mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-21 07:13:52 +08:00
Compare commits
7 Commits
codex/add-
...
bench-late
Author | SHA1 | Date | |
---|---|---|---|
af985d70bf | |||
b484b79504 | |||
8fcd4d18e0 | |||
50e2788383 | |||
f0ca3a6142 | |||
528088392e | |||
9030400353 |
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import os
|
||||
import sys
|
||||
@ -9,12 +8,12 @@ import zipfile
|
||||
# Note that we have 400 MiB quota, please use it wisely.
|
||||
# See https://github.com/pypi/support/issues/3792 .
|
||||
# Please also sync the value with the one in Dockerfile.
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 400))
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 400))
|
||||
|
||||
|
||||
def print_top_10_largest_files(zip_file):
|
||||
"""Print the top 10 largest files in the given zip file."""
|
||||
with zipfile.ZipFile(zip_file, "r") as z:
|
||||
with zipfile.ZipFile(zip_file, 'r') as z:
|
||||
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
|
||||
file_sizes.sort(key=lambda x: x[1], reverse=True)
|
||||
for f, size in file_sizes[:10]:
|
||||
@ -29,18 +28,14 @@ def check_wheel_size(directory):
|
||||
wheel_path = os.path.join(root, file_name)
|
||||
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
|
||||
if wheel_size_mb > VLLM_MAX_SIZE_MB:
|
||||
print(
|
||||
f"Not allowed: Wheel {wheel_path} is larger "
|
||||
f"({wheel_size_mb:.2f} MB) than the limit "
|
||||
f"({VLLM_MAX_SIZE_MB} MB)."
|
||||
)
|
||||
print(f"Not allowed: Wheel {wheel_path} is larger "
|
||||
f"({wheel_size_mb:.2f} MB) than the limit "
|
||||
f"({VLLM_MAX_SIZE_MB} MB).")
|
||||
print_top_10_largest_files(wheel_path)
|
||||
return 1
|
||||
else:
|
||||
print(
|
||||
f"Wheel {wheel_path} is within the allowed size "
|
||||
f"({wheel_size_mb:.2f} MB)."
|
||||
)
|
||||
print(f"Wheel {wheel_path} is within the allowed size "
|
||||
f"({wheel_size_mb:.2f} MB).")
|
||||
return 0
|
||||
|
||||
|
||||
@ -50,4 +45,4 @@ if __name__ == "__main__":
|
||||
sys.exit(1)
|
||||
|
||||
directory = sys.argv[1]
|
||||
sys.exit(check_wheel_size(directory))
|
||||
sys.exit(check_wheel_size(directory))
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import os
|
||||
@ -23,5 +22,5 @@ with open("index.html", "w") as f:
|
||||
print(f"Generated index.html for {args.wheel}")
|
||||
# cloudfront requires escaping the '+' character
|
||||
f.write(
|
||||
template.format(wheel=filename, wheel_html_escaped=filename.replace("+", "%2B"))
|
||||
)
|
||||
template.format(wheel=filename,
|
||||
wheel_html_escaped=filename.replace("+", "%2B")))
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m deepseek-ai/DeepSeek-V2-Lite-Chat -b "auto" -l 1000 -f 5 -t 2
|
||||
model_name: "deepseek-ai/DeepSeek-V2-Lite-Chat"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5
|
||||
model_name: "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
|
||||
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-FP8-Channelwise-compressed-tensors"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test -b 32 -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
|
||||
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test -b "auto" -l 250 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-nonuniform-test"
|
||||
tasks:
|
||||
|
@ -1,5 +1,4 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
|
||||
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
|
||||
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
|
||||
tasks:
|
||||
|
@ -1,11 +0,0 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Llama-3.2-1B-Instruct-FP8 -b "auto" -l 1319 -f 5 -t 1
|
||||
model_name: "RedHatAI/Llama-3.2-1B-Instruct-FP8"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.335
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.323
|
||||
limit: 1319
|
||||
num_fewshot: 5
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "mgoin/Minitron-4B-Base-FP8"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
|
||||
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
|
||||
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
|
||||
tasks:
|
||||
|
@ -1,5 +1,4 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
|
||||
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
|
@ -1,12 +0,0 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16 -b auto -l 1319 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.30
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.465
|
||||
limit: 1319
|
||||
num_fewshot: 5
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-FP8W8 -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen2-1.5B-Instruct-FP8W8"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise -b "auto" -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen2-1.5B-Instruct-W8A16-Channelwise"
|
||||
tasks:
|
||||
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
|
||||
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
|
||||
tasks:
|
||||
|
@ -1,11 +0,0 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2.5-1.5B-Instruct -b auto -l 1319 -f 5 -t 1
|
||||
model_name: "Qwen/Qwen2.5-1.5B-Instruct"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.54
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.59
|
||||
limit: 1319
|
||||
num_fewshot: 5
|
@ -1,11 +0,0 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
|
||||
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.47
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.64
|
||||
limit: 1319
|
||||
num_fewshot: 5
|
@ -1,4 +1,3 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
|
||||
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
|
||||
tasks:
|
||||
|
@ -3,4 +3,3 @@ Meta-Llama-3-70B-Instruct.yaml
|
||||
Mixtral-8x7B-Instruct-v0.1.yaml
|
||||
Qwen2-57B-A14-Instruct.yaml
|
||||
DeepSeek-V2-Lite-Chat.yaml
|
||||
Meta-Llama-3-8B-QQQ.yaml
|
||||
|
@ -1,6 +1,10 @@
|
||||
Qwen2.5-1.5B-Instruct.yaml
|
||||
Meta-Llama-3-8B-Instruct.yaml
|
||||
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
|
||||
Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
|
||||
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
|
||||
Qwen2.5-VL-3B-Instruct-FP8-dynamic.yaml
|
||||
Qwen1.5-MoE-W4A16-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
|
||||
Minitron-4B-Base-FP8.yaml
|
||||
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
|
||||
Qwen2-1.5B-Instruct-FP8W8.yaml
|
||||
Meta-Llama-3-8B-QQQ.yaml
|
||||
|
@ -1,44 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--config-list-file",
|
||||
action="store",
|
||||
help="Path to the file listing model config YAMLs (one per line)",
|
||||
)
|
||||
parser.addoption(
|
||||
"--tp-size",
|
||||
action="store",
|
||||
default="1",
|
||||
help="Tensor parallel size to use for evaluation",
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def config_list_file(pytestconfig, config_dir):
|
||||
rel_path = pytestconfig.getoption("--config-list-file")
|
||||
return config_dir / rel_path
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tp_size(pytestconfig):
|
||||
return pytestconfig.getoption("--tp-size")
|
||||
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "config_filename" in metafunc.fixturenames:
|
||||
rel_path = metafunc.config.getoption("--config-list-file")
|
||||
config_list_file = Path(rel_path).resolve()
|
||||
config_dir = config_list_file.parent
|
||||
with open(config_list_file, encoding="utf-8") as f:
|
||||
configs = [
|
||||
config_dir / line.strip()
|
||||
for line in f
|
||||
if line.strip() and not line.startswith("#")
|
||||
]
|
||||
metafunc.parametrize("config_filename", configs)
|
59
.buildkite/lm-eval-harness/run-tests.sh
Normal file
59
.buildkite/lm-eval-harness/run-tests.sh
Normal file
@ -0,0 +1,59 @@
|
||||
#!/bin/bash
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
echo "Runs lm eval harness on GSM8k using vllm and compares to "
|
||||
echo "precomputed baseline (measured by HF transformers.)"
