rate == 0.2
# Only the latest added stats preserved 10 / 20 = 0.5
metrics.observe(_stats(11, 20, 10))
assert metrics.aggregated_requests == 11
assert metrics.aggregated_query_total == 20
assert metrics.aggregated_query_hit == 10
assert metrics.hit_rate == 0.5
# Only the latest added stats preserved 30 / 40 = 0.75
metrics.observe(_stats(22, 40, 30))
assert metrics.aggregated_requests == 22
assert metrics.aggregated_query_total == 40
assert metrics.aggregated_query_hit == 30
assert metrics.hit_rate == 0.75
def test_get_kv_cache_configs_multiple_workers():
model_config = ModelConfig(max_model_len=16)
vllm_config = VllmConfig(model_config=model_config)

View File

@ -18,12 +18,18 @@ import torch
from vllm import LLM
from vllm.config import KVTransferConfig
from vllm.distributed.kv_transfer.kv_connector.utils import KVOutputAggregator
from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
KVConnectorStats)
from vllm.distributed.kv_transfer.kv_connector.v1.multi_connector import (
MultiKVConnectorStats)
from vllm.distributed.kv_transfer.kv_connector.v1.nixl_connector import (
KVConnectorRole, NixlAgentMetadata, NixlConnector, NixlConnectorMetadata,
NixlConnectorWorker)
NixlConnectorWorker, NixlKVConnectorStats)
from vllm.forward_context import ForwardContext
from vllm.sampling_params import SamplingParams
from vllm.v1.attention.backends.flash_attn import FlashAttentionBackend
from vllm.v1.outputs import KVConnectorOutput, ModelRunnerOutput
from .utils import create_request, create_scheduler, create_vllm_config
@ -475,6 +481,209 @@ class TestNixlHandshake:
# NOTE: resource cleanup in mp backend is a bit finicky, so the order in which
# we put here is important. First run ray, it will clean up the resources, then
# the rest of the tests.
@patch(
"vllm.distributed.kv_transfer.kv_connector.v1.nixl_connector.NixlWrapper",
FakeNixlWrapper)
def test_kv_connector_stats(dist_init):
"""Test that KV transfer stats are properly recorded and retrieved."""
vllm_config = create_vllm_config()
# Test worker role in decode server.
connector = NixlConnector(vllm_config, KVConnectorRole.WORKER)
connector.connector_worker = FakeNixlConnectorWorker(vllm_config,
connector.engine_id,
hand_shake_latency=0)
# Verify that xfer_stats starts empty
initial_stats = connector.get_kv_connector_stats()
assert initial_stats is None
# Create transfer metadata
request_id = "test_req_for_stats"
metadata = NixlConnectorMetadata()
metadata.add_new_req(request_id=request_id,
local_block_ids=[1, 2, 3],
kv_transfer_params={
"remote_block_ids": [4, 5, 6],
"remote_engine_id":
FakeNixlConnectorWorker.REMOTE_ENGINE_ID,
"remote_host": "localhost",
"remote_port": 1234,
"remote_tp_size": 1,
})
connector.bind_connector_metadata(metadata)
# Start the transfer
dummy_ctx = ForwardContext(
no_compile_layers={},
attn_metadata={},
virtual_engine=0,
)
connector.start_load_kv(dummy_ctx)
# Verify stats are recorded after transfer is complete
max_iterations = 2
# Clear metadata before start_load_kv to prevent reprocessing same request
connector.bind_connector_metadata(NixlConnectorMetadata())
for _ in range(max_iterations):
# Need to call start_load_kv to process completed handshakes
connector.start_load_kv(dummy_ctx)
_, done_recving = connector.get_finished(finished_req_ids=set())
if len(done_recving) > 0 and request_id in done_recving:
break
time.sleep(
0.1) # Small delay to allow background handshake to complete
else:
assert "Transfer did not complete within expected iterations"
# Now check that stats were recorded
stats_after_transfer = connector.get_kv_connector_stats()
assert isinstance(stats_after_transfer, NixlKVConnectorStats)
# Verify stats values are recorded
assert not stats_after_transfer.is_empty()
assert stats_after_transfer.data["num_successful_transfers"] == 1
# Verify stats are reset after retrieval
stats_after_reset = connector.get_kv_connector_stats()
assert stats_after_reset is None
def test_kv_connector_stats_aggregation():
"""
Test KV transfer stats aggregation across TP ranks using
KVOutputAggregator (used by MultiprocExecutor).
"""
# Create KVOutputAggregator for 3 workers (simulating TP=3), same thing
# done in MultiprocExecutor.execute_model
aggregator = KVOutputAggregator(world_size=3)
# Create stats for multiple workers with different transfer patterns
worker1_stats = NixlKVConnectorStats()
worker2_stats = NixlKVConnectorStats()
worker3_stats = NixlKVConnectorStats()
# Record different transfers on each worker
# Worker 1: 2 transfers
worker1_stats.record_transfer()
worker1_stats.record_transfer()
# Worker 2: 1 transfer
worker2_stats.record_transfer()
# Worker 3: 3 transfers
worker3_stats.record_transfer()
worker3_stats.record_transfer()
worker3_stats.record_transfer()
# Create ModelRunnerOutput instances for each worker
worker_outputs = []
for i, worker_stats in enumerate(
[worker1_stats, worker2_stats, worker3_stats]):
output = ModelRunnerOutput(
req_ids=[f"req_{i}"],
req_id_to_index={f"req_{i}": 0},
sampled_token_ids=[[123]], # dummy token
logprobs=None,
prompt_logprobs_dict={},
pooler_output=[None],
kv_connector_output=KVConnectorOutput(
finished_sending=set([f"req_{i}_send"])
if i < 2 else None, # Workers 0,1 finished sending
finished_recving=set([f"req_{i}_recv"])
if i > 0 else None, # Workers 1,2 finished receiving
kv_connector_stats=worker_stats,
))
worker_outputs.append(output)
# Use the real aggregation mechanism (like MultiprocExecutor.execute_model)
aggregated_output = aggregator.aggregate(worker_outputs, output_rank=0)
kv_connector_stats = \
aggregated_output.kv_connector_output.kv_connector_stats
assert isinstance(kv_connector_stats, NixlKVConnectorStats)
# Number of total transfers across all workers.
assert kv_connector_stats.data["num_successful_transfers"] == 6
def test_multi_kv_connector_stats_aggregation():
"""
Test MultiKVConnectorStats aggregation across TP ranks using
KVOutputAggregator (used by MultiprocExecutor).
"""
aggregator = KVOutputAggregator(world_size=3)
from dataclasses import dataclass
@dataclass
class FooKVConnectorStats(KVConnectorStats):
def reset(self):
self.data = {"num_foo_transfers": 0}
def record_transfer(self):
if "num_foo_transfers" not in self.data:
self.data["num_foo_transfers"] = 0
self.data["num_foo_transfers"] += 1
def is_empty(self) -> bool:
return self.data["num_foo_transfers"] == 0
def aggregate(self,
other: "FooKVConnectorStats") -> "FooKVConnectorStats":
if not other.is_empty():
self.data["num_foo_transfers"] += other.data[
"num_foo_transfers"]
return self
def make_multi_stats(nixl_count: int,
foo_count: int) -> MultiKVConnectorStats:
data: dict[str, KVConnectorStats] = {}
if nixl_count > 0:
nixl_stats = NixlKVConnectorStats()
for _ in range(nixl_count):
nixl_stats.record_transfer()
data["NixlConnector"] = nixl_stats
if foo_count > 0:
foo_stats = FooKVConnectorStats()
for _ in range(foo_count):
foo_stats.record_transfer()
data["FooConnector"] = foo_stats
return MultiKVConnectorStats(data=data)
# Create heterogeneous stats across 3 workers
worker_patterns = [(2, 1), (3, 0), (0, 5)] # (Nixl, Foo)
worker_outputs: list[ModelRunnerOutput] = []
for i, (nixl, foo) in enumerate(worker_patterns):
stats = make_multi_stats(nixl, foo)
output = ModelRunnerOutput(
req_ids=[f"req_{i}"],
req_id_to_index={f"req_{i}": 0},
sampled_token_ids=[[123]],
logprobs=None,
prompt_logprobs_dict={},
pooler_output=[None],
kv_connector_output=KVConnectorOutput(
finished_sending=set([f"req_{i}_send"]) if i < 2 else None,
finished_recving=set([f"req_{i}_recv"]) if i > 0 else None,
kv_connector_stats=stats,
),
)
worker_outputs.append(output)
aggregated_output = aggregator.aggregate(worker_outputs, output_rank=0)
kv_connector_stats = \
aggregated_output.kv_connector_output.kv_connector_stats
assert isinstance(kv_connector_stats, MultiKVConnectorStats)
# Validate per-connector totals across workers
assert kv_connector_stats["NixlConnector"].data[
"num_successful_transfers"] == 5
assert kv_connector_stats["FooConnector"].data["num_foo_transfers"] == 6
@pytest.mark.parametrize("distributed_executor_backend", ["ray", None])
@patch(
"vllm.distributed.kv_transfer.kv_connector.v1.nixl_connector.NixlWrapper",

View File

@ -0,0 +1,505 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
from typing import Any
from unittest.mock import MagicMock
import pytest
import torch
from vllm import SamplingParams
from vllm.config import KVTransferConfig, VllmConfig
from vllm.distributed.kv_events import BlockRemoved, BlockStored
from vllm.distributed.kv_transfer.kv_connector.v1 import KVConnectorRole
from vllm.distributed.kv_transfer.kv_connector.v1.offloading_connector import (
OffloadingConnector, OffloadingConnectorMetadata)
from vllm.forward_context import ForwardContext
from vllm.utils import sha256
from vllm.v1.core.kv_cache_utils import (BlockHash, get_request_block_hasher,
init_none_hash)
from vllm.v1.core.sched.scheduler import Scheduler
from vllm.v1.kv_offload.abstract import (LoadStoreSpec, OffloadingEvent,
OffloadingManager, PrepareStoreOutput)
from vllm.v1.kv_offload.mediums import GPULoadStoreSpec
from vllm.v1.kv_offload.spec import OffloadingSpec
from vllm.v1.kv_offload.worker.worker import (OffloadingHandler,
TransferResult, TransferSpec)
from vllm.v1.outputs import EMPTY_MODEL_RUNNER_OUTPUT, KVConnectorOutput
from vllm.v1.request import Request
from .utils import (EOS_TOKEN_ID, create_model_runner_output, create_scheduler,
create_vllm_config)
class MockLoadStoreSpec(LoadStoreSpec):
def __init__(self, block_hashes: Iterable[BlockHash]):
self.block_hashes: list[BlockHash] = list(block_hashes)
@staticmethod
def medium() -> str:
return "Mock"
def __repr__(self) -> str:
return repr(self.block_hashes)
class MockOffloadingHandler(OffloadingHandler):
def __init__(self):
self.completed_transfers: list[TransferResult] = []
self.completed_specs: list[TransferSpec] = []
def get_finished(self) -> list[TransferResult]:
finished = self.completed_transfers
self.completed_transfers = []
return finished
def transfer_async(self, job_id: int, spec: TransferSpec) -> bool:
self.completed_specs.append(spec)
self.completed_transfers.append((job_id, True))
return True
class MockOffloadingSpec(OffloadingSpec):
def __init__(self, vllm_config: VllmConfig):
super().__init__(vllm_config)
self.manager = MagicMock(spec=OffloadingManager)
self.manager.lookup.return_value = 0
self.manager.prepare_load = lambda block_hashes: (MockLoadStoreSpec(
block_hashes))
self.handler = MockOffloadingHandler()
def get_manager(self) -> OffloadingManager:
return self.manager
def get_handlers(
self, _
) -> Iterator[tuple[type[LoadStoreSpec], type[LoadStoreSpec],
OffloadingHandler]]:
yield GPULoadStoreSpec, MockLoadStoreSpec, self.handler
yield MockLoadStoreSpec, GPULoadStoreSpec, self.handler
def get_completed_transfers(self) -> list[TransferSpec]:
specs = self.handler.completed_specs
self.handler.completed_specs = []
return specs
@dataclass
class TransferSummary:
gpu_block_indices: list[int]
offload_addresses: list[Any]
class RequestRunner:
def __init__(self, offloaded_block_size: int, gpu_block_size: int,
num_gpu_blocks: int):
self.offloaded_block_size: int = offloaded_block_size
self.gpu_block_size: int = gpu_block_size
self.num_gpu_blocks: int = num_gpu_blocks
self.req_id: int = -1
vllm_config = create_vllm_config(block_size=gpu_block_size,
max_num_batched_tokens=1000)
vllm_config.kv_transfer_config = KVTransferConfig(
kv_connector="OffloadingConnector",
kv_role="kv_both",
kv_connector_extra_config={
"spec_name": "MockOffloadingSpec",
"spec_module_path":
"tests.v1.kv_connector.unit.test_offloading_connector",
"block_size": offloaded_block_size,
})
self.scheduler: Scheduler = create_scheduler(vllm_config,
num_blocks=num_gpu_blocks)
self.worker_connector = OffloadingConnector(vllm_config,
KVConnectorRole.WORKER)
# register worker kv_caches to enable OffloadingWorker creations
self.worker_connector.register_kv_caches(
kv_caches={"a": torch.empty(0)})
# extract connector of scheduler
scheduler_connector = self.scheduler.connector
assert scheduler_connector is not None
assert isinstance(scheduler_connector, OffloadingConnector)
self.scheduler_connector: OffloadingConnector = scheduler_connector
# extract mocked OffloadingManager of scheduler connector
connector_scheduler = scheduler_connector.connector_scheduler
assert connector_scheduler is not None
manager = connector_scheduler.manager
assert isinstance(manager, MagicMock)
self.manager: MagicMock = manager
assert connector_scheduler.gpu_block_size == gpu_block_size
assert connector_scheduler.offloaded_block_size == offloaded_block_size
# extract OffloadingSpec of worker_connector
connector_worker = self.worker_connector.connector_worker
assert connector_worker is not None
offloading_spec = connector_worker.spec
assert isinstance(offloading_spec, MockOffloadingSpec)
self.offloading_spec: MockOffloadingSpec = offloading_spec
# mapping (offloading address) -> gpu_block_index
self.offloaded: dict[Any, int] = {}
self.pending_loads_count: int = 0
self.pending_stores_count: int = 0
self.completed_loads: list[TransferSummary] = []
self.completed_stores: list[TransferSummary] = []
# maps {block_id: block_offset}
self.gpu_block_index: dict[int, int] = {}
init_none_hash(sha256)
self._block_hasher = get_request_block_hasher(gpu_block_size, sha256)
self._dummy_ctx: ForwardContext = ForwardContext(no_compile_layers={},
attn_metadata={},
virtual_engine=0)
def new_request(self, token_ids: list[int]):
assert not self.scheduler.requests
self.req_id += 1
req = Request(
request_id=str(self.req_id),
prompt_token_ids=token_ids,
sampling_params=SamplingParams(max_tokens=1000),
pooling_params=None,
eos_token_id=EOS_TOKEN_ID,
block_hasher=self._block_hasher,
)
self.scheduler.add_request(req)
def _wait_for_transfers(self):
block_size_factor = self.offloaded_block_size // self.gpu_block_size
while self.pending_loads_count or self.pending_stores_count:
for transfer_spec in (
self.offloading_spec.get_completed_transfers()):
src_spec, dst_spec = transfer_spec
if isinstance(src_spec, GPULoadStoreSpec):
store = True
gpu_spec = src_spec
offload_spec = dst_spec
else:
store = False
gpu_spec = dst_spec
offload_spec = src_spec
assert isinstance(offload_spec, MockLoadStoreSpec)
assert isinstance(gpu_spec, GPULoadStoreSpec)
gpu_block_indices: list[int] = []
for block_id in gpu_spec.block_ids:
gpu_block_indices.append(
self.gpu_block_index[block_id.item()])
# list of (block_hash, sub_block_offset)
offload_addresses: list[Any] = []
for block_hash in offload_spec.block_hashes:
for sub_block_idx in range(block_size_factor):
offload_addresses.append((block_hash, sub_block_idx))
if store:
assert len(gpu_block_indices) == len(offload_addresses)
self.completed_stores.append(
TransferSummary(gpu_block_indices, offload_addresses))
self.pending_stores_count -= 1
else:
remainder_sub_block_count = (len(offload_addresses) -
len(gpu_block_indices))
assert remainder_sub_block_count >= 0
assert remainder_sub_block_count < block_size_factor
offload_addresses = offload_addresses[
remainder_sub_block_count:]
self.completed_loads.append(
TransferSummary(gpu_block_indices, offload_addresses))
self.pending_loads_count -= 1
def _update_gpu_block_idx(self):
for blocks in (self.scheduler.kv_cache_manager.coordinator.
single_type_managers[0].req_to_blocks.values()):
for block_idx, block in enumerate(blocks):
self.gpu_block_index[block.block_id] = block_idx
def _run(self, decoded_tokens: list[int]):
"""
Runs multiple engine (scheduler + worker) steps.
Assumes a single request is running.
Args:
decoded_tokens: the tokens to yield at each step.
"""
tokens_iter = iter(decoded_tokens)
token_id = next(tokens_iter, None)
while token_id is not None:
assert self.scheduler.requests
scheduler_output = self.scheduler.schedule()
self._update_gpu_block_idx()
kv_connector_metadata = scheduler_output.kv_connector_metadata
assert kv_connector_metadata is not None
assert isinstance(kv_connector_metadata,
OffloadingConnectorMetadata)
self.pending_loads_count += len(kv_connector_metadata.reqs_to_load)
self.pending_stores_count += len(
kv_connector_metadata.reqs_to_store)
self.worker_connector.bind_connector_metadata(
kv_connector_metadata)
self.worker_connector.start_load_kv(self._dummy_ctx)
if scheduler_output.total_num_scheduled_tokens > 0:
self.worker_connector.wait_for_save()
finished_sending, finished_recving = (
self.worker_connector.get_finished(
scheduler_output.finished_req_ids))
self.worker_connector.clear_connector_metadata()
model_runner_output = create_model_runner_output(
reqs=self.scheduler.running,
finished_sending=list(finished_sending),
finished_recving=list(finished_recving),
token_id=token_id)
if self.scheduler.running:
token_id = next(tokens_iter, None)
self.scheduler.update_from_output(scheduler_output,
model_runner_output)
self._wait_for_transfers()
# run one more step to update finished stored
if EOS_TOKEN_ID in decoded_tokens:
assert not self.scheduler.running
while self.scheduler.requests:
scheduler_output = self.scheduler.schedule()
finished_sending, finished_recving = (
self.worker_connector.get_finished(
scheduler_output.finished_req_ids))
assert not finished_recving
model_runner_output = copy.deepcopy(EMPTY_MODEL_RUNNER_OUTPUT)
model_runner_output.kv_connector_output = KVConnectorOutput(
finished_sending=finished_sending)
self.scheduler.update_from_output(scheduler_output,
model_runner_output)
def run(
self,
decoded_tokens: list[int],
expected_stored_gpu_block_indexes: tuple[int, ...] = (),
expected_loaded_gpu_block_indexes: tuple[int, ...] = (),
):
"""
Runs multiple engine (scheduler + worker) steps.
Assumes a single request is running.
Args:
decoded_tokens: the tokens to yield at each step.
expected_stored_gpu_block_indexes: GPU block indexes
that are expected to be written during the run.
expected_loaded_gpu_block_indexes: GPU block indexes
that are expected to be loaded during the run.
"""
self.manager.reset_mock()
self._run(decoded_tokens)
loaded_gpu_block_indexes: set[int] = set()
for transfer in self.completed_loads:
for gpu_block_idx, offloaded_address in zip(
transfer.gpu_block_indices, transfer.offload_addresses):
loaded_gpu_block_indexes.add(gpu_block_idx)
assert gpu_block_idx == self.offloaded[offloaded_address]
assert (
set(expected_loaded_gpu_block_indexes) == loaded_gpu_block_indexes)
self.completed_loads.clear()
stored_gpu_block_indexes: set[int] = set()
for transfer in self.completed_stores:
for gpu_block_idx, offloaded_address in zip(
transfer.gpu_block_indices, transfer.offload_addresses):
stored_gpu_block_indexes.add(gpu_block_idx)
self.offloaded[offloaded_address] = gpu_block_idx
assert (
set(expected_stored_gpu_block_indexes) == stored_gpu_block_indexes)
self.completed_stores.clear()
@pytest.fixture
def request_runner():
runners = []
def runner_factory(offloaded_block_size, gpu_block_size, num_gpu_blocks):
runner = RequestRunner(offloaded_block_size=offloaded_block_size,
gpu_block_size=gpu_block_size,
num_gpu_blocks=num_gpu_blocks)
runners.append(runner)
return runner
yield runner_factory # pass factory to the test
def generate_store_output(block_hashes: Iterable[BlockHash]):
block_hashes = list(block_hashes)
return PrepareStoreOutput(
block_hashes_to_store=list(block_hashes),
store_spec=MockLoadStoreSpec(block_hashes),
block_hashes_evicted=[],
)
def test_offloading_connector(request_runner):
offloaded_block_size = 12
gpu_block_size = 4
num_gpu_blocks = 100
block_size_factor = offloaded_block_size // gpu_block_size
runner = request_runner(offloaded_block_size=offloaded_block_size,
gpu_block_size=gpu_block_size,
num_gpu_blocks=num_gpu_blocks)
# 3 blocks, store just the middle block (skip first and last)
# blocks = [0, 1, 2], [3, 4, 5], [6, 7, 8]
runner.new_request(token_ids=[0] * offloaded_block_size * 3)
runner.manager.prepare_store.side_effect = \
lambda block_hashes: generate_store_output(list(block_hashes)[1:2])
runner.run(decoded_tokens=[0], expected_stored_gpu_block_indexes=(3, 4, 5))
# add block missing 1 token -> no offload
runner.run(decoded_tokens=[0] * (offloaded_block_size - 1))
runner.manager.prepare_store.assert_not_called()
# +1 token -> single block, fail prepare_store
runner.manager.prepare_store.side_effect = \
lambda block_hashes: None
runner.run(decoded_tokens=[0])
runner.manager.prepare_store.assert_called()
# 1 more block, now set block_hashes_to_store = []
runner.manager.prepare_store.side_effect = \
lambda block_hashes: generate_store_output([])
runner.run(decoded_tokens=[0] * offloaded_block_size)
# 1 more block, now check touch was called with all 6 blocks
runner.manager.prepare_store.side_effect = \
lambda block_hashes: generate_store_output(block_hashes)
runner.run(decoded_tokens=[0] * offloaded_block_size,
expected_stored_gpu_block_indexes=(15, 16, 17))
runner.manager.touch.assert_called()
block_hashes1 = list(runner.manager.touch.call_args.args[0])
assert len(block_hashes1) == 6
# terminate request
runner.run(decoded_tokens=[EOS_TOKEN_ID])
# create a new request differing only on the last token
runner.new_request(token_ids=[0] * (offloaded_block_size * 6 - 1) + [1])
runner.run(decoded_tokens=[0],
expected_stored_gpu_block_indexes=tuple(
range(6 * block_size_factor)))
runner.manager.touch.assert_called()
block_hashes2 = list(runner.manager.touch.call_args.args[0])
assert len(block_hashes2) == 6
# verify hashes are the same, except for the last block
assert block_hashes1[:5] == block_hashes2[:5]
assert block_hashes1[5] != block_hashes2[5]
# terminate request
runner.run(decoded_tokens=[EOS_TOKEN_ID])
# full_block_tokens - num_computed_tokens < offloaded_block_size
runner.new_request(token_ids=[0] * gpu_block_size + [1] *
(offloaded_block_size - gpu_block_size))
runner.manager.prepare_store.side_effect = \
lambda block_hashes: generate_store_output([])
runner.run(decoded_tokens=[EOS_TOKEN_ID])
runner.manager.lookup.assert_not_called()
# single block lookup with no hits
runner.new_request(token_ids=[1] * offloaded_block_size)
runner.manager.prepare_store.side_effect = \
lambda block_hashes: generate_store_output([])
runner.run(decoded_tokens=[EOS_TOKEN_ID])
runner.manager.lookup.assert_called()
assert len(list(runner.manager.lookup.call_args.args[0])) == 1
# single block lookup with a hit
runner.scheduler.reset_prefix_cache()
runner.new_request(token_ids=[0] * offloaded_block_size)
runner.manager.prepare_store.side_effect = \
lambda block_hashes: generate_store_output([])
runner.manager.lookup.return_value = 1
runner.run(decoded_tokens=[EOS_TOKEN_ID],
expected_loaded_gpu_block_indexes=(0, 1, 2))
# single block lookup with a hit in a middle block
runner.new_request(token_ids=[0] * offloaded_block_size * 2 +
[1] * offloaded_block_size)
runner.manager.prepare_store.side_effect = \
lambda block_hashes: generate_store_output([])
runner.manager.lookup.return_value = 1
runner.run(decoded_tokens=[EOS_TOKEN_ID],
expected_loaded_gpu_block_indexes=(3, 4, 5))
# test take_events
def to_hashes(int_hashes: list[int]) -> list[BlockHash]:
return [BlockHash(str(i).encode()) for i in int_hashes]
def take_events() -> Iterable[OffloadingEvent]:
yield OffloadingEvent(block_hashes=to_hashes([1, 2, 3]),
block_size=16,
medium="A",
removed=False)
yield OffloadingEvent(block_hashes=to_hashes([4, 5, 6]),
block_size=32,
medium="B",
removed=True)
runner.manager.take_events.side_effect = take_events
events = list(runner.scheduler_connector.take_events())
assert len(events) == 2
event = events[0]
assert isinstance(event, BlockStored)
assert event.block_hashes == to_hashes([1, 2, 3])
assert event.block_size == 16
assert event.medium == "A"
assert event.token_ids == []
assert event.parent_block_hash is None
assert event.lora_id is None
event = events[1]
assert isinstance(event, BlockRemoved)
assert event.block_hashes == to_hashes([4, 5, 6])
assert event.medium == "B"

