mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
106 Commits
codex/add-
...
v0.9.1
Author | SHA1 | Date | |
---|---|---|---|
b6553be1bc | |||
64a9af5afa | |||
e4248849ec | |||
467bef18a3 | |||
5f1ac1e1d1 | |||
9368cc90b2 | |||
32b3946bb4 | |||
6b1391ca7e | |||
a3f66e75d1 | |||
319cb1e351 | |||
1efef71645 | |||
646d62f636 | |||
6cd4ae8acd | |||
c016047ed7 | |||
9af6d22e4c | |||
4589b94032 | |||
cc867be19c | |||
3a7cd627a8 | |||
8058c91108 | |||
7d44c469fe | |||
31f58be96a | |||
ebb2f383b8 | |||
c1c7dbbeeb | |||
5cf2daea9a | |||
b8089195b4 | |||
770e5dcdb8 | |||
c57c9415b1 | |||
01810f9236 | |||
59abbd84f9 | |||
95a6568b5c | |||
0eca5eacd0 | |||
12e5829221 | |||
3a4d417707 | |||
8335667c22 | |||
e1c4380d4c | |||
e31ae3de36 | |||
2ffb9b6e07 | |||
cda10fa3e2 | |||
c123bc33f9 | |||
b9a1791e2c | |||
989dcee981 | |||
3d64d366e0 | |||
eaa2e51088 | |||
d77f7fb871 | |||
2d8476e465 | |||
88be823d57 | |||
4e4f63ad45 | |||
d2f0e7e615 | |||
122cdca5f6 | |||
cf02f9b283 | |||
c4296b1a27 | |||
66c508b137 | |||
84166fee97 | |||
6e0cd10f72 | |||
e010688f50 | |||
441b65d8c7 | |||
46ecc57973 | |||
b6a3a9f76d | |||
ca27f0f9c1 | |||
aad30bd306 | |||
94ecee6282 | |||
8267f9916f | |||
7353492a47 | |||
7661e92ef8 | |||
f168b85725 | |||
da511d54d8 | |||
65c69444b1 | |||
94870359cd | |||
0d49483ea9 | |||
90b78ec5f9 | |||
91a2ef98ea | |||
3da2313d78 | |||
b61dc5f972 | |||
f8a1a2d108 | |||
3465b87ef8 | |||
c8134bea15 | |||
cb6d572e85 | |||
87360308b7 | |||
aa49f14832 | |||
9ef9173cfa | |||
85e2b7bb13 | |||
61059bee40 | |||
ec89524f50 | |||
f20f9f063b | |||
9bc8bb07cf | |||
1aeb925f34 | |||
188a4590d8 | |||
18093084be | |||
da40380214 | |||
8fc57501d3 | |||
af7fc84fd2 | |||
0678b52251 | |||
25b918eee6 | |||
a408820f2f | |||
c56ed8bb0e | |||
78dcf56cb3 | |||
b2fac67130 | |||
23027e2daf | |||
c3fd4d669a | |||
ef3f98b59f | |||
7ee2590478 | |||
53a5a0ce30 | |||
d459fae0a2 | |||
c8dcc15921 | |||
8f4ffbd373 | |||
5f2cd251d2 |
@ -1,5 +1,6 @@
|
||||
steps:
|
||||
- label: "Build wheel - CUDA 12.8"
|
||||
id: build-wheel-cuda-12-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -11,6 +12,7 @@ steps:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- label: "Build wheel - CUDA 12.6"
|
||||
id: build-wheel-cuda-12-6
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -28,6 +30,7 @@ steps:
|
||||
|
||||
- label: "Build wheel - CUDA 11.8"
|
||||
# depends_on: block-build-cu118-wheel
|
||||
id: build-wheel-cuda-11-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -44,6 +47,7 @@ steps:
|
||||
|
||||
- label: "Build release image"
|
||||
depends_on: block-release-image-build
|
||||
id: build-release-image
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
@ -51,6 +55,18 @@ steps:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Annotate release workflow"
|
||||
depends_on:
|
||||
- build-release-image
|
||||
- build-wheel-cuda-12-8
|
||||
- build-wheel-cuda-12-6
|
||||
- build-wheel-cuda-11-8
|
||||
id: annotate-release-workflow
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "bash .buildkite/scripts/annotate-release.sh"
|
||||
|
||||
- label: "Build and publish TPU release image"
|
||||
depends_on: ~
|
||||
if: build.env("NIGHTLY") == "1"
|
||||
@ -70,9 +86,10 @@ steps:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- input: "Provide Release version here"
|
||||
id: input-release-version
|
||||
fields:
|
||||
- text: "What is the release version?"
|
||||
key: "release-version"
|
||||
key: release-version
|
||||
|
||||
- block: "Build CPU release image"
|
||||
key: block-cpu-release-image-build
|
||||
|
31
.buildkite/scripts/annotate-release.sh
Executable file
31
.buildkite/scripts/annotate-release.sh
Executable file
@ -0,0 +1,31 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
# Get release version and strip leading 'v' if present
|
||||
RELEASE_VERSION=$(buildkite-agent meta-data get release-version | sed 's/^v//')
|
||||
|
||||
if [ -z "$RELEASE_VERSION" ]; then
|
||||
echo "Error: RELEASE_VERSION is empty. 'release-version' metadata might not be set or is invalid."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
|
||||
To download the wheel:
|
||||
\`\`\`
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
|
||||
\`\`\`
|
||||
|
||||
To download and upload the image:
|
||||
|
||||
\`\`\`
|
||||
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
|
||||
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:latest
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
docker push vllm/vllm-openai:latest
|
||||
docker push vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
\`\`\`
|
||||
EOF
|
17
.buildkite/scripts/ci-clean-log.sh
Normal file
17
.buildkite/scripts/ci-clean-log.sh
Normal file
@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
# Usage: ./ci_clean_log.sh ci.log
|
||||
# This script strips timestamps and color codes from CI log files.
|
||||
|
||||
# Check if argument is given
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: $0 ci.log"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
INPUT_FILE="$1"
|
||||
|
||||
# Strip timestamps
|
||||
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' "$INPUT_FILE"
|
||||
|
||||
# Strip colorization
|
||||
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' "$INPUT_FILE"
|
@ -7,6 +7,7 @@ set -ex
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
if [[ -n "$container_id" ]]; then
|
||||
podman stop --all -t0
|
||||
podman rm -f "$container_id" || true
|
||||
fi
|
||||
podman system prune -f
|
||||
@ -37,7 +38,7 @@ function cpu_tests() {
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
||||
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
|
||||
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
|
@ -43,7 +43,10 @@ function cpu_tests() {
|
||||
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/language/generation -m cpu_model
|
||||
pytest -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -v -s tests/models/multimodal/generation --ignore=tests/models/multimodal/generation/test_mllama.py -m cpu_model"
|
||||
pytest -v -s tests/models/multimodal/generation \
|
||||
--ignore=tests/models/multimodal/generation/test_mllama.py \
|
||||
--ignore=tests/models/multimodal/generation/test_pixtral.py \
|
||||
-m cpu_model"
|
||||
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
|
@ -150,7 +150,7 @@ run_and_track_test 9 "test_multimodal.py" \
|
||||
run_and_track_test 10 "test_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
|
||||
run_and_track_test 11 "test_struct_output_generate.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k 'not test_structured_output_with_reasoning_matrices'"
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
|
||||
run_and_track_test 12 "test_moe_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
|
||||
run_and_track_test 13 "test_lora.py" \
|
||||
|
18
.buildkite/scripts/rerun-test.sh
Normal file
18
.buildkite/scripts/rerun-test.sh
Normal file
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage: ./rerun_test.sh path/to/test.py::test_name
|
||||
|
||||
# Check if argument is given
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: $0 path/to/test.py::test_name"
|
||||
echo "Example: $0 tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
TEST=$1
|
||||
COUNT=1
|
||||
|
||||
while pytest -sv "$TEST"; do
|
||||
COUNT=$((COUNT + 1))
|
||||
echo "RUN NUMBER ${COUNT}"
|
||||
done
|
24
.buildkite/scripts/tpu/cleanup_docker.sh
Executable file
24
.buildkite/scripts/tpu/cleanup_docker.sh
Executable file
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
docker_root=$(docker info -f '{{.DockerRootDir}}')
|
||||
if [ -z "$docker_root" ]; then
|
||||
echo "Failed to determine Docker root directory."
|
||||
exit 1
|
||||
fi
|
||||
echo "Docker root directory: $docker_root"
|
||||
# Check disk usage of the filesystem where Docker's root directory is located
|
||||
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
|
||||
# Define the threshold
|
||||
threshold=70
|
||||
if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
fi
|
14
.buildkite/scripts/tpu/config_v6e_1.env
Normal file
14
.buildkite/scripts/tpu/config_v6e_1.env
Normal file
@ -0,0 +1,14 @@
|
||||
# Environment config
|
||||
TEST_NAME=llama8b
|
||||
CONTAINER_NAME=vllm-tpu
|
||||
|
||||
# vllm config
|
||||
MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
MAX_NUM_SEQS=512
|
||||
MAX_NUM_BATCHED_TOKENS=512
|
||||
TENSOR_PARALLEL_SIZE=1
|
||||
MAX_MODEL_LEN=2048
|
||||
DOWNLOAD_DIR=/mnt/disks/persist
|
||||
EXPECTED_THROUGHPUT=8.0
|
||||
INPUT_LEN=1800
|
||||
OUTPUT_LEN=128
|
102
.buildkite/scripts/tpu/docker_run_bm.sh
Executable file
102
.buildkite/scripts/tpu/docker_run_bm.sh
Executable file
@ -0,0 +1,102 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ ! -f "$1" ]; then
|
||||
echo "Error: The env file '$1' does not exist."
|
||||
exit 1 # Exit the script with a non-zero status to indicate an error
|
||||
fi
|
||||
|
||||
ENV_FILE=$1
|
||||
|
||||
# For testing on local vm, use `set -a` to export all variables
|
||||
source /etc/environment
|
||||
source $ENV_FILE
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f tpu-test || true;
|
||||
docker rm -f vllm-tpu || true;
|
||||
docker rm -f $CONTAINER_NAME || true;
|
||||
}
|
||||
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# Build docker image.
|
||||
# TODO: build the image outside the script and share the image with other
|
||||
# tpu test if building time is too long.
|
||||
DOCKER_BUILDKIT=1 docker build \
|
||||
--build-arg max_jobs=16 \
|
||||
--build-arg USE_SCCACHE=1 \
|
||||
--build-arg GIT_REPO_CHECK=0 \
|
||||
--tag vllm/vllm-tpu-bm \
|
||||
--progress plain -f docker/Dockerfile.tpu .
|
||||
|
||||
LOG_ROOT=$(mktemp -d)
|
||||
# If mktemp fails, set -e will cause the script to exit.
|
||||
echo "Results will be stored in: $LOG_ROOT"
|
||||
|
||||
if [ -z "$HF_TOKEN" ]; then
|
||||
echo "Error: HF_TOKEN is not set or is empty."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Make sure mounted disk or dir exists
|
||||
if [ ! -d "$DOWNLOAD_DIR" ]; then
|
||||
echo "Error: Folder $DOWNLOAD_DIR does not exist. This is useually a mounted drive. If no mounted drive, just create a folder."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Run model $MODEL"
|
||||
echo
|
||||
|
||||
echo "starting docker...$CONTAINER_NAME"
|
||||
echo
|
||||
docker run \
|
||||
-v $DOWNLOAD_DIR:$DOWNLOAD_DIR \
|
||||
--env-file $ENV_FILE \
|
||||
-e HF_TOKEN="$HF_TOKEN" \
|
||||
-e TARGET_COMMIT=$BUILDKITE_COMMIT \
|
||||
-e MODEL=$MODEL \
|
||||
-e WORKSPACE=/workspace \
|
||||
--name $CONTAINER_NAME \
|
||||
-d \
|
||||
--privileged \
|
||||
--network host \
|
||||
-v /dev/shm:/dev/shm \
|
||||
vllm/vllm-tpu-bm tail -f /dev/null
|
||||
|
||||
echo "run script..."
|
||||
echo
|
||||
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/hardware_ci/run_bm.sh"
|
||||
|
||||
echo "copy result back..."
|
||||
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt
|
||||
BM_LOG="$LOG_ROOT/$TEST_NAME"_bm_log.txt
|
||||
docker cp "$CONTAINER_NAME:/workspace/vllm_log.txt" "$VLLM_LOG"
|
||||
docker cp "$CONTAINER_NAME:/workspace/bm_log.txt" "$BM_LOG"
|
||||
|
||||
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
|
||||
echo "throughput for $TEST_NAME at $BUILDKITE_COMMIT: $throughput"
|
||||
|
||||
if [ "$BUILDKITE" = "true" ]; then
|
||||
echo "Running inside Buildkite"
|
||||
buildkite-agent artifact upload "$VLLM_LOG"
|
||||
buildkite-agent artifact upload "$BM_LOG"
|
||||
else
|
||||
echo "Not running inside Buildkite"
|
||||
fi
|
||||
|
||||
#
|
||||
# compare the throughput with EXPECTED_THROUGHPUT
|
||||
# and assert meeting the expectation
|
||||
#
|
||||
if [[ -z "$throughput" || ! "$throughput" =~ ^[0-9]+([.][0-9]+)?$ ]]; then
|
||||
echo "Failed to get the throughput"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if (( $(echo "$throughput < $EXPECTED_THROUGHPUT" | bc -l) )); then
|
||||
echo "Error: throughput($throughput) is less than expected($EXPECTED_THROUGHPUT)"
|
||||
exit 1
|
||||
fi
|
94
.buildkite/scripts/tpu/run_bm.sh
Executable file
94
.buildkite/scripts/tpu/run_bm.sh
Executable file
@ -0,0 +1,94 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
VLLM_LOG="$WORKSPACE/vllm_log.txt"
|
||||
BM_LOG="$WORKSPACE/bm_log.txt"
|
||||
|
||||
if [ -n "$TARGET_COMMIT" ]; then
|
||||
head_hash=$(git rev-parse HEAD)
|
||||
if [ "$TARGET_COMMIT" != "$head_hash" ]; then
|
||||
echo "Error: target commit $TARGET_COMMIT does not match HEAD: $head_hash"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "model: $MODEL"
|
||||
echo
|
||||
|
||||
#
|
||||
# create a log folder
|
||||
#
|
||||
mkdir "$WORKSPACE/log"
|
||||
|
||||
# TODO: Move to image building.
|
||||
pip install pandas
|
||||
pip install datasets
|
||||
|
||||
#
|
||||
# create sonnet_4x
|
||||
#
|
||||
echo "Create sonnet_4x.txt"
|
||||
echo "" > benchmarks/sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
|
||||
done
|
||||
|
||||
#
|
||||
# start vllm service in backend
|
||||
#
|
||||
echo "lanching vllm..."
|
||||
echo "logging to $VLLM_LOG"
|
||||
echo
|
||||
|
||||
VLLM_USE_V1=1 vllm serve $MODEL \
|
||||
--seed 42 \
|
||||
--disable-log-requests \
|
||||
--max-num-seqs $MAX_NUM_SEQS \
|
||||
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
||||
--tensor-parallel-size $TENSOR_PARALLEL_SIZE \
|
||||
--no-enable-prefix-caching \
|
||||
--download_dir $DOWNLOAD_DIR \
|
||||
--max-model-len $MAX_MODEL_LEN > "$VLLM_LOG" 2>&1 &
|
||||
|
||||
|
||||
echo "wait for 20 minutes.."
|
||||
echo
|
||||
# sleep 1200
|
||||
# wait for 10 minutes...
|
||||
for i in {1..120}; do
|
||||
# TODO: detect other type of errors.
|
||||
if grep -Fq "raise RuntimeError" "$VLLM_LOG"; then
|
||||
echo "Detected RuntimeError, exiting."
|
||||
exit 1
|
||||
elif grep -Fq "Application startup complete" "$VLLM_LOG"; then
|
||||
echo "Application started"
|
||||
break
|
||||
else
|
||||
echo "wait for 10 seconds..."
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
|
||||
#
|
||||
# run test
|
||||
#
|
||||
echo "run benchmark test..."
|
||||
echo "logging to $BM_LOG"
|
||||
echo
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore-eos > "$BM_LOG"
|
||||
|
||||
echo "completed..."
|
||||
echo
|
||||
|
||||
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
|
||||
echo "throughput: $throughput"
|
||||
echo
|
@ -424,6 +424,9 @@ steps:
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/quantization
|
||||
commands:
|
||||
# temporary install here since we need nightly, will move to requirements/test.in
|
||||
# after torchao 0.12 release
|
||||
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
|
16
.github/CODEOWNERS
vendored
16
.github/CODEOWNERS
vendored
@ -10,15 +10,17 @@
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb @aarnphm
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm
|
||||
/vllm/entrypoints @aarnphm
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm
|
||||
|
||||
# Test ownership
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
@ -27,8 +29,8 @@ CMakeLists.txt @tlrmchlsmth
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
|
||||
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
|
||||
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/kernels @tlrmchlsmth @WoosukKwon
|
||||
/tests/model_executor/test_guided_processors.py @mgoin @russellb
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
@ -38,11 +40,11 @@ CMakeLists.txt @tlrmchlsmth
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat
|
||||
/tests/spec_decode @njhill @LiuXiaoxuanPKU
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
|
||||
/tests/v1/structured_output @mgoin @russellb
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
||||
/tests/weight_loading @mgoin @youkaichao
|
||||
/tests/lora @jeejeelee
|
||||
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
|
10
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
10
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
@ -8,6 +8,16 @@ body:
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
⚠️ **SECURITY WARNING:** Please review any text you paste to ensure it does not contain sensitive information such as:
|
||||
- API tokens or keys (e.g., Hugging Face tokens, OpenAI API keys)
|
||||
- Passwords or authentication credentials
|
||||
- Private URLs or endpoints
|
||||
- Personal or confidential data
|
||||
|
||||
Consider redacting or replacing sensitive values with placeholders like `<YOUR_TOKEN_HERE>` when sharing configuration or code examples.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Your current environment
|
||||
|
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -2,6 +2,7 @@
|
||||
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
|
||||
- [ ] The test plan, such as providing test command.
|
||||
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
|
||||
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
|
||||
|
||||
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE BEEN CONSIDERED.
|
||||
|
||||
@ -11,5 +12,7 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE B
|
||||
|
||||
## Test Result
|
||||
|
||||
## (Optional) Documentation Update
|
||||
|
||||
<!--- pyml disable-next-line no-emphasis-as-heading -->
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
|
||||
|
14
.github/mergify.yml
vendored
14
.github/mergify.yml
vendored
@ -36,6 +36,20 @@ pull_request_rules:
|
||||
add:
|
||||
- frontend
|
||||
|
||||
- name: label-llama
|
||||
description: Automatically apply llama label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^examples/.*llama.*\.py
|
||||
- files~=^tests/.*llama.*\.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
|
||||
- files~=^vllm/model_executor/models/.*llama.*\.py
|
||||
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- llama
|
||||
|
||||
- name: label-multi-modality
|
||||
description: Automatically apply multi-modality label
|
||||
conditions:
|
||||
|
@ -11,6 +11,8 @@ repos:
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
|
||||
exclude: '(.buildkite|benchmarks|build|examples)/.*'
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.7
|
||||
hooks:
|
||||
|
@ -308,7 +308,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
|
||||
# are not supported by Machete yet.
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
|
||||
if (MARLIN_ARCHS)
|
||||
|
||||
#
|
||||
@ -454,7 +454,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# kernels for the remaining archs that are not already built for 3x.
|
||||
# (Build 8.9 for FP8)
|
||||
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
|
||||
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
|
||||
"7.5;8.0;8.7;8.9+PTX" "${CUDA_ARCHS}")
|
||||
# subtract out the archs that are already built for 3x
|
||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||
if (SCALED_MM_2X_ARCHS)
|
||||
@ -543,8 +543,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# CUTLASS MoE kernels
|
||||
|
||||
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
|
||||
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
|
||||
# to compile MoE kernels that use its output.
|
||||
# on Hopper). get_cutlass_(pplx_)moe_mm_data should only be compiled
|
||||
# if it's possible to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
|
||||
@ -684,7 +684,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
|
||||
if (MARLIN_MOE_ARCHS)
|
||||
|
||||
#
|
||||
|
@ -10,11 +10,15 @@
|
||||
# 3. Set variables (ALL REQUIRED)
|
||||
# BASE: your directory for vllm repo
|
||||
# MODEL: the model served by vllm
|
||||
# TP: ways of tensor parallelism
|
||||
# DOWNLOAD_DIR: directory to download and load model weights.
|
||||
# INPUT_LEN: request input len
|
||||
# OUTPUT_LEN: request output len
|
||||
# MIN_CACHE_HIT_PCT: prefix cache rate
|
||||
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
|
||||
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
|
||||
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
|
||||
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
|
||||
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
|
||||
# 5. The final result will be saved in RESULT file.
|
||||
|
||||
@ -30,31 +34,27 @@
|
||||
TAG=$(date +"%Y_%m_%d_%H_%M")
|
||||
BASE=""
|
||||
MODEL="meta-llama/Llama-3.1-8B-Instruct"
|
||||
TP=1
|
||||
DOWNLOAD_DIR=""
|
||||
INPUT_LEN=4000
|
||||
OUTPUT_LEN=16
|
||||
MIN_CACHE_HIT_PCT_PCT=0
|
||||
MIN_CACHE_HIT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
NUM_SEQS_LIST="128 256"
|
||||
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
|
||||
|
||||
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
|
||||
RESULT="$LOG_FOLDER/result.txt"
|
||||
|
||||
echo "result file$ $RESULT"
|
||||
echo "result file: $RESULT"
|
||||
echo "model: $MODEL"
|
||||
echo
|
||||
|
||||
rm -rf $LOG_FOLDER
|
||||
mkdir -p $LOG_FOLDER
|
||||
|
||||
cd "$BASE/vllm"
|
||||
# create sonnet-4x.txt so that we can sample 2048 tokens for input
|
||||
echo "" > benchmarks/sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
|
||||
done
|
||||
|
||||
pip install datasets
|
||||
pip install -q datasets
|
||||
|
||||
current_hash=$(git rev-parse HEAD)
|
||||
echo "hash:$current_hash" >> "$RESULT"
|
||||
@ -64,53 +64,69 @@ best_throughput=0
|
||||
best_max_num_seqs=0
|
||||
best_num_batched_tokens=0
|
||||
best_goodput=0
|
||||
|
||||
start_server() {
|
||||
local gpu_memory_utilization=$1
|
||||
local max_num_seqs=$2
|
||||
local max_num_batched_tokens=$3
|
||||
local vllm_log=$4
|
||||
|
||||
pkill -f vllm
|
||||
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization $gpu_memory_utilization \
|
||||
--max-num-seqs $max_num_seqs \
|
||||
--max-num-batched-tokens $max_num_batched_tokens \
|
||||
--tensor-parallel-size $TP \
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir "$DOWNLOAD_DIR" \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
||||
server_started=1
|
||||
break
|
||||
else
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
|
||||
return 1
|
||||
else
|
||||
return 0
|
||||
fi
|
||||
}
|
||||
|
||||
run_benchmark() {
|
||||
local max_num_seqs=$1
|
||||
local max_num_batched_tokens=$2
|
||||
local gpu_memory_utilization=$3
|
||||
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
|
||||
echo "vllm_log: $vllm_log"
|
||||
echo
|
||||
rm -f $vllm_log
|
||||
pkill -f vllm
|
||||
|
||||
# start the server
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization 0.98 \
|
||||
--max-num-seqs $max_num_seqs \
|
||||
--max-num-batched-tokens $max_num_batched_tokens \
|
||||
--tensor-parallel-size 1 \
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir $DOWNLOAD_DIR \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
echo "wait for 10 minutes.."
|
||||
echo
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
if grep -Fq "Application startup complete" "$vllm_log"; then
|
||||
echo "Application started"
|
||||
server_started=1
|
||||
break
|
||||
else
|
||||
# echo "wait for 10 seconds..."
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
return 1
|
||||
echo "starting server..."
|
||||
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log
|
||||
result=$?
|
||||
if [[ "$result" -eq 1 ]]; then
|
||||
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
else
|
||||
echo "server started."
|
||||
fi
|
||||
echo
|
||||
|
||||
echo "run benchmark test..."
|
||||
echo
|
||||
meet_latency_requirement=0
|
||||
# get a basic qps by using request-rate inf
|
||||
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
|
||||
@ -118,29 +134,29 @@ run_benchmark() {
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
--request-rate inf \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
--num-prompts 1000 \
|
||||
--random-prefix-len $prefix_len \
|
||||
--port 8004 &> "$bm_log"
|
||||
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
meet_latency_requirement=1
|
||||
request_rate=inf
|
||||
fi
|
||||
|
||||
if (( ! meet_latency_requirement )); then
|
||||
# start from request-rate as int(through_put) + 1
|
||||
request_rate=$((${through_put%.*} + 1))
|
||||
# start from request-rate as int(throughput) + 1
|
||||
request_rate=$((${throughput%.*} + 1))
|
||||
while ((request_rate > 0)); do
|
||||
# clear prefix cache
|
||||
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
|
||||
@ -149,19 +165,18 @@ run_benchmark() {
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore_eos \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
--request-rate $request_rate \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
--random-prefix-len $prefix_len \
|
||||
--port 8004 &> "$bm_log"
|
||||
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
@ -173,10 +188,10 @@ run_benchmark() {
|
||||
fi
|
||||
# write the results and update the best result.
|
||||
if ((meet_latency_requirement)); then
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
|
||||
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
|
||||
best_throughput=$through_put
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
|
||||
if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
|
||||
best_throughput=$throughput
|
||||
best_max_num_seqs=$max_num_seqs
|
||||
best_num_batched_tokens=$max_num_batched_tokens
|
||||
best_goodput=$goodput
|
||||
@ -188,22 +203,39 @@ run_benchmark() {
|
||||
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
rm -f $vllm_log
|
||||
printf '=%.0s' $(seq 1 20)
|
||||
return 0
|
||||
}
|
||||
|
||||
read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
|
||||
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
|
||||
|
||||
num_seqs_list="128 256"
|
||||
num_batched_tokens_list="512 1024 2048 4096"
|
||||
for num_seqs in $num_seqs_list; do
|
||||
for num_batched_tokens in $num_batched_tokens_list; do
|
||||
run_benchmark $num_seqs $num_batched_tokens
|
||||
exit 0
|
||||
# first find out the max gpu-memory-utilization without HBM OOM.
|
||||
gpu_memory_utilization=0.98
|
||||
find_gpu_memory_utilization=0
|
||||
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
|
||||
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
|
||||
result=$?