|
||||
echo
|
||||
echo "usage: ${0} <options>"
|
||||
echo
|
||||
echo " -c - path to the test data config (e.g. configs/small-models.txt)"
|
||||
echo " -t - tensor parallel size"
|
||||
echo
|
||||
}
|
||||
|
||||
SUCCESS=0
|
||||
|
||||
while getopts "c:t:" OPT; do
|
||||
case ${OPT} in
|
||||
c )
|
||||
CONFIG="$OPTARG"
|
||||
;;
|
||||
t )
|
||||
TP_SIZE="$OPTARG"
|
||||
;;
|
||||
\? )
|
||||
usage
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
# Parse list of configs.
|
||||
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < "$CONFIG"
|
||||
|
||||
for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
|
||||
do
|
||||
LOCAL_SUCCESS=0
|
||||
|
||||
echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE==="
|
||||
|
||||
export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG}
|
||||
export LM_EVAL_TP_SIZE=$TP_SIZE
|
||||
pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$?
|
||||
|
||||
if [[ $LOCAL_SUCCESS == 0 ]]; then
|
||||
echo "=== PASSED MODEL: ${MODEL_CONFIG} ==="
|
||||
else
|
||||
echo "=== FAILED MODEL: ${MODEL_CONFIG} ==="
|
||||
fi
|
||||
|
||||
SUCCESS=$((SUCCESS + LOCAL_SUCCESS))
|
||||
|
||||
done
|
||||
|
||||
if [ "${SUCCESS}" -eq "0" ]; then
|
||||
exit 0
|
||||
else
|
||||
exit 1
|
||||
fi
|
@ -1,55 +1,69 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
LM eval harness on model to compare vs HF baseline computed offline.
|
||||
Configs are found in configs/$MODEL.yaml
|
||||
|
||||
pytest -s -v test_lm_eval_correctness.py \
|
||||
--config-list-file=configs/models-small.txt \
|
||||
--tp-size=1
|
||||
* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml
|
||||
* export LM_EVAL_TP_SIZE=4
|
||||
* pytest -s test_lm_eval_correctness.py
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import lm_eval
|
||||
import numpy as np
|
||||
import numpy
|
||||
import pytest
|
||||
import yaml
|
||||
|
||||
RTOL = 0.08
|
||||
RTOL = 0.05
|
||||
TEST_DATA_FILE = os.environ.get(
|
||||
"LM_EVAL_TEST_DATA_FILE",
|
||||
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
|
||||
|
||||
TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)
|
||||
|
||||
|
||||
def launch_lm_eval(eval_config, tp_size):
|
||||
trust_remote_code = eval_config.get("trust_remote_code", False)
|
||||
model_args = (
|
||||
f"pretrained={eval_config['model_name']},"
|
||||
f"tensor_parallel_size={tp_size},"
|
||||
f"enforce_eager=true,"
|
||||
f"add_bos_token=true,"
|
||||
f"trust_remote_code={trust_remote_code}"
|
||||
)
|
||||
def launch_lm_eval(eval_config):
|
||||
trust_remote_code = eval_config.get('trust_remote_code', False)
|
||||
|
||||
model_args = f"pretrained={eval_config['model_name']}," \
|
||||
f"tensor_parallel_size={TP_SIZE}," \
|
||||
f"add_bos_token=true," \
|
||||
f"trust_remote_code={trust_remote_code}"
|
||||
|
||||
results = lm_eval.simple_evaluate(
|
||||
model="vllm",
|
||||
model_args=model_args,
|
||||
tasks=[task["name"] for task in eval_config["tasks"]],
|
||||
num_fewshot=eval_config["num_fewshot"],
|
||||
limit=eval_config["limit"],
|
||||
batch_size="auto",
|
||||
)
|
||||
batch_size="auto")
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def test_lm_eval_correctness_param(config_filename, tp_size):
|
||||
eval_config = yaml.safe_load(config_filename.read_text(encoding="utf-8"))
|
||||
def test_lm_eval_correctness():
|
||||
eval_config = yaml.safe_load(
|
||||
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
|
||||
|
||||
results = launch_lm_eval(eval_config, tp_size)
|
||||
if eval_config[
|
||||
"model_name"] == "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform": #noqa: E501
|
||||
pytest.skip("FBGEMM is currently failing on main.")
|
||||
|
||||
# Launch eval requests.
|
||||
results = launch_lm_eval(eval_config)
|
||||
|
||||
# Confirm scores match ground truth.
|
||||
success = True
|
||||
for task in eval_config["tasks"]:
|
||||
for metric in task["metrics"]:
|
||||
ground_truth = metric["value"]
|
||||
measured_value = results["results"][task["name"]][metric["name"]]
|
||||
print(
|
||||
f"{task['name']} | {metric['name']}: "
|
||||
f"ground_truth={ground_truth} | measured={measured_value}"
|
||||
)
|
||||
success = success and np.isclose(ground_truth, measured_value, rtol=RTOL)
|
||||
print(f'{task["name"]} | {metric["name"]}: '
|
||||
f'ground_truth={ground_truth} | measured={measured_value}')
|
||||
success = success and numpy.isclose(
|
||||
ground_truth, measured_value, rtol=RTOL)
|
||||
|
||||
# Assert at the end, print all scores even on failure for debugging.
|
||||
assert success
|
||||
|
@ -113,7 +113,7 @@ WARNING: The benchmarking script will save json results by itself, so please do
|
||||
|
||||
### Visualizing the results
|
||||
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](performance-benchmarks-descriptions.md) with real benchmarking results.