View File

@ -176,6 +176,7 @@ def create_model_runner_output(
finished_sending: Optional[list[str]] = None,
finished_recving: Optional[list[str]] = None,
use_eos: bool = False,
token_id: int = 0,
) -> ModelRunnerOutput:
"""Make dummy model runner output for testing."""
@ -184,7 +185,7 @@ def create_model_runner_output(
req_id_to_index = {req_id: idx for idx, req_id in enumerate(req_ids)}
# Make sampled tokens.
sampled_token = EOS_TOKEN_ID if use_eos else 0
sampled_token = EOS_TOKEN_ID if use_eos else token_id
sampled_token_ids = [[sampled_token] for _ in req_ids]
kv_connector_output = None if (

View File

@ -0,0 +1,175 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Optional
import numpy as np
from vllm.v1.core.kv_cache_utils import BlockHash
from vllm.v1.kv_offload.abstract import (LoadStoreSpec, OffloadingEvent,
PrepareStoreOutput)
from vllm.v1.kv_offload.backends.cpu import CPUBackend
from vllm.v1.kv_offload.lru_manager import LRUOffloadingManager
from vllm.v1.kv_offload.mediums import CPULoadStoreSpec
@dataclass
class ExpectedPrepareStoreOutput:
block_hashes_to_store: list[int]
store_block_ids: list[int]
block_hashes_evicted: list[int]
def to_hashes(int_hashes: list[int]) -> list[BlockHash]:
return [BlockHash(str(i).encode()) for i in int_hashes]
def verify_store_output(
prepare_store_output: Optional[PrepareStoreOutput],
expected_prepare_store_output: ExpectedPrepareStoreOutput):
assert prepare_store_output is not None
assert (prepare_store_output.block_hashes_to_store == to_hashes(
expected_prepare_store_output.block_hashes_to_store))
assert (prepare_store_output.block_hashes_evicted == to_hashes(
expected_prepare_store_output.block_hashes_evicted))
store_spec = prepare_store_output.store_spec
assert isinstance(store_spec, CPULoadStoreSpec)
expected_array = np.array(expected_prepare_store_output.store_block_ids,
dtype=np.int64)
assert np.array_equal(expected_array, store_spec.block_ids)
def verify_load_output(prepare_load_output: LoadStoreSpec,
expected_prepare_load_output: list[int]):
assert isinstance(prepare_load_output, CPULoadStoreSpec)
expected_array = np.array(expected_prepare_load_output, dtype=np.int64)
assert np.array_equal(expected_array, prepare_load_output.block_ids)
def verify_events(events: Iterable[OffloadingEvent],
block_size: int,
expected_stores: tuple[set[int], ...] = (),
expected_evictions: tuple[set[int], ...] = ()):
stores: list[set[BlockHash]] = []
evictions: list[set[BlockHash]] = []
for event in events:
assert event.medium == CPULoadStoreSpec.medium()
assert event.block_size == block_size
if event.removed:
evictions.append(set(event.block_hashes))
else:
stores.append(set(event.block_hashes))
def to_hash_sets(
int_sets: tuple[set[int], ...]) -> tuple[set[BlockHash], ...]:
return tuple([set(to_hashes(list(int_set))) for int_set in int_sets])
assert tuple(evictions) == to_hash_sets(expected_evictions)
assert tuple(stores) == to_hash_sets(expected_stores)
def test_cpu_manager():
"""
Tests LRUOffloadingManager with a CPUBackend.
"""
# initialize a CPU backend with a capacity of 4 blocks
block_size = 256
cpu_backend = CPUBackend(block_size=block_size, num_blocks=4)
cpu_manager = LRUOffloadingManager(cpu_backend, enable_events=True)
# prepare store [1, 2]
prepare_store_output = cpu_manager.prepare_store(to_hashes([1, 2]))
verify_store_output(
prepare_store_output,
ExpectedPrepareStoreOutput(
block_hashes_to_store=[1, 2],
store_block_ids=[0, 1],
block_hashes_evicted=[],
))
# lookup [1, 2] -> not ready
assert cpu_manager.lookup(to_hashes([1, 2])) == 0
# no events so far
assert list(cpu_manager.take_events()) == []
# complete store [1, 2]
cpu_manager.complete_store(to_hashes([1, 2]))
verify_events(cpu_manager.take_events(),
block_size=block_size,
expected_stores=({1, 2}, ))
# lookup [1, 2]
assert cpu_manager.lookup(to_hashes([1])) == 1
assert cpu_manager.lookup(to_hashes([1, 2])) == 2
assert cpu_manager.lookup(to_hashes([1, 2, 3])) == 2
# prepare store [2, 3, 4, 5] -> evicts [1]
prepare_store_output = cpu_manager.prepare_store(to_hashes([2, 3, 4, 5]))
verify_store_output(
prepare_store_output,
ExpectedPrepareStoreOutput(
block_hashes_to_store=[3, 4, 5],
store_block_ids=[2, 3, 0],
block_hashes_evicted=[1],
))
# verify eviction event
verify_events(cpu_manager.take_events(),
block_size=block_size,
expected_evictions=({1}, ))
# prepare store with no space
assert cpu_manager.prepare_store(to_hashes([1, 6])) is None
# complete store [2, 3, 4, 5]
cpu_manager.complete_store(to_hashes([2, 3, 4, 5]))
# prepare load [2, 3]
prepare_load_output = cpu_manager.prepare_load(to_hashes([2, 3]))
verify_load_output(prepare_load_output, [1, 2])
# prepare store with no space ([2, 3] is being loaded)
assert cpu_manager.prepare_store(to_hashes([6, 7, 8])) is None
# complete load [2, 3]
cpu_manager.complete_load(to_hashes([2, 3]))
# prepare store [6, 7, 8] -> evicts [2, 3, 4] (oldest)
prepare_store_output = cpu_manager.prepare_store(to_hashes([6, 7, 8]))
verify_store_output(
prepare_store_output,
ExpectedPrepareStoreOutput(
block_hashes_to_store=[6, 7, 8],
store_block_ids=[3, 2, 1],
block_hashes_evicted=[2, 3, 4],
))
# complete store [6, 7, 8]
cpu_manager.complete_store(to_hashes([6, 7, 8]))
# touch [5, 6, 7] (move to end of LRU order)
cpu_manager.touch(to_hashes([5, 6, 7]))
# prepare store [7, 9] -> evicts [8] (oldest following previous touch)
prepare_store_output = cpu_manager.prepare_store(to_hashes([9]))
verify_store_output(
prepare_store_output,
ExpectedPrepareStoreOutput(
block_hashes_to_store=[9],
store_block_ids=[1],
block_hashes_evicted=[8],
))
# complete store [7, 9] with failure
cpu_manager.complete_store(to_hashes([7, 9]), success=False)
# assert [7] is still stored, but [9] is not
assert cpu_manager.lookup(to_hashes([7])) == 1
assert cpu_manager.lookup(to_hashes([9])) == 0
verify_events(cpu_manager.take_events(),
block_size=block_size,
expected_stores=({3, 4, 5}, {6, 7, 8}),
expected_evictions=({2, 3, 4}, {8}))

View File

@ -0,0 +1,177 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import random
import time
import pytest
import torch
from vllm.platforms import current_platform
from vllm.v1.attention.backends.flash_attn import FlashAttentionBackend
from vllm.v1.attention.backends.flashinfer import FlashInferBackend
from vllm.v1.attention.backends.mla.flashattn_mla import FlashAttnMLABackend
from vllm.v1.kv_offload.mediums import CPULoadStoreSpec, GPULoadStoreSpec
from vllm.v1.kv_offload.worker.cpu_gpu import CpuGpuOffloadingHandler
NUM_GPU_BLOCKS = [64]
NUM_CPU_BLOCKS = [256]
GPU_BLOCK_SIZES = [16]
GPU_BLOCKS_PER_CPU_BLOCK = [1, 3]
HEAD_SIZES = [64]
NUM_HEADS = [8]
NUM_LAYERS = [4]
DTYPES = [torch.bfloat16]
SEEDS = [0]
CUDA_DEVICES = ['cuda:0']
NUM_MAPPINGS = [3]
@pytest.mark.parametrize("gpu_to_cpu", [True, False])
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("gpu_block_size", GPU_BLOCK_SIZES)
@pytest.mark.parametrize("gpu_blocks_per_cpu_block", GPU_BLOCKS_PER_CPU_BLOCK)
@pytest.mark.parametrize("num_gpu_blocks", NUM_GPU_BLOCKS)
@pytest.mark.parametrize("num_cpu_blocks", NUM_CPU_BLOCKS)
@pytest.mark.parametrize("num_layers", NUM_LAYERS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_transfer(
gpu_to_cpu: bool,
num_mappings: int,
head_size: int,
num_heads: int,
gpu_block_size: int,
gpu_blocks_per_cpu_block: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
num_layers: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
current_platform.seed_everything(seed)
# create per-layer GPU KV caches
attn_backends_list = [
FlashAttentionBackend, FlashInferBackend, FlashAttnMLABackend
]
gpu_caches = {}
attn_backends = {}
for i in range(num_layers):
layer_name = f'layer {i}'
attn_backend = attn_backends_list[i % len(attn_backends_list)]
attn_backends[layer_name] = attn_backend
gpu_cache_shape = attn_backend.get_kv_cache_shape(
num_gpu_blocks, gpu_block_size, num_heads, head_size)
gpu_caches[layer_name] = torch.rand(gpu_cache_shape,
dtype=dtype,
device=device)
# create handler
cpu_block_size = gpu_blocks_per_cpu_block * gpu_block_size
handler = CpuGpuOffloadingHandler(attn_backends=attn_backends,
gpu_block_size=gpu_block_size,
cpu_block_size=cpu_block_size,
num_cpu_blocks=num_cpu_blocks,
gpu_caches=gpu_caches)
# select block mappings
gpu_blocks = random.sample(range(num_gpu_blocks),
num_mappings * gpu_blocks_per_cpu_block)
cpu_blocks = random.sample(range(num_cpu_blocks), num_mappings)
# convert cpu blocks to gpu block size
cpu_blocks_in_gpu_block_size = []
for cpu_block in cpu_blocks:
base_block_id = cpu_block * gpu_blocks_per_cpu_block
for i in range(gpu_blocks_per_cpu_block):
cpu_blocks_in_gpu_block_size.append(i + base_block_id)
# maybe skip a GPU block to test writing to the middle of a CPU block
if gpu_to_cpu:
gpu_blocks = gpu_blocks[gpu_blocks_per_cpu_block - 1:]
cpu_blocks_in_gpu_block_size = cpu_blocks_in_gpu_block_size[
gpu_blocks_per_cpu_block - 1:]
# set transfer direction
if gpu_to_cpu:
src_kv_caches = handler.gpu_tensors
dst_kv_caches = handler.cpu_tensors
src_spec_class = GPULoadStoreSpec
dst_spec_class = CPULoadStoreSpec
src_blocks = gpu_blocks
dst_blocks = cpu_blocks
src_blocks_in_gpu_block_size = gpu_blocks
dst_blocks_in_gpu_block_size = cpu_blocks_in_gpu_block_size
dst_size_in_gpu_blocks = num_cpu_blocks * gpu_blocks_per_cpu_block
else:
src_kv_caches = handler.cpu_tensors
dst_kv_caches = handler.gpu_tensors
src_spec_class = CPULoadStoreSpec
dst_spec_class = GPULoadStoreSpec
src_blocks = cpu_blocks
dst_blocks = gpu_blocks
src_blocks_in_gpu_block_size = cpu_blocks_in_gpu_block_size
dst_blocks_in_gpu_block_size = gpu_blocks
dst_size_in_gpu_blocks = num_gpu_blocks
# build dst -> src mapping
dst_to_src = {}
for src_block, dst_block in zip(src_blocks_in_gpu_block_size,
dst_blocks_in_gpu_block_size):
dst_to_src[dst_block] = src_block
# build transfer specs
src_spec = src_spec_class(src_blocks)
dst_spec = dst_spec_class(dst_blocks)
# clone src and dst tensors before transfer
orig_src_caches = [x.clone() for x in src_kv_caches]
orig_dst_caches = [x.clone() for x in dst_kv_caches]
# call transfer function
assert handler.transfer_async(1, (src_spec, dst_spec))
assert set(handler.transfer_events.keys()) == {1}
# wait for transfer to complete
end_time = time.time() + 10
while time.time() < end_time:
finished = handler.get_finished()
if finished:
assert finished == [(1, True)]
break
time.sleep(0.1)
# verify src tensors did not change
for orig_tensor, tensor in zip(orig_src_caches, src_kv_caches):
assert torch.equal(orig_tensor, tensor)
# verify dst tensors
for dst_block in range(dst_size_in_gpu_blocks):
src_block_candidate = dst_to_src.get(dst_block)
for src_cache, dst_cache, orig_dst_cache, kv_dim in zip(
src_kv_caches, dst_kv_caches, orig_dst_caches,
handler.kv_dim_before_num_blocks):
if kv_dim:
# iterate over key, value
for i in range(2):
if src_block_candidate is not None:
expected_value = src_cache[i][src_block_candidate]
else:
expected_value = orig_dst_cache[i][dst_block]
torch.testing.assert_close(dst_cache[i][dst_block].cpu(),
expected_value.cpu())
else:
if src_block_candidate is not None:
expected_value = src_cache[src_block_candidate]
else:
expected_value = orig_dst_cache[dst_block]
torch.testing.assert_close(dst_cache[dst_block].cpu(),
expected_value.cpu())

View File

@ -3,6 +3,7 @@
import itertools
from collections.abc import Generator
from typing import get_args
import pytest
import torch
@ -464,7 +465,7 @@ def test_all_logprobs(example_prompts, monkeypatch: pytest.MonkeyPatch):
assert len(prompt_logprob) == vocab_size
@pytest.mark.parametrize("logprobs_mode", list(LogprobsMode))
@pytest.mark.parametrize("logprobs_mode", get_args(LogprobsMode))
def test_logprobs_mode(logprobs_mode: LogprobsMode,
monkeypatch: pytest.MonkeyPatch):
"""Test with LLM engine with different logprobs_mode.
@ -493,14 +494,12 @@ def test_logprobs_mode(logprobs_mode: LogprobsMode,
for logprobs in output.logprobs:
for token_id in logprobs:
logprob = logprobs[token_id]
if logprobs_mode in (LogprobsMode.RAW_LOGPROBS,
LogprobsMode.PROCESSED_LOGPROBS):
if logprobs_mode in ("raw_logprobs", "processed_logprobs"):
assert logprob.logprob <= 0
if logprob.logprob > 0:
positive_values = positive_values + 1
total_token_with_logprobs = total_token_with_logprobs + 1
assert total_token_with_logprobs >= len(results[0].outputs)
if logprobs_mode in (LogprobsMode.RAW_LOGITS,
LogprobsMode.PROCESSED_LOGITS):
if logprobs_mode in ("raw_logits", "processed_logits"):
assert positive_values > 0
del llm