|
||||
if [[ "$result" -eq 0 ]]; then
|
||||
find_gpu_memory_utilization=1
|
||||
break
|
||||
else
|
||||
gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
|
||||
fi
|
||||
done
|
||||
|
||||
if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
|
||||
echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
|
||||
else
|
||||
echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
for num_seqs in "${num_seqs_list[@]}"; do
|
||||
for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
|
||||
run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
|
||||
done
|
||||
done
|
||||
echo "finish permutations"
|
||||
|
@ -12,7 +12,6 @@ On the client side, run:
|
||||
--model <your_model> \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--structured-output-backend auto \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
|
||||
|
@ -66,4 +66,9 @@ class InfEncoder(json.JSONEncoder):
|
||||
|
||||
def write_to_json(filename: str, records: list) -> None:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(records, f, cls=InfEncoder)
|
||||
json.dump(
|
||||
records,
|
||||
f,
|
||||
cls=InfEncoder,
|
||||
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
|
||||
)
|
||||
|
@ -5,11 +5,11 @@ import copy
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
import triton
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
|
||||
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
|
@ -91,7 +91,7 @@ def bench_run(
|
||||
|
||||
score = torch.randn((m, num_experts), device=device, dtype=dtype)
|
||||
|
||||
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
|
||||
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
|
||||
|
||||
quant_blocksize = 16
|
||||
w1_blockscale = torch.empty(
|
||||
|
@ -7,8 +7,8 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
cutlass_moe_fp8,
|
||||
fused_experts,
|
||||
fused_topk,
|
||||
)
|
||||
@ -70,18 +70,9 @@ def bench_run(
|
||||
w1_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
|
||||
w2_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
|
||||
|
||||
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
|
||||
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
|
||||
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
|
||||
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
|
||||
|
||||
for expert in range(num_experts):
|
||||
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(w2[expert])
|
||||
w1_q_notransp = w1_q.clone()
|
||||
w2_q_notransp = w2_q.clone()
|
||||
w1_q = w1_q.transpose(1, 2)
|
||||
w2_q = w2_q.transpose(1, 2)
|
||||
|
||||
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
|
||||
|
||||
@ -122,10 +113,6 @@ def bench_run(
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
for _ in range(num_repeats):
|
||||
@ -133,14 +120,10 @@ def bench_run(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
@ -153,10 +136,6 @@ def bench_run(
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
):
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
@ -165,14 +144,10 @@ def bench_run(
|
||||
a,
|
||||
w1_q,
|
||||
w2_q,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
|
||||
@ -218,10 +193,6 @@ def bench_run(
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
@ -230,8 +201,8 @@ def bench_run(
|
||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
||||
run_triton_from_graph(
|
||||
a,
|
||||
w1_q_notransp,
|
||||
w2_q_notransp,
|
||||
w1_q,
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
@ -250,18 +221,12 @@ def bench_run(
|
||||
"w2": w2,
|
||||
"score": score,
|
||||
"topk": topk,
|
||||
"w1_q_notransp": w1_q_notransp,
|
||||
"w2_q_notransp": w2_q_notransp,
|
||||
# Cutlass params
|
||||
"a_scale": a_scale,
|
||||
"w1_q": w1_q,
|
||||
"w2_q": w2_q,
|
||||
"w1_scale": w1_scale,
|
||||
"w2_scale": w2_scale,
|
||||
"ab_strides1": ab_strides1,
|
||||
"c_strides1": c_strides1,
|
||||
"ab_strides2": ab_strides2,
|
||||
"c_strides2": c_strides2,
|
||||
# cuda graph params
|
||||
"cutlass_graph": cutlass_graph,
|
||||
"triton_graph": triton_graph,
|
||||
@ -279,8 +244,8 @@ def bench_run(
|
||||
# Warmup
|
||||
run_triton_moe(
|
||||
a,
|
||||
w1_q_notransp,
|
||||
w2_q_notransp,
|
||||
w1_q,
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
@ -291,7 +256,7 @@ def bench_run(
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
|
||||
stmt="run_triton_moe(a, w1_q, w2_q, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
@ -322,16 +287,12 @@ def bench_run(
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
ab_strides1,
|
||||
c_strides1,
|
||||
ab_strides2,
|
||||
c_strides2,
|
||||
num_warmup,
|
||||
)
|
||||
|
||||
results.append(
|
||||
benchmark.Timer(
|
||||
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
|
||||
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, num_runs)", # noqa: E501
|
||||
globals=globals,
|
||||
label=label,
|
||||
sub_label=sub_label,
|
||||
|
@ -7,7 +7,6 @@ import time
|
||||
from contextlib import nullcontext
|
||||
from datetime import datetime
|
||||
from itertools import product
|
||||
from types import SimpleNamespace
|
||||
from typing import Any, TypedDict
|
||||
|
||||
import ray
|
||||
@ -43,7 +42,7 @@ def benchmark_config(
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
num_iters: int = 100,
|
||||
block_quant_shape: List[int] = None,
|
||||
block_quant_shape: list[int] = None,
|
||||
use_deep_gemm: bool = False,
|
||||
) -> float:
|
||||
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
|
||||
@ -400,7 +399,7 @@ class BenchmarkWorker:
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: List[int] = None,
|
||||
block_quant_shape: list[int] = None,
|
||||
use_deep_gemm: bool = False,
|
||||
) -> tuple[dict[str, int], float]:
|
||||
current_platform.seed_everything(self.seed)
|
||||
@ -532,7 +531,7 @@ def save_configs(
|
||||
dtype: torch.dtype,
|
||||
use_fp8_w8a8: bool,
|
||||
use_int8_w8a16: bool,
|
||||
block_quant_shape: List[int],
|
||||
block_quant_shape: list[int],
|
||||
) -> None:
|
||||
dtype_str = get_config_dtype_str(
|
||||
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
|
||||
@ -563,7 +562,6 @@ def main(args: argparse.Namespace):
|
||||
config = get_config(model=args.model, trust_remote_code=args.trust_remote_code)
|
||||
if args.model_prefix:
|
||||
config = getattr(config, args.model_prefix)
|
||||
config = SimpleNamespace(**config)
|
||||
|
||||
if config.architectures[0] == "DbrxForCausalLM":
|
||||
E = config.ffn_config.moe_num_experts
|
||||
@ -595,11 +593,7 @@ def main(args: argparse.Namespace):
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
|
||||
hidden_size = config.hidden_size
|
||||
dtype = (
|
||||
torch.float16
|
||||
if current_platform.is_rocm()
|
||||
else getattr(torch, config.torch_dtype)
|
||||
)
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||
block_quant_shape = get_weight_block_size_safety(config)
|
||||
|
@ -75,6 +75,7 @@ if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
|
||||
else()
|
||||
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
|
||||
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
|
||||
find_isa(${CPUINFO} "Power11" POWER11_FOUND)
|
||||
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
|
||||
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
@ -106,13 +107,19 @@ elseif (AVX2_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
|
||||
message(WARNING "vLLM CPU backend using AVX2 ISA")
|
||||
|
||||
elseif (POWER9_FOUND OR POWER10_FOUND)
|
||||
elseif (POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||
message(STATUS "PowerPC detected")
|
||||
# Check for PowerPC VSX support
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=native"
|
||||
"-mtune=native")
|
||||
if (POWER9_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=power9"
|
||||
"-mtune=power9")
|
||||
elseif (POWER10_FOUND OR POWER11_FOUND)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mvsx"
|
||||
"-mcpu=power10"
|
||||
"-mtune=power10")
|
||||
endif()
|
||||
|
||||
elseif (ASIMD_FOUND)
|
||||
message(STATUS "ARMv8 or later architecture detected")
|
||||
|
@ -30,4 +30,8 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
||||
int64_t BLOCK_SIZE_K, int64_t bit);
|
||||
#endif
|
||||
|
||||
bool moe_permute_unpermute_supported();
|
||||
bool moe_permute_unpermute_supported();
|
||||
|
||||
void shuffle_rows(const torch::Tensor& input_tensor,
|
||||
const torch::Tensor& dst2src_map,
|
||||
torch::Tensor& output_tensor);
|
@ -130,6 +130,62 @@ void moe_unpermute(
|
||||
});
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void shuffleInputRowsKernel(const T* input,
|
||||
const int32_t* dst2src_map, T* output,
|
||||
int64_t num_src_rows,
|
||||
int64_t num_dst_rows, int64_t num_cols) {
|
||||
int64_t dest_row_idx = blockIdx.x;
|
||||
int64_t const source_row_idx = dst2src_map[dest_row_idx];
|
||||
|
||||
if (blockIdx.x < num_dst_rows) {
|
||||
// Load 128-bits per thread
|
||||
constexpr int64_t ELEM_PER_THREAD = 128 / sizeof(T) / 8;
|
||||
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
|
||||
|
||||
// Duplicate and permute rows
|
||||
auto const* source_row_ptr =
|
||||
reinterpret_cast<DataElem const*>(input + source_row_idx * num_cols);
|
||||
auto* dest_row_ptr =
|
||||
reinterpret_cast<DataElem*>(output + dest_row_idx * num_cols);
|
||||
|
||||
int64_t const start_offset = threadIdx.x;
|
||||
int64_t const stride = blockDim.x;
|
||||
int64_t const num_elems_in_col = num_cols / ELEM_PER_THREAD;
|
||||
|
||||
for (int elem_index = start_offset; elem_index < num_elems_in_col;
|
||||
elem_index += stride) {
|
||||
dest_row_ptr[elem_index] = source_row_ptr[elem_index];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void shuffle_rows(const torch::Tensor& input_tensor,
|
||||
const torch::Tensor& dst2src_map,
|
||||
torch::Tensor& output_tensor) {
|
||||
TORCH_CHECK(input_tensor.scalar_type() == output_tensor.scalar_type(),
|
||||
"Input and output tensors must have the same data type");
|
||||
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
int64_t const blocks = output_tensor.size(0);
|
||||
int64_t const threads = 256;
|
||||
int64_t const num_dest_rows = output_tensor.size(0);
|
||||
int64_t const num_src_rows = input_tensor.size(0);
|
||||
int64_t const num_cols = input_tensor.size(1);
|
||||
|
||||
TORCH_CHECK(!(num_cols % (128 / sizeof(input_tensor.scalar_type()) / 8)),
|
||||
"num_cols must be divisible by 128 / "
|
||||
"sizeof(input_tensor.scalar_type()) / 8");
|
||||
|
||||
MOE_DISPATCH(input_tensor.scalar_type(), [&] {
|
||||
shuffleInputRowsKernel<scalar_t><<<blocks, threads, 0, stream>>>(
|
||||
reinterpret_cast<scalar_t*>(input_tensor.data_ptr()),
|
||||
dst2src_map.data_ptr<int32_t>(),
|
||||
reinterpret_cast<scalar_t*>(output_tensor.data_ptr()), num_src_rows,
|
||||
num_dest_rows, num_cols);
|
||||
});
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void moe_permute(const torch::Tensor& input, const torch::Tensor& topk_weights,
|
||||
|
@ -14,12 +14,13 @@
|
||||
__VA_ARGS__(); \
|
||||
break; \
|
||||
}
|
||||
#define MOE_DISPATCH_FLOAT_CASE(...) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__)
|
||||
#define MOE_DISPATCH_FLOAT_CASE(...) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
||||
MOE_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
|
||||
|
||||
#define MOE_DISPATCH(TYPE, ...) \
|
||||
MOE_SWITCH(TYPE, MOE_DISPATCH_FLOAT_CASE(__VA_ARGS__))
|
||||
@ -39,6 +40,11 @@ template <>
|
||||
struct ScalarType2CudaType<at::ScalarType::BFloat16> {
|
||||
using type = __nv_bfloat16;
|
||||
};
|
||||
// uint8 for packed fp4
|
||||
template <>
|
||||
struct ScalarType2CudaType<at::ScalarType::Byte> {
|
||||
using type = uint8_t;
|
||||
};
|
||||
|
||||
// #if __CUDA_ARCH__ >= 890
|
||||
// fp8
|
||||
|
@ -81,6 +81,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("moe_permute_unpermute_supported() -> bool");
|
||||
m.impl("moe_permute_unpermute_supported", &moe_permute_unpermute_supported);
|
||||
|
||||
// Row shuffle for MoE
|
||||
m.def(
|
||||
"shuffle_rows(Tensor input_tensor, Tensor dst2src_map, Tensor! "
|
||||
"output_tensor) -> ()");
|
||||
m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
14
csrc/ops.h
14
csrc/ops.h
@ -236,7 +236,8 @@ void cutlass_moe_mm(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides);
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch);
|
||||
|
||||
void cutlass_fp4_group_mm(
|
||||
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
|
||||
@ -248,7 +249,16 @@ void get_cutlass_moe_mm_data(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k);
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m, const int64_t n,
|
||||
const int64_t k);
|
||||
|
||||
void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
|
@ -9,10 +9,6 @@ void cutlass_scaled_mm_blockwise_sm100_fp8(torch::Tensor& out,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales) {
|
||||
TORCH_CHECK(
|
||||
a.size(0) % 4 == 0,
|
||||
"Input tensor must have a number of rows that is a multiple of 4. ",
|
||||
"but got: ", a.size(0), " rows.");
|
||||
if (out.dtype() == torch::kBFloat16) {
|
||||
cutlass_gemm_blockwise_sm100_fp8_dispatch<cutlass::bfloat16_t>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
|
@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/numeric_types.h"
|
||||
|
||||
@ -22,49 +23,49 @@ namespace vllm {
|
||||
|
||||
using namespace cute;
|
||||
|
||||
template <typename OutType, typename MmaTileShape, typename ScalesPerTile,
|
||||
class ClusterShape, typename EpilogueScheduler,
|
||||
typename MainloopScheduler>
|
||||
// clang-format off
|
||||
template <class OutType, int ScaleGranularityM,
|
||||
int ScaleGranularityN, int ScaleGranularityK,
|
||||
class MmaTileShape, class ClusterShape,
|
||||
class EpilogueScheduler, class MainloopScheduler,
|
||||
bool swap_ab_ = false>
|
||||
struct cutlass_3x_gemm_fp8_blockwise {
|
||||
static constexpr bool swap_ab = swap_ab_;
|
||||
using ElementAB = cutlass::float_e4m3_t;
|
||||
|
||||
using ElementA = ElementAB;
|
||||
using LayoutA = cutlass::layout::RowMajor;
|
||||
using LayoutA_Transpose = typename cutlass::layout::LayoutTranspose<LayoutA>::type;
|
||||
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
|
||||
|
||||
using ElementB = ElementAB;
|
||||
using LayoutB = cutlass::layout::ColumnMajor;
|
||||
using LayoutB_Transpose = typename cutlass::layout::LayoutTranspose<LayoutB>::type;
|
||||
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
|
||||
|
||||
using ElementC = void;
|
||||
using ElementD = OutType;
|
||||
using LayoutD = cutlass::layout::RowMajor;
|
||||
using LayoutD_Transpose = typename cutlass::layout::LayoutTranspose<LayoutD>::type;
|
||||
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
||||
|
||||
using ElementC = void; // TODO: support bias
|
||||
using LayoutC = LayoutD;
|
||||
using LayoutC_Transpose = LayoutD_Transpose;
|
||||
static constexpr int AlignmentC = AlignmentD;
|
||||
|
||||
using ElementAccumulator = float;
|
||||
using ElementCompute = float;
|
||||
using ElementBlockScale = float;
|
||||
|
||||
// MMA and Cluster Tile Shapes
|
||||
// Shape of the tile computed by tcgen05 MMA, could be across 2 SMs if Cluster
|
||||
// Shape %2 == 0 using MmaTileShape_MNK = Shape<_128,_128,_128>;
|
||||
static constexpr int ScaleMsPerTile = size<0>(ScalesPerTile{});
|
||||
static constexpr int ScaleGranularityM =
|
||||
size<0>(MmaTileShape{}) / ScaleMsPerTile;
|
||||
static constexpr int ScaleGranularityN =
|
||||
size<1>(MmaTileShape{}) / size<1>(ScalesPerTile{});
|
||||
static constexpr int ScaleGranularityK =
|
||||
size<2>(MmaTileShape{}) / size<2>(ScalesPerTile{});
|
||||
using ScaleConfig = conditional_t<swap_ab,
|
||||
cutlass::detail::Sm100BlockwiseScaleConfig<
|
||||
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
|
||||
cute::UMMA::Major::K, cute::UMMA::Major::MN>,
|
||||
cutlass::detail::Sm100BlockwiseScaleConfig<
|
||||
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
|
||||
cute::UMMA::Major::MN, cute::UMMA::Major::K>>;
|
||||
|
||||
// Shape of the threadblocks in a cluster
|
||||
using ClusterShape_MNK = ClusterShape;
|
||||
|
||||
using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
|
||||
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
|
||||
cute::UMMA::Major::MN, cute::UMMA::Major::K>;
|
||||
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
|
||||
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
|
||||
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
|
||||
|
||||
@ -73,7 +74,6 @@ struct cutlass_3x_gemm_fp8_blockwise {
|
||||
|
||||
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
|
||||
using ElementScalar = float;
|
||||
// clang-format off
|
||||
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
|
||||
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
@ -84,33 +84,47 @@ struct cutlass_3x_gemm_fp8_blockwise {
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
ElementC,
|
||||
LayoutC,
|
||||
conditional_t<swap_ab, LayoutC_Transpose, LayoutC>,
|
||||
AlignmentC,
|
||||
ElementD,
|
||||
LayoutD,
|
||||
conditional_t<swap_ab, LayoutD_Transpose, LayoutD>,
|
||||
AlignmentD,
|
||||
EpilogueScheduler,
|
||||
DefaultOperation
|
||||
>::CollectiveOp;
|
||||
|
||||
using StageCountType = cutlass::gemm::collective::StageCountAuto;
|
||||
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
OperatorClass,
|
||||
ElementA,
|
||||
cute::tuple<LayoutA, LayoutSFA>,
|
||||
AlignmentA,
|
||||
ElementB,
|
||||
cute::tuple<LayoutB, LayoutSFB>,
|
||||
AlignmentB,
|
||||
ElementAccumulator,
|
||||
MmaTileShape,
|
||||
ClusterShape,
|
||||
|
||||
using CollectiveMainloop = conditional_t<swap_ab,
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
OperatorClass,
|
||||
ElementB,
|
||||
cute::tuple<LayoutB_Transpose, LayoutSFA>,
|
||||
AlignmentB,
|
||||
ElementA,
|
||||
cute::tuple<LayoutA_Transpose, LayoutSFB>,
|
||||
AlignmentA,
|
||||
ElementAccumulator,
|
||||
MmaTileShape,
|
||||
ClusterShape,
|
||||
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
||||
MainloopScheduler
|
||||
>::CollectiveOp;
|
||||
// clang-format on
|
||||
MainloopScheduler
|
||||
>::CollectiveOp,
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag,
|
||||
OperatorClass,
|
||||
ElementA,
|
||||
cute::tuple<LayoutA, LayoutSFA>,
|
||||
AlignmentA,
|
||||
ElementB,
|
||||
cute::tuple<LayoutB, LayoutSFB>,
|
||||
AlignmentB,
|
||||
ElementAccumulator,
|
||||
MmaTileShape,
|
||||
ClusterShape,
|
||||
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
|
||||
MainloopScheduler
|
||||
>::CollectiveOp>;
|
||||
|
||||
using KernelType = enable_sm100_only<cutlass::gemm::kernel::GemmUniversal<
|
||||
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue>>;
|
||||
@ -123,6 +137,7 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales) {
|
||||
static constexpr bool swap_ab = Gemm::swap_ab;
|
||||
using GemmKernel = typename Gemm::GemmKernel;
|
||||
using StrideA = typename Gemm::GemmKernel::StrideA;
|
||||
using StrideB = typename Gemm::GemmKernel::StrideB;
|
||||
@ -136,7 +151,6 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
using ElementD = typename Gemm::ElementD;
|
||||
|
||||
int32_t m = a.size(0), n = b.size(1), k = a.size(1);
|
||||
auto prob_shape = cute::make_shape(m, n, k, 1);
|
||||
|
||||
StrideA a_stride;
|
||||
StrideB b_stride;
|
||||
@ -146,11 +160,13 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
b_stride =
|
||||
cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
|
||||
c_stride =
|
||||
cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(m, n, 1));
|
||||
cutlass::make_cute_packed_stride(StrideC{}, swap_ab ? cute::make_shape(n, m, 1) : cute::make_shape(m, n, 1));
|
||||
|
||||
LayoutSFA layout_SFA =
|
||||
LayoutSFA layout_SFA = swap_ab ?
|
||||
ScaleConfig::tile_atom_to_shape_SFA(make_shape(n, m, k, 1)) :
|
||||
ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
|
||||
LayoutSFB layout_SFB =
|
||||
LayoutSFB layout_SFB = swap_ab ?
|
||||
ScaleConfig::tile_atom_to_shape_SFB(make_shape(n, m, k, 1)) :
|
||||
ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));
|
||||
|
||||
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
|
||||
@ -158,9 +174,22 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
|
||||
auto a_scales_ptr = static_cast<float*>(a_scales.data_ptr());
|
||||
auto b_scales_ptr = static_cast<float*>(b_scales.data_ptr());
|
||||
|
||||
typename GemmKernel::MainloopArguments mainloop_args{
|
||||
a_ptr, a_stride, b_ptr, b_stride,
|
||||
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB};
|
||||
auto mainloop_args = [&](){
|
||||
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
|
||||
if (swap_ab) {
|
||||
return typename GemmKernel::MainloopArguments{
|
||||
b_ptr, b_stride, a_ptr, a_stride,
|
||||
b_scales_ptr, layout_SFA, a_scales_ptr, layout_SFB
|
||||
};
|
||||
}
|
||||
else {
|
||||
return typename GemmKernel::MainloopArguments{
|
||||
a_ptr, a_stride, b_ptr, b_stride,
|
||||
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB
|
||||
};
|
||||
}
|
||||
}();
|
||||
auto prob_shape = swap_ab ? cute::make_shape(n, m, k, 1) : cute::make_shape(m, n, k, 1);
|
||||
|
||||
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
|
||||
typename GemmKernel::EpilogueArguments epilogue_args{
|
||||
@ -175,29 +204,74 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales) {
|
||||
auto m = a.size(0);
|
||||
auto k = a.size(1);
|
||||
auto n = b.size(1);
|
||||
int sms;
|
||||
int32_t m = a.size(0), n = b.size(1), k = a.size(1), sms;
|
||||
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
|
||||
|
||||
auto should_use_2sm = [&sms](int m, int n, int tile1SM = 128) {
|
||||
return std::ceil(static_cast<float>(m) / tile1SM) *
|
||||
std::ceil(static_cast<float>(n) / tile1SM) >=
|
||||
sms;
|
||||
};
|
||||
bool use_2sm = should_use_2sm(m, n);
|
||||
if (use_2sm) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, Shape<_256, _128, _128>, Shape<_256, _1, _1>,
|
||||
Shape<_2, _2, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
constexpr int TILE_K = 128;
|
||||
// TODO: better heuristics
|
||||
bool swap_ab = (m < 16) || (m % 4 != 0);
|
||||
bool use_tma_epilogue = (m * n) % 4 == 0;
|
||||
if (!swap_ab) {
|
||||
constexpr int TILE_N = 128;
|
||||
int tile_m = 256;
|
||||
if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 64) <= sms) {
|
||||
tile_m = 64;
|
||||
}
|
||||
else if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 128) <= sms) {
|
||||
tile_m = 128;
|
||||
}
|
||||
if (tile_m == 64) {
|
||||
if (use_tma_epilogue) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
} else if (tile_m == 128) {
|
||||
if (use_tma_epilogue) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
} else { // tile_m == 256
|
||||
if (use_tma_epilogue) {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
} else {
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// TODO: Test more tile N configs
|
||||
constexpr int TILE_M = 128;
|
||||
constexpr int TILE_N = 16;
|
||||
// TMA epilogue isn't compatible with Swap A/B
|
||||
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
|
||||
OutType, Shape<_128, _128, _128>, Shape<_128, _1, _1>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
|
||||
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
|
||||
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
|
||||
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
|
||||
out, a, b, a_scales, b_scales);
|
||||
}
|
||||
}
|
||||
|
@ -15,6 +15,7 @@ using c3x::cutlass_gemm_caller;
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_default {
|
||||
// M in (128, inf)
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
@ -25,6 +26,34 @@ struct sm100_fp8_config_default {
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M128 {
|
||||
// M in (64, 128]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_128, _128, _64>;
|
||||
using ClusterShape = Shape<_2, _2, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M64 {
|
||||
// M in [1, 64]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_64, _64, _256>;
|
||||
using ClusterShape = Shape<_1, _8, _1>;
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue,
|
||||
typename... EpilogueArgs>
|
||||
@ -39,8 +68,28 @@ inline void cutlass_gemm_sm100_fp8_dispatch(torch::Tensor& out,
|
||||
using Cutlass3xGemmDefault =
|
||||
typename sm100_fp8_config_default<InType, OutType,
|
||||
Epilogue>::Cutlass3xGemm;
|
||||
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
using Cutlass3xGemmM64 =
|
||||
typename sm100_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM128 =
|
||||
typename sm100_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
|
||||
|
||||
uint32_t const m = a.size(0);
|
||||
uint32_t const mp2 =
|
||||
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
|
||||
|
||||
if (mp2 <= 64) {
|
||||
// m in [1, 64]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM64>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else if (mp2 <= 128) {
|
||||
// m in (64, 128]
|
||||
return cutlass_gemm_caller<Cutlass3xGemmM128>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
} else {
|
||||
// m in (128, inf)
|
||||
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out, a, b, std::forward<EpilogueArgs>(args)...);
|
||||
}
|
||||
}
|
||||
|
||||
template <template <typename, typename, typename> typename Epilogue,
|
||||
|
@ -84,7 +84,8 @@ void run_cutlass_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
TORCH_CHECK(a_tensors.size(0) > 0, "No input A tensors provided.");
|
||||
TORCH_CHECK(b_tensors.size(0) > 0, "No input B tensors provided.");
|
||||
TORCH_CHECK(out_tensors.size(0) > 0, "No output tensors provided.");
|
||||
@ -113,19 +114,23 @@ void run_cutlass_moe_mm_sm90(
|
||||
if (n >= 8192) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (k >= 8192) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmK8192>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (m <= 16) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmM16>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
}
|
||||
}
|
||||
|
||||
@ -134,15 +139,18 @@ void dispatch_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
if (out_tensors.dtype() == torch::kBFloat16) {
|
||||
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::bfloat16_t>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else {
|
||||
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::half_t>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides);
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
}
|
||||
}
|
||||
|
||||
@ -153,8 +161,9 @@ void cutlass_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
dispatch_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides);
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
}
|
||||
|
@ -76,7 +76,8 @@ void cutlass_group_gemm_caller(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
using ElementAB = typename Gemm::ElementAB;
|
||||
using ElementD = typename Gemm::ElementD;
|
||||
|
||||
@ -84,9 +85,6 @@ void cutlass_group_gemm_caller(
|
||||
int k_size = a_tensors.size(1);
|
||||
int n_size = out_tensors.size(1);
|
||||
|
||||
bool per_act_token = a_scales.numel() != 1;
|
||||
bool per_out_ch = b_scales.numel() != num_experts;
|
||||
|
||||
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
|
||||
|
||||
auto options_int =
|
||||
|
@ -7,7 +7,7 @@
|
||||
|
||||
constexpr uint64_t THREADS_PER_EXPERT = 512;
|
||||
|
||||
__global__ void compute_problem_sizes(const int* __restrict__ topk_ids,
|
||||
__global__ void compute_problem_sizes(const uint32_t* __restrict__ topk_ids,
|
||||
int32_t* problem_sizes1,
|
||||
int32_t* problem_sizes2,
|
||||
int32_t* atomic_buffer,
|
||||
@ -45,7 +45,24 @@ __global__ void compute_expert_offsets(
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_arg_sorts(const int* __restrict__ topk_ids,
|
||||
__global__ void compute_expert_blockscale_offsets(
|
||||
const int32_t* __restrict__ problem_sizes1, int32_t* expert_offsets,
|
||||
int32_t* blockscale_offsets, int32_t* atomic_buffer,
|
||||
const int num_experts) {
|
||||
int32_t tot_offset = 0;
|
||||
int32_t tot_offset_round = 0;
|
||||
expert_offsets[0] = 0;
|
||||
blockscale_offsets[0] = 0;
|
||||
for (int i = 0; i < num_experts; ++i) {
|
||||
atomic_buffer[i] = tot_offset;
|
||||
tot_offset += problem_sizes1[i * 3];
|
||||
expert_offsets[i + 1] = tot_offset;
|
||||
tot_offset_round += (problem_sizes1[i * 3] + (128 - 1)) / 128 * 128;
|
||||
blockscale_offsets[i + 1] = tot_offset_round;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_arg_sorts(const uint32_t* __restrict__ topk_ids,
|
||||
const int32_t* __restrict__ expert_offsets,
|
||||
int32_t* input_permutation,
|
||||
int32_t* output_permutation,
|
||||
@ -77,7 +94,8 @@ void get_cutlass_moe_mm_data_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k) {
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream(topk_ids.device().index());
|
||||
auto options_int32 =
|
||||
torch::TensorOptions().dtype(torch::kInt32).device(topk_ids.device());
|
||||
@ -85,19 +103,61 @@ void get_cutlass_moe_mm_data_caller(
|
||||
|
||||
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
|
||||
compute_problem_sizes<<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<const uint32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n, k);
|
||||
compute_expert_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
if (blockscale_offsets.has_value()) {
|
||||
compute_expert_blockscale_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(blockscale_offsets.value().data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
} else {
|
||||
compute_expert_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
}
|
||||
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<const uint32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(input_permutation.data_ptr()),
|
||||
static_cast<int32_t*>(output_permutation.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(),
|
||||
topk_ids.size(1));
|
||||
}
|
||||
|
||||
__global__ void compute_pplx_data(int32_t* expert_offsets,
|
||||
int32_t* problem_sizes1,
|
||||
int32_t* problem_sizes2,
|
||||
const int32_t* __restrict__ expert_num_tokens,
|
||||
const int padded_m, const int n,
|
||||
const int k) {
|
||||
int expert_idx = threadIdx.x;
|
||||
|
||||
expert_offsets[expert_idx] = expert_idx * padded_m;
|
||||
problem_sizes1[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes1[expert_idx * 3 + 1] = 2 * n;
|
||||
problem_sizes1[expert_idx * 3 + 2] = k;
|
||||
problem_sizes2[expert_idx * 3] = expert_num_tokens[expert_idx];
|
||||
problem_sizes2[expert_idx * 3 + 1] = k;
|
||||
problem_sizes2[expert_idx * 3 + 2] = n;
|
||||
}
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m,
|
||||
const int64_t n, const int64_t k) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream(expert_offsets.device().index());
|
||||
|
||||
compute_pplx_data<<<1, num_local_experts, 0, stream>>>(
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
|
||||
k);
|
||||
}
|
||||
|
@ -36,7 +36,8 @@ void cutlass_moe_mm_sm90(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides);
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch);
|
||||
|
||||
#endif
|
||||
|
||||
@ -54,7 +55,16 @@ void get_cutlass_moe_mm_data_caller(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k);
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets);
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m,
|
||||
const int64_t n, const int64_t k);
|
||||
#endif
|
||||
|
||||
void cutlass_scaled_mm_azp_sm75(torch::Tensor& c, torch::Tensor const& a,
|
||||
@ -206,12 +216,13 @@ void cutlass_moe_mm(
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides);
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
return;
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
@ -224,7 +235,8 @@ void get_cutlass_moe_mm_data(
|
||||
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
|
||||
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
|
||||
const int64_t num_experts, const int64_t n, const int64_t k) {
|
||||
const int64_t num_experts, const int64_t n, const int64_t k,
|
||||
const std::optional<torch::Tensor>& blockscale_offsets) {
|
||||
// This function currently gets compiled only if we have a valid cutlass moe
|
||||
// mm to run it for.
|
||||
int32_t version_num = get_sm_version_num();
|
||||
@ -232,7 +244,8 @@ void get_cutlass_moe_mm_data(
|
||||
(defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM90)
|
||||
get_cutlass_moe_mm_data_caller(topk_ids, expert_offsets, problem_sizes1,
|
||||
problem_sizes2, input_permutation,
|
||||
output_permutation, num_experts, n, k);
|
||||
output_permutation, num_experts, n, k,
|
||||
blockscale_offsets);
|
||||
return;
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
@ -242,6 +255,29 @@ void get_cutlass_moe_mm_data(
|
||||
version_num, ". Required capability: 90");
|
||||
}
|
||||
|
||||
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
|
||||
torch::Tensor& problem_sizes1,
|
||||
torch::Tensor& problem_sizes2,
|
||||
const torch::Tensor& expert_num_tokens,
|
||||
const int64_t num_local_experts,
|
||||
const int64_t padded_m, const int64_t n,
|
||||
const int64_t k) {
|
||||
// This function currently gets compiled only if we have a valid cutlass moe
|
||||
// mm to run it for.