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
|
||||
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
|
||||
If you do not see the table, please wait till the benchmark finish running.
|
||||
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import json
|
||||
import os
|
||||
@ -66,18 +65,18 @@ def read_markdown(file):
|
||||
|
||||
|
||||
def results_to_json(latency, throughput, serving):
|
||||
return json.dumps(
|
||||
{
|
||||
"latency": latency.to_dict(),
|
||||
"throughput": throughput.to_dict(),
|
||||
"serving": serving.to_dict(),
|
||||
}
|
||||
)
|
||||
return json.dumps({
|
||||
'latency': latency.to_dict(),
|
||||
'throughput': throughput.to_dict(),
|
||||
'serving': serving.to_dict()
|
||||
})
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
|
||||
with open(test_file) as f:
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
@ -121,8 +120,7 @@ if __name__ == "__main__":
|
||||
for perc in [10, 25, 50, 75, 90, 99]:
|
||||
# Multiply 1000 to convert the time unit from s to ms
|
||||
raw_result.update(
|
||||
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]}
|
||||
)
|
||||
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
|
||||
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
|
||||
|
||||
# add the result to raw_result
|
||||
@ -155,27 +153,26 @@ if __name__ == "__main__":
|
||||
serving_results = pd.DataFrame.from_dict(serving_results)
|
||||
throughput_results = pd.DataFrame.from_dict(throughput_results)
|
||||
|
||||
raw_results_json = results_to_json(
|
||||
latency_results, throughput_results, serving_results
|
||||
)
|
||||
raw_results_json = results_to_json(latency_results, throughput_results,
|
||||
serving_results)
|
||||
|
||||
# remapping the key, for visualization purpose
|
||||
if not latency_results.empty:
|
||||
latency_results = latency_results[list(latency_column_mapping.keys())].rename(
|
||||
columns=latency_column_mapping
|
||||
)
|
||||
latency_results = latency_results[list(
|
||||
latency_column_mapping.keys())].rename(
|
||||
columns=latency_column_mapping)
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping
|
||||
)
|
||||
serving_results = serving_results[list(
|
||||
serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping)
|
||||
if not throughput_results.empty:
|
||||
throughput_results = throughput_results[
|
||||
list(throughput_results_column_mapping.keys())
|
||||
].rename(columns=throughput_results_column_mapping)
|
||||
throughput_results = throughput_results[list(
|
||||
throughput_results_column_mapping.keys())].rename(
|
||||
columns=throughput_results_column_mapping)
|
||||
|
||||
processed_results_json = results_to_json(
|
||||
latency_results, throughput_results, serving_results
|
||||
)
|
||||
processed_results_json = results_to_json(latency_results,
|
||||
throughput_results,
|
||||
serving_results)
|
||||
|
||||
for df in [latency_results, serving_results, throughput_results]:
|
||||
if df.empty:
|
||||
@ -187,39 +184,38 @@ if __name__ == "__main__":
|
||||
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
||||
# we want to turn it into "8xGPUTYPE"
|
||||
df["GPU"] = df["GPU"].apply(
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
|
||||
)
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}")
|
||||
|
||||
# get markdown tables
|
||||
latency_md_table = tabulate(
|
||||
latency_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
serving_md_table = tabulate(
|
||||
serving_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
throughput_md_table = tabulate(
|
||||
throughput_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
latency_md_table = tabulate(latency_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
serving_md_table = tabulate(serving_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
throughput_md_table = tabulate(throughput_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
|
||||
# document the result
|
||||
with open(results_folder / "benchmark_results.md", "w") as f:
|
||||
results = read_markdown(
|
||||
"../.buildkite/nightly-benchmarks/"
|
||||
+ "performance-benchmarks-descriptions.md"
|
||||
)
|
||||
|
||||
results = read_markdown("../.buildkite/nightly-benchmarks/" +
|
||||
"performance-benchmarks-descriptions.md")
|
||||
results = results.format(
|
||||
latency_tests_markdown_table=latency_md_table,
|
||||
throughput_tests_markdown_table=throughput_md_table,
|
||||
serving_tests_markdown_table=serving_md_table,
|
||||
benchmarking_results_in_json_string=processed_results_json,
|
||||
)
|
||||
benchmarking_results_in_json_string=processed_results_json)
|
||||
f.write(results)
|
||||
|
||||
# document benchmarking results in json
|
||||
with open(results_folder / "benchmark_results.json", "w") as f:
|
||||
results = (
|
||||
latency_results.to_dict(orient="records")
|
||||
+ throughput_results.to_dict(orient="records")
|
||||
+ serving_results.to_dict(orient="records")
|
||||
)
|
||||
|
||||
results = latency_results.to_dict(
|
||||
orient='records') + throughput_results.to_dict(
|
||||
orient='records') + serving_results.to_dict(orient='records')
|
||||
f.write(json.dumps(results))
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
|
||||
@ -15,12 +14,15 @@ def main(model, cachedir):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Download and save Hugging Face tokenizer"
|
||||
)
|
||||
parser.add_argument("--model", type=str, required=True, help="Name of the model")
|
||||
parser.add_argument(
|
||||
"--cachedir", type=str, required=True, help="Directory to save the tokenizer"
|
||||
)
|
||||
description="Download and save Hugging Face tokenizer")
|
||||
parser.add_argument("--model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Name of the model")
|
||||
parser.add_argument("--cachedir",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Directory to save the tokenizer")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args.model, args.cachedir)
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import argparse
|
||||
import json
|
||||
@ -12,33 +11,33 @@ from tabulate import tabulate
|
||||
|
||||
def parse_arguments():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Parse command line arguments for summary-nightly-results script."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--results-folder",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The folder where the results are stored.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--description", type=str, required=True, help="Description of the results."
|
||||
)
|
||||
description=
|
||||
'Parse command line arguments for summary-nightly-results script.')
|
||||
parser.add_argument('--results-folder',
|
||||
type=str,
|
||||
required=True,
|
||||
help='The folder where the results are stored.')
|
||||
parser.add_argument('--description',
|
||||
type=str,
|
||||
required=True,
|
||||
help='Description of the results.')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def get_perf(df, method, model, metric):
|
||||
|
||||
means = []
|
||||
|
||||
for qps in [2, 4, 8, 16, "inf"]:
|
||||
target = df["Test name"].str.contains(model)
|
||||
target = target & df["Engine"].str.contains(method)
|
||||
target = target & df["Test name"].str.contains("qps_" + str(qps))
|
||||
target = df['Test name'].str.contains(model)
|
||||
target = target & df['Engine'].str.contains(method)
|
||||
target = target & df['Test name'].str.contains("qps_" + str(qps))
|
||||
filtered_df = df[target]
|
||||
|
||||
if filtered_df.empty:
|
||||
means.append(0.0)
|
||||
means.append(0.)