View File

@ -9,6 +9,7 @@ from contextlib import AsyncExitStack
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import requests
from tests.utils import RemoteOpenAIServer
from vllm.platforms import current_platform
@ -70,6 +71,8 @@ class ExternalLBServerManager:
sargs,
auto_port=False,
env_dict={
"VLLM_SERVER_DEV_MODE":
"1",
current_platform.device_control_env_var:
",".join(
str(
@ -127,11 +130,19 @@ def default_server_args():
@pytest.fixture(scope="module", params=[1, 4])
def servers(request, default_server_args):
def server_manager(request, default_server_args):
api_server_count = request.param
with ExternalLBServerManager(MODEL_NAME, DP_SIZE, api_server_count,
default_server_args) as server_list:
yield server_list
server_manager = ExternalLBServerManager(MODEL_NAME, DP_SIZE,
api_server_count,
default_server_args)
with server_manager:
yield server_manager
@pytest.fixture
def servers(server_manager):
return server_manager.servers
@pytest_asyncio.fixture
@ -144,6 +155,39 @@ async def clients(servers: list[tuple[RemoteOpenAIServer, list[str]]]):
]
def _get_parallel_config(server: RemoteOpenAIServer):
response = requests.get(server.url_for("server_info?config_format=json"))
response.raise_for_status()
vllm_config = response.json()["vllm_config"]
return vllm_config["parallel_config"]
def test_external_lb_server_info(server_manager):
servers = server_manager.servers
api_server_count = server_manager.api_server_count
for i, (server, _) in enumerate(servers):
print(f"Testing {i=}")
# Each request will hit one of the API servers
# `n_reqs` is set so that there is a good chance each server
# receives at least one request
n_reqs = 2 * api_server_count * api_server_count
parallel_configs = [
_get_parallel_config(server) for _ in range(n_reqs)
]
api_process_counts = [
c["_api_process_count"] for c in parallel_configs
]
api_process_ranks = [c["_api_process_rank"] for c in parallel_configs]
assert all(c == api_server_count
for c in api_process_counts), api_process_counts
assert all(0 <= r < api_server_count
for r in api_process_ranks), api_process_ranks
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",

View File

@ -9,6 +9,7 @@ from contextlib import AsyncExitStack
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import requests
from tests.utils import RemoteOpenAIServer
from tests.v1.test_utils import check_request_balancing
@ -92,6 +93,8 @@ class HybridLBServerManager:
sargs,
auto_port=False,
env_dict={
"VLLM_SERVER_DEV_MODE":
"1",
current_platform.device_control_env_var:
",".join(
str(
@ -150,12 +153,20 @@ def default_server_args():
@pytest.fixture(scope="module", params=[1, 4])
def servers(request, default_server_args):
def server_manager(request, default_server_args):
api_server_count = request.param
with HybridLBServerManager(MODEL_NAME, DP_SIZE, api_server_count,
default_server_args, DP_SIZE_LOCAL,
TP_SIZE) as server_list:
yield server_list
server_manager = HybridLBServerManager(MODEL_NAME, DP_SIZE,
api_server_count,
default_server_args, DP_SIZE_LOCAL,
TP_SIZE)
with server_manager:
yield server_manager
@pytest.fixture
def servers(server_manager):
return server_manager.servers
@pytest_asyncio.fixture
@ -168,6 +179,39 @@ async def clients(servers: list[tuple[RemoteOpenAIServer, list[str]]]):
]
def _get_parallel_config(server: RemoteOpenAIServer):
response = requests.get(server.url_for("server_info?config_format=json"))
response.raise_for_status()
vllm_config = response.json()["vllm_config"]
return vllm_config["parallel_config"]
def test_hybrid_dp_server_info(server_manager):
servers = server_manager.servers
api_server_count = server_manager.api_server_count
for i, (server, _) in enumerate(servers):
print(f"Testing {i=}")
# Each request will hit one of the API servers
# `n_reqs` is set so that there is a good chance each server
# receives at least one request
n_reqs = 2 * api_server_count * api_server_count
parallel_configs = [
_get_parallel_config(server) for _ in range(n_reqs)
]
api_process_counts = [
c["_api_process_count"] for c in parallel_configs
]
api_process_ranks = [c["_api_process_rank"] for c in parallel_configs]
assert all(c == api_server_count
for c in api_process_counts), api_process_counts
assert all(0 <= r < api_server_count
for r in api_process_ranks), api_process_ranks
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",

View File

@ -10,6 +10,7 @@ from typing import Optional, cast
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import requests
from tests.utils import RemoteOpenAIServer
from tests.v1.test_utils import check_request_balancing
@ -101,6 +102,8 @@ class MultinodeInternalLBServerManager:
sargs,
auto_port=False,
env_dict={
"VLLM_SERVER_DEV_MODE":
"1",
current_platform.device_control_env_var:
",".join(
str(
@ -214,7 +217,10 @@ class APIOnlyServerManager:
self.model_name,
api_server_args,
auto_port=False,
env_dict={}) # No GPUs needed for API-only server
env_dict={
"VLLM_SERVER_DEV_MODE": "1",
# No GPUs needed for API-only server
})
server.__enter__()
print(f"API-only server started successfully with "
f"{self.api_server_count} API servers")
@ -293,14 +299,21 @@ def default_server_args():
@pytest.fixture(scope="module", params=[1, 4])
def servers(request, default_server_args):
def server_manager(request, default_server_args):
api_server_count = request.param
with MultinodeInternalLBServerManager(MODEL_NAME, DP_SIZE,
api_server_count,
default_server_args,
DP_SIZE // NUM_NODES,
TP_SIZE) as server_list:
yield server_list
server_manager = MultinodeInternalLBServerManager(MODEL_NAME, DP_SIZE,
api_server_count,
default_server_args,
DP_SIZE // NUM_NODES,
TP_SIZE)
with server_manager:
yield server_manager
@pytest.fixture
def servers(server_manager):
return server_manager.servers
@pytest.fixture(scope="module", params=[1, 4])
@ -331,6 +344,34 @@ async def api_only_client(api_only_servers: list[tuple[RemoteOpenAIServer,
yield client
def _get_parallel_config(server: RemoteOpenAIServer):
response = requests.get(server.url_for("server_info?config_format=json"))
response.raise_for_status()
vllm_config = response.json()["vllm_config"]
return vllm_config["parallel_config"]
def test_multinode_dp_server_info(server_manager):
head_server = server_manager.servers[0][0]
api_server_count = server_manager.api_server_count
# Each request will hit one of the API servers
# `n_reqs` is set so that there is a good chance each server
# receives at least one request
n_reqs = 2 * api_server_count * api_server_count
parallel_configs = [
_get_parallel_config(head_server) for _ in range(n_reqs)
]
api_process_counts = [c["_api_process_count"] for c in parallel_configs]
api_process_ranks = [c["_api_process_rank"] for c in parallel_configs]
assert all(c == api_server_count
for c in api_process_counts), api_process_counts
assert all(0 <= r < api_server_count
for r in api_process_ranks), api_process_ranks
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",

View File

@ -50,8 +50,8 @@ ALLOWED_FILES = set([
# cloudpickle
'vllm/worker/worker_base.py',
'vllm/executor/mp_distributed_executor.py',
'vllm/executor/ray_distributed_executor.py',
'vllm/entrypoints/llm.py',
'vllm/v1/executor/ray_distributed_executor.py',
'tests/utils.py',
# pickle and cloudpickle
'vllm/utils/__init__.py',

View File

@ -23,14 +23,14 @@ class AttentionType:
Attention type.
Use string to be compatible with `torch.compile`.
"""
# Decoder attention between previous layer Q/K/V
DECODER = "decoder"
# Encoder attention between previous layer Q/K/V for encoder-decoder
"""Decoder attention between previous layer Q/K/V."""
ENCODER = "encoder"
# Encoder attention between previous layer Q/K/V
"""Encoder attention between previous layer Q/K/V for encoder-decoder."""
ENCODER_ONLY = "encoder_only"
# Attention between dec. Q and enc. K/V for encoder-decoder
"""Encoder attention between previous layer Q/K/V."""
ENCODER_DECODER = "encoder_decoder"
"""Attention between dec. Q and enc. K/V for encoder-decoder."""
class AttentionBackend(ABC):

View File

@ -430,9 +430,11 @@ class MultiHeadAttention(nn.Module):
key: torch.Tensor,
value: torch.Tensor,
) -> torch.Tensor:
"""Input shape: batch_size x seq_len x hidden_size"""
# TODO(Isotr0py): Use existing backend implementations and support FA3
bsz, q_len, _ = query.size()
"""Input shape:
(batch_size x seq_len x hidden_size) or
(batch_size x seq_len x num_heads x head_size)
"""
bsz, q_len = query.size()[:2]
kv_len = key.size(1)
query = query.view(bsz, q_len, self.num_heads, self.head_size)

View File

@ -184,8 +184,30 @@ def kernel_unified_attention_2d(
# this prefix can be skipped)
num_tiles = cdiv_fn(max_seq_prefix_len, TILE_SIZE)
# iterate through tiles
for j in range(0, num_tiles):
# ---- Sliding-window tile pruning --------------------
# Default: keep previous global behavior
tile_start = 0
tile_end = num_tiles
if SLIDING_WINDOW > 0:
# Query rows covered by this Q-block
qpos_lo = q_block_local_idx * BLOCK_Q
qpos_hi = tl.minimum(
qpos_lo + (BLOCK_M - 1) // num_queries_per_kv,
cur_batch_query_len - 1,
)
# For sliding window, each query position q can only attend to
# keys in the range [q_abs - SLIDING_WINDOW + 1, q_abs]
# where q_abs = context_len + q
# The union of allowed key positions for this Q-block is:
# [context_len + qpos_lo - SLIDING_WINDOW + 1, context_len + qpos_hi]
first_allowed_key = context_len + qpos_lo - SLIDING_WINDOW + 1
last_allowed_key = context_len + qpos_hi
# Convert to tile indices and clamp
tile_start = tl.maximum(0, first_allowed_key // TILE_SIZE)
tile_end = tl.minimum((last_allowed_key // TILE_SIZE) + 1, num_tiles)
# iterate through tiles (now limited to the sliding window range)
for j in range(tile_start, tile_end):
seq_offset = j * TILE_SIZE + offs_t
tile_mask = seq_offset < max_seq_prefix_len

View File

@ -8,8 +8,9 @@ import os
import sys
import time
import traceback
from collections.abc import Awaitable
from dataclasses import dataclass, field
from typing import Optional, Union
from typing import Optional, Protocol, Union
import aiohttp
from tqdm.asyncio import tqdm
@ -92,6 +93,16 @@ class RequestFuncOutput:
start_time: float = 0.0
class RequestFunc(Protocol):
def __call__(
self,
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: Optional[tqdm] = None,
) -> Awaitable[RequestFuncOutput]:
...
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
@ -507,7 +518,7 @@ async def async_request_openai_embeddings(
# TODO: Add more request functions for different API protocols.
ASYNC_REQUEST_FUNCS = {
ASYNC_REQUEST_FUNCS: dict[str, RequestFunc] = {
"vllm": async_request_openai_completions,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,

View File

@ -8,11 +8,12 @@ import time
import aiohttp
from tqdm.asyncio import tqdm
from .endpoint_request_func import RequestFuncInput, RequestFuncOutput
from .endpoint_request_func import (RequestFunc, RequestFuncInput,
RequestFuncOutput)
async def wait_for_endpoint(
request_func,
request_func: RequestFunc,
test_input: RequestFuncInput,
session: aiohttp.ClientSession,
timeout_seconds: int = 600,

View File

@ -31,8 +31,11 @@ logger = init_logger(__name__)
def make_compiler(compilation_config: CompilationConfig) -> CompilerInterface:
if compilation_config.use_inductor:
if envs.VLLM_USE_STANDALONE_COMPILE and is_torch_equal_or_newer(
"2.8.0.dev"):
# Use standalone compile only if requested, version is new enough,
# and the symbol actually exists in this PyTorch build.
if (envs.VLLM_USE_STANDALONE_COMPILE
and is_torch_equal_or_newer("2.8.0.dev")
and hasattr(torch._inductor, "standalone_compile")):
logger.debug("Using InductorStandaloneAdaptor")
return InductorStandaloneAdaptor()
else:

View File

@ -82,7 +82,7 @@ class CUDAGraphWrapper:
# TODO: in the future, if we want to use multiple
# streams, it might not be safe to share a global pool.
# only investigate this when we use multiple streams
self.graph_pool = current_platform.get_global_graph_pool()
self.graph_pool = current_platform.graph_pool_handle()
if cudagraph_options is None:
cudagraph_options = CUDAGraphOptions()

File diff suppressed because it is too large Load Diff

2009
vllm/config/model.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -193,6 +193,25 @@ class ParallelConfig:
not change by dcp, it simply reuse the GPUs of TP group, and tp_size
needs to be divisible by dcp_size."""
_api_process_count: int = 1
"""
The number of API processes initialized.
Note:
This is an internal config that is only valid for and
should only be set by API server scale-out.
"""
_api_process_rank: int = 0
"""
The rank of this API process, or `-1` for engine core processes
under API server scale-out.
Note:
This is an internal config that is only valid for and
should only be set by API server scale-out.
"""
@property
def world_size_across_dp(self) -> int:
"""world_size_across_dp is TPxPPxDP, it is the size of the world
@ -428,6 +447,12 @@ class ParallelConfig:
if self.distributed_executor_backend is None and self.world_size == 1:
self.distributed_executor_backend = "uni"
if not -1 <= self._api_process_rank < self._api_process_count:
raise ValueError(
"Invalid value of `_api_process_rank`. "
f"Expected to be `-1` or `[0, {self._api_process_count})`, "
f"but found: {self._api_process_rank}")
@property
def use_ray(self) -> bool:
return self.distributed_executor_backend == "ray" or (

97
vllm/config/pooler.py Normal file
View File

@ -0,0 +1,97 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import hashlib
from typing import Any, Optional
from pydantic.dataclasses import dataclass
from vllm.config.utils import config
@config
@dataclass
class PoolerConfig:
"""Controls the behavior of output pooling in pooling models."""
pooling_type: Optional[str] = None
"""
The pooling method of the pooling model. This should be a key in
[`vllm.model_executor.layers.pooler.PoolingType`][].
"""
## for embeddings models
normalize: Optional[bool] = None
"""
Whether to normalize the embeddings outputs. Defaults to True.
"""
dimensions: Optional[int] = None
"""
Reduce the dimensions of embeddings if model
support matryoshka representation. Defaults to None.
"""
enable_chunked_processing: Optional[bool] = None
"""
Whether to enable chunked processing for long inputs that exceed the model's
maximum position embeddings. When enabled, long inputs will be split into
chunks, processed separately, and then aggregated using weighted averaging.
This allows embedding models to handle arbitrarily long text without CUDA
errors. Defaults to False.
"""
max_embed_len: Optional[int] = None
"""
Maximum input length allowed for embedding generation. When set, allows
inputs longer than max_embed_len to be accepted for embedding models.
When an input exceeds max_embed_len, it will be handled according to
the original max_model_len validation logic.
Defaults to None (i.e. set to max_model_len).
"""
## for classification models
activation: Optional[bool] = None
"""
Whether to apply activation function to the classification outputs.
Defaults to True.
"""
logit_bias: Optional[float] = None
"""
If provided, apply classification logit biases. Defaults to None.
"""
## for reward models
softmax: Optional[bool] = None
"""
Whether to apply softmax to the reward outputs.
Defaults to True.
"""
step_tag_id: Optional[int] = None
"""
If set, only the score corresponding to the ``step_tag_id`` in the
generated sentence should be returned. Otherwise, the scores for all tokens
are returned.
"""
returned_token_ids: Optional[list[int]] = None
"""
A list of indices for the vocabulary dimensions to be extracted,
such as the token IDs of ``good_token`` and ``bad_token`` in the
``math-shepherd-mistral-7b-prm`` model.
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str

View File

@ -3,7 +3,7 @@
import hashlib
from dataclasses import field
from typing import TYPE_CHECKING, Any, Literal, Optional, Union
from typing import Any, Literal, Optional, Union
from pydantic import SkipValidation, model_validator
from pydantic.dataclasses import dataclass
@ -15,13 +15,9 @@ from vllm.utils import (DEFAULT_MAX_NUM_BATCHED_TOKENS,
MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS,
POOLING_MODEL_MAX_NUM_BATCHED_TOKENS)
if TYPE_CHECKING:
from vllm.config import RunnerType
else:
RunnerType = Any
logger = init_logger(__name__)
RunnerType = Literal["generate", "pooling", "draft"]
PreemptionMode = Literal["swap", "recompute"]
SchedulerPolicy = Literal["fcfs", "priority"]

View File

@ -1,8 +1,13 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import ast
import inspect
import textwrap
from dataclasses import MISSING, Field, field, fields, is_dataclass
from typing import TYPE_CHECKING, TypeVar
from typing import TYPE_CHECKING, Any, TypeVar
import regex as re
if TYPE_CHECKING:
from _typeshed import DataclassInstance
@ -45,3 +50,96 @@ def get_field(cls: ConfigType, name: str) -> Field:
return field(default=default)
raise ValueError(
f"{cls.__name__}.{name} must have a default value or default factory.")
def contains_object_print(text: str) -> bool:
"""
Check if the text looks like a printed Python object, e.g.
contains any substring matching the pattern: "at 0xFFFFFFF>"
We match against 0x followed by 2-16 hex chars (there's
a max of 16 on a 64-bit system).
Args:
text (str): The text to check
Returns:
result (bool): `True` if a match is found, `False` otherwise.
"""
pattern = r'at 0x[a-fA-F0-9]{2,16}>'
match = re.search(pattern, text)
return match is not None
def assert_hashable(text: str) -> bool:
if not contains_object_print(text):
return True
raise AssertionError(
f"vLLM tried to hash some configs that may have Python objects ids "
f"in them. This is a bug, please file an issue. "
f"Text being hashed: {text}")
def get_attr_docs(cls: type[Any]) -> dict[str, str]:
"""
Get any docstrings placed after attribute assignments in a class body.
https://davidism.com/mit-license/
"""
def pairwise(iterable):
"""
Manually implement https://docs.python.org/3/library/itertools.html#itertools.pairwise
Can be removed when Python 3.9 support is dropped.
"""
iterator = iter(iterable)
a = next(iterator, None)
for b in iterator:
yield a, b
a = b
try:
cls_node = ast.parse(textwrap.dedent(inspect.getsource(cls))).body[0]
except (OSError, KeyError, TypeError):
# HACK: Python 3.13+ workaround - set missing __firstlineno__
# Workaround can be removed after we upgrade to pydantic==2.12.0
with open(inspect.getfile(cls)) as f:
for i, line in enumerate(f):
if f"class {cls.__name__}" in line and ":" in line:
cls.__firstlineno__ = i + 1
break
cls_node = ast.parse(textwrap.dedent(inspect.getsource(cls))).body[0]
if not isinstance(cls_node, ast.ClassDef):
raise TypeError("Given object was not a class.")
out = {}
# Consider each pair of nodes.
for a, b in pairwise(cls_node.body):
# Must be an assignment then a constant string.
if (not isinstance(a, (ast.Assign, ast.AnnAssign))
or not isinstance(b, ast.Expr)
or not isinstance(b.value, ast.Constant)
or not isinstance(b.value.value, str)):
continue
doc = inspect.cleandoc(b.value.value)
# An assignment can have multiple targets (a = b = v), but an
# annotated assignment only has one target.
targets = a.targets if isinstance(a, ast.Assign) else [a.target]
for target in targets:
# Must be assigning to a plain name.
if not isinstance(target, ast.Name):
continue
out[target.id] = doc
return out
def is_init_field(cls: ConfigType, name: str) -> bool:
return next(f for f in fields(cls) if f.name == name).init