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
get_cutlass_pplx_moe_mm_data_caller(expert_offsets, problem_sizes1,
|
||||
problem_sizes2, expert_num_tokens,
|
||||
num_local_experts, padded_m, n, k);
|
||||
return;
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"No compiled get_cutlass_pplx_moe_mm_data: no cutlass_scaled_mm kernel "
|
||||
"for CUDA device capability: ",
|
||||
version_num, ". Required capability: 90");
|
||||
}
|
||||
|
||||
void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
torch::Tensor const& a_scales,
|
||||
|
@ -435,7 +435,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
"cutlass_moe_mm(Tensor! out_tensors, Tensor a_tensors, Tensor b_tensors, "
|
||||
" Tensor a_scales, Tensor b_scales, Tensor expert_offsets, "
|
||||
" Tensor problem_sizes, Tensor a_strides, "
|
||||
" Tensor b_strides, Tensor c_strides) -> ()",
|
||||
" Tensor b_strides, Tensor c_strides, bool per_act_token, "
|
||||
" bool per_out_ch) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("cutlass_moe_mm", torch::kCUDA, &cutlass_moe_mm);
|
||||
|
||||
@ -450,10 +451,26 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor! problem_sizes1, Tensor! problem_sizes2, "
|
||||
" Tensor! input_permutation, "
|
||||
" Tensor! output_permutation, int num_experts, "
|
||||
" int n, int k) -> ()",
|
||||
" int n, int k, Tensor? blockscale_offsets) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("get_cutlass_moe_mm_data", torch::kCUDA, &get_cutlass_moe_mm_data);
|
||||
|
||||
// A function that computes data required to run fused MoE with w8a8 grouped
|
||||
// GEMM and PPLX. It takes expert_num_tokens and non_zero_expert_idxs
|
||||
// as an input, and computes expert_offsets (token start indices of each
|
||||
// expert). In addition to this, it computes problem sizes for each expert's
|
||||
// multiplication used by the two mms called from fused MoE operation.
|
||||
ops.def(
|
||||
"get_cutlass_pplx_moe_mm_data(Tensor! expert_offsets, "
|
||||
" Tensor! problem_sizes1, "
|
||||
" Tensor! problem_sizes2, "
|
||||
" Tensor expert_num_tokens, "
|
||||
" int num_local_experts, int padded_m, "
|
||||
" int n, int k) -> ()",
|
||||
{stride_tag});
|
||||
ops.impl("get_cutlass_pplx_moe_mm_data", torch::kCUDA,
|
||||
&get_cutlass_pplx_moe_mm_data);
|
||||
|
||||
// Check if cutlass scaled_mm supports block quantization (used by DeepSeekV3)
|
||||
ops.def(
|
||||
"cutlass_scaled_mm_supports_block_fp8(int cuda_device_capability) -> "
|
||||
|
@ -312,4 +312,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
# Logging to confirm the torch versions
|
||||
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'
|
||||
|
||||
# Logging to confirm all the packages are installed
|
||||
RUN pip freeze
|
||||
|
||||
#################### UNITTEST IMAGE #############################
|
||||
|
@ -1,10 +1,41 @@
|
||||
ARG BASE_UBI_IMAGE_TAG=9.5-1741850109
|
||||
|
||||
###############################################################
|
||||
# Stage to build openblas
|
||||
###############################################################
|
||||
|
||||
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS openblas-builder
|
||||
|
||||
ARG MAX_JOBS
|
||||
ARG OPENBLAS_VERSION=0.3.29
|
||||
RUN microdnf install -y dnf && dnf install -y gcc-toolset-13 make wget unzip \
|
||||
&& source /opt/rh/gcc-toolset-13/enable \
|
||||
&& wget https://github.com/OpenMathLib/OpenBLAS/releases/download/v$OPENBLAS_VERSION/OpenBLAS-$OPENBLAS_VERSION.zip \
|
||||
&& unzip OpenBLAS-$OPENBLAS_VERSION.zip \
|
||||
&& cd OpenBLAS-$OPENBLAS_VERSION \
|
||||
&& make -j${MAX_JOBS} TARGET=POWER9 BINARY=64 USE_OPENMP=1 USE_THREAD=1 NUM_THREADS=120 DYNAMIC_ARCH=1 INTERFACE64=0 \
|
||||
&& cd /tmp && touch control
|
||||
|
||||
|
||||
###############################################################
|
||||
# base stage with dependencies coming from centos mirrors
|
||||
###############################################################
|
||||
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS centos-deps-builder
|
||||
RUN microdnf install -y dnf && \
|
||||
dnf install -y https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-gpg-keys-9.0-24.el9.noarch.rpm \
|
||||
https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-stream-repos-9.0-24.el9.noarch.rpm \
|
||||
https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
|
||||
dnf config-manager --set-enabled crb
|
||||
|
||||
RUN dnf install -y openjpeg2-devel lcms2-devel tcl-devel tk-devel fribidi-devel && \
|
||||
dnf remove -y centos-gpg-keys-9.0-24.el9.noarch centos-stream-repos-9.0-24.el9.noarch
|
||||
|
||||
|
||||
###############################################################
|
||||
# base stage with basic dependencies
|
||||
###############################################################
|
||||
|
||||
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS base-builder
|
||||
FROM centos-deps-builder AS base-builder
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG OPENBLAS_VERSION=0.3.29
|
||||
@ -20,25 +51,27 @@ ENV UV_LINK_MODE=copy
|
||||
# Note: A symlink for libatomic.so is created for gcc-13 (linker fails to find libatomic otherwise - reqd. for sentencepiece)
|
||||
# Note: A dummy file 'control' is created in /tmp/ to artificially create dependencies between stages when building stages in parallel
|
||||
# when `--jobs=<N>` is passed with podman build command
|
||||
RUN microdnf install -y openssl-devel dnf \
|
||||
&& dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm \
|
||||
&& dnf config-manager --set-enabled codeready-builder-for-rhel-9-ppc64le-rpms \
|
||||
|
||||
COPY --from=openblas-builder /tmp/control /dev/null
|
||||
|
||||
RUN --mount=type=bind,from=openblas-builder,source=/OpenBLAS-$OPENBLAS_VERSION/,target=/openblas/,rw \
|
||||
dnf install -y openssl-devel \
|
||||
&& dnf install -y \
|
||||
git tar gcc-toolset-13 automake libtool numactl-devel lapack-devel \
|
||||
git tar gcc-toolset-13 automake libtool \
|
||||
pkgconfig xsimd zeromq-devel kmod findutils protobuf* \
|
||||
libtiff-devel libjpeg-devel openjpeg2-devel zlib-devel \
|
||||
freetype-devel lcms2-devel libwebp-devel tcl-devel tk-devel \
|
||||
harfbuzz-devel fribidi-devel libraqm-devel libimagequant-devel libxcb-devel \
|
||||
libtiff-devel libjpeg-devel zlib-devel freetype-devel libwebp-devel \
|
||||
harfbuzz-devel libraqm-devel libimagequant-devel libxcb-devel \
|
||||
python${PYTHON_VERSION}-devel python${PYTHON_VERSION}-pip \
|
||||
&& dnf clean all \
|
||||
&& PREFIX=/usr/local make -C /openblas install \
|
||||
&& ln -sf /usr/lib64/libatomic.so.1 /usr/lib64/libatomic.so \
|
||||
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
|
||||
&& python -m pip install -U pip uv \
|
||||
&& uv pip install wheel build "setuptools<70" setuptools_scm setuptools_rust meson-python 'cmake<4' ninja cython scikit_build_core scikit_build \
|
||||
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
|
||||
&& curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y \
|
||||
&& cd /tmp && touch control
|
||||
|
||||
|
||||
###############################################################
|
||||
# Stage to build torch family
|
||||
###############################################################
|
||||
@ -48,6 +81,8 @@ FROM base-builder AS torch-builder
|
||||
ARG MAX_JOBS
|
||||
ARG TORCH_VERSION=2.6.0
|
||||
ARG _GLIBCXX_USE_CXX11_ABI=1
|
||||
ARG OPENBLAS_VERSION=0.3.29
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
git clone --recursive https://github.com/pytorch/pytorch.git -b v${TORCH_VERSION} && \
|
||||
@ -109,7 +144,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
.. && \
|
||||
make install -j ${MAX_JOBS:-$(nproc)} && \
|
||||
cd ../../python/ && \
|
||||
uv pip install -v -r requirements-wheel-build.txt && \
|
||||
uv pip install -v -r requirements-build.txt && uv pip install numpy==2.1.3 && \
|
||||
pip show numpy && ls -lrt /opt/vllm/lib/python3.12/site-packages/numpy && \
|
||||
PYARROW_PARALLEL=${PYARROW_PARALLEL:-$(nproc)} \
|
||||
python setup.py build_ext \
|
||||
--build-type=release --bundle-arrow-cpp \
|
||||
@ -132,47 +168,9 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
cd opencv-python && \
|
||||
sed -i -E -e 's/"setuptools.+",/"setuptools",/g' pyproject.toml && \
|
||||
cd opencv && git cherry-pick --no-commit $OPENCV_PATCH && cd .. && \
|
||||
uv pip install scikit-build && \
|
||||
python -m build --wheel --installer=uv --outdir /opencvwheels/
|
||||
|
||||
###############################################################
|
||||
# Stage to build vllm - this stage builds and installs
|
||||
# vllm, tensorizer and vllm-tgis-adapter and builds uv cache
|
||||
# for transitive dependencies - eg. grpcio
|
||||
###############################################################
|
||||
|
||||
FROM base-builder AS vllmcache-builder
|
||||
|
||||
COPY --from=torch-builder /tmp/control /dev/null
|
||||
COPY --from=arrow-builder /tmp/control /dev/null
|
||||
COPY --from=cv-builder /tmp/control /dev/null
|
||||
|
||||
ARG VLLM_TARGET_DEVICE=cpu
|
||||
ARG GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1
|
||||
|
||||
# this step installs vllm and populates uv cache
|
||||
# with all the transitive dependencies
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
git clone https://github.com/huggingface/xet-core.git && cd xet-core/hf_xet/ && \
|
||||
uv pip install maturin && \
|
||||
uv build --wheel --out-dir /hf_wheels/
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
|
||||
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
|
||||
--mount=type=bind,from=cv-builder,source=/opencvwheels/,target=/opencvwheels/,ro \
|
||||
--mount=type=bind,src=.,dst=/src/,rw \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl && \
|
||||
sed -i -e 's/.*torch.*//g' /src/pyproject.toml /src/requirements/*.txt && \
|
||||
uv pip install pandas pythran pybind11 /hf_wheels/*.whl && \
|
||||
# sentencepiece.pc is in some pkgconfig inside uv cache
|
||||
export PKG_CONFIG_PATH=$(find / -type d -name "pkgconfig" 2>/dev/null | tr '\n' ':') && \
|
||||
uv pip install -r /src/requirements/common.txt -r /src/requirements/cpu.txt -r /src/requirements/build.txt --no-build-isolation && \
|
||||
cd /src/ && \
|
||||
uv build --wheel --out-dir /vllmwheel/ --no-build-isolation && \
|
||||
uv pip install /vllmwheel/*.whl
|
||||
|
||||
|
||||
###############################################################
|
||||
# Stage to build numactl
|
||||
###############################################################
|
||||
@ -188,6 +186,49 @@ RUN git clone --recursive https://github.com/numactl/numactl.git -b v${NUMACTL_V
|
||||
&& autoreconf -i && ./configure \
|
||||
&& make -j ${MAX_JOBS:-$(nproc)}
|
||||
|
||||
|
||||
###############################################################
|
||||
# Stage to build vllm - this stage builds and installs
|
||||
# vllm, tensorizer and vllm-tgis-adapter and builds uv cache
|
||||
# for transitive dependencies - eg. grpcio
|
||||
###############################################################
|
||||
|
||||
FROM base-builder AS vllmcache-builder
|
||||
|
||||
COPY --from=torch-builder /tmp/control /dev/null
|
||||
COPY --from=arrow-builder /tmp/control /dev/null
|
||||
COPY --from=cv-builder /tmp/control /dev/null
|
||||
COPY --from=numa-builder /tmp/control /dev/null
|
||||
|
||||
ARG VLLM_TARGET_DEVICE=cpu
|
||||
ARG GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1
|
||||
|
||||
# this step installs vllm and populates uv cache
|
||||
# with all the transitive dependencies
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
git clone https://github.com/huggingface/xet-core.git && cd xet-core/hf_xet/ && \
|
||||
uv pip install maturin && \
|
||||
uv build --wheel --out-dir /hf_wheels/
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
|
||||
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
|
||||
--mount=type=bind,from=cv-builder,source=/opencvwheels/,target=/opencvwheels/,ro \
|
||||
--mount=type=bind,from=numa-builder,source=/numactl/,target=/numactl/,rw \
|
||||
--mount=type=bind,src=.,dst=/src/,rw \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl && \
|
||||
sed -i -e 's/.*torch.*//g' /src/pyproject.toml /src/requirements/*.txt && \
|
||||
uv pip install pandas pythran pybind11 /hf_wheels/*.whl && \
|
||||
make -C /numactl install && \
|
||||
# sentencepiece.pc is in some pkgconfig inside uv cache
|
||||
export PKG_CONFIG_PATH=$(find / -type d -name "pkgconfig" 2>/dev/null | tr '\n' ':') && \
|
||||
uv pip install -r /src/requirements/common.txt -r /src/requirements/cpu.txt -r /src/requirements/build.txt --no-build-isolation && \
|
||||
cd /src/ && \
|
||||
uv build --wheel --out-dir /vllmwheel/ --no-build-isolation && \
|
||||
uv pip install /vllmwheel/*.whl
|
||||
|
||||
|
||||
###############################################################
|
||||
# Stage to build lapack
|
||||
###############################################################
|
||||
@ -217,6 +258,7 @@ ENV PATH=${VIRTUAL_ENV}/bin:$PATH
|
||||
ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig/
|
||||
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib64:/usr/local/lib:/usr/lib64:/usr/lib
|
||||
ENV UV_LINK_MODE=copy
|
||||
ENV OMP_NUM_THREADS=16
|
||||
|
||||
# create artificial dependencies between stages for independent stages to build in parallel
|
||||
COPY --from=torch-builder /tmp/control /dev/null
|
||||
@ -225,11 +267,13 @@ COPY --from=cv-builder /tmp/control /dev/null
|
||||
COPY --from=vllmcache-builder /tmp/control /dev/null
|
||||
COPY --from=numa-builder /tmp/control /dev/null
|
||||
COPY --from=lapack-builder /tmp/control /dev/null
|
||||
COPY --from=openblas-builder /tmp/control /dev/null
|
||||
|
||||
# install gcc-11, python, openblas, numactl, lapack
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=numa-builder,source=/numactl/,target=/numactl/,rw \
|
||||
--mount=type=bind,from=lapack-builder,source=/lapack/,target=/lapack/,rw \
|
||||
--mount=type=bind,from=openblas-builder,source=/OpenBLAS-$OPENBLAS_VERSION/,target=/openblas/,rw \
|
||||
rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
|
||||
microdnf install --nodocs -y \
|
||||
tar findutils openssl \
|
||||
@ -241,8 +285,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
&& microdnf clean all \
|
||||
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
|
||||
&& python -m pip install -U pip uv --no-cache \
|
||||
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
|
||||
&& make -C /numactl install \
|
||||
&& PREFIX=/usr/local make -C /openblas install \
|
||||
&& uv pip install 'cmake<4' \
|
||||
&& cmake --install /lapack/build \
|
||||
&& uv pip uninstall cmake
|
||||
|
@ -13,7 +13,7 @@ RUN apt-get update -q -y && apt-get install -q -y \
|
||||
sqlite3 libsqlite3-dev libfmt-dev libmsgpack-dev libsuitesparse-dev \
|
||||
apt-transport-https ca-certificates wget curl
|
||||
# Remove sccache
|
||||
RUN python3 -m pip install --upgrade pip && pip install setuptools_scm
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
|
||||
ARG COMMON_WORKDIR
|
||||
WORKDIR ${COMMON_WORKDIR}
|
||||
@ -28,7 +28,8 @@ ARG VLLM_REPO="https://github.com/vllm-project/vllm.git"
|
||||
ARG VLLM_BRANCH="main"
|
||||
ONBUILD RUN git clone ${VLLM_REPO} \
|
||||
&& cd vllm \
|
||||
&& git checkout ${VLLM_BRANCH}
|
||||
&& git fetch -v --prune -- origin ${VLLM_BRANCH} \
|
||||
&& git checkout FETCH_HEAD
|
||||
FROM fetch_vllm_${REMOTE_VLLM} AS fetch_vllm
|
||||
|
||||
# -----------------------
|
||||
|
@ -64,15 +64,13 @@ Download the full log file from Buildkite locally.
|
||||
|
||||
Strip timestamps and colorization:
|
||||
|
||||
```bash
|
||||
# Strip timestamps
|
||||
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' ci.log
|
||||
<gh-file:.buildkite/scripts/ci-clean-log.sh>
|
||||
|
||||
# Strip colorization
|
||||
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' ci.log
|
||||
```bash
|
||||
./ci-clean-log.sh ci.log
|
||||
```
|
||||
|
||||
Use a tool for quick copy-pasting:
|
||||
Use a tool [wl-clipboard](https://github.com/bugaevc/wl-clipboard) for quick copy-pasting:
|
||||
|
||||
```bash
|
||||
tail -525 ci_build.log | wl-copy
|
||||
@ -89,10 +87,10 @@ tail -525 ci_build.log | wl-copy
|
||||
|
||||
CI test failures may be flaky. Use a bash loop to run repeatedly:
|
||||
|
||||
<gh-file:.buildkite/scripts/rerun-test.sh>
|
||||
|
||||
```bash
|
||||
COUNT=1; while pytest -sv tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]; do
|
||||
COUNT=$[$COUNT + 1]; echo "RUN NUMBER ${COUNT}";
|
||||
done
|
||||
./rerun-test.sh tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]
|
||||
```
|
||||
|
||||
## Submitting a PR
|
||||
|
@ -144,7 +144,7 @@ As a result, we will have the following components when the KV cache manager is
|
||||
|
||||
**Running request:** Workflow for the scheduler to schedule a running request with KV cache block allocation:
|
||||
|
||||
1. The scheduler calls `kv_cache_manager.append_slots()`. It does the following steps:
|
||||
1. The scheduler calls `kv_cache_manager.allocate_slots()`. It does the following steps:
|
||||
1. Compute the number of new required blocks, and return if there are no sufficient blocks to allocate.
|
||||
2. Allocate new blocks by popping the heads of the free queue. If the head block is a cached block, this also “evicts” the block so that no other requests can reuse it anymore from now on.
|
||||
3. Append token IDs to the slots in existing blocks as well as the new blocks. If a block is full, we add it to the Cache Block to cache it.
|
||||
|
@ -110,8 +110,9 @@ vLLM CPU backend supports the following vLLM features:
|
||||
|
||||
## Related runtime environment variables
|
||||
|
||||
- `VLLM_CPU_KVCACHE_SPACE`: specify the KV Cache size (e.g, `VLLM_CPU_KVCACHE_SPACE=40` means 40 GiB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
|
||||
- `VLLM_CPU_OMP_THREADS_BIND`: specify the CPU cores dedicated to the OpenMP threads. For example, `VLLM_CPU_OMP_THREADS_BIND=0-31` means there will be 32 OpenMP threads bound on 0-31 CPU cores. `VLLM_CPU_OMP_THREADS_BIND=0-31|32-63` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores.
|
||||
- `VLLM_CPU_KVCACHE_SPACE`: specify the KV Cache size (e.g, `VLLM_CPU_KVCACHE_SPACE=40` means 40 GiB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users. Default value is `0`.
|
||||
- `VLLM_CPU_OMP_THREADS_BIND`: specify the CPU cores dedicated to the OpenMP threads. For example, `VLLM_CPU_OMP_THREADS_BIND=0-31` means there will be 32 OpenMP threads bound on 0-31 CPU cores. `VLLM_CPU_OMP_THREADS_BIND=0-31|32-63` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores. By setting to `auto`, the OpenMP threads of each rank are bound to the CPU cores in each NUMA node. By setting to `all`, the OpenMP threads of each rank uses all CPU cores available on the system. Default value is `auto`.
|
||||
- `VLLM_CPU_NUM_OF_RESERVED_CPU`: specify the number of CPU cores which are not dedicated to the OpenMP threads for each rank. The variable only takes effect when VLLM_CPU_OMP_THREADS_BIND is set to `auto`. Default value is `0`.
|
||||
- `VLLM_CPU_MOE_PREPACK`: whether to use prepack for MoE layer. This will be passed to `ipex.llm.modules.GatedMLPMOE`. Default is `1` (True). On unsupported CPUs, you might need to set this to `0` (False).
|
||||
|
||||
## Performance tips
|
||||
@ -133,7 +134,15 @@ export VLLM_CPU_OMP_THREADS_BIND=0-29
|
||||
vllm serve facebook/opt-125m
|
||||
```
|
||||
|
||||
- If using vLLM CPU backend on a machine with hyper-threading, it is recommended to bind only one OpenMP thread on each physical CPU core using `VLLM_CPU_OMP_THREADS_BIND`. On a hyper-threading enabled platform with 16 logical CPU cores / 8 physical CPU cores:
|
||||
or using default auto thread binding:
|
||||
|
||||
```console
|
||||
export VLLM_CPU_KVCACHE_SPACE=40
|
||||
export VLLM_CPU_NUM_OF_RESERVED_CPU=2
|
||||
vllm serve facebook/opt-125m
|
||||
```
|
||||
|
||||
- If using vLLM CPU backend on a machine with hyper-threading, it is recommended to bind only one OpenMP thread on each physical CPU core using `VLLM_CPU_OMP_THREADS_BIND` or using auto thread binding feature by default. On a hyper-threading enabled platform with 16 logical CPU cores / 8 physical CPU cores:
|
||||
|
||||
```console
|
||||
$ lscpu -e # check the mapping between logical CPU cores and physical CPU cores
|
||||
@ -178,6 +187,12 @@ $ python examples/offline_inference/basic/basic.py
|
||||
VLLM_CPU_KVCACHE_SPACE=40 VLLM_CPU_OMP_THREADS_BIND="0-31|32-63" vllm serve meta-llama/Llama-2-7b-chat-hf -tp=2 --distributed-executor-backend mp
|
||||
```
|
||||
|
||||
or using default auto thread binding:
|
||||
|
||||
```console
|
||||
VLLM_CPU_KVCACHE_SPACE=40 vllm serve meta-llama/Llama-2-7b-chat-hf -tp=2 --distributed-executor-backend mp
|
||||
```
|
||||
|
||||
- For each thread id list in `VLLM_CPU_OMP_THREADS_BIND`, users should guarantee threads in the list belong to a same NUMA node.
|
||||
|
||||
- Meanwhile, users should also take care of memory capacity of each NUMA node. The memory usage of each TP rank is the sum of `weight shard size` and `VLLM_CPU_KVCACHE_SPACE`, if it exceeds the capacity of a single NUMA node, TP worker will be killed due to out-of-memory.
|
||||
|
@ -1,6 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
|
||||
@ -8,10 +9,9 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
|
||||
# see https://docs.readthedocs.io/en/stable/reference/environment-variables.html # noqa
|
||||
if os.getenv('READTHEDOCS_VERSION_TYPE') == "tag":
|
||||
# remove the warning banner if the version is a tagged release
|
||||
docs_dir = os.path.dirname(__file__)
|
||||
announcement_path = os.path.join(docs_dir,
|
||||
"mkdocs/overrides/main.html")
|
||||
mkdocs_dir = Path(__file__).parent.parent
|
||||
announcement_path = mkdocs_dir / "overrides/main.html"
|
||||
# The file might be removed already if the build is triggered multiple
|
||||
# times (readthedocs build both HTML and PDF versions separately)
|
||||
if os.path.exists(announcement_path):
|
||||
if announcement_path.exists():
|
||||
os.remove(announcement_path)
|
||||
|
@ -10,7 +10,7 @@ shorter Pod startup times and CPU memory usage. Tensor encryption is also suppor
|
||||
|
||||
For more information on CoreWeave's Tensorizer, please refer to
|
||||
[CoreWeave's Tensorizer documentation](https://github.com/coreweave/tensorizer). For more information on serializing a vLLM model, as well a general usage guide to using Tensorizer with vLLM, see
|
||||
the [vLLM example script](https://docs.vllm.ai/en/latest/examples/tensorize_vllm_model.html).
|
||||
the [vLLM example script](https://docs.vllm.ai/en/latest/examples/others/tensorize_vllm_model.html).
|
||||
|
||||
!!! note
|
||||
Note that to use this feature you will need to install `tensorizer` by running `pip install vllm[tensorizer]`.
|
||||
|
@ -346,6 +346,7 @@ Specified using `--task generate`.
|
||||
| `MixtralForCausalLM` | Mixtral-8x7B, Mixtral-8x7B-Instruct | `mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc. | ✅︎ | ✅︎ |
|
||||
| `MPTForCausalLM` | MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter | `mosaicml/mpt-7b`, `mosaicml/mpt-7b-storywriter`, `mosaicml/mpt-30b`, etc. | | ✅︎ |
|
||||
| `NemotronForCausalLM` | Nemotron-3, Nemotron-4, Minitron | `nvidia/Minitron-8B-Base`, `mgoin/Nemotron-4-340B-Base-hf-FP8`, etc. | ✅︎ | ✅︎ |
|
||||
| `NemotronHForCausalLM` | Nemotron-H | `nvidia/Nemotron-H-8B-Base-8K`, `nvidia/Nemotron-H-47B-Base-8K`, `nvidia/Nemotron-H-56B-Base-8K`, etc. | ✅︎ | ✅︎ |
|
||||
| `OLMoForCausalLM` | OLMo | `allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc. | | ✅︎ |
|
||||
| `OLMo2ForCausalLM` | OLMo2 | `allenai/OLMo-2-0425-1B`, etc. | | ✅︎ |
|
||||
| `OLMoEForCausalLM` | OLMoE | `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc. | | ✅︎ |
|
||||
|
@ -31,6 +31,7 @@ refer to the [PyTorch Security
|
||||
Guide](https://github.com/pytorch/pytorch/security/policy#using-distributed-features).
|
||||
|
||||
Key points from the PyTorch security guide:
|
||||
|
||||
- PyTorch Distributed features are intended for internal communication only
|
||||
- They are not built for use in untrusted environments or networks
|
||||
- No authorization protocol is included for performance reasons
|
||||
|
@ -40,7 +40,7 @@ If other strategies don't solve the problem, it's likely that the vLLM instance
|
||||
- `export VLLM_LOGGING_LEVEL=DEBUG` to turn on more logging.
|
||||
- `export CUDA_LAUNCH_BLOCKING=1` to identify which CUDA kernel is causing the problem.
|
||||
- `export NCCL_DEBUG=TRACE` to turn on more logging for NCCL.
|
||||
- `export VLLM_TRACE_FUNCTION=1` to record all function calls for inspection in the log files to tell which function crashes or hangs.
|
||||
- `export VLLM_TRACE_FUNCTION=1` to record all function calls for inspection in the log files to tell which function crashes or hangs. Do not use this flag unless absolutely needed for debugging, it will cause significant delays in startup time.
|
||||
|
||||
## Incorrect network setup
|
||||
|
||||
|
@ -55,7 +55,7 @@ This living user guide outlines a few known **important changes and limitations*
|
||||
| **Spec Decode** | <nobr>🚧 WIP ([PR #13933](https://github.com/vllm-project/vllm/pull/13933))</nobr>|
|
||||
| **Prompt Logprobs with Prefix Caching** | <nobr>🟡 Planned ([RFC #13414](https://github.com/vllm-project/vllm/issues/13414))</nobr>|
|
||||
| **Structured Output Alternative Backends** | <nobr>🟡 Planned</nobr> |
|
||||
| **Embedding Models** | <nobr>🚧 WIP ([PR #18015](https://github.com/vllm-project/vllm/pull/18015))</nobr> |
|
||||
| **Embedding Models** | <nobr>🚧 WIP ([PR #16188](https://github.com/vllm-project/vllm/pull/16188))</nobr> |
|
||||
| **Mamba Models** | <nobr>🟡 Planned</nobr> |
|
||||
| **Encoder-Decoder Models** | <nobr>🟠 Delayed</nobr> |
|
||||
| **Request-level Structured Output Backend** | <nobr>🔴 Deprecated</nobr> |
|
||||
@ -145,9 +145,9 @@ vLLM V1 currently excludes model architectures with the `SupportsV0Only` protoco
|
||||
and the majority fall into the following categories. V1 support for these models will be added eventually.
|
||||
|
||||
**Embedding Models**
|
||||
Initially, we will create a [separate model runner](https://github.com/vllm-project/vllm/pull/18015) to provide V1 support without conflicting with other ongoing work.
|
||||
The initial support will be provided by [PR #16188](https://github.com/vllm-project/vllm/pull/16188).
|
||||
|
||||
Later, we will consider using [hidden states processor](https://github.com/vllm-project/vllm/issues/12249), which is based on [global logits processor](https://github.com/vllm-project/vllm/pull/13360) to enable simultaneous generation and embedding using the same engine instance in V1. [PR #16188](https://github.com/vllm-project/vllm/pull/16188) is the first step towards enabling this.
|
||||
Later, we will consider using [hidden states processor](https://github.com/vllm-project/vllm/issues/12249), which is based on [global logits processor](https://github.com/vllm-project/vllm/pull/13360) to enable simultaneous generation and embedding using the same engine instance in V1.
|
||||
|
||||
**Mamba Models**
|
||||
Models using selective state-space mechanisms (instead of standard transformer attention)
|
||||
|
@ -1,37 +1,51 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
This script demonstrates how to extend the context length
|
||||
of a Qwen model using the YARN method (rope_scaling)
|
||||
and run a simple chat example.