|
||||
else:
|
||||
means.append(filtered_df[metric].values[0])
|
||||
|
||||
@ -46,6 +45,7 @@ def get_perf(df, method, model, metric):
|
||||
|
||||
|
||||
def get_perf_w_std(df, method, model, metric):
|
||||
|
||||
if metric in ["TTFT", "ITL"]:
|
||||
mean = get_perf(df, method, model, "Mean " + metric + " (ms)")
|
||||
mean = mean.tolist()
|
||||
@ -60,8 +60,7 @@ def get_perf_w_std(df, method, model, metric):
|
||||
else:
|
||||
assert metric == "Tput"
|
||||
mean = get_perf(df, method, model, "Input Tput (tok/s)") + get_perf(
|
||||
df, method, model, "Output Tput (tok/s)"
|
||||
)
|
||||
df, method, model, "Output Tput (tok/s)")
|
||||
mean = mean.tolist()
|
||||
std = None
|
||||
|
||||
@ -81,17 +80,18 @@ def main(args):
|
||||
# generate markdown table
|
||||
df = pd.DataFrame.from_dict(results)
|
||||
|
||||
md_table = tabulate(df, headers="keys", tablefmt="pipe", showindex=False)
|
||||
md_table = tabulate(df, headers='keys', tablefmt='pipe', showindex=False)
|
||||
|
||||
with open(args.description) as f:
|
||||
description = f.read()
|
||||
|
||||
description = description.format(nightly_results_benchmarking_table=md_table)
|
||||
description = description.format(
|
||||
nightly_results_benchmarking_table=md_table)
|
||||
|
||||
with open("nightly_results.md", "w") as f:
|
||||
f.write(description)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
main(args)
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
|
@ -10,24 +10,15 @@ set -x
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
if command -v nvidia-smi; then
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
elif command -v amd-smi; then
|
||||
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
|
||||
fi
|
||||
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
if command -v nvidia-smi; then
|
||||
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
||||
elif command -v amd-smi; then
|
||||
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
|
||||
fi
|
||||
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
@ -99,15 +90,9 @@ kill_gpu_processes() {
|
||||
|
||||
|
||||
# wait until GPU memory usage smaller than 1GB
|
||||
if command -v nvidia-smi; then
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
elif command -v amd-smi; then
|
||||
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
fi
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
|
||||
# remove vllm config file
|
||||
rm -rf ~/.config/vllm
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import datetime
|
||||
import json
|
||||
@ -35,8 +34,10 @@ serving_column_mapping = {
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
|
||||
with open(test_file) as f:
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
@ -55,16 +56,17 @@ if __name__ == "__main__":
|
||||
serving_results = pd.DataFrame.from_dict(serving_results)
|
||||
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping
|
||||
)
|
||||
serving_results = serving_results[list(
|
||||
serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping)
|
||||
|
||||
serving_md_table_with_headers = tabulate(
|
||||
serving_results, headers="keys", tablefmt="pipe", showindex=False
|
||||
)
|
||||
serving_md_table_with_headers = tabulate(serving_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
# remove the first line of header
|
||||
serving_md_table_lines = serving_md_table_with_headers.split("\n")
|
||||
serving_md_table_without_header = "\n".join(serving_md_table_lines[2:])
|
||||
serving_md_table_lines = serving_md_table_with_headers.split('\n')
|
||||
serving_md_table_without_header = '\n'.join(serving_md_table_lines[2:])
|
||||
|
||||
prefix = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||||
prefix = prefix + "_" + os.environ.get("CURRENT_LLM_SERVING_ENGINE")
|
||||
@ -74,9 +76,10 @@ if __name__ == "__main__":
|
||||
# document results with header.
|
||||
# for those who wants to reproduce our benchmark.
|
||||
f.write(serving_md_table_with_headers)
|
||||
f.write("\n")
|
||||
f.write('\n')
|
||||
|
||||
# document benchmarking results in json
|
||||
with open(results_folder / f"{prefix}_nightly_results.json", "w") as f:
|
||||
results = serving_results.to_dict(orient="records")
|
||||
|
||||
results = serving_results.to_dict(orient='records')
|
||||
f.write(json.dumps(results))
|
||||
|
@ -1,46 +0,0 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
@ -1,23 +1,23 @@
|
||||
steps:
|
||||
- label: "Build wheel - CUDA 12.8"
|
||||
- label: "Build wheel - CUDA 12.4"
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- label: "Build wheel - CUDA 12.6"
|
||||
- label: "Build wheel - CUDA 12.1"
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -31,10 +31,10 @@ steps:
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -48,7 +48,7 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Build and publish TPU release image"
|
||||
@ -57,14 +57,12 @@ steps:
|
||||
agents:
|
||||
queue: tpu_queue_postmerge
|
||||
commands:
|
||||
- "yes | docker system prune -a"
|
||||
- "git fetch --all"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f Dockerfile.tpu ."
|
||||
- "docker push vllm/vllm-tpu:nightly"
|
||||
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
|
||||
plugins:
|
||||
- docker-login#v3.0.0:
|
||||
username: vllmbot
|
||||
username: vllm
|
||||
password-env: DOCKERHUB_TOKEN
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
@ -84,22 +82,7 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f Dockerfile.cpu ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build Neuron release image"
|
||||
key: block-neuron-release-image-build
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build and publish Neuron release image"
|
||||
depends_on: block-neuron-release-image-build
|
||||
agents:
|
||||
queue: neuron-postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
@ -3,9 +3,6 @@
|
||||
# This script runs test inside the corresponding ROCm docker container.
|
||||
set -o pipefail
|
||||
|
||||
# Export Python path
|
||||
export PYTHONPATH=".."