View File

@ -106,3 +106,8 @@ KVConnectorFactory.register_connector(
"MultiConnector",
"vllm.distributed.kv_transfer.kv_connector.v1.multi_connector",
"MultiConnector")
KVConnectorFactory.register_connector(
"OffloadingConnector",
"vllm.distributed.kv_transfer.kv_connector.v1.offloading_connector",
"OffloadingConnector")

View File

@ -129,7 +129,7 @@ class KVOutputAggregator:
def aggregate(self,
outputs: list[ModelRunnerOutput],
output_rank: int = 0) -> ModelRunnerOutput:
# aggregate kv_connector_output from all workers
# Aggregate kv_connector_output from all workers
def update_finished_set(req_ids: Optional[set[str]],
remaining_count_dict: dict[str, int],
@ -142,8 +142,9 @@ class KVOutputAggregator:
finished_sending = set[str]()
finished_recving = set[str]()
for output in outputs:
output = output.kv_connector_output
aggregated_kv_connector_stats = None
for model_runner_output in outputs:
output = model_runner_output.kv_connector_output
if not output:
continue
update_finished_set(output.finished_sending,
@ -151,12 +152,26 @@ class KVOutputAggregator:
update_finished_set(output.finished_recving,
self._recv_remaining_count, finished_recving)
# Aggregate kv_connector_stats from all workers.
if aggregated_kv_connector_stats is None:
# Use the first worker's kv_connector_stats as accumulator.
aggregated_kv_connector_stats = output.kv_connector_stats
elif kv_connector_stats := output.kv_connector_stats:
if aggregated_kv_connector_stats is None:
aggregated_kv_connector_stats = kv_connector_stats
else:
assert isinstance(aggregated_kv_connector_stats,
type(kv_connector_stats))
aggregated_kv_connector_stats = \
aggregated_kv_connector_stats.aggregate(kv_connector_stats)
# select output of the worker specified by output_rank
output = outputs[output_rank]
output.kv_connector_output = KVConnectorOutput(
finished_sending=finished_sending or None,
finished_recving=finished_recving or None,
kv_connector_stats=aggregated_kv_connector_stats or None,
)
return output

View File

@ -49,6 +49,8 @@ if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.config import VllmConfig
from vllm.distributed.kv_events import KVCacheEvent
from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
KVConnectorStats)
from vllm.forward_context import ForwardContext
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
from vllm.v1.request import Request
@ -235,6 +237,12 @@ class KVConnectorBase_V1(ABC):
"""
return None
def get_kv_connector_stats(self) -> Optional["KVConnectorStats"]:
"""
Get the KV connector stats collected during the last interval.
"""
return None
# ==============================
# Scheduler-side methods
# ==============================
@ -365,4 +373,16 @@ class KVConnectorBase_V1(ABC):
int: expected sending or receiving completion count.
"""
return None
return None
@classmethod
def build_kv_connector_stats(
cls,
data: Optional[dict[str,
Any]] = None) -> Optional["KVConnectorStats"]:
"""
KVConnectorStats resolution method. This method allows dynamically
registered connectors to return their own KVConnectorStats object,
which can implement custom aggregation logic on the data dict.
"""
return None

View File

@ -0,0 +1,100 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass, field
from typing import Any, Optional, Union
from vllm.config.kv_transfer import KVTransferConfig
from vllm.distributed.kv_transfer.kv_connector.factory import (
KVConnectorFactory)
from vllm.distributed.kv_transfer.kv_transfer_state import (
has_kv_transfer_group)
from vllm.logger import init_logger
logger = init_logger(__name__)
@dataclass
class KVConnectorStats:
"""
Base class for KV Connector Stats, a container for transfer performance
metrics or otherwise important telemetry from the connector.
All sub-classes need to be serializable as stats are sent from worker to
logger process.
"""
data: dict[str, Any] = field(default_factory=dict)
def reset(self):
"""Reset the stats, clear the state."""
raise NotImplementedError
def aggregate(self, other: "KVConnectorStats") -> "KVConnectorStats":
"""
Aggregate stats with another `KVConnectorStats` object.
"""
raise NotImplementedError
def reduce(self) -> dict[str, Union[int, float]]:
"""
Reduce the observations collected during a time interval to one or
more representative values (eg avg/median/sum of the series).
This is meant to be called by the logger to produce a summary of the
stats for the last time interval.
"""
raise NotImplementedError
def is_empty(self) -> bool:
"""Return True if the stats are empty."""
raise NotImplementedError
class KVConnectorLogging:
def __init__(self, kv_tranfer_config: KVTransferConfig):
# This should be called on frontend process.
assert not has_kv_transfer_group()
# Instantiate the connector's stats class.
if kv_tranfer_config and kv_tranfer_config.kv_connector:
self.connector_cls = KVConnectorFactory.get_connector_class(
kv_tranfer_config)
self.reset()
def reset(self):
self.transfer_stats_accumulator: Optional[KVConnectorStats] = None
def observe(self, transfer_stats_data: dict[str, Any]):
# Should not be called when a KVConnector is not configured.
assert self.connector_cls is not None
# Called periodically when connector syncs with the scheduler.
# Note that this is not the same as the logging interval.
# We expect transfer_stats_data to be aggregated across all workers and
# consist of observations from a single connector or a MultiConnector.
transfer_stats = self.connector_cls.build_kv_connector_stats(
transfer_stats_data)
if transfer_stats is None:
logger.warning_once(
"The connector %s is collecting stats but "
"does not implement the "
"`build_kv_connector_stats` method. "
"Stats will not be logged.", self.connector_cls)
return
if self.transfer_stats_accumulator is None:
self.transfer_stats_accumulator = transfer_stats
else:
# Accumulate last interval stats.
self.transfer_stats_accumulator = \
self.transfer_stats_accumulator.aggregate(transfer_stats)
def log(self, log_fn=logger.info):
"""Log transfer metrics periodically, similar to throughput logging"""
if (self.transfer_stats_accumulator
and not self.transfer_stats_accumulator.is_empty()):
# Produce a single cumulative stats object for the last time
# interval from the recorded observations.
xfer_metrics = self.transfer_stats_accumulator.reduce()
xfer_metrics_str = ", ".join(f"{k}={v}"
for k, v in xfer_metrics.items())
log_fn("KV Transfer metrics: %s", xfer_metrics_str)
# Reset metrics for next interval
self.reset()

View File

@ -9,19 +9,21 @@ import torch
from vllm.config import VllmConfig
from vllm.config.kv_transfer import KVTransferConfig
from vllm.distributed.kv_events import KVCacheEvent
from vllm.distributed.kv_transfer.kv_connector.factory import (
KVConnectorFactory)
from vllm.distributed.kv_transfer.kv_connector.v1.base import (
KVConnectorBase_V1, KVConnectorMetadata, KVConnectorRole)
from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
KVConnectorStats)
from vllm.logger import init_logger
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.outputs import KVConnectorOutput
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.distributed.kv_events import KVCacheEvent
from vllm.forward_context import ForwardContext
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
from vllm.v1.request import Request
logger = init_logger(__name__)
@ -33,6 +35,43 @@ class MultiKVConnectorMetadata(KVConnectorMetadata):
extra_async_saves: Optional[dict[str, int]] = None
@dataclass
class MultiKVConnectorStats(KVConnectorStats):
"""
Maintain a dict of KVConnectorStats objects, one for each connector.
This is used to aggregate the stats from all connectors separately.
"""
def aggregate(self, other: KVConnectorStats) -> KVConnectorStats:
for connector_id, stats in other.data.items():
if connector_id not in self.data:
self[connector_id] = stats
else:
assert isinstance(stats, type(self.data[connector_id]))
self[connector_id] = self[connector_id].aggregate(stats)
return self
def reset(self):
for stats in self.data.values():
stats.reset()
def reduce(self) -> dict[str, Any]:
# TODO (NickLucche) Adjust for logging on separate lines
return {
connector_id: stats.reduce()
for connector_id, stats in self.data.items()
}
def is_empty(self) -> bool:
return all(stats.is_empty() for stats in self.data.values())
def __getitem__(self, connector_id: str) -> KVConnectorStats:
return self.data[connector_id]
def __setitem__(self, connector_id: str, stats: KVConnectorStats):
self.data[connector_id] = stats
class MultiConnector(KVConnectorBase_V1):
"""
A wrapper for using multiple KVConnectors at the same time.
@ -46,6 +85,7 @@ class MultiConnector(KVConnectorBase_V1):
def __init__(self, vllm_config: "VllmConfig", role: KVConnectorRole):
super().__init__(vllm_config=vllm_config, role=role)
self._connectors: list[KVConnectorBase_V1] = []
self._ktc_kv_transfer_config = []
ktcs = vllm_config.kv_transfer_config.kv_connector_extra_config.get(
"connectors")
assert ktcs is not None
@ -57,6 +97,7 @@ class MultiConnector(KVConnectorBase_V1):
**ktc, engine_id=engine_id)
self._connectors.append(
KVConnectorFactory.create_connector(temp_config, role))
self._ktc_kv_transfer_config.append(temp_config.kv_transfer_config)
# A mapping from request id to the index of the connector chosen to
# load the request from (if any).
@ -227,7 +268,7 @@ class MultiConnector(KVConnectorBase_V1):
return async_saves > 0, kv_txfer_params
def take_events(self) -> Iterable[KVCacheEvent]:
def take_events(self) -> Iterable["KVCacheEvent"]:
for c in self._connectors:
yield from c.take_events()
@ -264,3 +305,24 @@ class MultiConnector(KVConnectorBase_V1):
f"({', '.join(layouts) })."
f"All connectors must use the same layout.")
return next(iter(layouts), None)
@classmethod
def build_kv_connector_stats(
cls,
data: Optional[dict[str,
Any]] = None) -> Optional[KVConnectorStats]:
return MultiKVConnectorStats(data=data) if data is not None \
else MultiKVConnectorStats()
def get_kv_connector_stats(self) -> Optional[MultiKVConnectorStats]:
# Group connector stats by connector type.
stats_by_connector: Optional[MultiKVConnectorStats] = None
for c in self._connectors:
stats = c.get_kv_connector_stats()
if stats is None:
continue
if stats_by_connector is None:
# Lazy init to allow optional return value.
stats_by_connector = MultiKVConnectorStats()
stats_by_connector[c.__class__.__name__] = stats
return stats_by_connector

View File

@ -1,6 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import contextlib
import copy
import logging
import math
import queue
@ -11,7 +12,7 @@ from collections import defaultdict
from collections.abc import Iterator
from concurrent.futures import Future, ThreadPoolExecutor
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
from typing import TYPE_CHECKING, Any, Optional, Union
import msgspec
import numpy as np
@ -23,6 +24,8 @@ from vllm.attention.selector import backend_name_to_enum, get_attn_backend
from vllm.config import VllmConfig
from vllm.distributed.kv_transfer.kv_connector.v1.base import (
CopyBlocksOp, KVConnectorBase_V1, KVConnectorMetadata, KVConnectorRole)
from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
KVConnectorStats)
from vllm.distributed.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size,
get_tp_group)
@ -33,7 +36,6 @@ from vllm.platforms import _Backend, current_platform
from vllm.utils import make_zmq_path, make_zmq_socket
from vllm.v1.attention.backends.utils import get_kv_cache_layout
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.request import RequestStatus
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionMetadata
@ -206,6 +208,18 @@ class NixlConnector(KVConnectorBase_V1):
assert self.connector_worker is not None
return self.connector_worker.get_finished()
def get_kv_connector_stats(self) -> Optional[KVConnectorStats]:
assert self.connector_worker is not None
return self.connector_worker.get_kv_connector_stats()
@classmethod
def build_kv_connector_stats(
cls,
data: Optional[dict[str,
Any]] = None) -> Optional[KVConnectorStats]:
return NixlKVConnectorStats(data=data) if data is not None \
else NixlKVConnectorStats()
def start_load_kv(self, forward_context: "ForwardContext",
**kwargs) -> None:
assert self.connector_worker is not None
@ -377,6 +391,7 @@ class NixlConnectorScheduler:
Once a request is finished, determine whether request blocks
should be freed now or will be sent asynchronously and freed later.
"""
from vllm.v1.request import RequestStatus
params = request.kv_transfer_params
logger.debug(
@ -550,6 +565,7 @@ class NixlConnectorWorker:
# With heterogeneous TP, P must wait for all assigned D TP workers to
# finish reading before safely freeing the blocks.
self.consumer_notification_counts_by_req = defaultdict[ReqId, int](int)
self.xfer_stats = NixlKVConnectorStats()
def __del__(self):
"""Cleanup background threads on destruction."""
@ -1097,6 +1113,8 @@ class NixlConnectorWorker:
xfer_state = self.nixl_wrapper.check_xfer_state(handle)
if xfer_state == "DONE":
self.nixl_wrapper.release_xfer_handle(handle)
# TODO (NickLucche) Get from NIXL telemetry once integrated
self.xfer_stats.record_transfer()
elif xfer_state == "PROC":
in_progress = True
continue
@ -1248,7 +1266,6 @@ class NixlConnectorWorker:
self.nixl_wrapper.transfer(handle)
# Use handle to check completion in future step().
# TODO (NickLucche) surface xfer elapsed time
self._recving_transfers[request_id].append(
(handle, time.perf_counter()))
@ -1300,6 +1317,15 @@ class NixlConnectorWorker:
block_len = self.block_len
return block_len
def get_kv_connector_stats(self) -> Optional[KVConnectorStats]:
"""
Get the KV transfer stats for the connector.
"""
# Clear stats for next iteration
if not self.xfer_stats.is_empty():
return self.xfer_stats.clone_and_reset()
return None
@contextlib.contextmanager
def zmq_ctx(socket_type: Any, addr: str) -> Iterator[zmq.Socket]:
@ -1318,3 +1344,39 @@ def zmq_ctx(socket_type: Any, addr: str) -> Iterator[zmq.Socket]:
finally:
if ctx is not None:
ctx.destroy(linger=0)
@dataclass
class NixlKVConnectorStats(KVConnectorStats):
"""Container for transfer performance metrics"""
def __post_init__(self):
if "num_successful_transfers" not in self.data:
self.data["num_successful_transfers"] = 0
def reset(self):
self.data = {"num_successful_transfers": 0}
def record_transfer(self):
# TODO: record actual transfer stats when available
self.data["num_successful_transfers"] += 1
def clone_and_reset(self) -> "NixlKVConnectorStats":
old = copy.copy(self)
self.reset()
return old
def is_empty(self) -> bool:
return self.data["num_successful_transfers"] == 0
def aggregate(self, other: KVConnectorStats) -> KVConnectorStats:
if not other.is_empty():
self.data["num_successful_transfers"] += other.data[
"num_successful_transfers"]
return self
def reduce(self) -> dict[str, Union[int, float]]:
# TODO: reduce stats to a single value, calculate latency/throughput
return {
"num_successful_transfers": self.data["num_successful_transfers"]
}