|
||||
|
||||
Usage:
|
||||
python examples/offline_inference/context_extension.py
|
||||
"""
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
rope_theta = 1000000
|
||||
original_max_position_embeddings = 32768
|
||||
factor = 4.0
|
||||
|
||||
# Use yarn to extend context
|
||||
hf_overrides = {
|
||||
"rope_theta": rope_theta,
|
||||
"rope_scaling": {
|
||||
"rope_type": "yarn",
|
||||
"factor": factor,
|
||||
"original_max_position_embeddings": original_max_position_embeddings,
|
||||
},
|
||||
"max_model_len": int(original_max_position_embeddings * factor),
|
||||
}
|
||||
def create_llm():
|
||||
rope_theta = 1000000
|
||||
original_max_position_embeddings = 32768
|
||||
factor = 4.0
|
||||
|
||||
llm = LLM(model="Qwen/Qwen3-0.6B", hf_overrides=hf_overrides)
|
||||
# Use yarn to extend context
|
||||
hf_overrides = {
|
||||
"rope_theta": rope_theta,
|
||||
"rope_scaling": {
|
||||
"rope_type": "yarn",
|
||||
"factor": factor,
|
||||
"original_max_position_embeddings": original_max_position_embeddings,
|
||||
},
|
||||
"max_model_len": int(original_max_position_embeddings * factor),
|
||||
}
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
max_tokens=128,
|
||||
)
|
||||
llm = LLM(model="Qwen/Qwen3-0.6B", hf_overrides=hf_overrides)
|
||||
return llm
|
||||
|
||||
conversation = [
|
||||
{"role": "system", "content": "You are a helpful assistant"},
|
||||
{"role": "user", "content": "Hello"},
|
||||
{"role": "assistant", "content": "Hello! How can I assist you today?"},
|
||||
]
|
||||
outputs = llm.chat(conversation, sampling_params, use_tqdm=False)
|
||||
|
||||
def run_llm_chat(llm):
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
max_tokens=128,
|
||||
)
|
||||
|
||||
conversation = [
|
||||
{"role": "system", "content": "You are a helpful assistant"},
|
||||
{"role": "user", "content": "Hello"},
|
||||
{"role": "assistant", "content": "Hello! How can I assist you today?"},
|
||||
]
|
||||
outputs = llm.chat(conversation, sampling_params, use_tqdm=False)
|
||||
return outputs
|
||||
|
||||
|
||||
def print_outputs(outputs):
|
||||
@ -44,4 +58,11 @@ def print_outputs(outputs):
|
||||
print("-" * 80)
|
||||
|
||||
|
||||
print_outputs(outputs)
|
||||
def main():
|
||||
llm = create_llm()
|
||||
outputs = run_llm_chat(llm)
|
||||
print_outputs(outputs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -64,7 +64,7 @@ def print_outputs(outputs):
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def main():
|
||||
assert (
|
||||
len(PROMPTS) == len(IMAGES) == len(SAMPLING_PARAMS)
|
||||
), f"""Text, image prompts and sampling parameters should have the
|
||||
@ -104,3 +104,7 @@ if __name__ == "__main__":
|
||||
# test batch-size = 4
|
||||
outputs = llm.generate(batched_inputs, batched_sample_params)
|
||||
print_outputs(outputs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -70,7 +70,7 @@ def main(args: argparse.Namespace):
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def parse_args():
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the latency of processing a single batch of "
|
||||
"requests till completion."
|
||||
@ -102,5 +102,9 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
main(args)
|
||||
|
58
examples/online_serving/multi_instance_data_parallel.py
Normal file
58
examples/online_serving/multi_instance_data_parallel.py
Normal file
@ -0,0 +1,58 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import asyncio
|
||||
from typing import Optional
|
||||
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.outputs import RequestOutput
|
||||
from vllm.sampling_params import SamplingParams
|
||||
|
||||
"""
|
||||
To run this example, run the following commands simultaneously with
|
||||
different CUDA_VISIBLE_DEVICES:
|
||||
python examples/online_serving/multi_instance_data_parallel.py
|
||||
|
||||
vllm serve ibm-research/PowerMoE-3b -dp 2 -dpr 1 \
|
||||
--data-parallel-address 127.0.0.1 --data-parallel-rpc-port 62300 \
|
||||
--data-parallel-size-local 1 --enforce-eager --headless
|
||||
|
||||
Once both instances have completed the handshake, this example will
|
||||
send a request to the instance with DP rank 1.
|
||||
"""
|
||||
|
||||
|
||||
async def main():
|
||||
engine_args = AsyncEngineArgs(
|
||||
model="ibm-research/PowerMoE-3b",
|
||||
data_parallel_size=2,
|
||||
dtype="auto",
|
||||
max_model_len=2048,
|
||||
data_parallel_address="127.0.0.1",
|
||||
data_parallel_rpc_port=62300,
|
||||
data_parallel_size_local=1,
|
||||
enforce_eager=True,
|
||||
)
|
||||
|
||||
engine_client = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.7,
|
||||
top_p=0.9,
|
||||
max_tokens=100,
|
||||
)
|
||||
|
||||
prompt = "Who won the 2004 World Series?"
|
||||
final_output: Optional[RequestOutput] = None
|
||||
async for output in engine_client.generate(
|
||||
prompt=prompt,
|
||||
sampling_params=sampling_params,
|
||||
request_id="abcdef",
|
||||
data_parallel_rank=1,
|
||||
):
|
||||
final_output = output
|
||||
if final_output:
|
||||
print(final_output.outputs[0].text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
@ -37,7 +37,7 @@ pyyaml
|
||||
six>=1.16.0; python_version > '3.11' # transitive dependency of pandas that needs to be the latest version for python 3.12
|
||||
setuptools>=77.0.3,<80; python_version > '3.11' # Setuptools is used by triton, we need to ensure a modern version is installed for 3.12+ so that it does not try to import distutils, which was removed in 3.12
|
||||
einops # Required for Qwen2-VL.
|
||||
compressed-tensors == 0.9.4 # required for compressed-tensors
|
||||
compressed-tensors == 0.10.1 # required for compressed-tensors
|
||||
depyf==0.18.0 # required for profiling and debugging with compilation config
|
||||
cloudpickle # allows pickling lambda functions in model_executor/models/registry.py
|
||||
watchfiles # required for http server to monitor the updates of TLS files
|
||||
@ -48,5 +48,3 @@ opentelemetry-sdk>=1.26.0 # vllm.tracing
|
||||
opentelemetry-api>=1.26.0 # vllm.tracing
|
||||
opentelemetry-exporter-otlp>=1.26.0 # vllm.tracing
|
||||
opentelemetry-semantic-conventions-ai>=0.4.1 # vllm.tracing
|
||||
pandas # needed for benchmarks module
|
||||
datasets # needed for benchmarks module
|
||||
|
@ -27,3 +27,5 @@ triton==3.2.0; platform_machine == "x86_64"
|
||||
# Intel Extension for PyTorch, only for x86_64 CPUs
|
||||
intel-openmp==2024.2.1; platform_machine == "x86_64"
|
||||
intel_extension_for_pytorch==2.7.0; platform_machine == "x86_64"
|
||||
py-libnuma; platform_system != "Darwin"
|
||||
psutil; platform_system != "Darwin"
|
||||
|
@ -9,7 +9,9 @@ pytest-shard
|
||||
pytest-timeout
|
||||
|
||||
librosa # required by audio tests in entrypoints/openai
|
||||
sentence-transformers
|
||||
sentence-transformers # required for embedding tests
|
||||
transformers==4.51.3
|
||||
transformers_stream_generator # required for qwen-vl test
|
||||
numba == 0.61.2; python_version > '3.9'
|
||||
# testing utils
|
||||
boto3
|
||||
@ -38,4 +40,7 @@ matplotlib # required for qwen-vl test
|
||||
# required for Multi-Modal Models Test (Standard)
|
||||
num2words # required for smolvlm test
|
||||
pqdm
|
||||
timm # required for internvl test
|
||||
timm # required for internvl test
|
||||
|
||||
schemathesis>=3.39.15 # Required for openai schema test.
|
||||
mteb>=1.38.11, <2 # required for mteb test
|
||||
|
@ -12,7 +12,8 @@ ray>=2.10.0,<2.45.0
|
||||
peft
|
||||
pytest-asyncio
|
||||
tensorizer>=2.9.0
|
||||
setuptools-scm>=8
|
||||
packaging>=24.2
|
||||
setuptools>=77.0.3,<80.0.0
|
||||
setuptools-scm>=8
|
||||
runai-model-streamer==0.11.0
|
||||
runai-model-streamer-s3==0.11.0
|
||||
|
@ -18,9 +18,9 @@ setuptools==78.1.0
|
||||
--find-links https://storage.googleapis.com/libtpu-releases/index.html
|
||||
--find-links https://storage.googleapis.com/jax-releases/jax_nightly_releases.html
|
||||
--find-links https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
|
||||
torch==2.8.0.dev20250529
|
||||
torchvision==0.22.0.dev20250529
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250529-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250529-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250529-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
|
||||
torch==2.8.0.dev20250605
|
||||
torchvision==0.23.0.dev20250605
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250605-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250605-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250605-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
|
||||
|
||||
|
@ -8,6 +8,7 @@ import uvicorn
|
||||
from fastapi.responses import JSONResponse, Response
|
||||
|
||||
import vllm.entrypoints.api_server
|
||||
import vllm.envs as envs
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
@ -46,9 +47,8 @@ if __name__ == "__main__":
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
engine = AsyncLLMEngineWithStats.from_engine_args(engine_args)
|
||||
vllm.entrypoints.api_server.engine = engine
|
||||
uvicorn.run(
|
||||
app,
|
||||
host=args.host,
|
||||
port=args.port,
|
||||
log_level="debug",
|
||||
timeout_keep_alive=vllm.entrypoints.api_server.TIMEOUT_KEEP_ALIVE)
|
||||
uvicorn.run(app,
|
||||
host=args.host,
|
||||
port=args.port,
|
||||
log_level="debug",
|
||||
timeout_keep_alive=envs.VLLM_HTTP_TIMEOUT_KEEP_ALIVE)
|
||||
|
@ -384,3 +384,25 @@ async def test_delayed_generator(async_engine, stop):
|
||||
assert final_output is not None
|
||||
assert len(final_output.outputs[0].token_ids) == 10
|
||||
assert final_output.finished
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="module")
|
||||
async def test_invalid_argument(async_engine):
|
||||
scheduler_config = await async_engine.get_scheduler_config()
|
||||
|
||||
if scheduler_config.num_scheduler_steps != 1:
|
||||
pytest.skip("no need to test this one with multistep")
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0,
|
||||
min_tokens=10,
|
||||
max_tokens=10,
|
||||
)
|
||||
|
||||
# Targeting specific DP rank only supported in v1 multi-instance DP
|
||||
with pytest.raises(ValueError):
|
||||
async for _ in async_engine.generate("test",
|
||||
sampling_params,
|
||||
request_id=uid(),
|
||||
data_parallel_rank=0):
|
||||
pass
|
||||
|
@ -128,15 +128,21 @@ def test_models(
|
||||
@multi_gpu_test(num_gpus=2)
|
||||
@pytest.mark.parametrize(
|
||||
"model, distributed_executor_backend, attention_backend, "
|
||||
"test_suite", [
|
||||
("distilbert/distilgpt2", "ray", "", "L4"),
|
||||
("distilbert/distilgpt2", "mp", "", "L4"),
|
||||
("meta-llama/Llama-3.2-1B-Instruct", "ray", "", "L4"),
|
||||
("meta-llama/Llama-3.2-1B-Instruct", "mp", "", "L4"),
|
||||
("distilbert/distilgpt2", "ray", "", "A100"),
|
||||
("distilbert/distilgpt2", "mp", "", "A100"),
|
||||
("distilbert/distilgpt2", "mp", "FLASHINFER", "A100"),
|
||||
("meta-llama/Meta-Llama-3-8B", "ray", "FLASHINFER", "A100"),
|
||||
"test_suite, extra_env", [
|
||||
("distilbert/distilgpt2", "ray", "", "L4", {}),
|
||||
("distilbert/distilgpt2", "mp", "", "L4", {}),
|
||||
("distilbert/distilgpt2", "ray", "", "L4", {
|
||||
"VLLM_SLEEP_WHEN_IDLE": "1"
|
||||
}),
|
||||
("distilbert/distilgpt2", "mp", "", "L4", {
|
||||
"VLLM_SLEEP_WHEN_IDLE": "1"
|
||||
}),
|
||||
("meta-llama/Llama-3.2-1B-Instruct", "ray", "", "L4", {}),
|
||||
("meta-llama/Llama-3.2-1B-Instruct", "mp", "", "L4", {}),
|
||||
("distilbert/distilgpt2", "ray", "", "A100", {}),
|
||||
("distilbert/distilgpt2", "mp", "", "A100", {}),
|
||||
("distilbert/distilgpt2", "mp", "FLASHINFER", "A100", {}),
|
||||
("meta-llama/Meta-Llama-3-8B", "ray", "FLASHINFER", "A100", {}),
|
||||
])
|
||||
@pytest.mark.parametrize("enable_prompt_embeds", [True, False])
|
||||
def test_models_distributed(
|
||||
@ -148,6 +154,7 @@ def test_models_distributed(
|
||||
distributed_executor_backend: str,
|
||||
attention_backend: str,
|
||||
test_suite: str,
|
||||
extra_env: dict[str, str],
|
||||
enable_prompt_embeds: bool,
|
||||
) -> None:
|
||||
|
||||
@ -173,6 +180,9 @@ def test_models_distributed(
|
||||
attention_backend,
|
||||
)
|
||||
|
||||
for k, v in extra_env.items():
|
||||
monkeypatch_context.setenv(k, v)
|
||||
|
||||
dtype = "half"
|
||||
max_tokens = 5
|
||||
|
||||
|
@ -1,15 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import pytest
|
||||
|
||||
|
||||
# TEST V1: this should be removed. Right now V1 overrides
|
||||
# all the torch compile logic. We should re-enable this
|
||||
# as we add torch compile support back to V1.
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def use_v0_only(monkeypatch):
|
||||
"""
|
||||
Since this module is V0 only, set VLLM_USE_V1=0 for
|
||||
all tests in the module.
|
||||
"""
|
||||
monkeypatch.setenv('VLLM_USE_V1', '0')
|
@ -13,6 +13,7 @@ from vllm.compilation.counter import compilation_counter
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
|
||||
set_current_vllm_config)
|
||||
from vllm.envs import VLLM_USE_V1
|
||||
from vllm.utils import direct_register_custom_op
|
||||
|
||||
global_counter = 0
|
||||
@ -76,6 +77,7 @@ class SillyModel(nn.Module):
|
||||
|
||||
|
||||
def _test_simple_piecewise_compile(*, use_inductor):
|
||||
assert VLLM_USE_V1
|
||||
|
||||
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.PIECEWISE,
|
||||
@ -95,7 +97,7 @@ def _test_simple_piecewise_compile(*, use_inductor):
|
||||
num_piecewise_graphs_seen=5, # 2 * num_layers + 1
|
||||
num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
|
||||
num_backend_compilations=3, # num_piecewise_capturable_graphs_seen
|
||||
num_cudagraph_caputured=
|
||||
num_cudagraph_captured=
|
||||
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
||||
):
|
||||
|
||||
|
@ -327,7 +327,7 @@ def _test_toy_llama(*, use_inductor):
|
||||
num_piecewise_graphs_seen=0,
|
||||
num_piecewise_capturable_graphs_seen=0,
|
||||
num_backend_compilations=0,
|
||||
num_cudagraph_caputured=0,
|
||||
num_cudagraph_captured=0,
|
||||
):
|
||||
outputs.append(
|
||||
run_model(llama_config, use_inductor=False, use_compile=False))
|
||||
@ -343,7 +343,7 @@ def _test_toy_llama(*, use_inductor):
|
||||
num_piecewise_graphs_seen=1,
|
||||
num_piecewise_capturable_graphs_seen=1,
|
||||
num_backend_compilations=1, # num_piecewise_capturable_graphs_seen
|
||||
num_cudagraph_caputured=
|
||||
num_cudagraph_captured=
|
||||
2, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
||||
**kwargs,
|
||||
):
|
||||
@ -361,7 +361,7 @@ def _test_toy_llama(*, use_inductor):
|
||||
llama_config.num_layers, # 1 + num_layers
|
||||
num_backend_compilations=1 +
|
||||
llama_config.num_layers, # num_piecewise_capturable_graphs_seen
|
||||
num_cudagraph_caputured=2 *
|
||||
num_cudagraph_captured=2 *
|
||||
(1 + llama_config.num_layers
|
||||
), # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
||||
):
|
||||
|
34
tests/compile/test_config.py
Normal file
34
tests/compile/test_config.py
Normal file
@ -0,0 +1,34 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import vllm
|
||||
from vllm.compilation.counter import compilation_counter
|
||||
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
|
||||
set_current_vllm_config)
|
||||
|
||||
from .piecewise.test_simple import SillyModel
|
||||
|
||||
|
||||
@pytest.mark.parametrize("enabled", [True, False])
|
||||
def test_use_cudagraphs(enabled):
|
||||
assert vllm.envs.VLLM_USE_V1
|
||||
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.PIECEWISE,
|
||||
use_cudagraph=enabled,
|
||||
cudagraph_capture_sizes=[100],
|
||||
))
|
||||
with set_current_vllm_config(vllm_config):
|
||||
model = SillyModel(vllm_config=vllm_config, prefix='')
|
||||
|
||||
inputs = torch.randn(100, device="cuda")
|
||||
|
||||
with compilation_counter.expect(
|
||||
num_graphs_seen=1, # one graph for the model
|
||||
num_cudagraph_captured=1 if enabled else 0,
|
||||
):
|
||||
# first run is warmup
|
||||
model(inputs)
|
||||
# second run does CUDAGraphs recording (if enabled)
|
||||
model(inputs)
|
@ -25,6 +25,12 @@ TOKEN_IDS = [
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def v1(run_with_both_engines):
|
||||
"""We can run both engines for this test."""
|
||||
pass
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def llm():
|
||||
# pytest caches the fixture so we use weakref.proxy to
|
||||
@ -104,3 +110,19 @@ def test_multiple_sampling_params(llm: LLM):
|
||||
# sampling_params is None, default params should be applied
|
||||
outputs = llm.generate(PROMPTS, sampling_params=None)
|
||||
assert len(PROMPTS) == len(outputs)
|
||||
|
||||
|
||||
def test_max_model_len():
|
||||
max_model_len = 20
|
||||
llm = LLM(
|
||||
model=MODEL_NAME,
|
||||
max_model_len=max_model_len,
|
||||
gpu_memory_utilization=0.10,
|
||||
enforce_eager=True, # reduce test time
|
||||
)
|
||||
sampling_params = SamplingParams(max_tokens=max_model_len + 10)
|
||||
outputs = llm.generate(PROMPTS, sampling_params)
|
||||
for output in outputs:
|
||||
num_total_tokens = len(output.prompt_token_ids) + len(
|
||||
output.outputs[0].token_ids)
|
||||
assert num_total_tokens == max_model_len
|
||||
|
@ -22,7 +22,9 @@ def server(): # noqa: F811
|
||||
"--guided-decoding-backend",
|
||||
"xgrammar",
|
||||
"--tool-call-parser",
|
||||
"hermes"
|
||||
"hermes",
|
||||
"--reasoning-parser",
|
||||
"qwen3",
|
||||
]
|
||||
|
||||
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
||||
@ -37,7 +39,12 @@ async def client(server):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_required_tool_use(client: openai.AsyncOpenAI, model_name: str):
|
||||
@pytest.mark.parametrize("stream", [True, False])
|
||||
@pytest.mark.parametrize("tool_choice", ["auto", "required"])
|
||||
@pytest.mark.parametrize("enable_thinking", [True, False])
|
||||
async def test_function_tool_use(client: openai.AsyncOpenAI, model_name: str,
|
||||
stream: bool, tool_choice: str,
|
||||
enable_thinking: bool):
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
@ -126,30 +133,38 @@ async def test_required_tool_use(client: openai.AsyncOpenAI, model_name: str):
|
||||
"forecast for the next 5 days, in fahrenheit?",
|
||||
},
|
||||
]
|
||||
if not stream:
|
||||
# Non-streaming test
|
||||
chat_completion = await client.chat.completions.create(
|
||||
messages=messages,
|
||||
model=model_name,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
extra_body={
|
||||
"chat_template_kwargs": {
|
||||
"enable_thinking": enable_thinking
|
||||
}
|
||||
})
|
||||
|
||||
# Non-streaming test
|
||||
chat_completion = await client.chat.completions.create(
|
||||
messages=messages,
|
||||
model=model_name,
|
||||
tools=tools,
|
||||
tool_choice="required",
|
||||
)
|
||||
assert chat_completion.choices[0].message.tool_calls is not None
|
||||
assert len(chat_completion.choices[0].message.tool_calls) > 0
|
||||
else:
|
||||
# Streaming test
|
||||
output_stream = await client.chat.completions.create(
|
||||
messages=messages,
|
||||
model=model_name,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
stream=True,
|
||||
extra_body={
|
||||
"chat_template_kwargs": {
|
||||
"enable_thinking": enable_thinking
|
||||
}
|
||||
})
|
||||
|
||||
assert chat_completion.choices[0].message.tool_calls is not None
|
||||
assert len(chat_completion.choices[0].message.tool_calls) > 0
|
||||
output = []
|
||||
async for chunk in output_stream:
|
||||
if chunk.choices and chunk.choices[0].delta.tool_calls:
|
||||
output.extend(chunk.choices[0].delta.tool_calls)
|
||||
|
||||
# Streaming test
|
||||
stream = await client.chat.completions.create(
|
||||
messages=messages,
|
||||
model=model_name,
|
||||
tools=tools,
|
||||
tool_choice="required",
|
||||
stream=True,
|
||||
)
|
||||
|
||||
output = []
|
||||
async for chunk in stream:
|
||||
if chunk.choices and chunk.choices[0].delta.tool_calls:
|
||||
output.extend(chunk.choices[0].delta.tool_calls)
|
||||
|
||||
assert len(output) > 0
|
||||
assert len(output) > 0
|
||||
|
@ -162,12 +162,14 @@ def make_deepep_ll_a2a(pg: ProcessGroup,
|
||||
low_latency_mode=True,
|
||||
num_qps_per_rank=deepep_ll_args.num_experts //
|
||||
pgi.world_size)
|
||||
|
||||
return DeepEPLLPrepareAndFinalize(
|
||||
buffer=buffer,
|
||||
world_size=pgi.world_size,
|
||||
dp_size=dp_size,
|
||||
max_tokens_per_rank=deepep_ll_args.max_tokens_per_rank,
|
||||
quant_dtype=q_dtype,
|
||||
block_shape=block_shape,
|
||||
use_fp8_dispatch=deepep_ll_args.use_fp8_dispatch,
|
||||
)
|
||||
|
||||
@ -185,4 +187,5 @@ def make_deepep_a2a(pg: ProcessGroup,
|
||||
block_shape)
|
||||
|
||||
assert deepep_ll_args is not None
|
||||
return make_deepep_ll_a2a(pg, pgi, dp_size, deepep_ll_args, q_dtype)
|
||||
return make_deepep_ll_a2a(pg, pgi, dp_size, deepep_ll_args, q_dtype,
|
||||
block_shape)
|
||||
|
@ -193,14 +193,10 @@ def run_8_bit(moe_tensors: MOETensors8Bit,
|
||||
|
||||
kwargs = {
|
||||
'a': moe_tensors.a,
|
||||
'w1_q': moe_tensors.w1_q.transpose(1, 2), # type: ignore[union-attr]
|
||||
'w2_q': moe_tensors.w2_q.transpose(1, 2), # type: ignore[union-attr]
|
||||
'w1_q': moe_tensors.w1_q, # type: ignore[union-attr]
|
||||
'w2_q': moe_tensors.w2_q, # type: ignore[union-attr]
|
||||
'topk_weights': topk_weights,
|
||||
'topk_ids': topk_ids,
|
||||
'ab_strides1': moe_tensors.ab_strides1,
|
||||
'c_strides1': moe_tensors.c_strides1,
|
||||
'ab_strides2': moe_tensors.ab_strides2,
|
||||
'c_strides2': moe_tensors.c_strides2,
|
||||
'w1_scale': moe_tensors.w1_scale,
|
||||
'w2_scale': moe_tensors.w2_scale,
|
||||
'a1_scale': moe_tensors.a_scale
|
||||
|
@ -1,6 +1,8 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
Test DeepEP + DeepGEMM integration
|
||||
DeepGEMM are gemm kernels specialized for the
|
||||
fp8 block-quantized case.
|
||||
"""
|
||||
|
||||
import dataclasses
|
||||
@ -33,10 +35,14 @@ except ImportError:
|
||||
if has_deep_ep:
|
||||
from vllm.model_executor.layers.fused_moe.deepep_ht_prepare_finalize import ( # noqa: E501
|
||||
DeepEPHTPrepareAndFinalize)
|
||||
from vllm.model_executor.layers.fused_moe.deepep_ll_prepare_finalize import ( # noqa: E501
|
||||
DeepEPLLPrepareAndFinalize)
|
||||
|
||||
from .deepep_utils import DeepEPHTArgs, make_deepep_a2a
|
||||
from .deepep_utils import DeepEPHTArgs, DeepEPLLArgs, make_deepep_a2a
|
||||
|
||||
if has_deep_gemm:
|
||||
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
|
||||
BatchedDeepGemmExperts)
|
||||
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
|
||||
DeepGemmExperts)
|
||||
|
||||
@ -53,6 +59,13 @@ requires_deep_gemm = pytest.mark.skipif(
|
||||
P = ParamSpec("P")
|
||||
|
||||
|
||||
def next_power_of_2(x):
|
||||
import math
|
||||
if x == 0:
|
||||
return 1
|
||||
return 2**math.ceil(math.log2(x))
|
||||
|
||||
|
||||
def per_block_cast_to_fp8(
|
||||
x: torch.Tensor,
|
||||
block_size_n: int = 128) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
@ -126,6 +139,9 @@ class TestConfig:
|
||||
n: int
|
||||
num_experts: int
|
||||
block_size: list[int]
|
||||
# configs for testing low-latency kernels
|
||||
low_latency: bool
|
||||
use_fp8_dispatch: Optional[bool] = False
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
@ -170,9 +186,43 @@ class TestTensors:
|
||||
config=config)
|
||||
|
||||
|
||||
def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
|
||||
num_local_experts: int, q_dtype: Optional[torch.dtype],
|
||||
block_shape: list[int]) -> FusedMoEModularKernel:
|
||||
def make_ll_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo,
|
||||
max_tokens_per_rank: int, dp_size: int,
|
||||
hidden_size: int, q_dtype: Optional[torch.dtype],
|
||||
test_config: TestConfig) -> FusedMoEModularKernel:
|
||||
|
||||
assert test_config.low_latency
|
||||
assert test_config.use_fp8_dispatch is not None
|
||||
|
||||
a2a: DeepEPLLPrepareAndFinalize = make_deepep_a2a(
|
||||
pg=pg,
|
||||
pgi=pgi,
|
||||
dp_size=dp_size,
|
||||
deepep_ht_args=None,
|
||||
deepep_ll_args=DeepEPLLArgs(
|
||||
max_tokens_per_rank=max_tokens_per_rank,
|
||||
hidden_size=hidden_size,
|
||||
num_experts=test_config.num_experts,
|
||||
use_fp8_dispatch=test_config.use_fp8_dispatch),
|
||||
q_dtype=q_dtype,
|
||||
block_shape=test_config.block_size)
|
||||
|
||||
fused_experts = BatchedDeepGemmExperts(max_num_tokens=max_tokens_per_rank,
|
||||
world_size=pgi.world_size,
|
||||
dp_size=dp_size,
|
||||
block_shape=test_config.block_size)
|
||||
mk = FusedMoEModularKernel(prepare_finalize=a2a,
|
||||
fused_experts=fused_experts)
|
||||
return mk
|
||||
|
||||
|
||||
def make_ht_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo,
|
||||
dp_size: int, num_local_experts: int,
|
||||
q_dtype: Optional[torch.dtype],
|
||||
test_config: TestConfig) -> FusedMoEModularKernel:
|
||||
|
||||
assert not test_config.low_latency
|
||||
assert test_config.use_fp8_dispatch is None
|
||||
|
||||
a2a: DeepEPHTPrepareAndFinalize = make_deepep_a2a(
|
||||
pg=pg,
|
||||
@ -181,7 +231,7 @@ def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
|
||||
deepep_ht_args=DeepEPHTArgs(num_local_experts=num_local_experts),
|
||||
deepep_ll_args=None,
|
||||
q_dtype=q_dtype,
|
||||
block_shape=block_shape)
|
||||
block_shape=test_config.block_size)
|
||||
|
||||
fused_experts = DeepGemmExperts()
|
||||
mk = FusedMoEModularKernel(prepare_finalize=a2a,
|
||||
@ -189,12 +239,42 @@ def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
|
||||
return mk
|
||||
|
||||
|
||||
def deep_ep_moe_impl(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
|
||||
test_tensors: TestTensors, w1: torch.Tensor,
|
||||
w2: torch.Tensor, w1_scale: Optional[torch.Tensor],
|
||||
w2_scale: Optional[torch.Tensor],
|
||||
num_experts: int) -> torch.Tensor:
|
||||
def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
|
||||
num_local_experts: int,
|
||||
test_tensors: TestTensors) -> FusedMoEModularKernel:
|
||||
|
||||
q_dtype = torch.float8_e4m3fn
|
||||
test_config = test_tensors.config
|
||||
|
||||
mk: FusedMoEModularKernel
|
||||
# Make modular kernel
|
||||
if test_config.low_latency:
|
||||
max_tokens_per_rank = max(
|
||||
64, next_power_of_2(test_tensors.rank_tokens.size(0)))
|
||||
hidden_size = test_tensors.rank_tokens.size(-1)
|
||||
|
||||
mk = make_ll_modular_kernel(pg=pg,
|
||||
pgi=pgi,
|
||||
max_tokens_per_rank=max_tokens_per_rank,
|
||||
dp_size=dp_size,
|
||||
hidden_size=hidden_size,
|
||||
q_dtype=q_dtype,
|
||||
test_config=test_config)
|
||||
else:
|
||||
mk = make_ht_modular_kernel(pg, pgi, dp_size, num_local_experts,
|
||||
q_dtype, test_config)
|
||||
|
||||
return mk
|
||||
|
||||
|
||||
def deepep_deepgemm_moe_impl(pg: ProcessGroup, pgi: ProcessGroupInfo,
|
||||
dp_size: int, test_tensors: TestTensors,
|
||||
w1: torch.Tensor, w2: torch.Tensor,
|
||||
w1_scale: Optional[torch.Tensor],
|
||||
w2_scale: Optional[torch.Tensor]) -> torch.Tensor:
|
||||
|
||||
test_config = test_tensors.config
|
||||
num_experts = test_config.num_experts
|
||||
num_local_experts = w1.size(0)
|
||||
|
||||
def build_expert_map():
|
||||
@ -208,14 +288,17 @@ def deep_ep_moe_impl(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
|
||||
return expert_map.to(device=torch.cuda.current_device(),
|
||||
dtype=torch.int32)
|
||||
|
||||
q_dtype = torch.float8_e4m3fn
|
||||
|
||||
# Make modular kernel
|
||||
mk: FusedMoEModularKernel = make_modular_kernel(
|
||||
pg, pgi, dp_size, num_local_experts, q_dtype,
|
||||
test_tensors.config.block_size)
|
||||
pg=pg,
|
||||
pgi=pgi,
|
||||
dp_size=dp_size,
|
||||
num_local_experts=num_local_experts,
|
||||
test_tensors=test_tensors)
|
||||
|
||||
a1_scale = test_tensors.rank_token_scales
|
||||
# Low-Latency kernels can't dispatch scales.
|
||||
a1_scale = (None
|
||||
if test_config.low_latency else test_tensors.rank_token_scales)
|
||||
|
||||
out = mk.forward(hidden_states=test_tensors.rank_tokens,
|
||||
w1=w1,
|
||||
@ -258,7 +341,7 @@ def triton_impl(a: torch.Tensor, topk_ids: torch.Tensor,
|
||||
allow_deep_gemm=False)
|
||||
|
||||
|
||||
def _deep_ep_moe(
|
||||
def _test_deepep_deepgemm_moe(
|
||||
pgi: ProcessGroupInfo,
|
||||
dp_size: int,
|
||||
config: TestConfig,
|
||||
@ -302,7 +385,7 @@ def _deep_ep_moe(
|
||||
w1_scale_ep = w1_scale[e_start:e_end]
|
||||
w2_scale_ep = w2_scale[e_start:e_end]
|
||||
|
||||
deepep_moe = deep_ep_moe_impl(
|
||||
deepep_moe = deepep_deepgemm_moe_impl(
|
||||
pg,
|
||||
pgi,
|
||||
dp_size,
|
||||
@ -311,7 +394,6 @@ def _deep_ep_moe(
|
||||
w2_ep,
|
||||
w1_scale_ep,
|
||||
w2_scale_ep,
|
||||
config.num_experts,
|
||||
)
|
||||
|
||||
torch.testing.assert_close(
|
||||
@ -335,15 +417,21 @@ MNKs = [
|
||||
(222, 1024, 2048),
|
||||
]
|
||||
|
||||
TOPKS = [2, 6]
|
||||
NUM_EXPERTS = [32]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("mnk", MNKs)
|
||||
@pytest.mark.parametrize("num_experts", [32])
|
||||
@pytest.mark.parametrize("topk", [2, 6])
|
||||
@pytest.mark.parametrize("num_experts", NUM_EXPERTS)
|
||||
@pytest.mark.parametrize("topk", TOPKS)
|
||||
@pytest.mark.parametrize("world_dp_size", [(2, 1)])
|
||||
@requires_deep_ep
|
||||
@requires_deep_gemm
|
||||
def test_deep_ep_moe(mnk: tuple[int, int, int], num_experts: int, topk: int,
|
||||
world_dp_size: tuple[int, int]):
|
||||
def test_ht_deepep_deepgemm_moe(mnk: tuple[int, int, int], num_experts: int,
|
||||
topk: int, world_dp_size: tuple[int, int]):
|
||||
"""
|
||||
Tests for High-Throughput DeepEP + DeepGemm integration.