|
||||
|
||||
# Print ROCm version
|
||||
echo "--- Confirming Clean Initial State"
|
||||
while true; do
|
||||
@ -77,106 +74,50 @@ HF_MOUNT="/root/.cache/huggingface"
|
||||
|
||||
commands=$@
|
||||
echo "Commands:$commands"
|
||||
|
||||
if [[ $commands == *"pytest -v -s basic_correctness/test_basic_correctness.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s basic_correctness/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s basic_correctness/test_basic_correctness.py"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
|
||||
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s lora"* ]]; then
|
||||
commands=${commands//"pytest -v -s lora"/"VLLM_ROCM_CUSTOM_PAGED_ATTN=0 pytest -v -s lora"}
|
||||
fi
|
||||
|
||||
#ignore certain kernels tests
|
||||
if [[ $commands == *" kernels/core"* ]]; then
|
||||
if [[ $commands == *" kernels "* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/core/test_fused_quant_layernorm.py \
|
||||
--ignore=kernels/core/test_permute_cols.py"
|
||||
fi
|
||||
|
||||
if [[ $commands == *" kernels/attention"* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/attention/stest_attention_selector.py \
|
||||
--ignore=kernels/attention/test_blocksparse_attention.py \
|
||||
--ignore=kernels/attention/test_encoder_decoder_attn.py \
|
||||
--ignore=kernels/attention/test_attention_selector.py \
|
||||
--ignore=kernels/attention/test_flash_attn.py \
|
||||
--ignore=kernels/attention/test_flashinfer.py \
|
||||
--ignore=kernels/attention/test_prefix_prefill.py \
|
||||
--ignore=kernels/attention/test_cascade_flash_attn.py \
|
||||
--ignore=kernels/attention/test_mha_attn.py \
|
||||
--ignore=kernels/attention/test_lightning_attn.py \
|
||||
--ignore=kernels/attention/test_attention.py"
|
||||
fi
|
||||
|
||||
if [[ $commands == *" kernels/quantization"* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/quantization/test_int8_quant.py \
|
||||
--ignore=kernels/quantization/test_aqlm.py \
|
||||
--ignore=kernels/quantization/test_machete_mm.py \
|
||||
--ignore=kernels/quantization/test_block_fp8.py \
|
||||
--ignore=kernels/quantization/test_block_int8.py \
|
||||
--ignore=kernels/quantization/test_marlin_gemm.py \
|
||||
--ignore=kernels/quantization/test_cutlass_scaled_mm.py \
|
||||
--ignore=kernels/quantization/test_int8_kernel.py"
|
||||
fi
|
||||
|
||||
if [[ $commands == *" kernels/mamba"* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/mamba/test_mamba_mixer2.py \
|
||||
--ignore=kernels/mamba/test_causal_conv1d.py \
|
||||
--ignore=kernels/mamba/test_mamba_ssm_ssd.py"
|
||||
fi
|
||||
|
||||
if [[ $commands == *" kernels/moe"* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/moe/test_moe.py \
|
||||
--ignore=kernels/moe/test_cutlass_moe.py \
|
||||
--ignore=kernels/moe/test_triton_moe_ptpc_fp8.py"
|
||||
--ignore=kernels/test_attention_selector.py \
|
||||
--ignore=kernels/test_blocksparse_attention.py \
|
||||
--ignore=kernels/test_causal_conv1d.py \
|
||||
--ignore=kernels/test_cutlass.py \
|
||||
--ignore=kernels/test_encoder_decoder_attn.py \
|
||||
--ignore=kernels/test_flash_attn.py \
|
||||
--ignore=kernels/test_flashinfer.py \
|
||||
--ignore=kernels/test_int8_quant.py \
|
||||
--ignore=kernels/test_machete_gemm.py \
|
||||
--ignore=kernels/test_mamba_ssm.py \
|
||||
--ignore=kernels/test_marlin_gemm.py \
|
||||
--ignore=kernels/test_moe.py \
|
||||
--ignore=kernels/test_prefix_prefill.py \
|
||||
--ignore=kernels/test_rand.py \
|
||||
--ignore=kernels/test_sampler.py \
|
||||
--ignore=kernels/test_cascade_flash_attn.py \
|
||||
--ignore=kernels/test_mamba_mixer2.py \
|
||||
--ignore=kernels/test_aqlm.py \
|
||||
--ignore=kernels/test_machete_mm.py \
|
||||
--ignore=kernels/test_mha_attn.py \
|
||||
--ignore=kernels/test_block_fp8.py \
|
||||
--ignore=kernels/test_permute_cols.py"
|
||||
fi
|
||||
|
||||
#ignore certain Entrypoints/openai tests
|
||||
if [[ $commands == *" entrypoints/openai "* ]]; then
|
||||
commands=${commands//" entrypoints/openai "/" entrypoints/openai \
|
||||
--ignore=entrypoints/openai/test_audio.py \
|
||||
--ignore=entrypoints/openai/test_chat.py \
|
||||
--ignore=entrypoints/openai/test_shutdown.py \
|
||||
--ignore=entrypoints/openai/test_completion.py \
|
||||
--ignore=entrypoints/openai/test_sleep.py \
|
||||
--ignore=entrypoints/openai/test_models.py \
|
||||
--ignore=entrypoints/openai/test_lora_adapters.py \
|
||||
--ignore=entrypoints/openai/test_return_tokens_as_ids.py \
|
||||
--ignore=entrypoints/openai/test_root_path.py \
|
||||
--ignore=entrypoints/openai/test_tokenization.py \
|
||||
--ignore=entrypoints/openai/test_prompt_validation.py "}
|
||||
fi
|
||||
|
||||
#ignore certain Entrypoints/llm tests
|
||||
if [[ $commands == *" entrypoints/llm "* ]]; then
|
||||
commands=${commands//" entrypoints/llm "/" entrypoints/llm \
|
||||
--ignore=entrypoints/llm/test_chat.py \
|
||||
--ignore=entrypoints/llm/test_accuracy.py \
|
||||
--ignore=entrypoints/llm/test_init.py \
|
||||
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
|
||||
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
||||
if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||
commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||
fi
|
||||
|
||||
#Obsolete currently
|
||||
##ignore certain Entrypoints/llm tests
|
||||
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||
#fi
|
||||
|
||||
# --ignore=entrypoints/openai/test_encoder_decoder.py \
|
||||
# --ignore=entrypoints/openai/test_embedding.py \
|
||||
# --ignore=entrypoints/openai/test_oot_registration.py
|
||||
@ -185,8 +126,6 @@ fi
|
||||
|
||||
|
||||
PARALLEL_JOB_COUNT=8
|
||||
MYPYTHONPATH=".."
|
||||
|
||||
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
|
||||
if [[ $commands == *"--shard-id="* ]]; then
|
||||
# assign job count as the number of shards used
|
||||
@ -207,7 +146,6 @@ if [[ $commands == *"--shard-id="* ]]; then
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-e "PYTHONPATH=${MYPYTHONPATH}" \
|
||||
--name "${container_name}_${GPU}" \
|
||||
"${image_name}" \
|
||||
/bin/bash -c "${commands_gpu}" \
|
||||
@ -238,7 +176,6 @@ else
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-e "PYTHONPATH=${MYPYTHONPATH}" \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
/bin/bash -c "${commands}"
|
@ -5,8 +5,8 @@
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
# cd 2 levels into the working directory
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")/../.."
|
||||
# cd into parent directory of this file
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")/.."