View File

@ -0,0 +1,485 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections import defaultdict
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
from itertools import islice
from typing import Any, Optional
import torch
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.distributed.kv_events import BlockRemoved, BlockStored, KVCacheEvent
from vllm.distributed.kv_transfer.kv_connector.v1 import (KVConnectorBase_V1,
KVConnectorRole)
from vllm.distributed.kv_transfer.kv_connector.v1.base import (
KVConnectorMetadata)
from vllm.forward_context import ForwardContext
from vllm.logger import init_logger
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
from vllm.v1.core.kv_cache_utils import BlockHash
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.kv_offload.abstract import OffloadingManager
from vllm.v1.kv_offload.factory import OffloadingSpecFactory
from vllm.v1.kv_offload.mediums import GPULoadStoreSpec
from vllm.v1.kv_offload.spec import OffloadingSpec
from vllm.v1.kv_offload.worker.worker import OffloadingWorker, TransferSpec
from vllm.v1.outputs import KVConnectorOutput
from vllm.v1.request import Request
ReqId = str
logger = init_logger(__name__)
@dataclass
class OffloadingConnectorMetadata(KVConnectorMetadata):
reqs_to_load: dict[ReqId, TransferSpec]
reqs_to_store: dict[ReqId, TransferSpec]
class OffloadingConnector(KVConnectorBase_V1):
def __init__(self, vllm_config: VllmConfig, role: KVConnectorRole):
super().__init__(vllm_config, role)
spec = OffloadingSpecFactory.create_spec(vllm_config)
self.connector_scheduler: Optional[OffloadingConnectorScheduler] = None
self.connector_worker: Optional[OffloadingConnectorWorker] = None
if role == KVConnectorRole.SCHEDULER:
self.connector_scheduler = OffloadingConnectorScheduler(spec)
elif role == KVConnectorRole.WORKER:
self.connector_worker = OffloadingConnectorWorker(spec)
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
assert self.connector_worker is not None
self.connector_worker.register_kv_caches(kv_caches)
def start_load_kv(self, forward_context: "ForwardContext",
**kwargs) -> None:
assert self.connector_worker is not None
assert isinstance(self._connector_metadata,
OffloadingConnectorMetadata)
self.connector_worker.start_load_kv(self._connector_metadata)
def wait_for_layer_load(self, layer_name: str) -> None:
pass
def save_kv_layer(self, layer_name: str, kv_layer: torch.Tensor,
attn_metadata: "AttentionMetadata", **kwargs) -> None:
pass
def wait_for_save(self):
assert self.connector_worker is not None
assert isinstance(self._connector_metadata,
OffloadingConnectorMetadata)
self.connector_worker.start_store_kv(self._connector_metadata)
def get_finished(self,
finished_req_ids: set[str]) -> tuple[set[str], set[str]]:
assert self.connector_worker is not None
return self.connector_worker.get_finished(finished_req_ids)
def get_num_new_matched_tokens(
self, request: "Request",
num_computed_tokens: int) -> tuple[int, bool]:
assert self.connector_scheduler is not None
return self.connector_scheduler.get_num_new_matched_tokens(
request, num_computed_tokens)
def update_state_after_alloc(self, request: "Request",
blocks: "KVCacheBlocks",
num_external_tokens: int):
assert self.connector_scheduler is not None
return self.connector_scheduler.update_state_after_alloc(
request, blocks, num_external_tokens)
def build_connector_meta(
self, scheduler_output: SchedulerOutput) -> KVConnectorMetadata:
assert self.connector_scheduler is not None
return self.connector_scheduler.build_connector_meta(scheduler_output)
def update_connector_output(self, connector_output: KVConnectorOutput):
assert self.connector_scheduler is not None
self.connector_scheduler.update_connector_output(connector_output)
def request_finished(
self,
request: "Request",
block_ids: list[int],
) -> tuple[bool, Optional[dict[str, Any]]]:
assert self.connector_scheduler is not None
return self.connector_scheduler.request_finished(request, block_ids)
def take_events(self) -> Iterable[KVCacheEvent]:
assert self.connector_scheduler is not None
return self.connector_scheduler.take_events()
class OffloadingConnectorScheduler:
"""Implementation of Scheduler side methods"""
def __init__(self, spec: OffloadingSpec):
self.gpu_block_size = spec.gpu_block_size
self.offloaded_block_size = spec.offloaded_block_size
self.block_size_factor = (self.offloaded_block_size //
self.gpu_block_size)
self.manager: OffloadingManager = spec.get_manager()
self._requests: dict[ReqId, Request] = {}
# list of GPU block IDs per request
self._request_block_ids: dict[ReqId, list[int]] = {}
# requests to load for the current scheduler step
self._reqs_to_load: dict[ReqId, TransferSpec] = {}
# request blocks are stored in order
# index of next block (of size offloaded_block_size) to offload
self._next_stored_block_idx: dict[ReqId, int] = {}
# request ID -> set(block hashes being stored/load)
self._reqs_being_stored = defaultdict[ReqId, set[BlockHash]](set)
self._reqs_being_loaded = defaultdict[ReqId, set[BlockHash]](set)
def _get_block_hashes(
self,
req: Request,
start_idx: int = 0,
end_idx: Optional[int] = None,
) -> Iterable[BlockHash]:
return islice(
req.block_hashes,
self.block_size_factor * start_idx + self.block_size_factor - 1,
self.block_size_factor * end_idx if end_idx else None,
self.block_size_factor)
def get_num_new_matched_tokens(
self, request: Request,
num_computed_tokens: int) -> tuple[int, bool]:
"""
Get number of new tokens that can be loaded beyond the
num_computed_tokens.
Args:
request (Request): the request object.
num_computed_tokens (int): the number of locally
computed tokens for this request
Returns:
A tuple with the following elements:
- The number of tokens that can be loaded beyond what is
already computed.
- `True` if tokens will be loaded asynchronously
(between scheduler steps).
"""
num_blocks = request.num_tokens // self.offloaded_block_size
assert (len(request.block_hashes) //
self.block_size_factor == num_blocks)
block_hashes = self._get_block_hashes(request)
self.manager.touch(block_hashes)
full_block_tokens = self.offloaded_block_size * num_blocks
if full_block_tokens - num_computed_tokens < self.offloaded_block_size:
# we can load less than a block, skip
return 0, False
start_block_idx = num_computed_tokens // self.offloaded_block_size
hits = self.manager.lookup(
self._get_block_hashes(request, start_idx=start_block_idx))
if hits == 0:
return 0, False
num_hit_tokens = (self.offloaded_block_size *
(start_block_idx + hits) - num_computed_tokens)
logger.debug(
"Request %s hit %s offloaded tokens after %s GPU hit tokens",
request.request_id,
num_hit_tokens,
num_computed_tokens,
)
if num_hit_tokens < self.offloaded_block_size:
return 0, False
return num_hit_tokens, True
def update_state_after_alloc(self, request: Request, blocks: KVCacheBlocks,
num_external_tokens: int):
self._requests[request.request_id] = request
# the block ids are updated in _get_reqs_to_store
self._request_block_ids[request.request_id] = []
if num_external_tokens == 0:
return
block_groups = blocks.get_block_ids()
block_ids = block_groups[0]
num_computed_gpu_blocks = sum(block.block_hash is not None
for block in blocks.blocks[0])
num_computed_tokens = num_computed_gpu_blocks * self.gpu_block_size
full_block_tokens = num_computed_tokens + num_external_tokens
assert full_block_tokens % self.offloaded_block_size == 0
num_pending_gpu_blocks = len(block_ids) - num_computed_gpu_blocks
assert (num_external_tokens == num_pending_gpu_blocks *
self.gpu_block_size)
start_block_idx = num_computed_tokens // self.offloaded_block_size
num_blocks = full_block_tokens // self.offloaded_block_size
assert (len(request.block_hashes) // self.block_size_factor
>= num_blocks)
block_hashes = self._get_block_hashes(request,
start_idx=start_block_idx,
end_idx=num_blocks)
src_spec = self.manager.prepare_load(block_hashes)
dst_spec = GPULoadStoreSpec(block_ids[num_computed_gpu_blocks:])
block_hashes = self._get_block_hashes(request,
start_idx=start_block_idx,
end_idx=num_blocks)
self._reqs_to_load[request.request_id] = (src_spec, dst_spec)
self._reqs_being_loaded[request.request_id].update(block_hashes)
self._next_stored_block_idx[request.request_id] = num_blocks
def _get_reqs_to_store(self, scheduler_output: SchedulerOutput):
reqs_to_store: dict[ReqId, TransferSpec] = {}
# iterate over both new and cached requests
for req_id, new_block_id_groups, preempted in yield_req_data(
scheduler_output):
if preempted:
self._request_block_ids[req_id] = []
if new_block_id_groups:
new_block_ids = new_block_id_groups[0]
self._request_block_ids[req_id] += new_block_ids
block_ids = self._request_block_ids[req_id]
req = self._requests[req_id]
new_tokens = scheduler_output.num_scheduled_tokens[req_id]
total_tokens = req.num_computed_tokens + new_tokens
num_blocks = total_tokens // self.offloaded_block_size
start_block_idx = self._next_stored_block_idx.get(req_id, 0)
num_new_blocks = num_blocks - start_block_idx
if num_new_blocks <= 0:
continue
num_gpu_blocks = num_blocks * self.block_size_factor
assert len(req.block_hashes) >= num_gpu_blocks
new_block_hashes = self._get_block_hashes(
req, start_idx=start_block_idx, end_idx=num_blocks)
store_output = self.manager.prepare_store(new_block_hashes)
if store_output is None:
logger.warning("Cannot store %s blocks", num_new_blocks)
break
self._next_stored_block_idx[req_id] = num_blocks
if not store_output.block_hashes_to_store:
continue
block_hashes_to_store = set(store_output.block_hashes_to_store)
block_hashes = self._get_block_hashes(req, end_idx=num_blocks)
self.manager.touch(block_hashes)
new_block_hashes = self._get_block_hashes(
req, start_idx=start_block_idx, end_idx=num_blocks)
dst_spec = store_output.store_spec
src_block_ids: list[int] = []
for idx, blk_hash in enumerate(new_block_hashes):
if blk_hash not in block_hashes_to_store:
continue
offloaded_block_idx = start_block_idx + idx
gpu_block_idx = offloaded_block_idx * self.block_size_factor
for i in range(self.block_size_factor):
src_block_ids.append(block_ids[gpu_block_idx + i])
src_spec = GPULoadStoreSpec(src_block_ids)
reqs_to_store[req_id] = (src_spec, dst_spec)
self._reqs_being_stored[req_id] |= block_hashes_to_store
logger.debug(
"Request %s offloading %s blocks starting from block #%d",
req_id,
len(block_hashes_to_store),
start_block_idx,
)
return reqs_to_store
def build_connector_meta(
self, scheduler_output: SchedulerOutput) -> KVConnectorMetadata:
meta = OffloadingConnectorMetadata(
reqs_to_load=self._reqs_to_load,
reqs_to_store=self._get_reqs_to_store(scheduler_output))
self._reqs_to_load = {}
return meta
def update_connector_output(self, connector_output: KVConnectorOutput):
"""
Update KVConnector state from worker-side connectors output.
Args:
connector_output (KVConnectorOutput): the worker-side
connectors output.
"""
for req_id in connector_output.finished_sending or []:
block_hashes = self._reqs_being_stored.pop(req_id, None)
if block_hashes:
self.manager.complete_store(block_hashes)
for req_id in connector_output.finished_recving or []:
block_hashes = self._reqs_being_loaded.pop(req_id, None)
if block_hashes:
self.manager.complete_load(block_hashes)
def request_finished(
self,
request: Request,
block_ids: list[int],
) -> tuple[bool, Optional[dict[str, Any]]]:
"""
Called when a request has finished, before its blocks are freed.
Returns:
True if the request is being saved/sent asynchronously and blocks
should not be freed until the request_id is returned from
get_finished().
Optional KVTransferParams to be included in the request outputs
returned by the engine.
"""
req_id = request.request_id
self._requests.pop(req_id, None)
self._request_block_ids.pop(req_id, None)
self._next_stored_block_idx.pop(req_id, None)
request_being_stored = req_id in self._reqs_being_stored
return request_being_stored, None
def take_events(self) -> Iterable[KVCacheEvent]:
"""Take the KV cache events from the connector.
Returns:
A list of KV cache events.
"""
for event in self.manager.take_events():
if event.removed:
yield BlockRemoved(block_hashes=event.block_hashes,
medium=event.medium)
else:
yield BlockStored(block_hashes=event.block_hashes,
parent_block_hash=None,
token_ids=[],
lora_id=None,
block_size=event.block_size,
medium=event.medium)
class OffloadingConnectorWorker:
"""Implementation of Worker side methods"""
def __init__(self, spec: OffloadingSpec):
self.spec = spec
self.worker = OffloadingWorker()
self._job_counter = 0
# req_id -> (job_id, store)
self._jobs: dict[int, tuple[ReqId, bool]] = {}
# req_id -> active job IDs
self._load_job: dict[ReqId, int] = {}
# req_id -> set(active job IDs)
self._store_jobs = defaultdict[ReqId, set[int]](set)
self._finished_reqs_waiting_for_store: set[ReqId] = set()
def _generate_job_id(self) -> int:
job_id = self._job_counter
self._job_counter = job_id + 1
return job_id
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
for src_cls, dst_cls, handler in (self.spec.get_handlers(kv_caches)):
self.worker.register_handler(src_cls, dst_cls, handler)
def start_load_kv(self, metadata: OffloadingConnectorMetadata):
for req_id, transfer_spec in metadata.reqs_to_load.items():
job_id = self._generate_job_id()
self._jobs[job_id] = (req_id, False)
assert req_id not in self._load_job
self._load_job[req_id] = job_id
assert self.worker.transfer_async(job_id, transfer_spec)
def start_store_kv(self, metadata: OffloadingConnectorMetadata):
for req_id, transfer_spec in metadata.reqs_to_store.items():
job_id = self._generate_job_id()
self._jobs[job_id] = (req_id, True)
self._store_jobs[req_id].add(job_id)
assert self.worker.transfer_async(job_id, transfer_spec)
def get_finished(self,
finished_req_ids: set[str]) -> tuple[set[str], set[str]]:
"""
Notifies worker-side connector ids of requests that have
finished generating tokens.
Returns a list of request IDs that finished loading or storing.
Returns:
ids of requests that have finished asynchronous transfer
tuple of (sending/saving ids, recving/loading ids).
"""
finished_sending = set()
finished_recving = set()
for job_id, success in self.worker.get_finished():
# we currently do not support job failures
assert success
req_id, store = self._jobs.pop(job_id)
if store:
req_jobs = self._store_jobs[req_id]
req_jobs.remove(job_id)
if req_jobs:
continue
if req_id in self._finished_reqs_waiting_for_store:
self._finished_reqs_waiting_for_store.remove(req_id)
finished_sending.add(req_id)
del self._store_jobs[req_id]
else:
req_job = self._load_job[req_id]
assert job_id == req_job
del self._load_job[req_id]
finished_recving.add(req_id)
for req_id in finished_req_ids:
pending_req_jobs = self._store_jobs.get(req_id)
if pending_req_jobs:
self._finished_reqs_waiting_for_store.add(req_id)
elif pending_req_jobs is not None:
finished_sending.add(req_id)
del self._store_jobs[req_id]
return finished_sending, finished_recving
def yield_req_data(
scheduler_output) -> Iterator[tuple[str, tuple[list[int], ...], bool]]:
"""
Yields:
(req_id, new_block_id_groups, preempted)
"""
# new requests
for req_data in scheduler_output.scheduled_new_reqs:
yield req_data.req_id, req_data.block_ids, False
# cached requests
cached_reqs = scheduler_output.scheduled_cached_reqs
yield from zip(cached_reqs.req_ids, cached_reqs.new_block_ids,
cached_reqs.resumed_from_preemption)

View File

@ -27,11 +27,11 @@ from vllm.config import (BlockSize, CacheConfig, CacheDType, CompilationConfig,
EPLBConfig, HfOverrides, KVEventsConfig,
KVTransferConfig, LoadConfig, LogprobsMode,
LoRAConfig, MambaDType, MMEncoderTPMode, ModelConfig,
ModelDType, ModelImpl, ObservabilityConfig,
ParallelConfig, PoolerConfig, PrefixCachingHashAlgo,
RunnerOption, SchedulerConfig, SchedulerPolicy,
SpeculativeConfig, StructuredOutputsConfig,
TaskOption, TokenizerMode, VllmConfig, get_attr_docs)
ModelDType, ObservabilityConfig, ParallelConfig,
PoolerConfig, PrefixCachingHashAlgo, RunnerOption,
SchedulerConfig, SchedulerPolicy, SpeculativeConfig,
StructuredOutputsConfig, TaskOption, TokenizerMode,
VllmConfig, get_attr_docs)
from vllm.config.multimodal import MMCacheType, MultiModalConfig
from vllm.config.parallel import ExpertPlacementStrategy
from vllm.config.utils import get_field
@ -333,6 +333,8 @@ class EngineArgs:
enable_eplb: bool = ParallelConfig.enable_eplb
expert_placement_strategy: ExpertPlacementStrategy = \
ParallelConfig.expert_placement_strategy
_api_process_count: int = ParallelConfig._api_process_count
_api_process_rank: int = ParallelConfig._api_process_rank
num_redundant_experts: int = EPLBConfig.num_redundant_experts
eplb_window_size: int = EPLBConfig.window_size
eplb_step_interval: int = EPLBConfig.step_interval
@ -441,6 +443,7 @@ class EngineArgs:
scheduling_policy: SchedulerPolicy = SchedulerConfig.policy
scheduler_cls: Union[str, Type[object]] = SchedulerConfig.scheduler_cls
pooler_config: Optional[PoolerConfig] = ModelConfig.pooler_config
override_pooler_config: Optional[Union[dict, PoolerConfig]] = \
ModelConfig.override_pooler_config
compilation_config: CompilationConfig = \
@ -547,7 +550,6 @@ class EngineArgs:
model_group.add_argument("--max-logprobs",
**model_kwargs["max_logprobs"])
model_group.add_argument("--logprobs-mode",
choices=[f.value for f in LogprobsMode],
**model_kwargs["logprobs_mode"])
model_group.add_argument("--disable-sliding-window",
**model_kwargs["disable_sliding_window"])
@ -579,8 +581,11 @@ class EngineArgs:
help=model_kwargs["hf_token"]["help"])
model_group.add_argument("--hf-overrides",
**model_kwargs["hf_overrides"])
model_group.add_argument("--pooler-config",
**model_kwargs["pooler_config"])
model_group.add_argument("--override-pooler-config",
**model_kwargs["override_pooler_config"])
**model_kwargs["override_pooler_config"],
deprecated=True)
model_group.add_argument("--logits-processor-pattern",
**model_kwargs["logits_processor_pattern"])
model_group.add_argument("--generation-config",
@ -589,9 +594,7 @@ class EngineArgs:
**model_kwargs["override_generation_config"])
model_group.add_argument("--enable-sleep-mode",
**model_kwargs["enable_sleep_mode"])
model_group.add_argument("--model-impl",
choices=[f.value for f in ModelImpl],
**model_kwargs["model_impl"])
model_group.add_argument("--model-impl", **model_kwargs["model_impl"])
model_group.add_argument("--override-attention-dtype",
**model_kwargs["override_attention_dtype"])
model_group.add_argument("--logits-processors",
@ -951,7 +954,10 @@ class EngineArgs:
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
engine_args = cls(**{
attr: getattr(args, attr)
for attr in attrs if hasattr(args, attr)
})
return engine_args
def create_model_config(self) -> ModelConfig:
@ -1031,6 +1037,7 @@ class EngineArgs:
mm_shm_cache_max_object_size_mb=self.
mm_shm_cache_max_object_size_mb,
mm_encoder_tp_mode=self.mm_encoder_tp_mode,
pooler_config=self.pooler_config,
override_pooler_config=self.override_pooler_config,
logits_processor_pattern=self.logits_processor_pattern,
generation_config=self.generation_config,
@ -1364,6 +1371,8 @@ class EngineArgs:
worker_cls=self.worker_cls,
worker_extension_cls=self.worker_extension_cls,
decode_context_parallel_size=self.decode_context_parallel_size,
_api_process_count=self._api_process_count,
_api_process_rank=self._api_process_rank,
)
speculative_config = self.create_speculative_config(
@ -1513,12 +1522,6 @@ class EngineArgs:
recommend_to_remove=False)
return False
# No text embedding inputs so far.
if self.enable_prompt_embeds:
_raise_or_fallback(feature_name="--enable-prompt-embeds",
recommend_to_remove=False)
return False
# No Mamba or Encoder-Decoder so far.
if not model_config.is_v1_compatible:
_raise_or_fallback(feature_name=model_config.architectures,
@ -1651,6 +1654,13 @@ class EngineArgs:
"models in V0 and has been disabled.")
self.enable_prefix_caching = False
if self.enable_prompt_embeds:
logger.warning(
"--enable-prompt-embeds and --enable-prefix-caching "
"are not supported together in V0. Prefix caching has "
"been disabled.")
self.enable_prefix_caching = False
# Set max_num_seqs to 256 for VLLM_V0.
if self.max_num_seqs is None:
self.max_num_seqs = 256
@ -1664,6 +1674,17 @@ class EngineArgs:
# For pooling tasks the default is False
if model_config.runner_type != "pooling":
self.enable_chunked_prefill = True
# TODO: When prefix caching supports prompt embeds inputs, this
# check can be removed.
if (self.enable_prompt_embeds
and self.enable_prefix_caching is not False):
logger.warning(
"--enable-prompt-embeds and --enable-prefix-caching "
"are not supported together in V1. Prefix caching has "
"been disabled.")
self.enable_prefix_caching = False
if self.enable_prefix_caching is None:
self.enable_prefix_caching = True
else:

View File

@ -433,9 +433,9 @@ class LLMEngine:
f"ExecutorBase. Got {distributed_executor_backend}.")
executor_class = distributed_executor_backend
elif distributed_executor_backend == "ray":
raise RuntimeError(
"The Ray distributed executor is only available in the v1 "
"engine. Enable it by setting 'VLLM_USE_V1=1'.")
from vllm.executor.ray_distributed_executor import (
RayDistributedExecutor)
executor_class = RayDistributedExecutor
elif distributed_executor_backend == "mp":
from vllm.executor.mp_distributed_executor import (
MultiprocessingDistributedExecutor)

View File

@ -135,23 +135,20 @@ def run_headless(args: argparse.Namespace):
def run_multi_api_server(args: argparse.Namespace):
assert not args.headless
num_api_servers = args.api_server_count
num_api_servers: int = args.api_server_count
assert num_api_servers > 0
orig_mm_processor_cache_gb = args.mm_processor_cache_gb
if num_api_servers > 1:
setup_multiprocess_prometheus()
# Not compatible with API server scale-out
args.mm_processor_cache_gb = 0
listen_address, sock = setup_server(args)
engine_args = vllm.AsyncEngineArgs.from_cli_args(args)
engine_args._api_process_count = num_api_servers
engine_args._api_process_rank = -1
usage_context = UsageContext.OPENAI_API_SERVER
vllm_config = engine_args.create_engine_config(usage_context=usage_context)
model_config = vllm_config.model_config
if num_api_servers > 1:
if not envs.VLLM_USE_V1:
@ -161,10 +158,6 @@ def run_multi_api_server(args: argparse.Namespace):
raise ValueError("VLLM_ALLOW_RUNTIME_LORA_UPDATING cannot be used "
"with api_server_count > 1")
if model_config.is_multimodal_model and orig_mm_processor_cache_gb > 0:
logger.warning("Multi-modal processor cache is disabled because "
"it is not compatible with `api_server_count > 1`.")
executor_class = Executor.get_class(vllm_config)
log_stats = not engine_args.disable_log_stats
@ -221,9 +214,10 @@ def run_api_server_worker_proc(listen_address,
client_config=None,
**uvicorn_kwargs) -> None:
"""Entrypoint for individual API server worker processes."""
client_config = client_config or {}
server_index = client_config.get("client_index", 0)
# Set process title and add process-specific prefix to stdout and stderr.
server_index = client_config.get("client_index", 0) if client_config else 0
set_process_title("APIServer", str(server_index))
decorate_logs()

View File

@ -151,9 +151,11 @@ class LLM:
multi-modal processor obtained from `AutoProcessor.from_pretrained`.
The available overrides depend on the model that is being run.
For example, for Phi-3-Vision: `{"num_crops": 4}`.
override_pooler_config: Initialize non-default pooling config or
override default pooling config for the pooling model.
e.g. `PoolerConfig(pooling_type="mean", normalize=False)`.
pooler_config: Initialize non-default pooling config for the pooling
model. e.g. `PoolerConfig(pooling_type="mean", normalize=False)`.
override_pooler_config: [DEPRECATED] Use `pooler_config` instead. This
argument is deprecated and will be removed in v0.12.0 or v1.0.0,
whichever is sooner.
compilation_config: Either an integer or a dictionary. If it is an
integer, it is used as the level of compilation optimization. If it
is a dictionary, it can specify the full compilation configuration.
@ -191,6 +193,7 @@ class LLM:
hf_token: Optional[Union[bool, str]] = None,
hf_overrides: Optional[HfOverrides] = None,
mm_processor_kwargs: Optional[dict[str, Any]] = None,
pooler_config: Optional[PoolerConfig] = None,
override_pooler_config: Optional[PoolerConfig] = None,
structured_outputs_config: Optional[Union[dict[
str, Any], StructuredOutputsConfig]] = None,
@ -288,6 +291,7 @@ class LLM:
hf_token=hf_token,
hf_overrides=hf_overrides,
mm_processor_kwargs=mm_processor_kwargs,
pooler_config=pooler_config,
override_pooler_config=override_pooler_config,
structured_outputs_config=structured_outputs_instance,
compilation_config=compilation_config_instance,