|
||||
"""
|
||||
|
||||
m, n, k = mnk
|
||||
current_platform.seed_everything(7)
|
||||
@ -354,6 +442,58 @@ def test_deep_ep_moe(mnk: tuple[int, int, int], num_experts: int, topk: int,
|
||||
block_m = deep_gemm.get_m_alignment_for_contiguous_layout()
|
||||
block_size = [block_m, block_m]
|
||||
|
||||
world_size, dp_size = world_dp_size
|
||||
config = TestConfig(topk=topk,
|
||||
m=m,
|
||||
k=k,
|
||||
n=n,
|
||||
num_experts=num_experts,
|
||||
block_size=block_size,
|
||||
low_latency=False,
|
||||
use_fp8_dispatch=None)
|
||||
|
||||
w1, w2, w1_scale, w2_scale = make_block_quant_fp8_weights(
|
||||
num_experts, n, k, block_size)
|
||||
|
||||
parallel_launch(world_size, _test_deepep_deepgemm_moe, dp_size, config, w1,
|
||||
w2, w1_scale, w2_scale)
|
||||
|
||||
|
||||
MNKs = [
|
||||
(1, 128, 2560),
|
||||
(2, 128, 2560),
|
||||
(3, 1024, 2560),
|
||||
(32, 128, 2560),
|
||||
(45, 512, 2560),
|
||||
(64, 1024, 2560),
|
||||
(222, 1024, 2560),
|
||||
]
|
||||
# Fix tests for USE_FP8_DISPATCH=True
|
||||
USE_FP8_DISPATCH = [False]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("mnk", MNKs)
|
||||
@pytest.mark.parametrize("num_experts", NUM_EXPERTS)
|
||||
@pytest.mark.parametrize("topk", TOPKS)
|
||||
@pytest.mark.parametrize("use_fp8_dispatch", USE_FP8_DISPATCH)
|
||||
@pytest.mark.parametrize("block_size", [[128, 128]])
|
||||
@pytest.mark.parametrize("world_dp_size", [(2, 1)])
|
||||
@requires_deep_ep
|
||||
@requires_deep_gemm
|
||||
def test_ll_deepep_deepgemm_moe(mnk: tuple[int, int,
|
||||
int], num_experts: int, topk: int,
|
||||
use_fp8_dispatch: bool, block_size: list[int],
|
||||
world_dp_size: tuple[int, int]):
|
||||
"""
|
||||
Tests for Low-Latency DeepEP + DeepGemm integration.
|
||||
"""
|
||||
|
||||
m, n, k = mnk
|
||||
current_platform.seed_everything(7)
|
||||
|
||||
if topk > num_experts:
|
||||
pytest.skip(f"Skipping test: topk={topk} > E={num_experts}")
|
||||
|
||||
world_size, dp_size = world_dp_size
|
||||
config = TestConfig(
|
||||
topk=topk,
|
||||
@ -362,10 +502,12 @@ def test_deep_ep_moe(mnk: tuple[int, int, int], num_experts: int, topk: int,
|
||||
n=n,
|
||||
num_experts=num_experts,
|
||||
block_size=block_size,
|
||||
low_latency=True,
|
||||
use_fp8_dispatch=use_fp8_dispatch,
|
||||
)
|
||||
|
||||
w1, w2, w1_scale, w2_scale = make_block_quant_fp8_weights(
|
||||
num_experts, n, k, block_size)
|
||||
|
||||
parallel_launch(world_size, _deep_ep_moe, dp_size, config, w1, w2,
|
||||
w1_scale, w2_scale)
|
||||
parallel_launch(world_size, _test_deepep_deepgemm_moe, dp_size, config, w1,
|
||||
w2, w1_scale, w2_scale)
|
||||
|
@ -80,7 +80,10 @@ def test_cutlass_fp4_moe_no_graph(m: int, n: int, k: int, e: int, topk: int,
|
||||
w2[expert], w2_gs[expert])
|
||||
|
||||
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
||||
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
|
||||
topk_weights, topk_ids, _ = fused_topk(a,
|
||||
score,
|
||||
topk,
|
||||
renormalize=False)
|
||||
|
||||
a1_gs = torch.ones((e, ), device="cuda", dtype=torch.float32)
|
||||
a2_gs = torch.ones((e, ), device="cuda", dtype=torch.float32)
|
||||
|
287
tests/kernels/moe/test_pplx_cutlass_moe.py
Normal file
287
tests/kernels/moe/test_pplx_cutlass_moe.py
Normal file
@ -0,0 +1,287 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.pplx_utils import ProcessGroupInfo, parallel_launch
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import CutlassExpertsFp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
|
||||
from vllm.model_executor.layers.fused_moe.modular_kernel import (
|
||||
FusedMoEModularKernel)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
try:
|
||||
from pplx_kernels import AllToAll
|
||||
from pplx_kernels.nvshmem import (nvshmem_alloc_empty_unique_id,
|
||||
nvshmem_finalize, nvshmem_get_unique_id,
|
||||
nvshmem_init)
|
||||
has_pplx = True
|
||||
except ImportError:
|
||||
has_pplx = False
|
||||
|
||||
requires_pplx = pytest.mark.skipif(
|
||||
not has_pplx,
|
||||
reason="Requires PPLX kernels",
|
||||
)
|
||||
|
||||
NUM_EXPERTS = [40, 64]
|
||||
TOP_KS = [6, 8]
|
||||
|
||||
|
||||
def rank_chunk(num, r, w):
|
||||
rem = num % w
|
||||
return (num // w) + (1 if r < rem else 0)
|
||||
|
||||
|
||||
def chunk_by_rank(t, r, w):
|
||||
num = t.shape[0]
|
||||
chunk = rank_chunk(num, r, w)
|
||||
rem = num % w
|
||||
if rem == 0 or r < rem:
|
||||
return t[(r * chunk):(r + 1) * chunk].contiguous()
|
||||
else:
|
||||
long_chunks = (num // w + 1) * rem
|
||||
short_chunks = (r - rem) * chunk
|
||||
start = long_chunks + short_chunks
|
||||
return t[start:start + chunk].contiguous()
|
||||
|
||||
|
||||
def pplx_cutlass_moe(
|
||||
pgi: ProcessGroupInfo,
|
||||
dp_size: int,
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
a1_scale: torch.Tensor,
|
||||
out_dtype,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
):
|
||||
from vllm.model_executor.layers.fused_moe.pplx_prepare_finalize import (
|
||||
PplxPrepareAndFinalize)
|
||||
assert torch.cuda.current_device() == pgi.local_rank
|
||||
|
||||
num_tokens, hidden_dim = a.shape
|
||||
num_experts = w1.shape[0]
|
||||
block_size = hidden_dim # TODO support more cases
|
||||
device = pgi.device
|
||||
rank = pgi.rank
|
||||
world_size = pgi.world_size
|
||||
rank_num_tokens = rank_chunk(num_tokens, rank, world_size)
|
||||
max_num_tokens = rank_chunk(num_tokens, 0, world_size)
|
||||
topk = topk_ids.shape[1]
|
||||
|
||||
if block_size == hidden_dim:
|
||||
scale_elems = 4 # hack to circumvent pplx data format requirements
|
||||
else:
|
||||
scale_elems = (hidden_dim + block_size - 1) // block_size
|
||||
|
||||
ata = AllToAll.internode(
|
||||
max_num_tokens=max_num_tokens,
|
||||
num_experts=num_experts,
|
||||
experts_per_token=topk,
|
||||
rank=rank,
|
||||
world_size=pgi.world_size,
|
||||
dp_size=dp_size,
|
||||
hidden_dim=hidden_dim,
|
||||
hidden_dim_bytes=hidden_dim, # because a.dtype.itemsize == 1
|
||||
hidden_dim_scale_bytes=scale_elems * torch.float32.itemsize,
|
||||
)
|
||||
|
||||
w1 = w1.to(device)
|
||||
w2 = w2.to(device)
|
||||
w1_scale = w1_scale.to(device)
|
||||
w2_scale = w2_scale.to(device)
|
||||
a1_scale = a1_scale.to(device)
|
||||
|
||||
prepare_finalize = PplxPrepareAndFinalize(
|
||||
ata,
|
||||
max_num_tokens,
|
||||
pgi.world_size,
|
||||
rank,
|
||||
dp_size,
|
||||
quant_dtype=torch.float8_e4m3fn,
|
||||
per_act_token=per_act_token,
|
||||
)
|
||||
|
||||
experts = CutlassExpertsFp8((num_experts + world_size - 1) // world_size,
|
||||
out_dtype, per_act_token, per_out_ch)
|
||||
|
||||
fused_cutlass_experts = FusedMoEModularKernel(
|
||||
prepare_finalize,
|
||||
experts,
|
||||
)
|
||||
|
||||
a_chunk = chunk_by_rank(a, rank, world_size).to(device)
|
||||
chunk_topk_weight = chunk_by_rank(topk_weights, rank,
|
||||
world_size).to(device)
|
||||
chunk_topk_ids = chunk_by_rank(topk_ids, rank,
|
||||
world_size).to(torch.uint32).to(device)
|
||||
|
||||
out = fused_cutlass_experts(
|
||||
a_chunk,
|
||||
chunk_by_rank(w1, rank, world_size),
|
||||
chunk_by_rank(w2, rank, world_size),
|
||||
chunk_topk_weight,
|
||||
chunk_topk_ids,
|
||||
global_num_experts=num_experts,
|
||||
expert_map=None, #TODO
|
||||
w1_scale=chunk_by_rank(w1_scale, rank, world_size),
|
||||
w2_scale=chunk_by_rank(w2_scale, rank, world_size),
|
||||
a1_scale=chunk_by_rank(a1_scale, rank, world_size)
|
||||
if per_act_token else a1_scale[rank])
|
||||
|
||||
torch.cuda.synchronize()
|
||||
|
||||
ata.destroy()
|
||||
|
||||
return out[:rank_num_tokens]
|
||||
|
||||
|
||||
vllm_config = VllmConfig()
|
||||
vllm_config.scheduler_config.max_num_seqs = 128
|
||||
vllm_config.scheduler_config.max_model_len = 8192
|
||||
|
||||
|
||||
def torch_moe2(a, w1, w2, topk_weight, topk_ids):
|
||||
M, K = a.shape
|
||||
topk = topk_ids.shape[1]
|
||||
a = a.view(M, -1, K).repeat(1, topk, 1).reshape(-1, K)
|
||||
out = torch.zeros(M * topk, w2.shape[1], dtype=a.dtype, device=a.device)
|
||||
num_experts = w1.shape[0]
|
||||
for i in range(num_experts):
|
||||
mask = (topk_ids == i).view(-1)
|
||||
if mask.sum():
|
||||
out[mask] = SiluAndMul()(
|
||||
a[mask] @ w1[i].transpose(0, 1)) @ w2[i].transpose(0, 1)
|
||||
|
||||
return (out.view(M, -1, w2.shape[1]) *
|
||||
topk_weight.view(M, -1, 1).to(out.dtype)).sum(dim=1)
|
||||
|
||||
|
||||
def _pplx_moe(
|
||||
pgi: ProcessGroupInfo,
|
||||
dp_size: int,
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
a1_scale: torch.Tensor,
|
||||
out_dtype,
|
||||
a_full: torch.Tensor,
|
||||
w1_full: torch.Tensor,
|
||||
w2_full: torch.Tensor,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
):
|
||||
uid = nvshmem_get_unique_id(
|
||||
) if pgi.rank == 0 else nvshmem_alloc_empty_unique_id()
|
||||
torch.distributed.broadcast(uid, src=0)
|
||||
nvshmem_init(uid, pgi.rank, pgi.world_size)
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
torch_output = torch_moe2(a_full, w1_full, w2_full, topk_weights,
|
||||
topk_ids)
|
||||
pplx_output = pplx_cutlass_moe(pgi, dp_size, a, w1, w2, w1_scale,
|
||||
w2_scale, topk_weights, topk_ids,
|
||||
a1_scale, out_dtype, per_act_token,
|
||||
per_out_ch)
|
||||
|
||||
torch_output = chunk_by_rank(torch_output, pgi.rank,
|
||||
pgi.world_size).to(pplx_output.device)
|
||||
|
||||
# Uncomment if more debugging is needed
|
||||
# print("PPLX OUT:", pplx_output)
|
||||
# print("TORCH OUT:", torch_output)
|
||||
|
||||
torch.testing.assert_close(pplx_output, torch_output, atol=0.05, rtol=0)
|
||||
|
||||
nvshmem_finalize()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("m", [2, 224])
|
||||
@pytest.mark.parametrize("n", [3072])
|
||||
@pytest.mark.parametrize("k", [1536])
|
||||
@pytest.mark.parametrize("e", NUM_EXPERTS)
|
||||
@pytest.mark.parametrize("topk", TOP_KS)
|
||||
@pytest.mark.parametrize("per_act_token", [True, False])
|
||||
@pytest.mark.parametrize("per_out_ch", [True, False])
|
||||
@pytest.mark.parametrize("world_dp_size", [[2, 1]]) #, [4, 2]])
|
||||
@pytest.mark.skipif(
|
||||
(lambda x: x is None or not ops.cutlass_group_gemm_supported(x.to_int()))(
|
||||
current_platform.get_device_capability()),
|
||||
reason="Grouped gemm is not supported on this GPU type.")
|
||||
@requires_pplx
|
||||
def test_cutlass_moe_pplx(
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
e: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
world_dp_size: tuple[int, int],
|
||||
):
|
||||
current_platform.seed_everything(7)
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
|
||||
dtype = torch.half
|
||||
|
||||
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10.0
|
||||
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10.0
|
||||
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10.0
|
||||
|
||||
n_b_scales = 2 * n if per_out_ch else 1
|
||||
k_b_scales = k if per_out_ch else 1
|
||||
|
||||
w1_q = torch.empty((e, 2 * n, k),
|
||||
device="cuda",
|
||||
dtype=torch.float8_e4m3fn)
|
||||
w2_q = torch.empty((e, k, n), device="cuda", dtype=torch.float8_e4m3fn)
|
||||
w1_scale = torch.empty((e, n_b_scales, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
w2_scale = torch.empty((e, k_b_scales, 1),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
|
||||
for expert in range(e):
|
||||
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(
|
||||
w1[expert], use_per_token_if_dynamic=per_out_ch)
|
||||
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(
|
||||
w2[expert], use_per_token_if_dynamic=per_out_ch)
|
||||
|
||||
w1_d = torch.empty_like(w1)
|
||||
w2_d = torch.empty_like(w2)
|
||||
for expert in range(e):
|
||||
w1_d[expert] = (w1_q[expert].float() * w1_scale[expert]).half()
|
||||
w2_d[expert] = (w2_q[expert].float() * w2_scale[expert]).half()
|
||||
|
||||
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
||||
topk_weights, topk_ids, _ = fused_topk(a,
|
||||
score,
|
||||
topk,
|
||||
renormalize=False)
|
||||
|
||||
world_size, dp_size = world_dp_size
|
||||
a_scale1 = torch.randn(
|
||||
(m if per_act_token else 1, 1), device="cuda",
|
||||
dtype=torch.float32) / 10.0
|
||||
if not per_act_token:
|
||||
a_scale1 = a_scale1.repeat(world_size, 1)
|
||||
|
||||
parallel_launch(world_size, _pplx_moe, dp_size, a, w1_q, w2_q,
|
||||
w1_scale, w2_scale, topk_weights, topk_ids, a_scale1,
|
||||
dtype, a, w1_d, w2_d, per_act_token, per_out_ch)
|
@ -4,10 +4,7 @@
|
||||
|
||||
Run `pytest tests/kernels/test_pplx_moe.py`.
|
||||
"""
|
||||
import dataclasses
|
||||
import os
|
||||
import traceback
|
||||
from typing import Callable, Optional
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
@ -21,10 +18,7 @@ try:
|
||||
except ImportError:
|
||||
has_pplx = False
|
||||
|
||||
from torch.multiprocessing import (
|
||||
spawn) # pyright: ignore[reportPrivateImportUsage]
|
||||
from typing_extensions import Concatenate, ParamSpec
|
||||
|
||||
from tests.pplx_utils import ProcessGroupInfo, parallel_launch
|
||||
from vllm.config import VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import override_config
|
||||
@ -36,6 +30,11 @@ from vllm.model_executor.layers.fused_moe.modular_kernel import (
|
||||
FusedMoEModularKernel)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
requires_pplx = pytest.mark.skipif(
|
||||
not has_pplx,
|
||||
reason="Requires PPLX kernels",
|
||||
)
|
||||
|
||||
PPLX_PREPARE_COMBOS = [(4, 128, 128), (32, 1024, 512), (64, 1024, 512),
|
||||
(222, 2048, 1024)]
|
||||
|
||||
@ -57,122 +56,6 @@ vllm_config = VllmConfig()
|
||||
vllm_config.scheduler_config.max_num_seqs = 128
|
||||
vllm_config.scheduler_config.max_model_len = 8192
|
||||
|
||||
P = ParamSpec("P")
|
||||
|
||||
requires_pplx = pytest.mark.skipif(
|
||||
not has_pplx,
|
||||
reason="Requires PPLX kernels",
|
||||
)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ProcessGroupInfo:
|
||||
world_size: int
|
||||
world_local_size: int
|
||||
rank: int
|
||||
node_rank: int
|
||||
local_rank: int
|
||||
device: torch.device
|
||||
|
||||
|
||||
def _worker_parallel_launch(
|
||||
local_rank: int,
|
||||
world_size: int,
|
||||
world_local_size: int,
|
||||
node_rank: int,
|
||||
init_method: str,
|
||||
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
|
||||
*args: P.args,
|
||||
**kwargs: P.kwargs,
|
||||
) -> None:
|
||||
rank = node_rank * world_local_size + local_rank
|
||||
torch.cuda.set_device(local_rank)
|
||||
device = torch.device("cuda", local_rank)
|
||||
torch.distributed.init_process_group(
|
||||
backend="cpu:gloo,cuda:nccl",
|
||||
init_method=init_method,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
device_id=device,
|
||||
)
|
||||
barrier = torch.tensor([rank], device=device)
|
||||
torch.distributed.all_reduce(barrier)
|
||||
|
||||
try:
|
||||
worker(
|
||||
ProcessGroupInfo(
|
||||
world_size=world_size,
|
||||
world_local_size=world_local_size,
|
||||
rank=rank,
|
||||
node_rank=node_rank,
|
||||
local_rank=local_rank,
|
||||
device=device,
|
||||
),
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
except Exception as ex:
|
||||
print(ex)
|
||||
traceback.print_exc()
|
||||
raise
|
||||
finally:
|
||||
torch.distributed.destroy_process_group()
|
||||
|
||||
|
||||
def parallel_launch(
|
||||
world_size: int,
|
||||
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
|
||||
*args: P.args,
|
||||
**kwargs: P.kwargs,
|
||||
) -> None:
|
||||
assert not kwargs
|
||||
spawn(
|
||||
_worker_parallel_launch,
|
||||
args=(
|
||||
world_size,
|
||||
world_size,
|
||||
0,
|
||||
"tcp://localhost:29500",
|
||||
worker,
|
||||
) + args,
|
||||
nprocs=world_size,
|
||||
join=True,
|
||||
)
|
||||
|
||||
|
||||
def parallel_launch_from_env(
|
||||
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
|
||||
*args: P.args,
|
||||
**kwargs: P.kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Launches a worker function in parallel across all processes in the current
|
||||
environment. The environment must have the following variables set:
|
||||
- WORLD_SIZE: The total number of processes.
|
||||
- WORLD_LOCAL_SIZE: The number of processes on the current node.
|
||||
- NODE_RANK: The rank of the current
|
||||
- MASTER_ADDR: The address of the master process.
|
||||
- MASTER_PORT: The port of the master process.
|
||||
"""
|
||||
assert not kwargs
|
||||
world_size = int(os.environ["WORLD_SIZE"])
|
||||
world_local_size = int(os.environ["WORLD_LOCAL_SIZE"])
|
||||
node_rank = int(os.environ["NODE_RANK"])
|
||||
assert "MASTER_ADDR" in os.environ
|
||||
assert "MASTER_PORT" in os.environ
|
||||
spawn(
|
||||
_worker_parallel_launch,
|
||||
args=(
|
||||
world_size,
|
||||
world_local_size,
|
||||
node_rank,
|
||||
"env://",
|
||||
worker,
|
||||
) + args,
|
||||
nprocs=world_local_size,
|
||||
join=True,
|
||||
)
|
||||
|
||||
|
||||
def torch_prepare(
|
||||
a: torch.Tensor,
|
||||
@ -391,7 +274,7 @@ def pplx_prepare_finalize(pgi: ProcessGroupInfo, dp_size: int, a: torch.Tensor,
|
||||
chunk_topk_weight = chunk_by_rank(topk_weight, rank, world_size).to(device)
|
||||
chunk_topk_ids = chunk_by_rank(topk_ids, rank, world_size).to(device)
|
||||
|
||||
b_a, b_a_scale, expert_num_tokens = prepare_finalize.prepare(
|
||||
b_a, b_a_scale, expert_num_tokens, _, _ = prepare_finalize.prepare(
|
||||
a_chunk,
|
||||
None,
|
||||
None,
|
||||
|
@ -632,7 +632,8 @@ def test_cutlass_fp8_group_gemm(num_experts: int, per_act_token: bool,
|
||||
ops.cutlass_moe_mm(out_tensors_stacked, a_tensors_stacked,
|
||||
b_tensors_stacked, a_scales_tensors_stacked,
|
||||
b_scales_tensors_stacked, expert_offsets[:-1],
|
||||
problem_sizes, ab_strides, ab_strides, c_strides)
|
||||
problem_sizes, ab_strides, ab_strides, c_strides,
|
||||
per_act_token, per_out_ch)
|
||||
|
||||
# Validate each group's result against the baseline
|
||||
for g in range(num_experts):
|
||||
|
93
tests/kernels/test_flex_attention.py
Normal file
93
tests/kernels/test_flex_attention.py
Normal file
@ -0,0 +1,93 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Integration tests for FlexAttention backend vs default backend"""
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
TORCH_VERSION = version.parse(torch.__version__)
|
||||
MINIMUM_TORCH_VERSION = version.parse("2.7.0")
|
||||
|
||||
|
||||
def set_seed(seed):
|
||||
"""Set seeds for reproducibility"""
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not torch.cuda.is_available() or TORCH_VERSION < MINIMUM_TORCH_VERSION,
|
||||
reason="CUDA not available or PyTorch version < 2.7",
|
||||
)
|
||||
def test_flex_attention_vs_default_backend(monkeypatch):
|
||||
"""Test that FlexAttention produces the same outputs as the default backend.
|
||||
|
||||
This test compares the outputs from the FlexAttention backend with
|
||||
the default backend, ensuring they are identical when using the same seed.