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
|
@ -10,4 +10,5 @@ trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t cpu-test -f docker/Dockerfile.s390x .
|
||||
docker build -t cpu-test -f Dockerfile.ppc64le .
|
||||
|
94
.buildkite/run-cpu-test.sh
Normal file
94
.buildkite/run-cpu-test.sh
Normal file
@ -0,0 +1,94 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# allow to bind to different cores
|
||||
CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
|
||||
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
export NUMA_NODE=$2
|
||||
export BUILDKITE_BUILD_NUMBER=$3
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -v -s tests/kernels/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
|
||||
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"
|
||||
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
|
||||
|
||||
# Run AWQ test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# Run chunked-prefill and prefix-cache test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v -k cpu_model \
|
||||
tests/basic_correctness/test_chunked_prefill.py"
|
||||
|
||||
# online serving
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
export VLLM_CPU_KVCACHE_SPACE=10
|
||||
export VLLM_CPU_OMP_THREADS_BIND=$1
|
||||
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model facebook/opt-125m \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
--tokenizer facebook/opt-125m"
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/lora/test_qwen2vl.py"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE $BUILDKITE_BUILD_NUMBER"
|
@ -9,7 +9,6 @@ python3 use_existing_torch.py
|
||||
|
||||
# Try building the docker image
|
||||
DOCKER_BUILDKIT=1 docker build . \
|
||||
--file docker/Dockerfile \
|
||||
--target vllm-openai \
|
||||
--platform "linux/arm64" \
|
||||
-t gh200-test \
|
@ -5,22 +5,20 @@
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t hpu-test-env -f docker/Dockerfile.hpu .
|
||||
docker build -t hpu-test-env -f Dockerfile.hpu .
|
||||
|
||||
# Setup cleanup
|
||||
# certain versions of HPU software stack have a bug that can
|
||||
# override the exit code of the script, so we need to use
|
||||
# separate remove_docker_containers and remove_docker_containers_and_exit
|
||||
# separate remove_docker_container and remove_docker_container_and_exit
|
||||
# functions, while other platforms only need one remove_docker_container
|
||||
# function.
|
||||
EXITCODE=1
|
||||
remove_docker_containers() { docker rm -f hpu-test || true; docker rm -f hpu-test-tp2 || true; }
|
||||
remove_docker_containers_and_exit() { remove_docker_containers; exit $EXITCODE; }
|
||||
trap remove_docker_containers_and_exit EXIT
|
||||
remove_docker_containers
|
||||
remove_docker_container() { docker rm -f hpu-test || true; }
|
||||
remove_docker_container_and_exit() { remove_docker_container; exit $EXITCODE; }
|
||||
trap remove_docker_container_and_exit EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
docker run --runtime=habana --name=hpu-test-tp2 --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --tensor-parallel-size 2
|
||||
|
||||
EXITCODE=$?
|
@ -3,7 +3,7 @@
|
||||
set -euox pipefail
|
||||
|
||||
if [[ $# -lt 4 ]]; then
|
||||
echo "Usage: .buildkite/scripts/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
|
||||
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
|
||||
exit 1
|
||||
fi
|
||||
|
@ -11,14 +11,13 @@ container_name="neuron_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
HF_CACHE="$(realpath ~)/huggingface"
|
||||
mkdir -p "${HF_CACHE}"
|
||||
HF_MOUNT="/root/.cache/huggingface"
|
||||
HF_TOKEN=$(aws secretsmanager get-secret-value --secret-id "ci/vllm-neuron/hf-token" --region us-west-2 --query 'SecretString' --output text | jq -r .VLLM_NEURON_CI_HF_TOKEN)
|
||||
|
||||
NEURON_COMPILE_CACHE_URL="$(realpath ~)/neuron_compile_cache"
|
||||
mkdir -p "${NEURON_COMPILE_CACHE_URL}"
|
||||
NEURON_COMPILE_CACHE_MOUNT="/root/.cache/neuron_compile_cache"
|
||||
|
||||
# Try building the docker image
|
||||
aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
|
||||
aws ecr get-login-password --region us-west-2 | docker login --username AWS --password-stdin 763104351884.dkr.ecr.us-west-2.amazonaws.com
|
||||
|
||||
# prune old image and containers to save disk space, and only once a day
|
||||
# by using a timestamp file in tmp.
|
||||
@ -36,7 +35,7 @@ else
|
||||
date "+%s" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
|
||||
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
|
||||
docker build -t "${image_name}" -f Dockerfile.neuron .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
@ -48,16 +47,8 @@ trap remove_docker_container EXIT
|
||||
docker run --rm -it --device=/dev/neuron0 --network bridge \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-e "HF_TOKEN=${HF_TOKEN}" \
|
||||
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
--name "${container_name}" \
|
||||
${image_name} \
|
||||
/bin/bash -c "
|
||||
python3 /workspace/vllm/examples/offline_inference/neuron.py;
|
||||
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
|
||||
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
|
||||
echo 'Running test file: '$f;
|
||||
python3 -m pytest \$f -v --capture=tee-sys;
|
||||
done
|
||||
"
|
||||
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys && python3 -m pytest /workspace/vllm/tests/neuron/2_core/ -v --capture=tee-sys"
|
41
.buildkite/run-tpu-v1-test.sh
Executable file
41
.buildkite/run-tpu-v1-test.sh
Executable file
@ -0,0 +1,41 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& export VLLM_USE_V1=1 \
|
||||
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
|
||||
&& echo TEST_1 \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& echo TEST_2 \
|
||||
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
|
||||
&& echo TEST_3 \
|
||||
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
|
||||
&& echo TEST_4 \
|
||||
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& echo TEST_5 \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
|
||||
&& echo TEST_6 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
|
||||
&& echo TEST_7 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py" \
|
||||
|
||||
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
@ -8,7 +8,7 @@ image_name="xpu/vllm-ci:${BUILDKITE_COMMIT}"
|
||||
container_name="xpu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t ${image_name} -f docker/Dockerfile.xpu .
|
||||
docker build -t ${image_name} -f Dockerfile.xpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
@ -1,48 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
if [[ -n "$container_id" ]]; then
|
||||
podman rm -f "$container_id" || true
|
||||
fi
|
||||
podman system prune -f
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
podman build -t cpu-test-ubi9-ppc -f docker/Dockerfile.ppc64le .