View File

@ -17,13 +17,14 @@ from argparse import Namespace
from collections.abc import AsyncGenerator, AsyncIterator, Awaitable
from contextlib import asynccontextmanager
from http import HTTPStatus
from typing import Annotated, Any, Callable, Optional
from typing import Annotated, Any, Callable, Literal, Optional
import prometheus_client
import pydantic
import regex as re
import uvloop
from fastapi import APIRouter, Depends, FastAPI, Form, HTTPException, Request
from fastapi import (APIRouter, Depends, FastAPI, Form, HTTPException, Query,
Request)
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, Response, StreamingResponse
@ -166,6 +167,9 @@ async def build_async_engine_client(
# Context manager to handle engine_client lifecycle
# Ensures everything is shutdown and cleaned up on error/exit
engine_args = AsyncEngineArgs.from_cli_args(args)
if client_config:
engine_args._api_process_count = client_config.get("client_count", 1)
engine_args._api_process_rank = client_config.get("client_index", 0)
if disable_frontend_multiprocessing is None:
disable_frontend_multiprocessing = bool(
@ -209,8 +213,12 @@ async def build_async_engine_client_from_engine_args(
from vllm.v1.engine.async_llm import AsyncLLM
async_llm: Optional[AsyncLLM] = None
client_count = client_config.pop("client_count") if client_config else 1
client_index = client_config.pop("client_index") if client_config else 0
# Don't mutate the input client_config
client_config = dict(client_config) if client_config else {}
client_count = client_config.pop("client_count", 1)
client_index = client_config.pop("client_index", 0)
try:
async_llm = AsyncLLM.from_vllm_config(
vllm_config=vllm_config,
@ -956,9 +964,22 @@ if envs.VLLM_SERVER_DEV_MODE:
logger.warning("SECURITY WARNING: Development endpoints are enabled! "
"This should NOT be used in production!")
PydanticVllmConfig = pydantic.TypeAdapter(VllmConfig)
@router.get("/server_info")
async def show_server_info(raw_request: Request):
server_info = {"vllm_config": str(raw_request.app.state.vllm_config)}
async def show_server_info(
raw_request: Request,
config_format: Annotated[Literal["text", "json"],
Query()] = "text",
):
vllm_config: VllmConfig = raw_request.app.state.vllm_config
server_info = {
"vllm_config":
str(vllm_config)
if config_format == "text" else PydanticVllmConfig.dump_python(
vllm_config, mode="json", fallback=str)
# fallback=str is needed to handle e.g. torch.dtype
}
return JSONResponse(content=server_info)
@router.post("/reset_prefix_cache")
@ -1856,8 +1877,6 @@ async def run_server_worker(listen_address,
if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
ToolParserManager.import_tool_parser(args.tool_parser_plugin)
server_index = client_config.get("client_index", 0) if client_config else 0
# Load logging config for uvicorn if specified
log_config = load_log_config(args.log_config_file)
if log_config is not None:
@ -1873,7 +1892,8 @@ async def run_server_worker(listen_address,
vllm_config = await engine_client.get_vllm_config()
await init_app_state(engine_client, vllm_config, app.state, args)
logger.info("Starting vLLM API server %d on %s", server_index,
logger.info("Starting vLLM API server %d on %s",
vllm_config.parallel_config._api_process_rank,
listen_address)
shutdown_task = await serve_http(
app,

View File

@ -31,6 +31,8 @@ from openai.types.responses import (
ResponseReasoningTextDeltaEvent, ResponseReasoningTextDoneEvent,
ResponseStatus, ResponseWebSearchCallCompletedEvent,
ResponseWebSearchCallInProgressEvent, ResponseWebSearchCallSearchingEvent)
from openai.types.responses.response_reasoning_item import (
Content as ResponseReasoningTextContent)
# Backward compatibility for OpenAI client versions
try: # For older openai versions (< 1.100.0)
@ -260,26 +262,6 @@ ResponseInputOutputItem: TypeAlias = Union[ResponseInputItemParam,
ResponseReasoningItem,
ResponseFunctionToolCall]
StreamingResponsesResponse: TypeAlias = Union[
ResponseCreatedEvent,
ResponseInProgressEvent,
ResponseCompletedEvent,
ResponseOutputItemAddedEvent,
ResponseOutputItemDoneEvent,
ResponseContentPartAddedEvent,
ResponseContentPartDoneEvent,
ResponseReasoningTextDeltaEvent,
ResponseReasoningTextDoneEvent,
ResponseCodeInterpreterCallInProgressEvent,
ResponseCodeInterpreterCallCodeDeltaEvent,
ResponseWebSearchCallInProgressEvent,
ResponseWebSearchCallSearchingEvent,
ResponseWebSearchCallCompletedEvent,
ResponseCodeInterpreterCallCodeDoneEvent,
ResponseCodeInterpreterCallInterpretingEvent,
ResponseCodeInterpreterCallCompletedEvent,
]
class ResponsesRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
@ -346,6 +328,13 @@ class ResponsesRequest(OpenAIBaseModel):
"access by 3rd parties, and long enough to be "
"unpredictable (e.g., 43 characters base64-encoded, corresponding "
"to 256 bit). Not supported by vLLM engine V0."))
enable_response_messages: bool = Field(
default=False,
description=(
"Dictates whether or not to return messages as part of the "
"response object. Currently only supported for non-streaming "
"non-background and gpt-oss only. "))
# --8<-- [end:responses-extra-params]
_DEFAULT_SAMPLING_PARAMS = {
@ -973,7 +962,6 @@ class CompletionRequest(OpenAIBaseModel):
# https://platform.openai.com/docs/api-reference/completions/create
model: Optional[str] = None
prompt: Optional[Union[list[int], list[list[int]], str, list[str]]] = None
prompt_embeds: Optional[Union[bytes, list[bytes]]] = None
best_of: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[float] = 0.0
@ -1009,6 +997,7 @@ class CompletionRequest(OpenAIBaseModel):
# --8<-- [end:completion-sampling-params]
# --8<-- [start:completion-extra-params]
prompt_embeds: Optional[Union[bytes, list[bytes]]] = None
add_special_tokens: bool = Field(
default=True,
description=(
@ -1849,6 +1838,11 @@ class ResponsesResponse(OpenAIBaseModel):
model: str
object: Literal["response"] = "response"
output: list[ResponseOutputItem]
# These are populated when enable_response_messages is set to True
# TODO: Currently an issue where content of harmony messages
# is not available when these are serialized. Metadata is available
input_messages: Optional[list[ChatCompletionMessageParam]] = None
output_messages: Optional[list[ChatCompletionMessageParam]] = None
parallel_tool_calls: bool
temperature: float
tool_choice: ToolChoice
@ -1878,6 +1872,8 @@ class ResponsesResponse(OpenAIBaseModel):
output: list[ResponseOutputItem],
status: ResponseStatus,
usage: Optional[ResponseUsage] = None,
input_messages: Optional[list[ChatCompletionMessageParam]] = None,
output_messages: Optional[list[ChatCompletionMessageParam]] = None,
) -> "ResponsesResponse":
incomplete_details: Optional[IncompleteDetails] = None
@ -1886,7 +1882,6 @@ class ResponsesResponse(OpenAIBaseModel):
# TODO: implement the other reason for incomplete_details,
# which is content_filter
# incomplete_details = IncompleteDetails(reason='content_filter')
return cls(
id=request.request_id,
created_at=created_time,
@ -1895,6 +1890,8 @@ class ResponsesResponse(OpenAIBaseModel):
metadata=request.metadata,
model=model_name,
output=output,
input_messages=input_messages,
output_messages=output_messages,
parallel_tool_calls=request.parallel_tool_calls,
temperature=sampling_params.temperature,
tool_choice=request.tool_choice,
@ -1916,6 +1913,72 @@ class ResponsesResponse(OpenAIBaseModel):
)
# TODO: this code can be removed once
# https://github.com/openai/openai-python/issues/2634 has been resolved
class ResponseReasoningPartDoneEvent(OpenAIBaseModel):
content_index: int
"""The index of the content part that is done."""
item_id: str
"""The ID of the output item that the content part was added to."""
output_index: int
"""The index of the output item that the content part was added to."""
part: ResponseReasoningTextContent
"""The content part that is done."""
sequence_number: int
"""The sequence number of this event."""
type: Literal["response.reasoning_part.done"]
"""The type of the event. Always `response.reasoning_part.done`."""
# TODO: this code can be removed once
# https://github.com/openai/openai-python/issues/2634 has been resolved
class ResponseReasoningPartAddedEvent(OpenAIBaseModel):
content_index: int
"""The index of the content part that is done."""
item_id: str
"""The ID of the output item that the content part was added to."""
output_index: int
"""The index of the output item that the content part was added to."""
part: ResponseReasoningTextContent
"""The content part that is done."""
sequence_number: int
"""The sequence number of this event."""
type: Literal["response.reasoning_part.added"]
"""The type of the event. Always `response.reasoning_part.added`."""
StreamingResponsesResponse: TypeAlias = Union[
ResponseCreatedEvent,
ResponseInProgressEvent,
ResponseCompletedEvent,
ResponseOutputItemAddedEvent,
ResponseOutputItemDoneEvent,
ResponseContentPartAddedEvent,
ResponseContentPartDoneEvent,
ResponseReasoningTextDeltaEvent,
ResponseReasoningTextDoneEvent,
ResponseReasoningPartAddedEvent,
ResponseReasoningPartDoneEvent,
ResponseCodeInterpreterCallInProgressEvent,
ResponseCodeInterpreterCallCodeDeltaEvent,
ResponseWebSearchCallInProgressEvent,
ResponseWebSearchCallSearchingEvent,
ResponseWebSearchCallCompletedEvent,
ResponseCodeInterpreterCallCodeDoneEvent,
ResponseCodeInterpreterCallInterpretingEvent,
ResponseCodeInterpreterCallCompletedEvent,
]
BatchRequestInputBody = Union[ChatCompletionRequest, EmbeddingRequest,
ScoreRequest, RerankRequest]

View File

@ -58,6 +58,8 @@ from vllm.entrypoints.openai.protocol import (DeltaMessage, ErrorResponse,
InputTokensDetails,
OutputTokensDetails,
RequestResponseMetadata,
ResponseReasoningPartAddedEvent,
ResponseReasoningPartDoneEvent,
ResponsesRequest,
ResponsesResponse, ResponseUsage,
StreamingResponsesResponse)
@ -473,9 +475,14 @@ class OpenAIServingResponses(OpenAIServing):
# "completed" is implemented as the "catch-all" for now.
status: ResponseStatus = "completed"
input_messages = None
output_messages = None
if self.use_harmony:
assert isinstance(context, HarmonyContext)
output = self._make_response_output_items_with_harmony(context)
if request.enable_response_messages:
input_messages = context.messages[:context.num_init_messages]
output_messages = context.messages[context.num_init_messages:]
num_tool_output_tokens = context.num_tool_output_tokens
if len(output) > 0:
if context.finish_reason == "length":
@ -494,6 +501,12 @@ class OpenAIServingResponses(OpenAIServing):
output = self._make_response_output_items(request, final_output,
tokenizer)
# TODO: context for non-gptoss models doesn't use messages
# so we can't get them out yet
if request.enable_response_messages:
raise NotImplementedError(
"enable_response_messages is currently"
" only supported for gpt-oss")
# Calculate usage.
assert final_res.prompt_token_ids is not None
num_tool_output_tokens = 0
@ -517,6 +530,8 @@ class OpenAIServingResponses(OpenAIServing):
response = ResponsesResponse.from_request(
request,
sampling_params,
input_messages=input_messages,
output_messages=output_messages,
model_name=model_name,
created_time=created_time,
output=output,
@ -1280,14 +1295,13 @@ class OpenAIServingResponses(OpenAIServing):
# Deal with tool call here
pass
elif previous_item.channel == "analysis":
content = ResponseReasoningTextContent(
text=previous_item.content[0].text,
type="reasoning_text",
)
reasoning_item = ResponseReasoningItem(
type="reasoning",
content=[
ResponseReasoningTextContent(
text=previous_item.content[0].text,
type="reasoning_text",
),
],
content=[content],
status="completed",
id=current_item_id,
summary=[],
@ -1301,6 +1315,15 @@ class OpenAIServingResponses(OpenAIServing):
content_index=current_content_index,
text=previous_item.content[0].text,
))
yield _increment_sequence_number_and_return(
ResponseReasoningPartDoneEvent(
type="response.reasoning_part.done",
sequence_number=-1,
item_id=current_item_id,
output_index=current_output_index,
content_index=current_content_index,
part=content,
))
yield _increment_sequence_number_and_return(
ResponseOutputItemDoneEvent(
type="response.output_item.done",
@ -1412,17 +1435,15 @@ class OpenAIServingResponses(OpenAIServing):
))
current_content_index += 1
yield _increment_sequence_number_and_return(
ResponseContentPartAddedEvent(
type="response.content_part.added",
ResponseReasoningPartAddedEvent(
type="response.reasoning_part.added",
sequence_number=-1,
output_index=current_output_index,
item_id=current_item_id,
content_index=current_content_index,
part=ResponseOutputText(
type="output_text",
part=ResponseReasoningTextContent(
text="",
annotations=[],
logprobs=[],
type="reasoning_text",
),
))
yield _increment_sequence_number_and_return(

View File

@ -32,6 +32,7 @@ if TYPE_CHECKING:
VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm")
VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
VLLM_NO_USAGE_STATS: bool = False
VLLM_DISABLE_FLASHINFER_PREFILL: bool = False
VLLM_DO_NOT_TRACK: bool = False
VLLM_USAGE_SOURCE: str = ""
VLLM_CONFIGURE_LOGGING: int = 1
@ -479,6 +480,8 @@ environment_variables: dict[str, Callable[[], Any]] = {
lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
"VLLM_NO_USAGE_STATS":
lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
"VLLM_DISABLE_FLASHINFER_PREFILL":
lambda: os.environ.get("VLLM_DISABLE_FLASHINFER_PREFILL", "0") == "1",
"VLLM_DO_NOT_TRACK":
lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
"DO_NOT_TRACK", None) or "0") == "1",