|
||||
"""
|
||||
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
||||
seed = 42
|
||||
max_tokens = 32
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
]
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.0,
|
||||
top_p=1.0,
|
||||
seed=seed,
|
||||
max_tokens=max_tokens)
|
||||
|
||||
# Run with flex attention
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", "FLEX_ATTENTION")
|
||||
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
|
||||
|
||||
set_seed(seed)
|
||||
|
||||
llm_flex = LLM(
|
||||
model_name,
|
||||
tensor_parallel_size=1,
|
||||
num_gpu_blocks_override=128,
|
||||
enforce_eager=True,
|
||||
)
|
||||
output_flex = llm_flex.generate(prompts, sampling_params)
|
||||
|
||||
# Run with default backend
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
|
||||
set_seed(seed)
|
||||
llm_default = LLM(
|
||||
model_name,
|
||||
tensor_parallel_size=1,
|
||||
num_gpu_blocks_override=128,
|
||||
enforce_eager=True,
|
||||
)
|
||||
output_default = llm_default.generate(prompts, sampling_params)
|
||||
|
||||
# Compare outputs from both backends
|
||||
for i, (flex_result,
|
||||
default_result) in enumerate(zip(output_flex, output_default)):
|
||||
prompt = prompts[i]
|
||||
flex_text = flex_result.outputs[0].text
|
||||
default_text = default_result.outputs[0].text
|
||||
|
||||
assert flex_text == default_text, (
|
||||
f"FlexAttention output doesn't match default for: {prompt!r}\n"
|
||||
f"FlexAttention: {flex_text!r}\n"
|
||||
f"Default: {default_text!r}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__])
|
@ -164,11 +164,6 @@ def mixtral_lora_files():
|
||||
return snapshot_download(repo_id="SangBinCho/mixtral-lora")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def gemma_lora_files():
|
||||
return snapshot_download(repo_id="wskwon/gemma-7b-test-lora")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def chatglm3_lora_files():
|
||||
return snapshot_download(repo_id="jeeejeee/chatglm3-text2sql-spider")
|
||||
|
@ -4,9 +4,6 @@ import subprocess
|
||||
import sys
|
||||
from typing import Union
|
||||
|
||||
import pytest
|
||||
import ray
|
||||
|
||||
import vllm
|
||||
from vllm import LLM
|
||||
from vllm.lora.request import LoRARequest
|
||||
@ -121,37 +118,6 @@ def test_llama_lora(sql_lora_files):
|
||||
generate_and_test(llm, sql_lora_files)
|
||||
|
||||
|
||||
# Skipping for v1 as v1 doesn't have a good way to expose the num_gpu_blocks
|
||||
# used by the engine yet.
|
||||
@pytest.mark.skip_v1
|
||||
@create_new_process_for_each_test()
|
||||
def test_llama_lora_warmup(sql_lora_files):
|
||||
"""Test that the LLM initialization works with a warmup LORA path and
|
||||
is more conservative"""
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
def get_num_gpu_blocks_lora():
|
||||
llm = vllm.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16)
|
||||
num_gpu_blocks_lora_warmup = llm.llm_engine.cache_config.num_gpu_blocks
|
||||
return num_gpu_blocks_lora_warmup
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
def get_num_gpu_blocks_no_lora():
|
||||
llm = vllm.LLM(MODEL_PATH, max_num_seqs=16)
|
||||
num_gpu_blocks_no_lora_warmup = (
|
||||
llm.llm_engine.cache_config.num_gpu_blocks)
|
||||
return num_gpu_blocks_no_lora_warmup
|
||||
|
||||
num_gpu_blocks_lora_warmup = ray.get(get_num_gpu_blocks_lora.remote())
|
||||
num_gpu_blocks_no_lora_warmup = ray.get(
|
||||
get_num_gpu_blocks_no_lora.remote())
|
||||
assert num_gpu_blocks_lora_warmup < num_gpu_blocks_no_lora_warmup, (
|
||||
"The warmup with lora should be more "
|
||||
"conservative than without lora, therefore the number of "
|
||||
"memory blocks for the KV cache should be "
|
||||
"less when using lora than when not using lora")
|
||||
|
||||
|
||||
@multi_gpu_test(num_gpus=4)
|
||||
@create_new_process_for_each_test()
|
||||
def test_llama_lora_tp4(sql_lora_files):
|
||||
|
@ -15,13 +15,6 @@ MODEL_PATH = "meta-llama/Llama-2-7b-hf"
|
||||
LORA_MODULE_PATH = "yard1/llama-2-7b-sql-lora-test"
|
||||
LORA_RANK = 8
|
||||
|
||||
# @pytest.fixture(autouse=True)
|
||||
# def v1(run_with_both_engines_lora):
|
||||
# # Simple autouse wrapper to run both engines for each test
|
||||
# # This can be promoted up to conftest.py to run for every
|
||||
# # test in a package
|
||||
# pass
|
||||
|
||||
|
||||
def make_lora_request(lora_id: int):
|
||||
return LoRARequest(lora_name=f"{lora_id}",
|
||||
|
@ -11,14 +11,6 @@ MODEL_PATH = "microsoft/phi-2"
|
||||
PROMPT_TEMPLATE = "### Instruct: {sql_prompt}\n\n### Context: {context}\n\n### Output:" # noqa: E501
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def v1(run_with_both_engines_lora):
|
||||
# Simple autouse wrapper to run both engines for each test
|
||||
# This can be promoted up to conftest.py to run for every
|
||||
# test in a package
|
||||
pass
|
||||
|
||||
|
||||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
|
||||
prompts = [
|
||||
PROMPT_TEMPLATE.format(
|
||||
@ -59,7 +51,7 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
|
||||
|
||||
# Skipping for V1 for now as we are hitting,
|
||||
# "Head size 80 is not supported by FlashAttention." error.
|
||||
@pytest.mark.skip_v1
|
||||
@pytest.mark.skip(reason="Head size 80 is not supported by FlashAttention")
|
||||
def test_phi2_lora(phi2_lora_files):
|
||||
# We enable enforce_eager=True here to reduce VRAM usage for lora-test CI,
|
||||
# Otherwise, the lora-test will fail due to CUDA OOM.
|
||||
|
@ -16,6 +16,8 @@ from vllm.lora.request import LoRARequest
|
||||
from vllm.v1.worker.gpu_worker import Worker as V1Worker
|
||||
from vllm.worker.worker import Worker
|
||||
|
||||
NUM_LORAS = 16
|
||||
|
||||
|
||||
@patch.dict(os.environ, {"RANK": "0"})
|
||||
def test_worker_apply_lora(sql_lora_files):
|
||||
@ -58,12 +60,12 @@ def test_worker_apply_lora(sql_lora_files):
|
||||
device_config=DeviceConfig("cuda"),
|
||||
cache_config=CacheConfig(
|
||||
block_size=16,
|
||||
gpu_memory_utilization=1.0,
|
||||
swap_space=0,
|
||||
cache_dtype="auto",
|
||||
),
|
||||
lora_config=LoRAConfig(max_lora_rank=8, max_cpu_loras=32,
|
||||
max_loras=32),
|
||||
lora_config=LoRAConfig(max_lora_rank=8,
|
||||
max_cpu_loras=NUM_LORAS,
|
||||
max_loras=NUM_LORAS),
|
||||
)
|
||||
worker = worker_cls(
|
||||
vllm_config=vllm_config,
|
||||
@ -78,9 +80,9 @@ def test_worker_apply_lora(sql_lora_files):
|
||||
set_active_loras(worker, [])
|
||||
assert worker.list_loras() == set()
|
||||
|
||||
n_loras = 32
|
||||
lora_requests = [
|
||||
LoRARequest(str(i + 1), i + 1, sql_lora_files) for i in range(n_loras)
|
||||
LoRARequest(str(i + 1), i + 1, sql_lora_files)
|
||||
for i in range(NUM_LORAS)
|
||||
]
|
||||
|
||||
set_active_loras(worker, lora_requests)
|
||||
@ -89,12 +91,12 @@ def test_worker_apply_lora(sql_lora_files):
|
||||
for lora_request in lora_requests
|
||||
}
|
||||
|
||||
for i in range(32):
|
||||
for i in range(NUM_LORAS):
|
||||
random.seed(i)
|
||||
iter_lora_requests = random.choices(lora_requests,
|
||||
k=random.randint(1, n_loras))
|
||||
k=random.randint(1, NUM_LORAS))
|
||||
random.shuffle(iter_lora_requests)
|
||||
iter_lora_requests = iter_lora_requests[:-random.randint(0, n_loras)]
|
||||
iter_lora_requests = iter_lora_requests[:-random.randint(0, NUM_LORAS)]
|
||||
set_active_loras(worker, lora_requests)
|
||||
assert worker.list_loras().issuperset(
|
||||
{lora_request.lora_int_id
|
||||
|
@ -38,7 +38,7 @@ class GGUFTestConfig(NamedTuple):
|
||||
LLAMA_CONFIG = GGUFTestConfig(
|
||||
original_model="meta-llama/Llama-3.2-1B-Instruct",
|
||||
gguf_repo="bartowski/Llama-3.2-1B-Instruct-GGUF",
|
||||
gguf_filename="Llama-3.2-1B-Instruct-IQ4_XS.gguf",
|
||||
gguf_filename="Llama-3.2-1B-Instruct-Q6_K.gguf",
|
||||
)
|
||||
|
||||
QWEN2_CONFIG = GGUFTestConfig(
|
||||
|
@ -212,6 +212,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"MptForCausalLM": _HfExamplesInfo("mpt", is_available_online=False),
|
||||
"MPTForCausalLM": _HfExamplesInfo("mosaicml/mpt-7b"),
|
||||
"NemotronForCausalLM": _HfExamplesInfo("nvidia/Minitron-8B-Base"),
|
||||
"NemotronHForCausalLM": _HfExamplesInfo("nvidia/Nemotron-H-8B-Base-8K",
|
||||
trust_remote_code=True),
|
||||
"OlmoForCausalLM": _HfExamplesInfo("allenai/OLMo-1B-hf"),
|
||||
"Olmo2ForCausalLM": _HfExamplesInfo("allenai/OLMo-2-0425-1B"),
|
||||
"OlmoeForCausalLM": _HfExamplesInfo("allenai/OLMoE-1B-7B-0924-Instruct"),
|
||||
|
@ -86,6 +86,8 @@ def test_can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch):
|
||||
} if model_info.speculative_model else None,
|
||||
trust_remote_code=model_info.trust_remote_code,
|
||||
max_model_len=model_info.max_model_len,
|
||||
# these tests seem to produce leftover memory
|
||||
gpu_memory_utilization=0.80,
|
||||
load_format="dummy",
|
||||
hf_overrides=hf_overrides,
|
||||
)
|
||||
|
@ -9,12 +9,21 @@ from typing import TYPE_CHECKING, NamedTuple, Optional
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from PIL import Image, ImageChops
|
||||
|
||||
from tests.utils import multi_gpu_test
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.distributed.parallel_state import (init_distributed_environment,
|
||||
initialize_model_parallel)
|
||||
from vllm.multimodal.image import convert_image_mode
|
||||
from vllm.multimodal.inputs import PlaceholderRange
|
||||
from vllm.multimodal.utils import (MediaConnector,
|
||||
merge_and_sort_multimodal_metadata)
|
||||
merge_and_sort_multimodal_metadata,
|
||||
run_dp_sharded_vision_model)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import get_open_port, update_environment_variables
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.multimodal.hasher import MultiModalHashDict
|
||||
@ -141,6 +150,19 @@ async def test_fetch_image_local_files(image_url: str):
|
||||
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_fetch_image_error_conversion():
|
||||
connector = MediaConnector()
|
||||
broken_img = ""
|
||||
|
||||
# PIL.UnidentifiedImageError should be converted to ValueError
|
||||
with pytest.raises(ValueError):
|
||||
await connector.fetch_image_async(broken_img)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
connector.fetch_image(broken_img)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
||||
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
|
||||
@ -400,3 +422,90 @@ def test_merge_and_sort_multimodal_metadata_with_interleaving():
|
||||
assert modalities == expected_modalities
|
||||
assert ranges == expected_ranges
|
||||
assert hashes == expected_hashes
|
||||
|
||||
|
||||
class SimpleLinearModel(torch.nn.Module):
|
||||
"""A simple linear vision model for testing."""
|
||||
|
||||
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
|
||||
super().__init__()
|
||||
self.flatten = torch.nn.Flatten()
|
||||
self.linear = torch.nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
# Flatten the input and apply linear transformation
|
||||
x = self.flatten(x)
|
||||
return self.linear(x)
|
||||
|
||||
|
||||
@multi_gpu_test(num_gpus=2)
|
||||
@pytest.mark.parametrize(
|
||||
"batch_size",
|
||||
[
|
||||
1, # Single image
|
||||
4, # Small batch
|
||||
5, # Odd batch size (for testing padding)
|
||||
],
|
||||
)
|
||||
def test_run_dp_sharded_vision_model(batch_size: int):
|
||||
world_size = 2
|
||||
# Launch processes
|
||||
mp.spawn(
|
||||
run_dp_sharded_vision_model_vs_direct,
|
||||
args=(
|
||||
world_size,
|
||||
batch_size,
|
||||
get_open_port(),
|
||||
),
|
||||
nprocs=world_size,
|
||||
)
|
||||
|
||||
|
||||
def run_dp_sharded_vision_model_vs_direct(local_rank: int, world_size: int,
|
||||
batch_size: int, master_port: int):
|
||||
"""
|
||||
Test that run_dp_sharded_vision_model produces the same results as
|
||||
calling the model directly.
|
||||
"""
|
||||
|
||||
# Set random seed for reproducibility
|
||||
current_platform.seed_everything(0)
|
||||
|
||||
device = torch.device(f"cuda:{local_rank}")
|
||||
torch.cuda.set_device(device)
|
||||
torch.set_default_device(device)
|
||||
|
||||
update_environment_variables({
|
||||
'RANK': str(local_rank),
|
||||
'LOCAL_RANK': str(local_rank),
|
||||
'WORLD_SIZE': str(world_size),
|
||||
'MASTER_ADDR': 'localhost',
|
||||
'MASTER_PORT': str(master_port),
|
||||
})
|
||||
|
||||
# initialize distributed
|
||||
init_distributed_environment()
|
||||
initialize_model_parallel(tensor_model_parallel_size=world_size)
|
||||
|
||||
# Create a test input tensor
|
||||
image_input = torch.randn(batch_size, 3, 224, 224)
|
||||
|
||||
# Create a simple linear model
|
||||
vision_model = SimpleLinearModel()
|
||||
|
||||
# Run the model directly on the full input
|
||||
with torch.inference_mode():
|
||||
direct_output = vision_model(image_input)
|
||||
|
||||
# Run the model through the sharded function
|
||||
with torch.inference_mode():
|
||||
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
|
||||
|
||||
# Check that the world size is setup correctly
|
||||
assert get_tensor_model_parallel_world_size() == world_size
|
||||
|
||||
# Check that the outputs have the same shape
|
||||
assert direct_output.shape == sharded_output.shape
|
||||
|
||||
# Check that the outputs are close (they should be identical)
|
||||
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)
|
||||
|
123
tests/pplx_utils.py
Normal file
123
tests/pplx_utils.py
Normal file
@ -0,0 +1,123 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import dataclasses
|
||||
import os
|
||||
import traceback
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from torch.multiprocessing import (
|
||||
spawn) # pyright: ignore[reportPrivateImportUsage]
|
||||
from typing_extensions import Concatenate, ParamSpec
|
||||
|
||||
P = ParamSpec("P")
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ProcessGroupInfo:
|
||||
world_size: int
|
||||
world_local_size: int
|
||||
rank: int
|
||||
node_rank: int
|
||||
local_rank: int
|
||||
device: torch.device
|
||||
|
||||
|
||||
def _worker_parallel_launch(
|
||||
local_rank: int,
|
||||
world_size: int,
|
||||
world_local_size: int,
|
||||
node_rank: int,
|
||||
init_method: str,
|
||||
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
|
||||
*args: P.args,
|
||||
**kwargs: P.kwargs,
|
||||
) -> None:
|
||||
rank = node_rank * world_local_size + local_rank
|
||||
torch.cuda.set_device(local_rank)
|
||||
device = torch.device("cuda", local_rank)
|
||||
torch.distributed.init_process_group(
|
||||
backend="cpu:gloo,cuda:nccl",
|
||||
init_method=init_method,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
device_id=device,
|
||||
)
|
||||
barrier = torch.tensor([rank], device=device)
|
||||
torch.distributed.all_reduce(barrier)
|
||||
|
||||
try:
|
||||
worker(
|
||||
ProcessGroupInfo(
|
||||
world_size=world_size,
|
||||
world_local_size=world_local_size,
|
||||
rank=rank,
|
||||
node_rank=node_rank,
|
||||
local_rank=local_rank,
|
||||
device=device,
|
||||
),
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
except Exception as ex:
|
||||
print(ex)
|
||||
traceback.print_exc()
|
||||
raise
|
||||
finally:
|
||||
torch.distributed.destroy_process_group()
|
||||
|
||||
|
||||
def parallel_launch(
|
||||
world_size: int,
|
||||
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
|
||||
*args: P.args,
|
||||
**kwargs: P.kwargs,
|
||||
) -> None:
|
||||
assert not kwargs
|
||||
spawn(
|
||||
_worker_parallel_launch,
|
||||
args=(
|
||||
world_size,
|
||||
world_size,
|
||||
0,
|
||||
"tcp://localhost:29500",
|
||||
worker,
|
||||
) + args,
|
||||
nprocs=world_size,
|
||||
join=True,
|
||||
)
|
||||
|
||||
|
||||
def parallel_launch_from_env(
|
||||
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
|
||||
*args: P.args,
|
||||
**kwargs: P.kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Launches a worker function in parallel across all processes in the current
|
||||
environment. The environment must have the following variables set:
|
||||
- WORLD_SIZE: The total number of processes.
|
||||
- WORLD_LOCAL_SIZE: The number of processes on the current node.
|
||||
- NODE_RANK: The rank of the current
|
||||
- MASTER_ADDR: The address of the master process.
|
||||
- MASTER_PORT: The port of the master process.
|
||||
"""
|
||||
assert not kwargs
|
||||
world_size = int(os.environ["WORLD_SIZE"])
|
||||
world_local_size = int(os.environ["WORLD_LOCAL_SIZE"])
|
||||
node_rank = int(os.environ["NODE_RANK"])
|
||||
assert "MASTER_ADDR" in os.environ
|
||||
assert "MASTER_PORT" in os.environ
|
||||
spawn(
|
||||
_worker_parallel_launch,
|
||||
args=(
|
||||
world_size,
|
||||
world_local_size,
|
||||
node_rank,
|
||||
"env://",
|
||||
worker,
|
||||
) + args,
|
||||
nprocs=world_local_size,
|
||||
join=True,
|
||||
)
|
@ -14,9 +14,10 @@ from compressed_tensors.quantization import QuantizationType
|
||||
from tests.models.utils import check_logprobs_close
|
||||
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
|
||||
CompressedTensors24, CompressedTensorsLinearMethod,
|
||||
CompressedTensorsW4A16Fp4, CompressedTensorsW4A16Sparse24,
|
||||
CompressedTensorsW8A8Fp8, CompressedTensorsW8A8Int8,
|
||||
CompressedTensorsW8A16Fp8, CompressedTensorsWNA16)
|
||||
CompressedTensorsW4A4Fp4, CompressedTensorsW4A16Fp4,
|
||||
CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8Fp8,
|
||||
CompressedTensorsW8A8Int8, CompressedTensorsW8A16Fp8,
|
||||
CompressedTensorsWNA16)
|
||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
sparse_cutlass_supported)
|
||||
from vllm.platforms import current_platform
|
||||
@ -651,9 +652,13 @@ def test_compressed_tensors_2of4_sparse_compressed(vllm_runner, args_2of4):
|
||||
assert output
|
||||
|
||||
|
||||
def test_compressed_tensors_nvfp4a16(vllm_runner):
|
||||
# run weight only example
|
||||
model = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP4"
|
||||
@pytest.mark.parametrize(
|
||||
"args",
|
||||
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-NVFP4A16",
|
||||
CompressedTensorsW4A16Fp4),
|
||||
("nm-testing/TinyLlama-1.1B-Chat-v1.0-NVFP4", CompressedTensorsW4A4Fp4)])
|
||||
def test_compressed_tensors_nvfp4(vllm_runner, args):
|
||||
model, scheme = args
|
||||
with vllm_runner(model, enforce_eager=True) as llm:
|
||||
|
||||
def check_model(model):
|
||||
@ -662,7 +667,7 @@ def test_compressed_tensors_nvfp4a16(vllm_runner):
|
||||
qkv_proj = layer.self_attn.qkv_proj
|
||||
assert isinstance(qkv_proj.quant_method,
|
||||
CompressedTensorsLinearMethod)
|
||||
assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Fp4)
|
||||
assert isinstance(qkv_proj.scheme, scheme)
|
||||
assert qkv_proj.scheme.group_size == 16
|
||||
|
||||
llm.apply_model(check_model)
|
||||
|
@ -13,7 +13,7 @@ TORCHAO_AVAILABLE = importlib.util.find_spec("torchao") is not None
|
||||
|
||||
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
|
||||
def test_pre_quantized_model(vllm_runner):
|
||||
with vllm_runner("drisspg/float8_dynamic_act_float8_weight-opt-125m",
|
||||
with vllm_runner("drisspg/fp8-opt-125m",
|
||||
quantization="torchao",
|
||||
dtype="bfloat16",
|
||||
enforce_eager=True) as llm:
|
||||
@ -30,10 +30,10 @@ def test_pre_quantized_model(vllm_runner):
|
||||
"cuda:0",
|
||||
# {"": "cuda"},
|
||||
])
|
||||
def test_opt_125m_int4wo_model_loading_with_params(vllm_runner,
|
||||
def test_opt_125m_int8wo_model_loading_with_params(vllm_runner,
|
||||
pt_load_map_location):
|
||||
torch._dynamo.reset()
|
||||
model_name = "jerryzh168/opt-125m-int4wo"
|
||||
model_name = "jerryzh168/opt-125m-int8wo-partial-quant"
|
||||
with vllm_runner(model_name=model_name,
|
||||
quantization="torchao",
|
||||
dtype="bfloat16",
|
||||
|
@ -6,6 +6,7 @@ from typing import Literal, Union
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.compilation.backends import VllmBackend
|
||||
from vllm.config import (LoadConfig, ModelConfig, PoolerConfig, VllmConfig,
|
||||
config, get_field)
|
||||
from vllm.model_executor.layers.pooler import PoolingType
|
||||
@ -44,6 +45,18 @@ def test_config(test_config, expected_error):
|
||||
config(test_config)
|
||||
|
||||
|
||||
def test_compile_config_repr_succeeds():
|
||||
# setup: VllmBackend mutates the config object
|
||||
config = VllmConfig()
|
||||
backend = VllmBackend(config)
|
||||
backend.configure_post_pass()
|
||||
|
||||
# test that repr(config) succeeds
|
||||
val = repr(config)
|
||||
assert 'VllmConfig' in val
|
||||
assert 'inductor_passes' in val
|
||||
|
||||
|
||||
def test_get_field():
|
||||
|
||||
@dataclass
|
||||
|
@ -70,7 +70,8 @@ def _run_incremental_decode(tokenizer,
|
||||
None,
|
||||
0.0,
|
||||
None,
|
||||
cache_salt=None)
|
||||
cache_salt=None,
|
||||
data_parallel_rank=None)
|
||||
|
||||
if fast is None:
|
||||
detokenizer = IncrementalDetokenizer.from_new_request(
|
||||
|
@ -64,9 +64,10 @@ def test_tpu_compilation():
|
||||
numbers = [int(part) for part in parts if part.isdigit()]
|
||||
return numbers[0]
|
||||
|
||||
# Check all the compilations are as expected
|
||||
# Check all the compilations are as expected. The dump files include the
|
||||
# captured graph for the forward function of the nn.Module.
|
||||
compiled_fns = sorted(glob.glob(
|
||||
os.path.join(temp_dir, "__compiled_fn*Captured*.py")),
|
||||
os.path.join(temp_dir, "__compiled_fn*Forward_graph*.py")),
|
||||
key=lambda s: extract_compiled_index(s))
|
||||
|
||||
for i, compiled_fn in enumerate(compiled_fns):
|
||||
|
@ -27,7 +27,7 @@ TOP_KS = [2, 6]
|
||||
# The Pallas GMM kernel requires num_tokens * topk to be a multiple of 16
|
||||
@pytest.mark.parametrize("m", [8, 16, 64, 2048])
|
||||
@pytest.mark.parametrize("n", [128, 1024, 2048])
|
||||
@pytest.mark.parametrize("k", [128, 512, 1024])
|
||||
@pytest.mark.parametrize("k", [128, 511, 1024])
|
||||
@pytest.mark.parametrize("e", NUM_EXPERTS)
|
||||
@pytest.mark.parametrize("topk", TOP_KS)
|
||||
@pytest.mark.parametrize("ep_size", EP_SIZE)
|
||||
|
@ -15,8 +15,8 @@ from vllm.v1.core.kv_cache_manager import KVCacheManager
|
||||
from vllm.v1.core.kv_cache_utils import (
|
||||
FreeKVCacheBlockQueue, KVCacheBlock, PrefixCachingMetrics,
|
||||
estimate_max_model_len, generate_block_hash_extra_keys,
|
||||
get_max_concurrency_for_kv_cache_config, hash_block_tokens,
|
||||
hash_request_tokens, unify_kv_cache_configs)
|
||||
get_kv_cache_config, get_max_concurrency_for_kv_cache_config,
|
||||
hash_block_tokens, hash_request_tokens, unify_kv_cache_configs)
|
||||
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
|
||||
KVCacheGroupSpec, KVCacheTensor,
|
||||
SlidingWindowSpec)
|
||||
@ -63,6 +63,20 @@ def new_kv_cache_spec(block_size=16,
|
||||
sliding_window=sliding_window)
|
||||
|
||||
|
||||
def new_sliding_window_spec(block_size=16,
|
||||
num_kv_heads=2,
|
||||
head_size=64,
|
||||
dtype=torch.float32,
|
||||
use_mla=False,
|
||||
sliding_window=1):
|
||||
return SlidingWindowSpec(block_size=block_size,
|
||||
num_kv_heads=num_kv_heads,
|
||||
head_size=head_size,
|
||||
dtype=dtype,
|
||||
use_mla=use_mla,
|
||||
sliding_window=sliding_window)
|
||||
|
||||
|
||||
def test_none_hash(monkeypatch):
|
||||
import vllm.v1.core.kv_cache_utils
|
||||
|
||||
@ -403,10 +417,10 @@ def test_unify_kv_cache_configs():
|
||||
same_kv_cache_config = [
|
||||
KVCacheConfig(
|
||||
num_blocks=10,
|
||||
tensors={
|
||||
"layer1": KVCacheTensor(100),
|
||||
"layer2": KVCacheTensor(100),
|
||||
},
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=100, shared_by=["layer1"]),
|
||||
KVCacheTensor(size=100, shared_by=["layer2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer2"],
|
||||
@ -415,10 +429,10 @@ def test_unify_kv_cache_configs():
|
||||
),
|
||||
KVCacheConfig(
|
||||
num_blocks=20,
|
||||
tensors={
|
||||
"layer1": KVCacheTensor(100),
|
||||
"layer2": KVCacheTensor(100),
|
||||
},
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=100, shared_by=["layer1"]),
|
||||
KVCacheTensor(size=100, shared_by=["layer2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer2"],
|
||||
@ -433,10 +447,10 @@ def test_unify_kv_cache_configs():
|
||||
need_sort_kv_cache_config = [
|
||||
KVCacheConfig(
|
||||
num_blocks=10,
|
||||
tensors={
|
||||
"layer1": KVCacheTensor(100),
|
||||
"layer2": KVCacheTensor(100),
|
||||
},
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=100, shared_by=["layer1"]),
|
||||
KVCacheTensor(size=100, shared_by=["layer2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer2"],
|
||||
@ -445,10 +459,10 @@ def test_unify_kv_cache_configs():
|
||||
),
|
||||
KVCacheConfig(
|
||||
num_blocks=20,
|
||||
tensors={
|
||||
"layer1": KVCacheTensor(100),
|
||||
"layer2": KVCacheTensor(100),
|
||||
},
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=100, shared_by=["layer1"]),
|
||||
KVCacheTensor(size=100, shared_by=["layer2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer2"],
|
||||
new_kv_cache_spec(num_kv_heads=4)),
|
||||
@ -464,10 +478,10 @@ def test_unify_kv_cache_configs():
|
||||
diff_kv_cache_config = [
|
||||
KVCacheConfig(
|
||||
num_blocks=10,
|
||||
tensors={
|
||||
"layer1": KVCacheTensor(100),
|
||||
"layer2": KVCacheTensor(100),
|
||||
},
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=100, shared_by=["layer1"]),
|
||||
KVCacheTensor(size=100, shared_by=["layer2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer2"],
|
||||
@ -476,10 +490,10 @@ def test_unify_kv_cache_configs():
|
||||
),
|
||||
KVCacheConfig(
|
||||
num_blocks=20,
|
||||
tensors={
|
||||
"layer1": KVCacheTensor(100),
|
||||
"layer2": KVCacheTensor(100),
|
||||
},
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=100, shared_by=["layer1"]),
|
||||
KVCacheTensor(size=100, shared_by=["layer2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer2"],
|
||||
@ -636,7 +650,7 @@ def test_get_max_concurrency_for_kv_cache_config():
|
||||
|
||||
kv_cache_config_full_attention = KVCacheConfig(
|
||||
num_blocks=int(1024 * 1.5),
|
||||
tensors={},
|
||||
kv_cache_tensors=[],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec([f"layer_{i}" for i in range(32)],
|
||||
full_attention_spec),
|
||||
@ -648,7 +662,7 @@ def test_get_max_concurrency_for_kv_cache_config():
|
||||
|
||||
kv_cache_config_sliding_window = KVCacheConfig(
|
||||
num_blocks=129 * 3,
|
||||
tensors={},
|
||||
kv_cache_tensors=[],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec([f"layer_{i}" for i in range(32)],
|
||||
sliding_window_spec),
|
||||
@ -660,7 +674,7 @@ def test_get_max_concurrency_for_kv_cache_config():
|
||||
|
||||
kv_cache_config_hybrid_model = KVCacheConfig(
|
||||
num_blocks=(1024 + 129) * 3,
|
||||
tensors={},
|
||||
kv_cache_tensors=[],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec([f"layer_{i}" for i in range(32)],
|
||||
full_attention_spec),
|
||||
@ -678,9 +692,9 @@ def test_allocate_with_lookahead():
|
||||
block_size = 4
|
||||
config = KVCacheConfig(
|
||||
num_blocks=10,
|
||||
tensors={
|
||||
"layer1": KVCacheTensor(100),
|
||||
},
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=100, shared_by=["layer1"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer1"],
|
||||
new_kv_cache_spec(block_size=block_size)),
|
||||
@ -702,7 +716,7 @@ def test_allocate_with_lookahead():
|
||||
num_new_tokens=3,
|
||||
num_lookahead_tokens=2, # Total required: 3+2=5 tokens
|
||||
)
|
||||
assert len(blocks.blocks) == 2 # ceil(5/4)=2 blocks
|
||||
assert len(blocks.get_block_ids()[0]) == 2 # ceil(5/4)=2 blocks
|
||||
|
||||
# Test case 2: With precomputed blocks
|
||||
kv_cache_manager = KVCacheManager(kv_cache_config=config,
|
||||
@ -713,7 +727,7 @@ def test_allocate_with_lookahead():
|
||||
num_new_tokens=3,
|
||||
num_lookahead_tokens=2,
|
||||
)
|
||||
assert len(blocks.blocks) == 2
|
||||
assert len(blocks.get_block_ids()[0]) == 2
|
||||
|
||||
# Test case 3: With precomputed blocks
|
||||
# required_blocks = ceil((3 + 4) / 4) = 2
|
||||
@ -724,4 +738,165 @@ def test_allocate_with_lookahead():
|
||||
num_new_tokens=3,
|
||||
num_lookahead_tokens=4,
|
||||
)
|
||||
assert len(blocks.blocks) == 2
|
||||
assert len(blocks.get_block_ids()[0]) == 2
|
||||
|
||||
|
||||
def test_get_kv_cache_config():
|
||||
# pass max_model_len to pass check_enough_kv_cache_memory
|
||||
model_config = ModelConfig(max_model_len=16)
|
||||
vllm_config = VllmConfig(model_config=model_config)
|
||||
|
||||
mem_per_block_per_layer = 16 * 2 * 64 * 4 * 2
|
||||
# all layers are full attention -> single group
|
||||
kv_cache_specs_full = {
|
||||
'layer_1': new_kv_cache_spec(),
|
||||
'layer_2': new_kv_cache_spec(),
|
||||
}
|
||||
kv_cache_config_full = get_kv_cache_config(
|
||||
vllm_config, kv_cache_specs_full, mem_per_block_per_layer * 2 * 32)
|
||||
assert kv_cache_config_full == KVCacheConfig(
|
||||
num_blocks=32,
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_1"]),
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer_1", "layer_2"], new_kv_cache_spec())
|
||||
])
|
||||
|
||||
# all layers are sliding window -> single group
|
||||
kv_cache_specs_sliding = {
|
||||
'layer_1': new_sliding_window_spec(),
|
||||
'layer_2': new_sliding_window_spec(),
|
||||
}
|
||||
kv_cache_config_sliding = get_kv_cache_config(
|
||||
vllm_config, kv_cache_specs_sliding, mem_per_block_per_layer * 2 * 32)
|
||||
assert kv_cache_config_sliding == KVCacheConfig(
|
||||
num_blocks=32,
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_1"]),
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer_1", "layer_2"], new_sliding_window_spec())
|
||||
])
|
||||
|
||||
# full + sliding, but disable_hybrid_kv_cache_manager
|
||||
vllm_config.scheduler_config.disable_hybrid_kv_cache_manager = True
|
||||
kv_cache_specs_hybrid = {
|
||||
'layer_1': new_kv_cache_spec(),
|
||||
'layer_2': new_sliding_window_spec(),
|
||||
}
|
||||
kv_cache_config_hybrid = get_kv_cache_config(
|
||||
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 2 * 32)
|
||||
assert kv_cache_config_hybrid == KVCacheConfig(
|
||||
num_blocks=32,
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_1"]),
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer_1", "layer_2"],
|
||||
new_kv_cache_spec(sliding_window=1)),
|
||||
],
|
||||
)
|
||||
vllm_config.scheduler_config.disable_hybrid_kv_cache_manager = False
|
||||
|
||||
# full + sliding, with hybrid_kv_cache_manager
|
||||
kv_cache_specs_hybrid = {
|
||||
'layer_1': new_kv_cache_spec(),
|
||||
'layer_2': new_sliding_window_spec(),
|
||||
}
|
||||
kv_cache_config_hybrid = get_kv_cache_config(
|
||||
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 2 * 32)
|
||||
assert kv_cache_config_hybrid == KVCacheConfig(
|
||||
num_blocks=64,
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 64,
|
||||
shared_by=["layer_1", "layer_2"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer_1"], new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer_2"], new_sliding_window_spec()),
|
||||
],
|
||||
)
|
||||
|
||||
# 2 full + 4 sliding, 2 layers per group
|
||||
kv_cache_specs_hybrid = {
|
||||
'layer_1': new_kv_cache_spec(),
|
||||
'layer_2': new_kv_cache_spec(),
|
||||
'layer_3': new_sliding_window_spec(),
|
||||
'layer_4': new_sliding_window_spec(),
|
||||
'layer_5': new_sliding_window_spec(),
|
||||
'layer_6': new_sliding_window_spec(),
|
||||
}
|
||||
kv_cache_config_hybrid = get_kv_cache_config(
|
||||
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 2 * 32)
|
||||
assert kv_cache_config_hybrid == KVCacheConfig(
|
||||
num_blocks=32,
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_1", "layer_3", "layer_5"]),
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_2", "layer_4", "layer_6"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer_1", "layer_2"], new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer_3", "layer_4"],
|
||||
new_sliding_window_spec()),
|
||||
KVCacheGroupSpec(["layer_5", "layer_6"],
|
||||
new_sliding_window_spec()),
|
||||
],
|
||||
)
|
||||
|
||||
# 3 full + 7 sliding, pad to 3 full + 9 sliding
|
||||
kv_cache_specs_hybrid = {
|
||||
'layer_1': new_kv_cache_spec(),
|
||||
'layer_2': new_kv_cache_spec(),
|
||||
'layer_3': new_kv_cache_spec(),
|
||||
'layer_4': new_sliding_window_spec(),
|
||||
'layer_5': new_sliding_window_spec(),
|
||||
'layer_6': new_sliding_window_spec(),
|
||||
'layer_7': new_sliding_window_spec(),
|
||||
'layer_8': new_sliding_window_spec(),
|
||||
'layer_9': new_sliding_window_spec(),
|
||||
'layer_10': new_sliding_window_spec(),
|
||||
}
|
||||
kv_cache_config_hybrid = get_kv_cache_config(
|
||||
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 3 * 32)
|
||||
assert kv_cache_config_hybrid == KVCacheConfig(
|
||||
num_blocks=32,
|
||||
kv_cache_tensors=[
|
||||
KVCacheTensor(
|
||||
size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_1", "layer_4", "layer_7", "layer_10"]),
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_2", "layer_5", "layer_8"]),
|
||||
KVCacheTensor(size=mem_per_block_per_layer * 32,
|
||||
shared_by=["layer_3", "layer_6", "layer_9"]),
|
||||
],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(["layer_1", "layer_2", "layer_3"],
|
||||
new_kv_cache_spec()),
|
||||
KVCacheGroupSpec(["layer_4", "layer_5", "layer_6"],
|
||||
new_sliding_window_spec()),
|
||||
KVCacheGroupSpec(["layer_7", "layer_8", "layer_9"],
|
||||
new_sliding_window_spec()),
|
||||
KVCacheGroupSpec(["layer_10"], new_sliding_window_spec()),
|
||||
],
|
||||
)
|
||||
|
||||
# different hidden size, unimplemented
|
||||
kv_cache_specs_hybrid = {
|
||||
'layer_1': new_kv_cache_spec(head_size=128),
|
||||
'layer_2': new_kv_cache_spec(),
|
||||
}
|
||||
with pytest.raises(NotImplementedError):
|
||||
get_kv_cache_config(vllm_config, kv_cache_specs_hybrid,
|
||||
mem_per_block_per_layer * 2 * 32)
|
||||
|
@ -2,6 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Compare the with and without prefix caching."""