|
||||
|
||||
# Run the image
|
||||
container_id=$(podman run -itd --entrypoint /bin/bash -v /tmp/:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN cpu-test-ubi9-ppc)
|
||||
|
||||
function cpu_tests() {
|
||||
|
||||
# offline inference
|
||||
podman exec -it "$container_id" bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
podman exec -it "$container_id" bash -c "
|
||||
set -e
|
||||
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
||||
pip install sentence-transformers datamodel_code_generator
|
||||
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
||||
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
|
||||
export container_id
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c cpu_tests
|
||||
|
@ -1,89 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# allow to bind to different cores
|
||||
CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
OMP_CORE_RANGE=${OMP_CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
export CMAKE_BUILD_PARALLEL_LEVEL=32
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE" --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
export NUMA_NODE=$2
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test-"$NUMA_NODE"-avx2 bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
pytest -v -s tests/models/language/generation -m cpu_model
|
||||
pytest -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -v -s tests/models/multimodal/generation --ignore=tests/models/multimodal/generation/test_mllama.py -m cpu_model"
|
||||
|
||||
# Run compressed-tensor test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
|
||||
|
||||
# Run AWQ test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
VLLM_USE_V1=0 pytest -s -v \
|
||||
tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# Run chunked-prefill and prefix-cache test
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v -k cpu_model \
|
||||
tests/basic_correctness/test_chunked_prefill.py"
|
||||
|
||||
# online serving
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model facebook/opt-125m \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
--tokenizer facebook/opt-125m"
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/lora/test_qwen2vl.py"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 1h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
@ -1,185 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -xu
|
||||
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f tpu-test || true;
|
||||
docker rm -f vllm-tpu || true;
|
||||
}
|
||||
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
cleanup_docker() {
|
||||
# Get Docker's root directory
|
||||
docker_root=$(docker info -f '{{.DockerRootDir}}')
|
||||
if [ -z "$docker_root" ]; then
|
||||
echo "Failed to determine Docker root directory."
|
||||
exit 1
|
||||
fi
|
||||
echo "Docker root directory: $docker_root"
|
||||
# Check disk usage of the filesystem where Docker's root directory is located
|
||||
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
|
||||
# Define the threshold
|
||||
threshold=70
|
||||
if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
fi
|
||||
}
|
||||
cleanup_docker
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c '
|
||||
set -e # Exit immediately if a command exits with a non-zero status.
|
||||
set -u # Treat unset variables as an error.
|
||||
|
||||
echo "--- Starting script inside Docker container ---"
|
||||
|
||||
# Create results directory
|
||||
RESULTS_DIR=$(mktemp -d)
|
||||
# If mktemp fails, set -e will cause the script to exit.
|
||||
echo "Results will be stored in: $RESULTS_DIR"
|
||||
|
||||
# Install dependencies
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
export VLLM_XLA_CACHE_PATH=
|
||||
echo "Using VLLM V1"
|
||||
|
||||
echo "--- Hardware Information ---"
|
||||
tpu-info
|
||||
echo "--- Starting Tests ---"
|
||||
set +e
|
||||
overall_script_exit_code=0
|
||||
|
||||
# --- Test Definitions ---
|
||||
# If a test fails, this function will print logs and will not cause the main script to exit.
|
||||
run_test() {
|
||||
local test_num=$1
|
||||
local test_name=$2
|
||||
local test_command=$3
|
||||
local log_file="$RESULTS_DIR/test_${test_num}.log"
|
||||
local actual_exit_code
|
||||
|
||||
echo "--- TEST_$test_num: Running $test_name ---"
|
||||
|
||||
# Execute the test command.
|
||||
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
|
||||
actual_exit_code=$?
|
||||
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
|
||||
|
||||
if [ "$actual_exit_code" -ne 0 ]; then
|
||||
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
|
||||
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
|
||||
if [ -f "$log_file" ]; then
|
||||
cat "$log_file" >&2
|
||||
else
|
||||
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
|
||||
fi
|
||||
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
|
||||
return "$actual_exit_code" # Return the failure code
|
||||
else
|
||||
echo "TEST_$test_num ($test_name) PASSED."
|
||||
return 0 # Return success
|
||||
fi
|
||||
}
|
||||
|
||||
# Helper function to call run_test and update the overall script exit code
|
||||
run_and_track_test() {
|
||||
local test_num_arg="$1"
|
||||
local test_name_arg="$2"
|
||||
local test_command_arg="$3"
|
||||
|
||||
# Run the test
|
||||
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
|
||||
local test_specific_exit_code=$?
|
||||
|
||||
# If the test failed, set the overall script exit code to 1
|
||||
if [ "$test_specific_exit_code" -ne 0 ]; then
|
||||
# No need for extra echo here, run_test already logged the failure.
|
||||
overall_script_exit_code=1
|
||||
fi
|
||||
}
|
||||
|
||||
# --- Actual Test Execution ---
|
||||
run_and_track_test 0 "test_perf.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_perf.py"
|
||||
run_and_track_test 1 "test_compilation.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_compilation.py"
|
||||
run_and_track_test 2 "test_basic.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py"
|
||||
run_and_track_test 3 "test_accuracy.py::test_lm_eval_accuracy_v1_engine" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
|
||||
run_and_track_test 4 "test_quantization_accuracy.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py"
|
||||
run_and_track_test 5 "examples/offline_inference/tpu.py" \
|
||||
"python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
||||
run_and_track_test 6 "test_tpu_model_runner.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py"
|
||||
run_and_track_test 7 "test_sampler.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py"
|
||||
run_and_track_test 8 "test_topk_topp_sampler.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py"
|
||||
run_and_track_test 9 "test_multimodal.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py"
|
||||
run_and_track_test 10 "test_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
|
||||
run_and_track_test 11 "test_struct_output_generate.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k 'not test_structured_output_with_reasoning_matrices'"
|
||||
run_and_track_test 12 "test_moe_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
|
||||
run_and_track_test 13 "test_lora.py" \
|
||||
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
|
||||
run_and_track_test 14 "test_tpu_qkv_linear.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
|
||||
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
|
||||
|
||||
# After all tests have been attempted, exit with the overall status.
|
||||
if [ "$overall_script_exit_code" -ne 0 ]; then
|
||||
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
|
||||
else
|
||||
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
|
||||
fi
|
||||
exit "$overall_script_exit_code"
|
||||
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
|
||||
|
||||
# Capture the exit code of the docker run command
|
||||
DOCKER_RUN_EXIT_CODE=$?