View File

@ -0,0 +1,699 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import os
from collections import defaultdict
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
import cloudpickle
import msgspec
import vllm.envs as envs
from vllm.executor.executor_base import (
DistributedExecutorBase) # yapf: disable
from vllm.executor.msgspec_utils import encode_hook
from vllm.executor.ray_utils import (RayWorkerWrapper, initialize_ray_cluster,
ray)
from vllm.logger import init_logger
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.platforms import current_platform
from vllm.ray.ray_env import get_env_vars_to_copy
from vllm.sequence import ExecuteModelRequest
from vllm.utils import (_run_task_with_lock, get_distributed_init_method,
get_ip, get_open_port, make_async)
if ray is not None:
from ray.actor import ActorHandle
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
else:
ActorHandle = None
if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
logger = init_logger(__name__)
@dataclass
class RayWorkerMetaData:
"""
Metadata for a Ray worker.
The order of ray worker creation can be random,
and we need to reset the rank after creating all workers.
"""
worker: ActorHandle
created_rank: int
adjusted_rank: int = -1
ip: str = ""
class RayDistributedExecutor(DistributedExecutorBase):
"""Ray-based distributed executor"""
# These env vars are worker-specific, therefore are NOT copied
# from the driver to the workers
WORKER_SPECIFIC_ENV_VARS = {
"VLLM_HOST_IP", "VLLM_HOST_PORT", "LOCAL_RANK", "CUDA_VISIBLE_DEVICES"
}
# These non-vLLM env vars are copied from the driver to workers
ADDITIONAL_ENV_VARS = {"HF_TOKEN", "HUGGING_FACE_HUB_TOKEN"}
uses_ray: bool = True
def _init_executor(self) -> None:
self.forward_dag: Optional[ray.dag.CompiledDAG] = None
if envs.VLLM_USE_V1:
# V1 uses SPMD worker and compiled DAG
os.environ["VLLM_USE_RAY_SPMD_WORKER"] = "1"
os.environ["VLLM_USE_RAY_COMPILED_DAG"] = "1"
# For TPU or XPU, avoid compiling NVIDIA's NCCL
if current_platform.is_tpu() or current_platform.is_xpu():
os.environ["VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE"] = "shm"
# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
# Currently, this requires USE_RAY_SPMD_WORKER=True.
self.use_ray_compiled_dag = envs.VLLM_USE_RAY_COMPILED_DAG
# If the env var is set, then we do not distinguish between the
# "driver worker" vs other workers. Also, the rank 0 worker will
# be executed in a remote Ray worker. Currently this requires
# USE_RAY_COMPILED_DAG=True.
self.use_ray_spmd_worker = envs.VLLM_USE_RAY_SPMD_WORKER
if self.use_ray_compiled_dag:
assert self.use_ray_spmd_worker, (
"VLLM_USE_RAY_COMPILED_DAG=1 requires "
"VLLM_USE_RAY_SPMD_WORKER=1")
if self.use_ray_spmd_worker:
# TODO: Support SPMD worker for non-DAG Ray executor.
assert self.use_ray_compiled_dag, (
"VLLM_USE_RAY_SPMD_WORKER=1 requires "
"VLLM_USE_RAY_COMPILED_DAG=1")
assert self.uses_ray
initialize_ray_cluster(self.parallel_config)
placement_group = self.parallel_config.placement_group
# Disable Ray usage stats collection.
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
if ray_usage != "1":
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
# Create the parallel GPU workers.
self._init_workers_ray(placement_group)
self.input_encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
self.output_decoder = msgspec.msgpack.Decoder(
Optional[List[SamplerOutput]])
self.use_v1 = envs.VLLM_USE_V1
self.pp_locks: Optional[List[asyncio.Lock]] = None
if not self.use_ray_compiled_dag:
self.driver_exec_method = make_async(
self.driver_worker.execute_method)
def shutdown(self) -> None:
if logger:
# Somehow logger can be None here.
logger.info(
"Shutting down Ray distributed executor. If you see error log "
"from logging.cc regarding SIGTERM received, please ignore "
"because this is the expected termination process in Ray.")
if hasattr(self, "forward_dag") and self.forward_dag is not None:
self.forward_dag.teardown()
import ray
for worker in self.workers:
ray.kill(worker)
self.forward_dag = None
def _configure_ray_workers_use_nsight(self,
ray_remote_kwargs) -> Dict[str, Any]:
# If nsight profiling is enabled, we need to set the profiling
# configuration for the ray workers as runtime env.
runtime_env = ray_remote_kwargs.setdefault("runtime_env", {})
runtime_env.update({
"nsight": {
"t": "cuda,cudnn,cublas",
"o": "'worker_process_%p'",
"cuda-graph-trace": "node",
}
})
return ray_remote_kwargs
# child class could overwrite this to return actual env vars.
def _get_env_vars_to_be_updated(self):
return self._env_vars_for_all_workers
def _init_workers_ray(self, placement_group: "PlacementGroup",
**ray_remote_kwargs):
num_gpus = envs.VLLM_RAY_PER_WORKER_GPUS
# The driver dummy worker does not actually use any resources.
# It holds the resource for the driver worker.
self.driver_dummy_worker: Optional[RayWorkerWrapper] = None
# The remaining workers are the actual ray actors.
self.workers: List[RayWorkerWrapper] = []
# Used in ray compiled DAG: indexed first by PP rank,
# and then TP rank. In other words, the inner list is
# the TP group of workers for a PP rank.
self.pp_tp_workers: List[List[RayWorkerWrapper]] = []
if self.parallel_config.ray_workers_use_nsight:
ray_remote_kwargs = self._configure_ray_workers_use_nsight(
ray_remote_kwargs)
logger.info("use_ray_spmd_worker: %s", self.use_ray_spmd_worker)
# Create the workers.
bundle_indices: List[int]
if envs.VLLM_RAY_BUNDLE_INDICES:
# Use the bundle indices specified by the user.
bundle_indices = list(
map(int, envs.VLLM_RAY_BUNDLE_INDICES.split(",")))
assert len(bundle_indices) == self.parallel_config.world_size, \
("VLLM_RAY_BUNDLE_INDICES must have the same size"
f" as the world size, but got {bundle_indices=} "
f"and {self.parallel_config.world_size=}")
assert len(set(bundle_indices)) == len(bundle_indices), \
("VLLM_RAY_BUNDLE_INDICES cannot have duplicate values,"
f" but got {bundle_indices=}")
else:
# use the first N bundles that have GPU resources.
bundle_indices = []
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
if bundle.get(current_platform.ray_device_key, 0):
bundle_indices.append(bundle_id)
bundle_indices = bundle_indices[:self.parallel_config.world_size]
worker_metadata: List[RayWorkerMetaData] = []
driver_ip = get_ip()
for rank, bundle_id in enumerate(bundle_indices):
scheduling_strategy = PlacementGroupSchedulingStrategy(
placement_group=placement_group,
placement_group_capture_child_tasks=True,
placement_group_bundle_index=bundle_id,
)
if current_platform.ray_device_key == "GPU":
# NV+AMD GPUs, and Intel XPUs
worker = ray.remote(
num_cpus=0,
num_gpus=num_gpus,
scheduling_strategy=scheduling_strategy,
**ray_remote_kwargs,
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
rpc_rank=rank)
else:
worker = ray.remote(
num_cpus=0,
num_gpus=0,
resources={current_platform.ray_device_key: num_gpus},
scheduling_strategy=scheduling_strategy,
**ray_remote_kwargs,
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
rpc_rank=rank)
worker_metadata.append(
RayWorkerMetaData(worker=worker, created_rank=rank))
worker_ips = ray.get([
each.worker.get_node_ip.remote() # type: ignore[attr-defined]
for each in worker_metadata
])
for each, ip in zip(worker_metadata, worker_ips):
each.ip = ip
if not self.use_ray_spmd_worker:
for i, each in enumerate(worker_metadata):
# find and remove the dummy worker from the list
worker = each.worker
worker_ip = each.ip
if self.driver_dummy_worker is None and worker_ip == driver_ip:
# If the worker is on the same node as the driver, we use it
# as the resource holder for the driver process.
self.driver_dummy_worker = worker
self.driver_worker = RayWorkerWrapper(
vllm_config=self.vllm_config, rpc_rank=0)
worker_metadata.pop(i)
break
logger.debug("workers: %s", worker_metadata)
logger.debug("driver_dummy_worker: %s", self.driver_dummy_worker)
if not self.use_ray_spmd_worker and self.driver_dummy_worker is None:
raise ValueError(
"Ray does not allocate any GPUs on the driver node."
f"Driver IP: {driver_ip}, worker IPs: {worker_ips}."
"Consider adjusting the Ray placement group or running "
"the driver on a GPU node.")
ip_counts: Dict[str, int] = {}
for ip in worker_ips:
ip_counts[ip] = ip_counts.get(ip, 0) + 1
def sort_by_driver_then_worker_ip(item: RayWorkerMetaData):
"""
Sort the workers based on 3 properties:
1. If the worker is on the same node as the driver (vllm engine),
it should be placed first.
2. Then, if the worker is on a node with fewer workers, it should
be placed first.
3. Finally, if the work is on a node with smaller IP address, it
should be placed first.
"""
ip = item.ip
return (0 if ip == driver_ip else 1, ip_counts[ip], ip)
# After sorting, the workers on the same node will be
# close to each other, and the workers on the driver
# node will be placed first.
sorted_worker_metadata = sorted(worker_metadata,
key=sort_by_driver_then_worker_ip)
start_rank = 0 if self.use_ray_spmd_worker else 1
for i, item in enumerate(sorted_worker_metadata):
item.adjusted_rank = i + start_rank
self.workers = [item.worker for item in sorted_worker_metadata]
rerank_mapping = {
item.created_rank: item.adjusted_rank
for item in sorted_worker_metadata
}
self._run_workers("adjust_rank", rerank_mapping)
# Get the set of GPU IDs used on each node.
worker_node_and_gpu_ids = []
for worker in [self.driver_dummy_worker] + self.workers:
if worker is None:
# driver_dummy_worker can be None when using ray spmd worker.
continue
worker_node_and_gpu_ids.append(
ray.get(worker.get_node_and_gpu_ids.remote()) \
) # type: ignore
node_workers = defaultdict(list) # node id -> list of worker ranks
node_gpus = defaultdict(list) # node id -> list of gpu ids
for i, (node_id, gpu_ids) in enumerate(worker_node_and_gpu_ids):
node_workers[node_id].append(i)
# `gpu_ids` can be a list of strings or integers.
# convert them to integers for consistency.
# NOTE: gpu_ids can be larger than 9 (e.g. 16 GPUs),
# string sorting is not sufficient.
# see https://github.com/vllm-project/vllm/issues/5590
gpu_ids = [int(x) for x in gpu_ids]
node_gpus[node_id].extend(gpu_ids)
for node_id, gpu_ids in node_gpus.items():
node_gpus[node_id] = sorted(gpu_ids)
all_ips = set(worker_ips + [driver_ip])
n_ips = len(all_ips)
n_nodes = len(node_workers)
if n_nodes != n_ips:
raise RuntimeError(
f"Every node should have a unique IP address. Got {n_nodes}"
f" nodes with node ids {list(node_workers.keys())} and "
f"{n_ips} unique IP addresses {all_ips}. Please check your"
" network configuration. If you set `VLLM_HOST_IP`"
" environment variable, make sure it is unique for"
" each node.")
# Set environment variables for the driver and workers.
all_args_to_update_environment_variables = [{
current_platform.device_control_env_var:
",".join(map(str, node_gpus[node_id])),
} for (node_id, _) in worker_node_and_gpu_ids]
# Environment variables to copy from driver to workers
env_vars_to_copy = get_env_vars_to_copy(
exclude_vars=self.WORKER_SPECIFIC_ENV_VARS,
additional_vars=set(current_platform.additional_env_vars).union(
self.ADDITIONAL_ENV_VARS),
destination="workers")
# Copy existing env vars to each worker's args
for args in all_args_to_update_environment_variables:
# TODO: refactor platform-specific env vars
for name in env_vars_to_copy:
if name in os.environ:
args[name] = os.environ[name]
self._env_vars_for_all_workers = (
all_args_to_update_environment_variables)
self._run_workers("update_environment_variables",
self._get_env_vars_to_be_updated())
if len(node_gpus) == 1:
# in single node case, we don't need to get the IP address.
# the loopback address is sufficient
# NOTE: a node may have several IP addresses, one for each
# network interface. `get_ip()` might return any of them,
# while they might not work for communication inside the node
# if the network setup is complicated. Using the loopback address
# solves this issue, as it always works for communication inside
# the node.
driver_ip = "127.0.0.1"
distributed_init_method = get_distributed_init_method(
driver_ip, get_open_port())
# Initialize the actual workers inside worker wrapper.
all_kwargs = []
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids):
local_rank = node_workers[node_id].index(rank)
kwargs = dict(
vllm_config=self.vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
is_driver_worker=(not self.parallel_config)
or (rank % self.parallel_config.tensor_parallel_size == 0),
)
all_kwargs.append(kwargs)
self._run_workers("init_worker", all_kwargs)
self._run_workers("init_device")
self._run_workers("load_model",
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers)
if self.use_ray_spmd_worker:
for pp_rank in range(self.parallel_config.pipeline_parallel_size):
self.pp_tp_workers.append([])
for tp_rank in range(
self.parallel_config.tensor_parallel_size):
# PP=2, TP=4
# pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]]
rank = (pp_rank * self.parallel_config.tensor_parallel_size
) + tp_rank
assert len(self.pp_tp_workers[pp_rank]) == tp_rank
assert pp_rank < len(self.pp_tp_workers)
self.pp_tp_workers[pp_rank].append(self.workers[rank])
# This is the list of workers that are rank 0 of each TP group EXCEPT
# global rank 0. These are the workers that will broadcast to the
# rest of the workers.
self.tp_driver_workers: List[RayWorkerWrapper] = []
# This is the list of workers that are not drivers and not the first
# worker in a TP group. These are the workers that will be
# broadcasted to.
self.non_driver_workers: List[RayWorkerWrapper] = []
# Enforce rank order for correct rank to return final output.
for index, worker in enumerate(self.workers):
# The driver worker is rank 0 and not in self.workers.
rank = index + 1
if rank % self.parallel_config.tensor_parallel_size == 0:
self.tp_driver_workers.append(worker)
else:
self.non_driver_workers.append(worker)
def _driver_execute_model(
self, execute_model_req: Optional[ExecuteModelRequest]
) -> Optional[List[SamplerOutput]]:
"""Run execute_model in the driver worker.
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
assert not self.use_ray_spmd_worker, (
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
return self.driver_worker.execute_method("execute_model",
execute_model_req)
def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
if not self.use_ray_spmd_worker:
return super().execute_model(execute_model_req)
if self.forward_dag is None:
self.forward_dag = self._compiled_ray_dag(enable_asyncio=False)
if self.use_v1:
serialized_data = execute_model_req
else:
serialized_data = self.input_encoder.encode(execute_model_req)
outputs = ray.get(self.forward_dag.execute(serialized_data))
if self.use_v1:
output = outputs[0]
else:
output = self.output_decoder.decode(outputs[0])
return output
def _run_workers(
self,
method: Union[str, Callable],
*args,
async_run_tensor_parallel_workers_only: bool = False,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers. Can be used in the following
ways:
Args:
- async_run_tensor_parallel_workers_only: If True the method will be
run only in the remote TP workers, not the driver worker.
It will also be run asynchronously and return a list of futures
rather than blocking on the results.
- args/kwargs: All workers share the same args/kwargs
"""
if isinstance(method, str):
sent_method = method
else:
sent_method = cloudpickle.dumps(method)
del method
if self.use_ray_spmd_worker:
assert not async_run_tensor_parallel_workers_only, (
"async_run_tensor_parallel_workers_only is not supported for "
"spmd mode.")
if max_concurrent_workers:
raise NotImplementedError(
"max_concurrent_workers is not supported yet.")
# Start the ray workers first.
ray_workers = self.workers
if async_run_tensor_parallel_workers_only:
ray_workers = self.non_driver_workers
ray_worker_outputs = [
worker.execute_method.remote(sent_method, *args, **kwargs)
for worker in ray_workers
]
if async_run_tensor_parallel_workers_only:
# Just return futures
return ray_worker_outputs
driver_worker_output = []
# In SPMD mode, the driver worker is the same as any other worker,
# so we only explicitly execute on the driver worker if using a
# non-SPMD worker class.
if not self.use_ray_spmd_worker:
# Start the driver worker after all the ray workers.
driver_worker_output = [
self.driver_worker.execute_method(sent_method, *args, **kwargs)
]
# Get the results of the ray workers.
if self.workers:
ray_worker_outputs = ray.get(ray_worker_outputs)
return driver_worker_output + ray_worker_outputs
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
"""Wait for futures returned from _run_workers() with
async_run_remote_workers_only to complete."""
ray.get(parallel_worker_tasks)
def _check_ray_cgraph_installation(self):
import importlib.metadata
from packaging import version
required_version = version.parse("2.43.0")
current_version = version.parse(importlib.metadata.version("ray"))
if current_version < required_version:
raise ValueError(f"Ray version {required_version} is "
f"required, but found {current_version}")
import importlib.util
cgraph_spec = importlib.util.find_spec(
"ray.experimental.compiled_dag_ref")
if cgraph_spec is None:
raise ValueError("Ray Compiled Graph is not installed. "
"Run `pip install ray[cgraph]` to install it.")
cupy_spec = importlib.util.find_spec("cupy")
if (cupy_spec is None
and envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "nccl"):
raise ValueError(
"cupy is not installed but required since "
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE is set to 'nccl'. "
"Run `pip install ray[cgraph]` and check cupy installation.")
def _compiled_ray_dag(self, enable_asyncio: bool):
assert self.parallel_config.use_ray
self._check_ray_cgraph_installation()
# Enlarge the default value of "RAY_CGRAPH_get_timeout" to 300 seconds
# (it is 10 seconds by default). This is a Ray environment variable to
# control the timeout of getting result from a compiled graph execution,
# i.e., the distributed execution that includes model forward runs and
# intermediate tensor communications, in the case of vllm.
# Note: we should set this env var before importing
# ray.dag, otherwise it will not take effect.
os.environ.setdefault("RAY_CGRAPH_get_timeout", "300") # noqa: SIM112
from ray.dag import InputNode, MultiOutputNode
logger.info("RAY_CGRAPH_get_timeout is set to %s",
os.environ["RAY_CGRAPH_get_timeout"]) # noqa: SIM112
logger.info("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE = %s",
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE)
logger.info("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM = %s",
envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
channel_type = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
if channel_type not in ("auto", "nccl", "shm"):
raise ValueError(
"Invalid value for VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: "
f"{channel_type}. Valid values are: 'auto', 'nccl', or 'shm'.")
with InputNode() as input_data:
# Example DAG: PP=2, TP=4
#
# For V0:
# ExecuteModelRequest -> 0 -> (ExecuteModelReq, IntermediateTensors) -> 4 -> SamplerOutput # noqa: E501
# ExecuteModelRequest -> 1 -> (ExecuteModelReq, IntermediateTensors) -> 5 -> SamplerOutput # noqa: E501
# ExecuteModelRequest -> 2 -> (ExecuteModelReq, IntermediateTensors) -> 6 -> SamplerOutput # noqa: E501
# ExecuteModelRequest -> 3 -> (ExecuteModelReq, IntermediateTensors) -> 7 -> SamplerOutput # noqa: E501
#
# For V1:
# SchedulerOutput -> 0 -> (SchedulerOutput, IntermediateTensors) -> 4 -> ModelRunnerOutput # noqa: E501
# SchedulerOutput -> 1 -> (SchedulerOutput, IntermediateTensors) -> 5 -> ModelRunnerOutput # noqa: E501
# SchedulerOutput -> 2 -> (SchedulerOutput, IntermediateTensors) -> 6 -> ModelRunnerOutput # noqa: E501
# SchedulerOutput -> 3 -> (SchedulerOutput, IntermediateTensors) -> 7 -> ModelRunnerOutput # noqa: E501
# All workers in the first TP group will take in the
# ExecuteModelRequest as input.
outputs = [input_data for _ in self.pp_tp_workers[0]]
for pp_rank, tp_group in enumerate(self.pp_tp_workers):
# Each PP worker takes in the output of the previous PP worker,
# and the TP group executes in SPMD fashion.
if self.use_v1:
outputs = [
worker.execute_model_ray.
bind( # type: ignore[attr-defined]
outputs[i]) for i, worker in enumerate(tp_group)
]
else:
outputs = [
worker.execute_model_spmd.
bind( # type: ignore[attr-defined]
outputs[i]) for i, worker in enumerate(tp_group)
]
last_pp_rank = len(self.pp_tp_workers) - 1
if (pp_rank < last_pp_rank and
envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE != "shm"):
# Specify how intermediate tensors should be passed
# between pp stages, no need to specify for the last
# pp stage or when using shared memory (the default).
transport = envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE
outputs = [
output.with_tensor_transport(transport=transport)
for output in outputs
]
forward_dag = MultiOutputNode(outputs)
if envs.VLLM_USE_RAY_WRAPPED_PP_COMM:
from ray.experimental.channel.accelerator_context import (
register_accelerator_context)
from vllm.distributed.device_communicators.ray_communicator import (
RayPPCommunicator)
register_accelerator_context(torch_module_name="cuda",
communicator_cls=RayPPCommunicator)
logger.info("Using RayPPCommunicator "
"(which wraps vLLM _PP GroupCoordinator) "
"for Ray Compiled Graph communication.")
else:
logger.info("Using Ray's NCCL communicator for "
"Ray Compiled Graph communication.")
return forward_dag.experimental_compile(
enable_asyncio=enable_asyncio,
_overlap_gpu_communication=envs.
VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM)
def __del__(self):
self.shutdown()
async def execute_model_async(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
if not self.use_ray_spmd_worker:
return await super().execute_model_async(execute_model_req)
if self.forward_dag is None:
self.forward_dag = self._compiled_ray_dag(enable_asyncio=True)
serialized_data = self.input_encoder.encode(execute_model_req)
dag_future = await self.forward_dag.execute_async(serialized_data)
output = await dag_future[0]
return self.output_decoder.decode(output)
async def _driver_execute_model_async(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
assert not self.use_ray_spmd_worker, (
"driver_worker does not exist for VLLM_USE_RAY_SPMD_WORKER=1")
if not self.tp_driver_workers:
return await self.driver_exec_method("execute_model",
execute_model_req)
if self.pp_locks is None:
# This locks each pipeline parallel stage so multiple virtual
# engines can't execute on the same stage at the same time
# We create the locks here to avoid creating them in the constructor
# which uses a different asyncio loop.
self.pp_locks = [
asyncio.Lock()
for _ in range(self.parallel_config.pipeline_parallel_size)
]
tasks = [
asyncio.create_task(
_run_task_with_lock(self.driver_exec_method, self.pp_locks[0],
"execute_model", execute_model_req))
]
for pp_rank, driver_worker in enumerate(self.tp_driver_workers,
start=1):
tasks.append(
asyncio.create_task(
_run_task_with_lock(driver_worker.execute_method.remote,
self.pp_locks[pp_rank],
"execute_model", execute_model_req)))
results = await asyncio.gather(*tasks)
# Only the last PP stage has the final results.
return results[-1]
async def _start_worker_execution_loop(self):
assert not self.use_ray_spmd_worker, (
"worker loop is disabled for VLLM_USE_RAY_SPMD_WORKER=1")
coros = [
worker.execute_method.remote("start_worker_execution_loop")
for worker in self.non_driver_workers
]
return await asyncio.gather(*coros)
def check_health(self) -> None:
# Assume that the Ray workers are healthy.
# TODO: check the health of the Ray workers
return

View File

@ -14,7 +14,7 @@ from torch import nn
from vllm.config.lora import LoRAConfig
from vllm.logger import init_logger
from vllm.lora.layers import BaseLayerWithLoRA, LoRAMapping
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.lora_weights import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.peft_helper import PEFTHelper
from vllm.lora.punica_wrapper import get_punica_wrapper
from vllm.lora.utils import (from_layer, from_layer_logits_processor,

View File

@ -6,7 +6,7 @@ from typing import Any, Literal, Optional, Union
import torch
from vllm.config.lora import LoRAConfig
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.lora.models import (LoRAModel, LoRAModelManager,
LRUCacheLoRAModelManager, create_lora_manager)
@ -27,25 +27,26 @@ class WorkerLoRAManager:
def __init__(
self,
max_num_seqs: int,
max_num_batched_tokens: int,
vocab_size: int,
lora_config: LoRAConfig,
vllm_config: VllmConfig,
device: torch.device,
embedding_modules: dict[str, str],
embedding_padding_modules: list[str],
lora_model_cls: type[LoRAModel] = LoRAModel,
max_position_embeddings: Optional[int] = None,
):
self._lora_model_cls = lora_model_cls
self.embedding_modules = embedding_modules
self.embedding_padding_modules = embedding_padding_modules
self._cached_dummy_lora: Union[None, Literal[False], LoRAModel] = False
self.max_num_seqs = max_num_seqs
self.max_num_batched_tokens = max_num_batched_tokens
self.vocab_size = vocab_size
self.lora_config = lora_config
self.max_position_embeddings = max_position_embeddings
self.max_num_seqs = vllm_config.scheduler_config.max_num_seqs
self.max_num_batched_tokens = (
vllm_config.scheduler_config.max_num_batched_tokens)
self.vocab_size = vllm_config.model_config.get_vocab_size()
self.lora_config = vllm_config.lora_config
# Use get_text_config() in case of multimodal models
text_config = vllm_config.model_config.hf_config.get_text_config()
self.max_position_embeddings = text_config.max_position_embeddings
self.device = device
# Lazily initialized by create_lora_manager.
self._adapter_manager: LoRAModelManager