|
||||
|
||||
import copy
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
@ -13,8 +14,8 @@ from vllm.sampling_params import SamplingParams
|
||||
from vllm.utils import sha256
|
||||
from vllm.v1.core.block_pool import BlockPool
|
||||
from vllm.v1.core.kv_cache_manager import KVCacheManager, Request
|
||||
from vllm.v1.core.kv_cache_utils import (BlockHash, KVCacheBlock,
|
||||
hash_block_tokens)
|
||||
from vllm.v1.core.kv_cache_utils import (BlockHash, BlockHashWithGroupId,
|
||||
KVCacheBlock, hash_block_tokens)
|
||||
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
|
||||
KVCacheGroupSpec, SlidingWindowSpec)
|
||||
|
||||
@ -47,7 +48,7 @@ def make_request(request_id,
|
||||
def make_kv_cache_config(block_size: int, num_blocks: int) -> KVCacheConfig:
|
||||
return KVCacheConfig(
|
||||
num_blocks=num_blocks,
|
||||
tensors={},
|
||||
kv_cache_tensors=[],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(
|
||||
["layer"],
|
||||
@ -57,6 +58,38 @@ def make_kv_cache_config(block_size: int, num_blocks: int) -> KVCacheConfig:
|
||||
)
|
||||
|
||||
|
||||
def make_kv_cache_config_hybrid_model(block_size: int,
|
||||
num_blocks: int) -> KVCacheConfig:
|
||||
return KVCacheConfig(
|
||||
num_blocks=num_blocks,
|
||||
kv_cache_tensors=[],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(
|
||||
["layer1"],
|
||||
FullAttentionSpec(block_size, 1, 1, torch.float32, False),
|
||||
),
|
||||
KVCacheGroupSpec(
|
||||
["layer2"],
|
||||
SlidingWindowSpec(block_size,
|
||||
1,
|
||||
1,
|
||||
torch.float32,
|
||||
False,
|
||||
sliding_window=2 * block_size),
|
||||
),
|
||||
KVCacheGroupSpec(
|
||||
["layer3"],
|
||||
SlidingWindowSpec(block_size,
|
||||
1,
|
||||
1,
|
||||
torch.float32,
|
||||
False,
|
||||
sliding_window=2 * block_size),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("hash_algo", ["sha256", "hash"])
|
||||
def test_prefill(hash_algo):
|
||||
manager = KVCacheManager(
|
||||
@ -79,12 +112,12 @@ def test_prefill(hash_algo):
|
||||
req0 = make_request("0", all_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
assert len(manager.req_to_block_hashes[req0.request_id]) == 3
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req0, 55,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
|
||||
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
|
||||
|
||||
# Check full block metadata
|
||||
parent_block_hash = None
|
||||
@ -92,7 +125,8 @@ def test_prefill(hash_algo):
|
||||
block_tokens = tuple(all_token_ids[(block_id - 1) * 16:block_id * 16])
|
||||
block_hash = hash_block_tokens(hash_fn, parent_block_hash,
|
||||
block_tokens)
|
||||
assert manager.block_pool.blocks[block_id].block_hash == block_hash
|
||||
assert manager.block_pool.blocks[
|
||||
block_id].block_hash.block_hash == block_hash
|
||||
assert manager.block_pool.blocks[block_id].ref_cnt == 1
|
||||
parent_block_hash = block_hash.hash_value
|
||||
|
||||
@ -107,14 +141,14 @@ def test_prefill(hash_algo):
|
||||
req1 = make_request("1", common_token_ids + unique_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
|
||||
assert computed_blocks.get_block_ids() == [[1, 2, 3]]
|
||||
assert computed_blocks.get_block_ids() == ([1, 2, 3], )
|
||||
assert num_computed_tokens == 3 * 16
|
||||
num_new_tokens = 53 - 3 * 16
|
||||
blocks = manager.allocate_slots(req1, num_new_tokens,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[5]]
|
||||
for block in computed_blocks.blocks:
|
||||
assert blocks.get_block_ids() == ([5], )
|
||||
for block in computed_blocks.blocks[0]:
|
||||
assert block.ref_cnt == 2
|
||||
|
||||
# At this point, we should have 5 free blocks left.
|
||||
@ -141,13 +175,13 @@ def test_prefill(hash_algo):
|
||||
req2 = make_request("2", common_token_ids + unique_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
|
||||
assert len(manager.req_to_block_hashes[req2.request_id]) == 3
|
||||
assert computed_blocks.get_block_ids() == [[1, 2, 3]]
|
||||
assert computed_blocks.get_block_ids() == ([1, 2, 3], )
|
||||
assert num_computed_tokens == 3 * 16
|
||||
num_new_tokens = 53 - 3 * 16
|
||||
blocks = manager.allocate_slots(req2, num_new_tokens,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[6]]
|
||||
assert blocks.get_block_ids() == ([6], )
|
||||
|
||||
# Although we only have 6 free blocks, we have 8 blocks in
|
||||
# the free block queue due to lazy removal.
|
||||
@ -165,18 +199,150 @@ def test_prefill(hash_algo):
|
||||
# Cache miss and eviction.
|
||||
req3 = make_request("3", [99] * (16 * 10))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req3)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req3, 16 * 10,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
# This block ID order also checks the eviction order.
|
||||
assert blocks.get_block_ids() == [[7, 8, 9, 10, 4, 5, 6, 3, 2, 1]]
|
||||
assert blocks.get_block_ids() == ([7, 8, 9, 10, 4, 5, 6, 3, 2, 1], )
|
||||
assert manager.block_pool.free_block_queue.num_free_blocks == 0
|
||||
assert manager.block_pool.free_block_queue.free_list_head is None
|
||||
assert manager.block_pool.free_block_queue.free_list_tail is None
|
||||
|
||||
|
||||
def test_prefill_hybrid_model():
|
||||
block_size = 16
|
||||
manager = KVCacheManager(
|
||||
make_kv_cache_config_hybrid_model(block_size, 21),
|
||||
max_model_len=8192,
|
||||
enable_caching=True,
|
||||
)
|
||||
|
||||
hash_fn = hash
|
||||
|
||||
# Complete 3 blocks (48 tokens)
|
||||
common_token_ids = [i for i in range(3) for _ in range(block_size)]
|
||||
|
||||
# Fully cache miss
|
||||
# Incomplete 1 block (7 tokens)
|
||||
unique_token_ids = [3] * 7
|
||||
all_token_ids = common_token_ids + unique_token_ids
|
||||
req0 = make_request("0", all_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
assert len(manager.req_to_block_hashes[req0.request_id]) == 3
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req0, 55,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == ([1, 2, 3, 4], [5, 6, 7,
|
||||
8], [9, 10, 11, 12])
|
||||
|
||||
# Check full block metadata
|
||||
parent_block_hash = None
|
||||
for length, block_ids in zip((1, 2, 3),
|
||||
((1, 5, 9), (2, 6, 10), (3, 7, 11))):
|
||||
block_tokens = tuple(all_token_ids[(length - 1) * 16:length * 16])
|
||||
block_hash = hash_block_tokens(hash_fn, parent_block_hash,
|
||||
block_tokens)
|
||||
for block_id in block_ids:
|
||||
assert manager.block_pool.blocks[
|
||||
block_id].block_hash.block_hash == block_hash
|
||||
assert manager.block_pool.blocks[block_id].ref_cnt == 1
|
||||
parent_block_hash = block_hash.hash_value
|
||||
|
||||
# Check partial block metadata
|
||||
for block_id in (4, 8, 12):
|
||||
assert manager.block_pool.blocks[block_id].block_hash is None
|
||||
assert manager.block_pool.blocks[block_id].ref_cnt == 1
|
||||
|
||||
# Cache hit in the common prefix
|
||||
# Incomplete 1 block (5 tokens)
|
||||
unique_token_ids = [3] * 5
|
||||
req1 = make_request("1", common_token_ids + unique_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
|
||||
assert computed_blocks.get_block_ids() == ([1, 2, 3], [0, 6,
|
||||
7], [0, 10, 11])
|
||||
assert num_computed_tokens == 3 * 16
|
||||
num_new_tokens = 53 - 3 * 16
|
||||
blocks = manager.allocate_slots(req1, num_new_tokens,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == ([13], [14], [15])
|
||||
for block_per_group in computed_blocks.blocks:
|
||||
for block in block_per_group:
|
||||
if block != manager.block_pool.null_block:
|
||||
assert block.ref_cnt == 2
|
||||
|
||||
block_hashes = manager.req_to_block_hashes[req1.request_id]
|
||||
manager.free(req0)
|
||||
manager.free(req1)
|
||||
|
||||
cached_block_hash_to_block_bak = copy.copy(
|
||||
manager.block_pool.cached_block_hash_to_block)
|
||||
|
||||
def test_partial_request_hit(request_id: str,
|
||||
hash_to_evict: list[BlockHashWithGroupId],
|
||||
expect_hit_length: int):
|
||||
req = make_request(request_id, common_token_ids + unique_token_ids)
|
||||
for hash_with_group_id in hash_to_evict:
|
||||
manager.block_pool.cached_block_hash_to_block.pop(
|
||||
hash_with_group_id)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
|
||||
assert len(manager.req_to_block_hashes[req.request_id]) == 3
|
||||
assert num_computed_tokens == expect_hit_length * block_size
|
||||
for block_per_group in computed_blocks.blocks:
|
||||
assert len(block_per_group) == num_computed_tokens // block_size
|
||||
for hash_with_group_id in hash_to_evict:
|
||||
manager.block_pool.cached_block_hash_to_block[
|
||||
hash_with_group_id] = cached_block_hash_to_block_bak[
|
||||
hash_with_group_id]
|
||||
manager.free(req)
|
||||
|
||||
# Evict the blocks outside sliding window, does not affect the hit length.
|
||||
test_partial_request_hit("2", [
|
||||
BlockHashWithGroupId(block_hashes[0], 1),
|
||||
BlockHashWithGroupId(block_hashes[0], 2)
|
||||
], 3)
|
||||
|
||||
# Evict the first block of full attention, makes total cache miss.
|
||||
test_partial_request_hit("3", [
|
||||
BlockHashWithGroupId(block_hashes[0], 0),
|
||||
], 0)
|
||||
|
||||
# Evict the last block of all layers, reduces the hit length to 2.
|
||||
test_partial_request_hit("4", [
|
||||
BlockHashWithGroupId(block_hashes[2], 0),
|
||||
BlockHashWithGroupId(block_hashes[2], 1),
|
||||
BlockHashWithGroupId(block_hashes[2], 2),
|
||||
], 2)
|
||||
|
||||
# Evict the last block of full attention, reduces the hit length to 2.
|
||||
test_partial_request_hit("5", [BlockHashWithGroupId(block_hashes[2], 0)],
|
||||
2)
|
||||
|
||||
# Evict the last block of sliding window, reduces the hit length to 2.
|
||||
test_partial_request_hit("6", [BlockHashWithGroupId(block_hashes[2], 1)],
|
||||
2)
|
||||
|
||||
# Evict the last block of sliding window, reduces the hit length to 2.
|
||||
test_partial_request_hit("7", [BlockHashWithGroupId(block_hashes[2], 2)],
|
||||
2)
|
||||
|
||||
# Evict different set of blocks for full attention and sliding window makes
|
||||
# total cache miss.
|
||||
# The cache hit length of full attention is 1 * block_size.
|
||||
# The cache hit length of sliding window is 2 * block_size.
|
||||
# Then it is cache miss as the two type of layers have different hit length.
|
||||
test_partial_request_hit("8", [
|
||||
BlockHashWithGroupId(block_hashes[2], 0),
|
||||
BlockHashWithGroupId(block_hashes[0], 1),
|
||||
BlockHashWithGroupId(block_hashes[0], 2),
|
||||
], 0)
|
||||
|
||||
|
||||
def test_prefill_plp():
|
||||
'''Test prefill with APC and some prompt logprobs (plp) requests.
|
||||
|
||||
@ -203,13 +369,13 @@ def test_prefill_plp():
|
||||
req0 = make_request("0", all_token_ids, prompt_logprobs=5)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
assert len(manager.req_to_block_hashes[req0.request_id]) == 0
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req0, 55,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
|
||||
req0_block_hashes = [b.block_hash for b in blocks.blocks]
|
||||
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
|
||||
req0_block_hashes = [b.block_hash for b in blocks.blocks[0]]
|
||||
|
||||
# Check full block metadata
|
||||
parent_block_hash = None
|
||||
@ -217,7 +383,8 @@ def test_prefill_plp():
|
||||
block_tokens = tuple(all_token_ids[(block_id - 1) * 16:block_id * 16])
|
||||
block_hash = hash_block_tokens(hash_fn, parent_block_hash,
|
||||
block_tokens)
|
||||
assert manager.block_pool.blocks[block_id].block_hash == block_hash
|
||||
assert manager.block_pool.blocks[
|
||||
block_id].block_hash.block_hash == block_hash
|
||||
assert manager.block_pool.blocks[block_id].ref_cnt == 1
|
||||
parent_block_hash = block_hash.hash_value
|
||||
|
||||
@ -233,14 +400,14 @@ def test_prefill_plp():
|
||||
req1 = make_request("1", common_token_ids + unique_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
|
||||
assert computed_blocks.get_block_ids() == [[1, 2, 3]]
|
||||
assert computed_blocks.get_block_ids() == ([1, 2, 3], )
|
||||
assert num_computed_tokens == 3 * 16
|
||||
num_new_tokens = 53 - 3 * 16
|
||||
blocks = manager.allocate_slots(req1, num_new_tokens,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[5]]
|
||||
for block in computed_blocks.blocks:
|
||||
assert blocks.get_block_ids() == ([5], )
|
||||
for block in computed_blocks.blocks[0]:
|
||||
assert block.ref_cnt == 2
|
||||
|
||||
# At this point, we should have 5 free blocks left.
|
||||
@ -269,15 +436,15 @@ def test_prefill_plp():
|
||||
prompt_logprobs=5)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
|
||||
assert len(manager.req_to_block_hashes[req2.request_id]) == 0
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req2, 55,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
block_ids = blocks.get_block_ids()
|
||||
# Duplicate cached blocks have different ids but same hashes vs request #0
|
||||
assert [b.block_hash for b in blocks.blocks] == req0_block_hashes
|
||||
assert block_ids != [[1, 2, 3, 4]]
|
||||
assert [b.block_hash for b in blocks.blocks[0]] == req0_block_hashes
|
||||
assert block_ids != ([1, 2, 3, 4], )
|
||||
|
||||
# Request #2 block hashes are valid since request #0 hashes are.
|
||||
# Check block reference counts.
|
||||
@ -302,22 +469,22 @@ def test_decode():
|
||||
unique_token_ids = [3] * 7
|
||||
req0 = make_request("0", common_token_ids + unique_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req0, 55,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
|
||||
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
|
||||
|
||||
# Append slots without allocating a new block.
|
||||
req0.num_computed_tokens = 55
|
||||
for _ in range(4):
|
||||
req0.append_output_token_ids(8)
|
||||
new_blocks = manager.allocate_slots(req0, 4,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert new_blocks is not None and len(new_blocks.blocks) == 0
|
||||
assert manager.single_type_manager.req_to_blocks[
|
||||
assert new_blocks is not None and len(new_blocks.blocks[0]) == 0
|
||||
assert manager.coordinator.single_type_managers[0].req_to_blocks[
|
||||
req0.request_id][-1].block_hash is None
|
||||
|
||||
# Append slots with allocating a new block.
|
||||
@ -327,12 +494,12 @@ def test_decode():
|
||||
for _ in range(9 + 10):
|
||||
req0.append_output_token_ids(7)
|
||||
new_blocks = manager.allocate_slots(req0, 19,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert new_blocks is not None and len(new_blocks.blocks) == 1
|
||||
assert manager.single_type_manager.req_to_blocks[
|
||||
assert new_blocks is not None and len(new_blocks.blocks[0]) == 1
|
||||
assert manager.coordinator.single_type_managers[0].req_to_blocks[
|
||||
req0.request_id][-2].block_hash is not None
|
||||
assert manager.single_type_manager.req_to_blocks[
|
||||
assert manager.coordinator.single_type_managers[0].req_to_blocks[
|
||||
req0.request_id][-1].block_hash is None
|
||||
|
||||
|
||||
@ -346,23 +513,23 @@ def test_evict():
|
||||
last_token_id = 5 * 16 + 7
|
||||
req0 = make_request("0", list(range(last_token_id)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req0, 5 * 16 + 7,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 6 # 5 full + 1 partial
|
||||
assert len(blocks.blocks[0]) == 6 # 5 full + 1 partial
|
||||
|
||||
# 3 blocks.
|
||||
req1 = make_request("1", list(range(last_token_id,
|
||||
last_token_id + 3 * 16)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req1, 3 * 16,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 3 # 3 full blocks
|
||||
assert len(blocks.blocks[0]) == 3 # 3 full blocks
|
||||
last_token_id += 3 * 16
|
||||
|
||||
# 10 - (6 + 3) == 1
|
||||
@ -379,12 +546,12 @@ def test_evict():
|
||||
# Touch the first 2 blocks.
|
||||
req2 = make_request("2", list(range(2 * 16 + 3)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
|
||||
assert computed_blocks.get_block_ids() == [[1, 2]]
|
||||
assert computed_blocks.get_block_ids() == ([1, 2], )
|
||||
assert num_computed_tokens == 2 * 16
|
||||
blocks = manager.allocate_slots(req2, 3,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[10]]
|
||||
assert blocks.get_block_ids() == ([10], )
|
||||
assert manager.block_pool.free_block_queue.num_free_blocks == 7
|
||||
|
||||
|
||||
@ -404,12 +571,12 @@ def test_hash_block_correct_reuse():
|
||||
num_tokens = block_size * 1
|
||||
req = make_request("0", list(range(num_tokens)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req, num_tokens,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 1
|
||||
assert len(blocks.blocks[0]) == 1
|
||||
|
||||
# Deallocate the block.
|
||||
manager.free(req)
|
||||
@ -418,15 +585,15 @@ def test_hash_block_correct_reuse():
|
||||
# block is cleared.
|
||||
req = make_request("1", list(range(num_tokens - 1)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req, num_tokens - 1,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 1
|
||||
assert len(blocks.blocks[0]) == 1
|
||||
|
||||
assert manager.block_pool.blocks[
|
||||
blocks.blocks[0].block_id].block_hash is None
|
||||
assert manager.block_pool.blocks[blocks.blocks[0]
|
||||
[0].block_id].block_hash is None
|
||||
|
||||
|
||||
def test_computed_blocks_not_evicted():
|
||||
@ -445,24 +612,24 @@ def test_computed_blocks_not_evicted():
|
||||
num_tokens = block_size * 1
|
||||
req0 = make_request("0", list(range(num_tokens)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req0, num_tokens,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 1
|
||||
assert blocks.blocks[0].block_id == 1
|
||||
assert len(blocks.blocks[0]) == 1
|
||||
assert blocks.blocks[0][0].block_id == 1
|
||||
|
||||
# Allocate another block.
|
||||
req1 = make_request("1", list(range(num_tokens, num_tokens * 2)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req1, num_tokens,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 1
|
||||
assert blocks.blocks[0].block_id == 2
|
||||
assert len(blocks.blocks[0]) == 1
|
||||
assert blocks.blocks[0][0].block_id == 2
|
||||
|
||||
# Free the blocks.
|
||||
manager.free(req0)
|
||||
@ -472,15 +639,15 @@ def test_computed_blocks_not_evicted():
|
||||
# cached block rather than the first one.
|
||||
req2 = make_request("2", list(range(num_tokens * 2)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
|
||||
assert len(computed_blocks.blocks) == 1
|
||||
assert computed_blocks.blocks[0].block_id == 1
|
||||
assert len(computed_blocks.blocks[0]) == 1
|
||||
assert computed_blocks.blocks[0][0].block_id == 1
|
||||
assert num_computed_tokens == block_size
|
||||
|
||||
blocks = manager.allocate_slots(req2, num_tokens * 2 - num_tokens,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 1
|
||||
assert blocks.blocks[0].block_id == 2
|
||||
assert len(blocks.blocks[0]) == 1
|
||||
assert blocks.blocks[0][0].block_id == 2
|
||||
|
||||
|
||||
def test_basic_prefix_caching_disabled():
|
||||
@ -497,12 +664,12 @@ def test_basic_prefix_caching_disabled():
|
||||
req1 = make_request("1", list(range(10))) # 2 blocks and some more
|
||||
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req1, 10,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 3
|
||||
assert len(blocks.blocks[0]) == 3
|
||||
|
||||
# Free the blocks.
|
||||
manager.free(req1)
|
||||
@ -510,20 +677,20 @@ def test_basic_prefix_caching_disabled():
|
||||
# No caching.
|
||||
req2 = make_request("2", list(range(16))) # shared prefix
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req2, 16,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert len(blocks.blocks) == 4
|
||||
assert len(blocks.blocks[0]) == 4
|
||||
|
||||
# New requests should not have any blocks.
|
||||
req3 = make_request("3", list(range(4)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req3)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
blocks = manager.allocate_slots(req3, 4,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert not blocks
|
||||
|
||||
@ -558,6 +725,7 @@ def test_cache_blocks(hash_fn):
|
||||
num_full_blocks=2,
|
||||
block_size=block_size,
|
||||
hash_fn=hash_fn,
|
||||
kv_cache_group_id=0,
|
||||
)
|
||||
|
||||
assert len(block_pool.cached_block_hash_to_block) == 2
|
||||
@ -573,11 +741,83 @@ def test_cache_blocks(hash_fn):
|
||||
num_full_blocks=3,
|
||||
block_size=block_size,
|
||||
hash_fn=hash_fn,
|
||||
kv_cache_group_id=0,
|
||||
)
|
||||
assert len(block_pool.cached_block_hash_to_block) == 3
|
||||
assert blocks[0].block_hash is not None
|
||||
|
||||
|
||||
def test_cache_blocks_multi_group():
|
||||
"""
|
||||
This tests that blocks are cached correctly for different kv cache groups.
|
||||
"""
|
||||
block_size = 4
|
||||
block_pool = BlockPool(num_gpu_blocks=10, enable_caching=True)
|
||||
|
||||
# Req:
|
||||
# Block 0/4: [0, 1, 2, 3]
|
||||
# Block 1/5: [4, 5, 6, 7]
|
||||
# Block 2/6: [8, 9, 10, 11]
|
||||
# Block 3/7: [12, 13]
|
||||
req = make_request("0", list(range(14)))
|
||||
|
||||
# Cache the blocks for group 0.
|
||||
blocks = [KVCacheBlock(block_id=i) for i in range(2)]
|
||||
block_hashes: list[BlockHash] = []
|
||||
block_pool.cache_full_blocks(
|
||||
request=req,
|
||||
blocks=blocks,
|
||||
block_hashes=block_hashes,
|
||||
num_cached_blocks=0,
|
||||
num_full_blocks=2,
|
||||
block_size=block_size,
|
||||
hash_fn=hash,
|
||||
kv_cache_group_id=0,
|
||||
)
|
||||
assert len(block_pool.cached_block_hash_to_block) == 2
|
||||
assert len(block_hashes) == 2
|
||||
assert all([block.block_hash is not None for block in blocks])
|
||||
|
||||
# Cache the blocks for group 1.
|
||||
blocks = [KVCacheBlock(block_id=i) for i in range(3)]
|
||||
block_pool.cache_full_blocks(
|
||||
request=req,
|
||||
blocks=blocks,
|
||||
block_hashes=block_hashes,
|
||||
num_cached_blocks=0,
|
||||
num_full_blocks=3,
|
||||
block_size=block_size,
|
||||
hash_fn=hash,
|
||||
kv_cache_group_id=1,
|
||||
)
|
||||
assert len(block_pool.cached_block_hash_to_block) == 5
|
||||
assert len(block_hashes) == 3
|
||||
assert all([block.block_hash is not None for block in blocks])
|
||||
|
||||
# Block hash 0: hit for group 0 and 1
|
||||
# Block hash 1: hit for group 0 and 1
|
||||
# Block hash 2: hit for group 1
|
||||
|
||||
assert block_pool.get_cached_block(block_hashes[0],
|
||||
kv_cache_group_ids=[0]) is not None
|
||||
assert block_pool.get_cached_block(block_hashes[1],
|
||||
kv_cache_group_ids=[0]) is not None
|
||||
assert block_pool.get_cached_block(block_hashes[2],
|
||||
kv_cache_group_ids=[0]) is None
|
||||
assert block_pool.get_cached_block(block_hashes[0],
|
||||
kv_cache_group_ids=[1]) is not None
|
||||
assert block_pool.get_cached_block(block_hashes[1],
|
||||
kv_cache_group_ids=[1]) is not None
|
||||
assert block_pool.get_cached_block(block_hashes[2],
|
||||
kv_cache_group_ids=[1]) is not None
|
||||
assert block_pool.get_cached_block(block_hashes[0],
|
||||
kv_cache_group_ids=[0, 1]) is not None
|
||||
assert block_pool.get_cached_block(block_hashes[1],
|
||||
kv_cache_group_ids=[0, 1]) is not None
|
||||
assert block_pool.get_cached_block(block_hashes[2],
|
||||
kv_cache_group_ids=[0, 1]) is None
|
||||
|
||||
|
||||
def test_mm_prefix_caching():
|
||||
"""
|
||||
This tests that the multi-modal prefix caching is correct.
|
||||
@ -614,7 +854,7 @@ def test_mm_prefix_caching():
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
|
||||
# Completed block should have hashes with extra keys.
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
block_hashes = manager.req_to_block_hashes[req0.request_id]
|
||||
assert len(block_hashes) == 3
|
||||
@ -623,18 +863,18 @@ def test_mm_prefix_caching():
|
||||
assert block_hashes[2].extra_keys == ("bbb", )
|
||||
|
||||
blocks = manager.allocate_slots(req0, 59,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
|
||||
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
|
||||
req0.num_computed_tokens = 59
|
||||
|
||||
# Append slots without allocating a new block.
|
||||
for _ in range(5):
|
||||
req0.append_output_token_ids(8)
|
||||
new_blocks = manager.allocate_slots(req0, 5,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert new_blocks is not None and len(new_blocks.blocks) == 0
|
||||
assert new_blocks is not None and len(new_blocks.blocks[0]) == 0
|
||||
|
||||
# The just completed block should have hashes with extra keys.
|
||||
assert len(block_hashes) == 4
|
||||
@ -652,7 +892,7 @@ def test_mm_prefix_caching():
|
||||
mm_positions=mm_positions,
|
||||
mm_hashes=mm_hashes)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert len(computed_blocks.blocks) == 3
|
||||
assert len(computed_blocks.blocks[0]) == 3
|
||||
assert num_computed_tokens == 3 * 16
|
||||
|
||||
|
||||
@ -675,7 +915,7 @@ def test_cache_key_salting():
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
|
||||
# Completed block should have hashes with extra keys.
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
block_hashes = manager.req_to_block_hashes[req0.request_id]
|
||||
assert len(block_hashes) == 3
|
||||
@ -684,18 +924,18 @@ def test_cache_key_salting():
|
||||
assert block_hashes[2].extra_keys is None
|
||||
|
||||
blocks = manager.allocate_slots(req0, 59,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
|
||||
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
|
||||
req0.num_computed_tokens = 59
|
||||
|
||||
# Append slots without allocating a new block.
|
||||
for _ in range(5):
|
||||
req0.append_output_token_ids(8)
|
||||
new_blocks = manager.allocate_slots(req0, 5,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert new_blocks is not None and len(new_blocks.blocks) == 0
|
||||
assert new_blocks is not None and len(new_blocks.blocks[0]) == 0
|
||||
|
||||
# Now one more block that should not have extra keys.
|
||||
assert len(block_hashes) == 4
|
||||
@ -706,14 +946,14 @@ def test_cache_key_salting():
|
||||
req1 = make_request("1", token_ids, cache_salt="salt1")
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
# Should match only a prefix of 3 blocks.
|
||||
assert len(computed_blocks.blocks) == 3
|
||||
assert len(computed_blocks.blocks[0]) == 3
|
||||
assert num_computed_tokens == 3 * block_size
|
||||
|
||||
# Test cache miss with same content but different salt.
|
||||
token_ids = common_token_ids + [4] * 11
|
||||
req2 = make_request("2", token_ids, cache_salt="salt2")
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
|
||||
assert len(computed_blocks.blocks) == 0
|
||||
assert len(computed_blocks.blocks[0]) == 0
|
||||
assert num_computed_tokens == 0
|
||||
block_hashes = manager.req_to_block_hashes[req2.request_id]
|
||||
assert len(block_hashes) == 3
|
||||
@ -738,20 +978,24 @@ def test_prefill_not_enough_free_blocks_with_computed_blocks():
|
||||
common_token_ids = [i for i in range(3) for _ in range(16)]
|
||||
req0 = make_request("0", common_token_ids)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
manager.allocate_slots(req0, 48,
|
||||
len(computed_blocks.blocks) * 16, computed_blocks)
|
||||
block_part0 = manager.single_type_manager.req_to_blocks[req0.request_id]
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
block_part0 = manager.coordinator.single_type_managers[0].req_to_blocks[
|
||||
req0.request_id]
|
||||
|
||||
# | Common-0 | Common-1 | Common-2 | Req1-3 | Req1-4 | Req1-5 | ... |
|
||||
req1 = make_request("1", common_token_ids * 2)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
|
||||
assert computed_blocks.blocks == block_part0
|
||||
assert computed_blocks.blocks[0] == block_part0
|
||||
assert num_computed_tokens == 3 * 16
|
||||
manager.allocate_slots(req1, 48,
|
||||
len(computed_blocks.blocks) * 16, computed_blocks)
|
||||
block_part1 = manager.single_type_manager.req_to_blocks[req1.request_id]
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
block_part1 = manager.coordinator.single_type_managers[0].req_to_blocks[
|
||||
req1.request_id]
|
||||
# | Common-0 | Common-1 | Common-2 | Req1-3 (F) | Req1-4 (F) |
|
||||
# | Req1-5(F)| ... |
|
||||
manager.free(req1)
|
||||
@ -762,10 +1006,11 @@ def test_prefill_not_enough_free_blocks_with_computed_blocks():
|
||||
# | Req1-5(F)| Req2-0 | Req2-1 | ... |
|
||||
req2 = make_request("2", [7] * block_size * 2)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
manager.allocate_slots(req2, block_size * 2,
|
||||
len(computed_blocks.blocks) * 16, computed_blocks)
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
|
||||
# Req3 is Req2 + 3 new blocks, so the first 6 blocks are computed,
|
||||
# but it cannot be allocated due to insufficient free blocks (2).
|
||||
@ -773,11 +1018,11 @@ def test_prefill_not_enough_free_blocks_with_computed_blocks():
|
||||
assert manager.block_pool.free_block_queue.num_free_blocks == 5
|
||||
req3 = make_request("3", common_token_ids * 3)
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req3)
|
||||
assert computed_blocks.blocks == block_part1
|
||||
assert computed_blocks.blocks[0] == block_part1
|
||||
assert num_computed_tokens == 6 * 16
|
||||
# Req3 cannot be allocated.
|
||||
assert manager.allocate_slots(req3, 48,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks) is None
|
||||
# Block 0-2 are used by Req 1.
|
||||
assert {block.ref_cnt for block in block_part1[:3]} == {1}
|
||||
@ -797,18 +1042,18 @@ def test_reset_prefix_cache():
|
||||
all_token_ids = full_block_token_ids + unique_token_ids
|
||||
req0 = make_request("0", all_token_ids)
|
||||
blocks = manager.allocate_slots(req0, 55)
|
||||
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
|
||||
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
|
||||
|
||||
unique_token_ids = [4] * 7
|
||||
all_token_ids = full_block_token_ids + unique_token_ids
|
||||
req1 = make_request("1", all_token_ids)
|
||||
computed_blocks, _ = manager.get_computed_blocks(req1)
|
||||
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
|
||||
assert len(computed_blocks.blocks) == 3
|
||||
assert len(computed_blocks.blocks[0]) == 3
|
||||
blocks = manager.allocate_slots(req1, 7,
|
||||
len(computed_blocks.blocks) * 16,
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
assert blocks.get_block_ids() == [[5]]
|
||||
assert blocks.get_block_ids() == ([5], )
|
||||
|
||||
# Failed to reset prefix cache because some blocks are not freed yet.
|
||||
assert not manager.reset_prefix_cache()
|
||||
@ -836,10 +1081,11 @@ def test_prefix_cache_stats_disabled():
|
||||
# Call all functions that check whether log_stats is disabled.
|
||||
req = make_request("0", list(range(16)))
|
||||
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
|
||||
assert not computed_blocks.blocks
|
||||
assert not computed_blocks.blocks[0]
|
||||
assert num_computed_tokens == 0
|
||||
manager.allocate_slots(req, 16,
|
||||
len(computed_blocks.blocks) * 16, computed_blocks)
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
manager.reset_prefix_cache()
|
||||
|
||||
# Ensure prefix_cache_stats remains None
|
||||
@ -918,7 +1164,8 @@ def test_eagle_enabled_removes_last_block():
|
||||
# Prime the cache
|
||||
computed_blocks, _ = manager.get_computed_blocks(req)
|
||||
manager.allocate_slots(req, len(token_ids),
|
||||
len(computed_blocks.blocks) * 16, computed_blocks)
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
manager.free(req)
|
||||
|
||||
# New request with same tokens + Eagle enabled
|
||||
@ -928,7 +1175,7 @@ def test_eagle_enabled_removes_last_block():
|
||||
# Should retain 1 block:
|
||||
# 1. Original 3 blocks → pop last hash → 2 matched blocks
|
||||
# 2. drop last matched block → 1 remaining block
|
||||
assert len(computed_blocks.blocks) == 1
|
||||
assert len(computed_blocks.blocks[0]) == 1
|
||||
assert num_tokens == 1 * block_size # 16 tokens
|
||||
|
||||
|
||||
@ -948,14 +1195,15 @@ def test_eagle_with_partial_blocks():
|
||||
# Prime the cache
|
||||
computed_blocks, _ = manager.get_computed_blocks(req)
|
||||
manager.allocate_slots(req, len(token_ids),
|
||||
len(computed_blocks.blocks) * 16, computed_blocks)
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
manager.free(req)
|
||||
|
||||
# New request with Eagle enabled
|
||||
req_eagle = make_request("partial_eagle", token_ids)
|
||||
computed_blocks, num_tokens = manager.get_computed_blocks(req_eagle)
|
||||
# Original match: 2 full blocks → Eagle removes 1 → 1 remaining
|
||||
assert len(computed_blocks.blocks) == 1
|
||||
assert len(computed_blocks.blocks[0]) == 1
|
||||
assert num_tokens == 1 * block_size
|
||||
|
||||
|
||||
@ -973,7 +1221,7 @@ def test_eagle_with_sliding_window():
|
||||
manager = KVCacheManager(
|
||||
KVCacheConfig(
|
||||
num_blocks=10,
|
||||
tensors={},
|
||||
kv_cache_tensors=[],
|
||||
kv_cache_groups=[KVCacheGroupSpec(['layer'], sliding_window_spec)],
|
||||
),
|
||||
max_model_len=8192,
|
||||
@ -988,7 +1236,8 @@ def test_eagle_with_sliding_window():
|
||||
# Prime the cache
|
||||
computed_blocks, _ = manager.get_computed_blocks(req)
|
||||
manager.allocate_slots(req, len(token_ids),
|
||||
len(computed_blocks.blocks) * 16, computed_blocks)
|
||||
len(computed_blocks.blocks[0]) * 16,
|
||||
computed_blocks)
|
||||
# record the block hash of the first block in the request for later use
|
||||
block_hash_first_block = manager.req_to_block_hashes[req.request_id][0]
|
||||
assert block_hash_first_block is not None
|
||||
@ -998,13 +1247,14 @@ def test_eagle_with_sliding_window():
|
||||
req_eagle = make_request("partial_eagle", token_ids)
|
||||
computed_blocks, num_tokens = manager.get_computed_blocks(req_eagle)
|
||||
# Original match: 2 full blocks → Eagle removes 1 → 1 remaining
|
||||
assert len(computed_blocks.blocks) == 1
|
||||
assert len(computed_blocks.blocks[0]) == 1
|
||||
assert num_tokens == 1 * block_size
|
||||
|
||||
# Evict the first block in the request
|
||||
assert manager.block_pool.get_cached_block(
|
||||
block_hash_first_block) is not None
|
||||
manager.block_pool.cached_block_hash_to_block.pop(block_hash_first_block)
|
||||
block_hash_first_block, kv_cache_group_ids=[0]) is not None
|
||||
manager.block_pool.cached_block_hash_to_block.pop(
|
||||
BlockHashWithGroupId(block_hash_first_block, 0))
|
||||
|
||||
# New request
|
||||
req_after_evict = make_request("partial_eagle_after_evict", token_ids)
|
||||
@ -1012,5 +1262,5 @@ def test_eagle_with_sliding_window():
|
||||
# Cache miss. The only hit prefix is [NULL_BLOCK, BLOCK_2] if eagle is
|
||||
# not considered. But after dropping the last matched block due to eagle,
|
||||
# there will be no matched prefix.
|
||||
assert len(computed_blocks.blocks) == 0
|
||||
assert len(computed_blocks.blocks[0]) == 0
|
||||
assert num_tokens == 0
|
||||
|
@ -97,7 +97,7 @@ def create_scheduler(
|
||||
)
|
||||
kv_cache_config = KVCacheConfig(
|
||||
num_blocks=num_blocks, # A large number of blocks to hold all requests
|
||||
tensors={},
|
||||
kv_cache_tensors=[],
|
||||
kv_cache_groups=[
|
||||
KVCacheGroupSpec(['layer'],
|
||||
FullAttentionSpec(block_size, 1, 1, torch.float32,
|
||||
@ -814,10 +814,10 @@ def _assert_right_kv_cache_manager(
|
||||
# Make sure the request stats are right.
|
||||
EXPECTED_TOTAL_BLOCKS = num_tokens // block_size
|
||||
for req_id in req_ids:
|
||||
blocks = (scheduler.kv_cache_manager.single_type_manager.
|
||||
req_to_blocks[req_id])
|
||||
blocks = (scheduler.kv_cache_manager.coordinator.
|
||||
single_type_managers[0].req_to_blocks[req_id])
|
||||
hashes = scheduler.kv_cache_manager.req_to_block_hashes[req_id]
|
||||
assert (scheduler.kv_cache_manager.single_type_manager.
|
||||
assert (scheduler.kv_cache_manager.coordinator.single_type_managers[0].
|
||||
num_cached_block[req_id] == EXPECTED_TOTAL_BLOCKS)
|
||||
assert len(blocks) == EXPECTED_TOTAL_BLOCKS
|
||||
assert len(hashes) == EXPECTED_TOTAL_BLOCKS
|
||||
@ -1198,11 +1198,11 @@ def assert_scheduler_empty(scheduler: Scheduler):
|
||||
assert len(scheduler.encoder_cache_manager.cached) == 0
|
||||
|
||||
# KVCache Manager.
|
||||
assert len(
|
||||
scheduler.kv_cache_manager.single_type_manager.req_to_blocks) == 0
|
||||
assert len(scheduler.kv_cache_manager.coordinator.single_type_managers[0].
|
||||
req_to_blocks) == 0
|
||||
assert len(scheduler.kv_cache_manager.req_to_block_hashes) == 0
|
||||
assert len(
|
||||
scheduler.kv_cache_manager.single_type_manager.num_cached_block) == 0
|
||||
assert len(scheduler.kv_cache_manager.coordinator.single_type_managers[0].
|
||||
num_cached_block) == 0
|
||||
num_free_blocks = (
|
||||
scheduler.kv_cache_manager.block_pool.free_block_queue.num_free_blocks)
|
||||
assert num_free_blocks == (
|
||||
|
@ -4,7 +4,8 @@
|
||||
import torch
|
||||
|
||||
from vllm.v1.core.block_pool import BlockPool
|
||||
from vllm.v1.core.kv_cache_utils import BlockHash, KVCacheBlock
|
||||
from vllm.v1.core.kv_cache_utils import (BlockHash, BlockHashWithGroupId,
|
||||
KVCacheBlock)
|
||||
from vllm.v1.core.single_type_kv_cache_manager import SlidingWindowManager
|
||||
from vllm.v1.kv_cache_interface import SlidingWindowSpec
|
||||
|
||||
@ -12,9 +13,8 @@ from vllm.v1.kv_cache_interface import SlidingWindowSpec
|
||||
def get_sliding_window_manager(sliding_window_spec, block_pool):
|
||||
return SlidingWindowManager(sliding_window_spec,
|
||||
block_pool,
|
||||
use_eagle=False,
|
||||
num_kv_cache_groups=1,
|
||||
caching_hash_fn=lambda x: x)
|
||||
caching_hash_fn=lambda x: x,
|
||||
kv_cache_group_id=0)
|
||||
|
||||
|
||||
def test_sliding_window_possible_cached_prefix():
|
||||
@ -42,13 +42,18 @@ def test_sliding_window_possible_cached_prefix():
|
||||
for i, (block_hash,
|
||||
is_cached) in enumerate(zip(block_hash_list, block_is_cached)):
|
||||
if is_cached:
|
||||
block_pool.cached_block_hash_to_block[block_hash] = {
|
||||
i: block_pool.blocks[i + 10]
|
||||
}
|
||||
block_pool.cached_block_hash_to_block[BlockHashWithGroupId(
|
||||
block_hash, 0)] = {
|
||||
i: block_pool.blocks[i + 10],
|
||||
}
|
||||
|
||||
computed_blocks = manager.find_longest_cache_hit(
|
||||
block_hash_list,
|
||||
len(block_hash_list) * block_size)
|
||||
block_hashes=block_hash_list,
|
||||
max_length=len(block_hash_list) * block_size,
|
||||
kv_cache_group_ids=[0],
|
||||
block_pool=block_pool,
|
||||
kv_cache_spec=sliding_window_spec,
|
||||
use_eagle=False)[0]
|
||||
assert len(computed_blocks) == expect_length
|
||||
|
||||
assert all(block == block_pool.null_block
|
||||
@ -95,13 +100,13 @@ def test_sliding_window_remove_skipped_blocks():
|
||||
|
||||
null_block_id = block_pool.null_block.block_id
|
||||
|
||||
def id_to_block_table(ids):
|
||||
def id_to_block_table(ids) -> list[KVCacheBlock]:
|
||||
return [
|
||||
KVCacheBlock(id_)
|
||||
if id_ != null_block_id else block_pool.null_block for id_ in ids
|
||||
]
|
||||
|
||||
def assert_block_id(block_table, ids):
|
||||
def assert_block_id(block_table: list[KVCacheBlock], ids: list[int]):
|
||||
for block, id_ in zip(block_table, ids):
|
||||
if id_ == null_block_id:
|
||||
assert block == block_pool.null_block
|
||||
|
@ -18,7 +18,7 @@ class TestConfig:
|
||||
|
||||
model_config = {
|
||||
"bigcode/starcoder2-3b": TestConfig(4096, (800, 1100)),
|
||||
"google/gemma-2-2b-it": TestConfig(4096, (400, 800)),
|
||||
"google/gemma-3-1b-it": TestConfig(4096, (400, 800)),
|
||||
}
|
||||
|
||||
|
||||
@ -26,7 +26,7 @@ model_config = {
|
||||
"model",
|
||||
[
|
||||
"bigcode/starcoder2-3b", # sliding window only
|
||||
"google/gemma-2-2b-it", # sliding window + full attention
|
||||
"google/gemma-3-1b-it", # sliding window + full attention
|
||||
])
|
||||
@pytest.mark.parametrize("batch_size", [5])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
|
@ -22,9 +22,11 @@ if not current_platform.is_cuda():
|
||||
pytest.skip(reason="V1 currently only supported on CUDA.",
|
||||
allow_module_level=True)
|
||||
|
||||
TEXT_ENGINE_ARGS = AsyncEngineArgs(model="meta-llama/Llama-3.2-1B-Instruct",
|
||||
enforce_eager=True,
|
||||
disable_log_requests=True)
|
||||
TEXT_ENGINE_ARGS = AsyncEngineArgs(
|
||||
model="meta-llama/Llama-3.2-1B-Instruct",
|
||||
enforce_eager=True,
|
||||
disable_log_requests=True,
|
||||
)
|
||||
|
||||
VISION_ENGINE_ARGS = AsyncEngineArgs(model="Qwen/Qwen2-VL-2B-Instruct",
|
||||
enforce_eager=True,
|
||||
@ -41,28 +43,33 @@ VISION_PROMPT = {
|
||||
"prompt": VISION_PROMPT_TEMPLATE,
|
||||
"multi_modal_data": {
|
||||
"image": ImageAsset("stop_sign").pil_image
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
async def generate(engine: AsyncLLM,
|
||||
request_id: str,
|
||||
prompt: PromptType,
|
||||
output_kind: RequestOutputKind,
|
||||
max_tokens: int,
|
||||
n: int = 1,
|
||||
prompt_logprobs: Optional[int] = None) -> tuple[int, str]:
|
||||
async def generate(
|
||||
engine: AsyncLLM,
|
||||
request_id: str,
|
||||
prompt: PromptType,
|
||||
output_kind: RequestOutputKind,
|
||||
max_tokens: int,
|
||||
n: int = 1,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
cancel_after: Optional[int] = None,
|
||||
) -> tuple[int, str]:
|
||||
# Ensure generate doesn't complete too fast for cancellation test.
|
||||
await asyncio.sleep(0.2)
|
||||
|
||||
count = 0
|
||||
sampling_params = SamplingParams(max_tokens=max_tokens,
|
||||
ignore_eos=True,
|
||||
output_kind=output_kind,
|
||||
temperature=0.5,
|
||||
seed=33,
|
||||
n=n,
|
||||
prompt_logprobs=prompt_logprobs)
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=max_tokens,
|
||||
ignore_eos=True,
|
||||
output_kind=output_kind,
|
||||
temperature=0.5,
|
||||
seed=33,
|
||||
n=n,
|
||||
prompt_logprobs=prompt_logprobs,
|
||||
)
|
||||
async for out in engine.generate(request_id=request_id,
|
||||
prompt=prompt,
|
||||
sampling_params=sampling_params):
|
||||
@ -73,20 +80,27 @@ async def generate(engine: AsyncLLM,
|
||||
else:
|
||||
count = num_tokens
|
||||
|
||||
await asyncio.sleep(0.)
|
||||
if cancel_after is not None and count >= cancel_after:
|
||||
return count, request_id
|
||||
|
||||
await asyncio.sleep(0.0)
|
||||
|
||||
return count, request_id
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
|
||||
@pytest.mark.parametrize("engine_args,prompt",
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
|
||||
(VISION_ENGINE_ARGS, VISION_PROMPT)])
|
||||
@pytest.mark.parametrize(
|
||||
"engine_args,prompt",
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
async def test_load(monkeypatch: pytest.MonkeyPatch,
|
||||
output_kind: RequestOutputKind,
|
||||
engine_args: AsyncEngineArgs, prompt: PromptType):
|
||||
async def test_load(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
output_kind: RequestOutputKind,
|
||||
engine_args: AsyncEngineArgs,
|
||||
prompt: PromptType,
|
||||
):
|
||||
# TODO(rickyx): Remove monkeypatch once we have a better way to test V1
|
||||
# so that in the future when we switch, we don't have to change all the
|
||||
# tests.
|
||||
@ -125,13 +139,17 @@ async def test_load(monkeypatch: pytest.MonkeyPatch,
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
|
||||
@pytest.mark.parametrize("engine_args,prompt",
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
|
||||
(VISION_ENGINE_ARGS, VISION_PROMPT)])
|
||||
@pytest.mark.parametrize(
|
||||
"engine_args,prompt",
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
async def test_abort(monkeypatch: pytest.MonkeyPatch,
|
||||
output_kind: RequestOutputKind,
|
||||
engine_args: AsyncEngineArgs, prompt: PromptType):
|
||||
async def test_abort(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
output_kind: RequestOutputKind,
|
||||
engine_args: AsyncEngineArgs,
|
||||
prompt: PromptType,
|
||||
):
|
||||
|
||||
with monkeypatch.context() as m, ExitStack() as after:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
@ -150,8 +168,9 @@ async def test_abort(monkeypatch: pytest.MonkeyPatch,
|
||||
# Create concurrent requests.
|
||||
tasks: list[asyncio.Task] = []
|
||||
for idx, request_id in enumerate(request_ids):
|
||||
max_tokens = NUM_EXPECTED_TOKENS_LONG if (
|
||||
idx in REQUEST_IDS_TO_ABORT) else NUM_EXPECTED_TOKENS
|
||||
max_tokens = (NUM_EXPECTED_TOKENS_LONG if
|
||||
(idx
|
||||
in REQUEST_IDS_TO_ABORT) else NUM_EXPECTED_TOKENS)
|
||||
n = 3 if idx in PARALLEL_SAMPLE_REQ_IDS else 1
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
@ -192,12 +211,17 @@ async def test_abort(monkeypatch: pytest.MonkeyPatch,
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", [1, 3])
|
||||
@pytest.mark.parametrize("engine_args,prompt",
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
|
||||
(VISION_ENGINE_ARGS, VISION_PROMPT)])
|
||||
@pytest.mark.parametrize(
|
||||
"engine_args,prompt",
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
async def test_finished_flag(monkeypatch: pytest.MonkeyPatch, n: int,
|
||||
engine_args: AsyncEngineArgs, prompt: PromptType):
|
||||
async def test_finished_flag(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
n: int,
|
||||
engine_args: AsyncEngineArgs,
|
||||
prompt: PromptType,
|
||||
):
|
||||
|
||||
with monkeypatch.context() as m, ExitStack() as after:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
@ -205,11 +229,13 @@ async def test_finished_flag(monkeypatch: pytest.MonkeyPatch, n: int,
|
||||
engine = AsyncLLM.from_engine_args(engine_args)
|
||||
after.callback(engine.shutdown)
|
||||
|
||||
sampling_params = SamplingParams(max_tokens=100,
|
||||
output_kind=RequestOutputKind.DELTA,
|
||||
temperature=1.0,
|
||||
seed=33,
|
||||
n=n)
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=100,
|
||||
output_kind=RequestOutputKind.DELTA,
|
||||
temperature=1.0,
|
||||
seed=33,
|
||||
n=n,
|
||||
)
|
||||
outputs = [
|
||||
out
|
||||
async for out in engine.generate(request_id="request-33",
|
||||
@ -222,6 +248,63 @@ async def test_finished_flag(monkeypatch: pytest.MonkeyPatch, n: int,
|
||||
assert outputs[-1].finished
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"engine_args,prompt",
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
|
||||
)
|
||||
@pytest.mark.asyncio
|
||||
async def test_mid_stream_cancellation(monkeypatch: pytest.MonkeyPatch,
|
||||
engine_args: AsyncEngineArgs,
|
||||
prompt: PromptType):
|
||||
"""Test that requests can be cancelled mid-stream."""
|
||||
with monkeypatch.context() as m, ExitStack() as after:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
|
||||
engine = AsyncLLM.from_engine_args(engine_args)
|
||||
after.callback(engine.shutdown)
|
||||
|
||||
NUM_REQUESTS = 100
|
||||
NUM_TOKENS = 1000
|
||||
NUM_EXPECTED_TOKENS = 20
|
||||
|
||||
request_ids = [f"request-{i}" for i in range(NUM_REQUESTS)]
|
||||
|
||||
# Create concurrent requests that will be cancelled mid-stream
|
||||
tasks = []
|
||||
for request_id in request_ids:
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
generate(
|
||||
engine,
|
||||
request_id,
|
||||
prompt,
|
||||
RequestOutputKind.DELTA,
|
||||
NUM_TOKENS,
|
||||
cancel_after=NUM_EXPECTED_TOKENS,
|
||||
)))
|
||||
|
||||
# Wait for all tasks to complete
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
# Verify all tasks were cancelled at the expected point
|
||||
for num_generated_tokens, request_id in results:
|
||||
assert num_generated_tokens == NUM_EXPECTED_TOKENS, (
|
||||
f"{request_id} generated {num_generated_tokens} tokens but "
|
||||
f"expected to cancel after {NUM_EXPECTED_TOKENS}")
|
||||
|
||||
# Make sure no requests are left hanging
|
||||
assert not engine.output_processor.has_unfinished_requests()
|
||||
|
||||
# Confirm we can reuse the request id after the cancellations.
|
||||
request_id = request_ids[0]
|
||||
task = asyncio.create_task(
|
||||
generate(engine, request_id, prompt, RequestOutputKind.DELTA,
|
||||
NUM_EXPECTED_TOKENS))
|
||||
num_generated_tokens, request_id = await task
|
||||
assert num_generated_tokens == NUM_EXPECTED_TOKENS
|
||||
assert not engine.output_processor.has_unfinished_requests()
|
||||
|
||||
|
||||
class MockLoggingStatLogger(LoggingStatLogger):
|
||||
|
||||
def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
|
||||
@ -250,3 +333,32 @@ async def test_customize_loggers(monkeypatch):
|
||||
assert len(engine.stat_loggers) == 1
|
||||
assert len(engine.stat_loggers[0]) == 1
|
||||
engine.stat_loggers[0][0].log.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="module")
|
||||
async def test_dp_rank_argument(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m, ExitStack() as after:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
|
||||
engine = AsyncLLM.from_engine_args(TEXT_ENGINE_ARGS)
|
||||
after.callback(engine.shutdown)
|
||||
|
||||
sampling_params = SamplingParams(max_tokens=100,
|
||||
output_kind=RequestOutputKind.DELTA,
|
||||
temperature=1.0,
|
||||
seed=33)
|
||||
|
||||
# Test with valid DP rank.
|
||||
async for _ in engine.generate(request_id="request-34",
|
||||
prompt=TEXT_PROMPT,
|
||||
sampling_params=sampling_params,
|
||||
data_parallel_rank=0):
|
||||
pass
|
||||
|
||||
# Test with out-of-range DP rank.
|
||||
with pytest.raises(ValueError):
|
||||
async for _ in engine.generate(request_id="request-35",
|
||||
prompt=TEXT_PROMPT,
|
||||
sampling_params=sampling_params,
|
||||
data_parallel_rank=1):
|
||||
pass
|
||||
|
@ -42,6 +42,7 @@ def make_request() -> EngineCoreRequest:
|
||||
arrival_time=time.time(),
|
||||
lora_request=None,
|
||||
cache_salt=None,
|
||||
data_parallel_rank=None,
|
||||
)
|
||||
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user