View File

@ -78,3 +78,12 @@ if HAS_TRITON:
"TritonOrDeepGemmExperts",
"BatchedTritonOrDeepGemmExperts",
]
else:
# Some model classes directly use the custom ops. Add placeholders
# to avoid import errors.
def _raise_exception(method: str):
raise NotImplementedError(
f"{method} is not implemented as lack of triton.")
fused_topk = lambda *args, **kwargs: _raise_exception("fused_topk")
fused_experts = lambda *args, **kwargs: _raise_exception("fused_experts")

View File

@ -286,6 +286,7 @@ class BatchedDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],

View File

@ -126,6 +126,7 @@ class BatchedTritonOrDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
@ -136,5 +137,5 @@ class BatchedTritonOrDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
assert experts is not None
experts.apply(output, hidden_states, w1, w2, topk_weights, topk_ids,
activation, global_num_experts, expert_map, a1q_scale,
workspace13, workspace2, expert_tokens_meta,
a2_scale, workspace13, workspace2, expert_tokens_meta,
apply_router_weight_on_input)

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional, Union
from typing import Optional, Union
import torch
@ -14,7 +14,7 @@ from vllm.model_executor.layers.quantization.utils.quant_utils import (
from vllm.utils import cdiv, has_triton_kernels
from vllm.utils.flashinfer import has_flashinfer_cutlass_fused_moe
if TYPE_CHECKING and has_triton_kernels:
if has_triton_kernels():
from triton_kernels.matmul_ogs import PrecisionConfig
logger = init_logger(__name__)

View File

@ -241,6 +241,7 @@ class CutlassExpertsFp8Base(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
@ -262,7 +263,7 @@ class CutlassExpertsFp8Base(mk.FusedMoEPermuteExpertsUnpermute):
run_cutlass_moe_fp8(
output, hidden_states, w1, w2, topk_ids, activation_callable,
global_num_experts, expert_map, self.w1_scale, self.w2_scale,
a1q_scale, self.a2_scale, self.ab_strides1, self.ab_strides2,
a1q_scale, a2_scale, self.ab_strides1, self.ab_strides2,
self.c_strides1, self.c_strides2, workspace13, workspace2,
expert_num_tokens,
self.out_dtype if self.out_dtype is not None else in_dtype,
@ -705,6 +706,7 @@ class CutlassExpertsFp4(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor], # unused
a2_scale: Optional[torch.Tensor], # unused
workspace13: Optional[torch.Tensor],
workspace2: Optional[torch.Tensor],
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],

View File

@ -214,13 +214,14 @@ class DeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
apply_router_weight_on_input: bool,
):
assert a1q_scale is not None
assert self.a2_scale is None
assert a2_scale is None
assert self.block_shape is not None
assert self.w1_scale is not None
assert self.w2_scale is not None

View File

@ -129,6 +129,7 @@ class FlashInferExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: Optional[torch.Tensor],
workspace2: Optional[torch.Tensor],
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],

View File

@ -688,6 +688,7 @@ class NaiveBatchedExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
@ -879,6 +880,7 @@ class BatchedTritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
@ -970,7 +972,7 @@ class BatchedTritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
intermediate_cache1.view(-1, N))
qintermediate_cache2, a2q_scale = batched_moe_kernel_quantize_input(
intermediate_cache2, self.a2_scale, max_num_tokens, E, N,
intermediate_cache2, a2_scale, max_num_tokens, E, N,
expert_num_tokens, self.quant_dtype, self.per_act_token_quant,
self.block_shape)

View File

@ -1598,6 +1598,7 @@ class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
@ -1690,7 +1691,7 @@ class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
a2q_scale: Optional[torch.Tensor] = None
qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
intermediate_cache2, self.a2_scale, self.quant_dtype,
intermediate_cache2, a2_scale, self.quant_dtype,
self.per_act_token_quant, self.block_shape)
invoke_fused_moe_kernel(

View File

@ -20,10 +20,10 @@ if has_triton_kernels():
from triton_kernels.matmul_ogs import (FnSpecs, FusedActivation,
matmul_ogs)
from triton_kernels.routing import routing
except ModuleNotFoundError:
except (ModuleNotFoundError, AttributeError) as e:
logger.error(
"Failed to import Triton kernels. Please make sure your triton "
"version is compatible.")
"version is compatible. Error: %s", e)
def triton_kernel_moe_forward(
@ -179,6 +179,7 @@ class BatchedOAITritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],

View File

@ -519,6 +519,7 @@ class FusedMoEPermuteExpertsUnpermute(ABC):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[ExpertTokensMetadata],
@ -634,6 +635,7 @@ class FusedMoEModularKernel(torch.nn.Module):
local_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
expert_tokens_meta: Optional[ExpertTokensMetadata],
apply_router_weight_on_input: bool,
) -> torch.Tensor:
@ -671,6 +673,7 @@ class FusedMoEModularKernel(torch.nn.Module):
global_num_experts=global_num_experts,
expert_map=expert_map,
a1q_scale=a1q_scale,
a2_scale=a2_scale,
workspace13=workspace13,
workspace2=workspace2,
expert_tokens_meta=expert_tokens_meta,
@ -718,6 +721,7 @@ class FusedMoEModularKernel(torch.nn.Module):
local_num_experts=local_num_experts,
expert_map=expert_map,
a1q_scale=a1q_scale,
a2_scale=self.fused_experts.a2_scale,
expert_tokens_meta=expert_tokens_meta,
apply_router_weight_on_input=apply_router_weight_on_input,
)
@ -803,6 +807,7 @@ class FusedMoEModularKernel(torch.nn.Module):
local_num_experts=local_num_experts,
expert_map=expert_map,
a1q_scale=c_a1q_scale,
a2_scale=c_a2_scale,
expert_tokens_meta=c_expert_tokens_meta,
apply_router_weight_on_input=apply_router_weight_on_input,
)

View File

@ -111,6 +111,7 @@ class TritonOrDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
@ -134,6 +135,7 @@ class TritonOrDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts,
expert_map,
a1q_scale,
a2_scale,
workspace13,
workspace2,
expert_tokens_meta,

View File

@ -103,6 +103,7 @@ class TrtLlmGenExperts(mk.FusedMoEPermuteExpertsUnpermute):
global_num_experts: int,
expert_map: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: Optional[mk.ExpertTokensMetadata],

View File

@ -241,7 +241,7 @@ class AutoRoundConfig(QuantizationConfig):
if isinstance(layer, FusedMoE):
if use_marlin:
return AWQMoEMethod(quant_args_marlin, layer.moe)
return AWQMoEMethod(quant_args_marlin, layer.moe_config)
from vllm.model_executor.layers.quantization.moe_wna16 import (
MoeWNA16Config)
@ -327,7 +327,7 @@ class AutoRoundConfig(QuantizationConfig):
if isinstance(layer, FusedMoE):
if use_marlin:
return GPTQMarlinMoEMethod(quant_args_marlin, layer.moe)
return GPTQMarlinMoEMethod(quant_args_marlin, layer.moe_config)
else:
from vllm.model_executor.layers.quantization.moe_wna16 import (
MoeWNA16Config)

View File

@ -160,6 +160,7 @@ class ModelOptFp8Config(QuantizationConfig):
def is_layer_excluded(self, prefix: str) -> bool:
"""
Check if a layer should be excluded from quantization.
Handles both exact matching (for fused layers) and substring matching.
This method handles both regular models and multimodal models that use
the language_model prefix. For multimodal models, it checks if the
@ -168,11 +169,18 @@ class ModelOptFp8Config(QuantizationConfig):
if self.exclude_modules is None:
return False
# Check if any excluded module matches the prefix
# First check exact matching with fused layer support
if is_layer_skipped(prefix, self.exclude_modules,
self.packed_modules_mapping):
return True
# Then check substring matching for patterns not caught by exact match
for module in self.exclude_modules:
if (module in prefix
or (prefix.startswith("language_model.")
and module in prefix.removeprefix("language_model."))):
# Skip exact matches already handled above
if (module != prefix and
(module in prefix or
(prefix.startswith("language_model.")
and module in prefix.removeprefix("language_model.")))):
return True
return False
@ -180,9 +188,10 @@ class ModelOptFp8Config(QuantizationConfig):
prefix: str) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
if isinstance(layer, LinearBase):
if (is_layer_skipped(prefix, self.exclude_modules,
self.packed_modules_mapping)
or self.is_layer_excluded(prefix)):
if self.is_layer_excluded(prefix):
return UnquantizedLinearMethod()
# Check if this is a vision model layer that should not be quantized
if ("vision_tower" in prefix or "vision_model" in prefix):
return UnquantizedLinearMethod()
return ModelOptFp8LinearMethod(self)
elif isinstance(layer, Attention):
@ -778,22 +787,34 @@ class ModelOptNvFp4Config(QuantizationConfig):
return cls(is_checkpoint_nvfp4_serialized, kv_cache_quant_algo,
exclude_modules, group_size)
def is_layer_excluded(self, prefix: str,
exclude_modules: list[str]) -> bool:
def is_layer_excluded(self, prefix: str) -> bool:
"""
Check if a layer should be excluded from quantization.
Handles both exact matching (for fused layers) and pattern matching.
"""
# First check exact matching with fused layer support
if is_layer_skipped(prefix, self.exclude_modules,
self.packed_modules_mapping):
return True
# Check regex pattern matching for patterns not caught by exact match
import regex as re
for pattern in exclude_modules:
regex_str = pattern.replace('.', r'\.').replace('*', r'.*')
if re.fullmatch(regex_str, prefix):
return True
for pattern in self.exclude_modules:
# Skip patterns that would be caught by exact matching
if '*' in pattern or '.' in pattern:
regex_str = pattern.replace('.', r'\.').replace('*', r'.*')
if re.fullmatch(regex_str, prefix):
return True
return False
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
if isinstance(layer, LinearBase):
if (is_layer_skipped(prefix, self.exclude_modules,
self.packed_modules_mapping)
or self.is_layer_excluded(prefix, self.exclude_modules)):
if self.is_layer_excluded(prefix):
return UnquantizedLinearMethod()
# Check if this is a vision model layer that should not be quantized
if ("vision_tower" in prefix or "vision_model" in prefix):
return UnquantizedLinearMethod()
return ModelOptNvFp4LinearMethod(self)
elif isinstance(layer, Attention):

View File

@ -638,8 +638,8 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
return None
if self.mxfp4_backend == Mxfp4Backend.TRITON:
w1_scale = layer.w13_precision_config
w2_scale = layer.w2_precision_config
w1_scale = self.w13_precision_config
w2_scale = self.w2_precision_config
else:
w1_scale = layer.w13_weight_scale
w2_scale = layer.w2_weight_scale

View File

@ -6,6 +6,8 @@ from typing import Optional
import torch
from vllm.model_executor.custom_op import CustomOp
from vllm.platforms import current_platform
from vllm.utils.flashinfer import has_flashinfer
from .common import apply_rotary_emb_torch
@ -30,9 +32,17 @@ class RotaryEmbedding(CustomOp):
self.base = base
self.is_neox_style = is_neox_style
self.dtype = dtype
# Flashinfer only supports head_size=64, 128, 256, 512.
# https://github.com/flashinfer-ai/flashinfer/blob/ebfd655efe830048dba5d582aaa61d61d1cf9a87/include/flashinfer/utils.cuh#L174-L202
self.use_flashinfer = (self.enabled()
and dtype in (torch.float16, torch.bfloat16)
and current_platform.is_cuda()
and has_flashinfer()
and self.head_size in [64, 128, 256, 512])
cache = self._compute_cos_sin_cache()
cache = cache.to(dtype)
if not self.use_flashinfer:
cache = cache.to(dtype)
self.cos_sin_cache: torch.Tensor
self.register_buffer("cos_sin_cache", cache, persistent=False)
@ -57,6 +67,14 @@ class RotaryEmbedding(CustomOp):
cache = torch.cat((cos, sin), dim=-1)
return cache
def _match_cos_sin_cache_dtype(self, query: torch.Tensor) -> None:
# __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
# is expensive, so avoid calling it if possible
if self.cos_sin_cache.device != query.device or \
self.cos_sin_cache.dtype != query.dtype:
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
dtype=query.dtype)
def forward_native(
self,
positions: torch.Tensor,
@ -94,15 +112,16 @@ class RotaryEmbedding(CustomOp):
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
if self.use_flashinfer:
torch.ops.vllm.flashinfer_rotary_embedding(positions, query, key,
self.head_size,
self.cos_sin_cache,
self.is_neox_style)
return query, key
from vllm import _custom_ops as ops
# __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
# is expensive, so avoid calling it if possible
if self.cos_sin_cache.device != query.device or \
self.cos_sin_cache.dtype != query.dtype:
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
dtype=query.dtype)
self._match_cos_sin_cache_dtype(query)
# ops.rotary_embedding() is an in-place operation
# that updates the query and key tensors.
ops.rotary_embedding(positions, query, key, self.head_size,
@ -117,8 +136,7 @@ class RotaryEmbedding(CustomOp):
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
from vllm._ipex_ops import ipex_ops as ops
self.cos_sin_cache = self.cos_sin_cache.to(positions.device,
dtype=query.dtype)
self._match_cos_sin_cache_dtype(query)
# ops.rotary_embedding() is an in-place operation
# that updates the query and key tensors.
if key is None:

View File

@ -6,6 +6,7 @@ import math
import torch
from vllm.platforms import current_platform
from vllm.utils import direct_register_custom_op
if current_platform.is_cuda():
from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
@ -103,3 +104,48 @@ def yarn_get_mscale(scale: float = 1) -> float:
if scale <= 1:
return 1.0
return 0.1 * math.log(scale) + 1.0
def _flashinfer_rotary_embedding(
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
head_size: int,
cos_sin_cache: torch.Tensor,
is_neox: bool,
) -> None:
"""Custom op wrapper for flashinfer's rotary embedding.
This is an in-place operation that modifies query and key tensors directly.
"""
from flashinfer.rope import apply_rope_with_cos_sin_cache_inplace
apply_rope_with_cos_sin_cache_inplace(
positions=positions,
query=query,
key=key,
head_size=head_size,
cos_sin_cache=cos_sin_cache,
is_neox=is_neox,
)
def _flashinfer_rotary_embedding_fake(
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
head_size: int,
cos_sin_cache: torch.Tensor,
is_neox: bool,
) -> None:
return
# Register flashinfer rotary embedding custom op
direct_register_custom_op(
op_name="flashinfer_rotary_embedding",
op_func=_flashinfer_rotary_embedding,
mutates_args=["query", "key"], # These tensors are modified in-place
fake_impl=_flashinfer_rotary_embedding_fake,
dispatch_key=current_platform.dispatch_key,
)

View File

@ -97,15 +97,13 @@ class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""PyTorch-native implementation equivalent to forward()."""
assert key is not None
self._match_cos_sin_cache_dtype(query)
query_rot = query[..., :self.rotary_dim]
key_rot = key[..., :self.rotary_dim]
if self.rotary_dim < self.head_size:
query_pass = query[..., self.rotary_dim:]
key_pass = key[..., self.rotary_dim:]
if self.cos_sin_cache.device != positions.device:
self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(
positions.device)
cos_sin = self.cos_sin_cache[torch.add(positions, offsets)
if offsets is not None else positions]
cos, sin = cos_sin.chunk(2, dim=-1)

View File

@ -59,7 +59,7 @@ class Llama4VisionRotaryEmbedding(RotaryEmbedding):
key: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
assert key is not None
self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(query.device)
self._match_cos_sin_cache_dtype(query)
query_ = torch.view_as_complex(query.float().reshape(
*query.shape[:-1], -1, 2))
key_ = torch.view_as_complex(key.float().reshape(

View File

@ -15,7 +15,7 @@ from .common import apply_rotary_emb_dispatch
@triton.jit
def _triton_qwen2vl_mrope_forward(
def _triton_mrope_forward(
q_ptr,
k_ptr,
cos,
@ -30,12 +30,14 @@ def _triton_qwen2vl_mrope_forward(
pad_hd: tl.constexpr,
mrope_section_t: tl.constexpr,
mrope_section_h: tl.constexpr,
mrope_section_w: tl.constexpr,
is_interleaved: tl.constexpr,
):
# Adapted from
# https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/qwen2vl_mrope.py
# This version supports flatten input tensors from vllm
# and supports cos and sin cache with shape (3, num_tokens, head_dim // 2)
# instead of (3, bsz, seq_len, head_dim)
# instead of (3, bsz, seq_len, head_dim), also supports interleaved rotary
pid = tl.program_id(0)
# locate start address
q_ptr = q_ptr + pid * (n_qh * hd)
@ -47,9 +49,6 @@ def _triton_qwen2vl_mrope_forward(
# ####################################################################
# Note: cos and sin now have shape (3, num_tokens, head_dim // 2)
t_end = mrope_section_t
h_end = t_end + mrope_section_h
# Updated stride calculation for half head_dim
half_rd = rd // 2
t_cos = cos + pid * half_rd
@ -61,9 +60,18 @@ def _triton_qwen2vl_mrope_forward(
# Updated offsets for half head_dim
cos_offsets = tl.arange(0, pad_hd // 2)
t_mask = cos_offsets < t_end
h_mask = (t_end <= cos_offsets) & (cos_offsets < h_end)
w_mask = (h_end <= cos_offsets) & (cos_offsets < half_rd)
if is_interleaved:
h_mask = (((cos_offsets % 3) == 1) &
(cos_offsets <= 3 * mrope_section_h))
w_mask = (((cos_offsets % 3) == 2) &
(cos_offsets <= 3 * mrope_section_w))
t_mask = ~(h_mask | w_mask)
else:
t_end = mrope_section_t
h_end = t_end + mrope_section_h
t_mask = cos_offsets < mrope_section_t
h_mask = (t_end <= cos_offsets) & (cos_offsets < h_end)
w_mask = (h_end <= cos_offsets) & (cos_offsets < half_rd)
t_cos_row = tl.load(t_cos + cos_offsets, mask=t_mask, other=0)
h_cos_row = tl.load(h_cos + cos_offsets, mask=h_mask, other=0)
@ -131,6 +139,7 @@ def triton_mrope(
mrope_section: list[int],
head_size: int,
rotary_dim: int,
mrope_interleaved: bool,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Qwen2VL mrope kernel.
@ -158,7 +167,7 @@ def triton_mrope(
cos = cos.contiguous()
sin = sin.contiguous()
_triton_qwen2vl_mrope_forward[(n_row, )](
_triton_mrope_forward[(n_row, )](
q,
k,
cos,
@ -173,6 +182,8 @@ def triton_mrope(
pad_hd,
mrope_section[0],
mrope_section[1],
mrope_section[2],
mrope_interleaved,
)
return q, k
@ -201,7 +212,7 @@ class MRotaryEmbedding(RotaryEmbedding):
is_neox_style: bool,
dtype: torch.dtype,
mrope_section: Optional[list[int]] = None,
mrope_interleaved: Optional[bool] = False,
mrope_interleaved: bool = False,
) -> None:
# In Qwen2.5-VL, the maximum index value is related to the duration of
# the input video. We enlarge max_position_embeddings to 4 times to get
@ -234,6 +245,7 @@ class MRotaryEmbedding(RotaryEmbedding):
assert positions.ndim == 1 or positions.ndim == 2
assert key is not None
self._match_cos_sin_cache_dtype(query)
num_tokens = positions.shape[-1]
cos_sin = self.cos_sin_cache[positions]
cos, sin = cos_sin.chunk(2, dim=-1)
@ -282,10 +294,7 @@ class MRotaryEmbedding(RotaryEmbedding):
assert positions.ndim == 1 or positions.ndim == 2
assert key is not None
if self.mrope_interleaved:
# TODO: add triton implementation to support mrope-interleaved
return self.forward_native(positions, query, key)
self._match_cos_sin_cache_dtype(query)
num_tokens = positions.shape[-1]
cos_sin = self.cos_sin_cache[positions]
cos, sin = cos_sin.chunk(2, dim=-1)
@ -302,6 +311,7 @@ class MRotaryEmbedding(RotaryEmbedding):
self.mrope_section,
self.head_size,
self.rotary_dim,
self.mrope_interleaved,
)
return q.reshape(query_shape), k.reshape(key_shape)

Some files were not shown because too many files have changed in this diff Show More