|
||||
|
||||
# The trap will run for cleanup.
|
||||
# Exit the main script with the Docker run command's exit code.
|
||||
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
|
||||
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
|
||||
exit "$DOCKER_RUN_EXIT_CODE"
|
||||
else
|
||||
echo "Docker run command completed successfully."
|
||||
exit 0
|
||||
fi
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
@ -8,7 +8,6 @@
|
||||
# Documentation
|
||||
# label(str): the name of the test. emoji allowed.
|
||||
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||
# command(str): the single command to run for tests. incompatible with commands.
|
||||
@ -32,17 +31,16 @@ steps:
|
||||
##### fast check tests #####
|
||||
|
||||
- label: Documentation Build # 2min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/test_docs"
|
||||
working_dir: "/vllm-workspace/test_docs/docs"
|
||||
fast_check: true
|
||||
no_gpu: True
|
||||
commands:
|
||||
- pip install -r ../requirements/docs.txt
|
||||
# TODO: add `--strict` once warnings in docstrings are fixed
|
||||
- mkdocs build
|
||||
- pip install -r ../../requirements/docs.txt
|
||||
- SPHINXOPTS=\"-W\" make html
|
||||
# Check API reference (if it fails, you may have missing mock imports)
|
||||
- grep \"sig sig-object py\" build/html/api/inference_params.html
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/mq_llm_engine
|
||||
@ -58,13 +56,11 @@ steps:
|
||||
- pytest -v -s async_engine # AsyncLLMEngine
|
||||
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s test_outputs.py
|
||||
- pytest -v -s multimodal
|
||||
- pytest -v -s test_utils.py # Utils
|
||||
- pytest -v -s worker # Worker
|
||||
|
||||
- label: Python-only Installation Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- tests/standalone_tests/python_only_compile.sh
|
||||
- setup.py
|
||||
@ -72,9 +68,8 @@ steps:
|
||||
- bash standalone_tests/python_only_compile.sh
|
||||
|
||||
- label: Basic Correctness Test # 30min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
#mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_basic_correctness
|
||||
@ -89,7 +84,6 @@ steps:
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Chunked Prefill Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_chunked_prefill
|
||||
@ -98,7 +92,7 @@ steps:
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
|
||||
- label: Core Test # 10min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/core
|
||||
@ -108,10 +102,9 @@ steps:
|
||||
- pytest -v -s core
|
||||
|
||||
- label: Entrypoints Test # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/entrypoints/llm
|
||||
@ -125,12 +118,11 @@ steps:
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Distributed Tests (4 GPUs) # 10min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -138,38 +130,31 @@ steps:
|
||||
- vllm/core/
|
||||
- tests/distributed/test_utils
|
||||
- tests/distributed/test_pynccl
|
||||
- tests/distributed/test_events
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile/test_basic_correctness
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with tp=2 and pp=2
|
||||
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s distributed/test_events.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- pushd ../examples/offline_inference
|
||||
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 python3 rlhf.py
|
||||
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- python3 rlhf.py
|
||||
- RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- popd
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -177,13 +162,18 @@ steps:
|
||||
- tests/tracing
|
||||
commands:
|
||||
- pytest -v -s metrics
|
||||
- "pip install \
|
||||
'opentelemetry-sdk>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-api>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-exporter-otlp>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-semantic-conventions-ai>=0.4.1,<0.5.0'"
|
||||
- pytest -v -s tracing
|
||||
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_regression
|
||||
@ -193,7 +183,7 @@ steps:
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
- label: Engine Test # 10min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/engine
|
||||
@ -201,31 +191,28 @@ steps:
|
||||
- tests/test_sequence
|
||||
- tests/test_config
|
||||
- tests/test_logger
|
||||
- tests/test_vllm_port
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
|
||||
# OOM in the CI unless we run this separately
|
||||
- pytest -v -s tokenization
|
||||
|
||||
- label: V1 Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/entrypoints
|
||||
- pytest -v -s v1/engine
|
||||
- pytest -v -s v1/entrypoints
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/kv_connector/unit
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_stats.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
- pytest -v -s v1/test_metrics_reader.py
|
||||
# TODO: accuracy does not match, whether setting
|
||||
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
|
||||
- pytest -v -s v1/e2e
|
||||
@ -234,8 +221,8 @@ steps:
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: Examples Test # 25min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/examples"
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/entrypoints
|
||||
- examples/
|
||||
@ -250,7 +237,7 @@ steps:
|
||||
- python3 offline_inference/vision_language.py --seed 0
|
||||
- python3 offline_inference/vision_language_embedding.py --seed 0
|
||||
- python3 offline_inference/vision_language_multi_image.py --seed 0
|
||||
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- VLLM_USE_V1=0 python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/encoder_decoder.py
|
||||
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
|
||||
- python3 offline_inference/basic/classify.py
|
||||
@ -259,7 +246,7 @@ steps:
|
||||
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
|
||||
- label: Prefix Caching Test # 9min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/prefix_caching
|
||||
@ -267,7 +254,6 @@ steps:
|
||||
- pytest -v -s prefix_caching
|
||||
|
||||
- label: Samplers Test # 36min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/sampling_metadata.py
|
||||
@ -277,8 +263,18 @@ steps:
|
||||
- pytest -v -s samplers
|
||||
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
|
||||
|
||||
- label: LogitsProcessor Test # 5min
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers
|
||||
- vllm/model_executor/guided_decoding
|
||||
- tests/test_logits_processor
|
||||
- tests/model_executor/test_guided_processors
|
||||
commands:
|
||||
- pytest -v -s test_logits_processor.py
|
||||
- pytest -v -s model_executor/test_guided_processors.py
|
||||
|
||||
- label: Speculative decoding tests # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/spec_decode
|
||||
- tests/spec_decode
|
||||
@ -289,29 +285,14 @@ steps:
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py --ignore=lora/test_transfomers_model.py
|
||||
parallelism: 4
|
||||
|
||||
- label: PyTorch Compilation Unit Tests
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
commands:
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
- pytest -v -s compile/test_fusion.py
|
||||
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
||||
- pytest -v -s compile/test_sequence_parallelism.py
|
||||
- pytest -v -s compile/test_async_tp.py
|
||||
|
||||
- label: PyTorch Fullgraph Smoke Test # 9min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
@ -320,124 +301,61 @@ steps:
|
||||
# these tests need to be separated, cannot combine
|
||||
- pytest -v -s compile/piecewise/test_simple.py
|
||||
- pytest -v -s compile/piecewise/test_toy_llama.py
|
||||
- pytest -v -s compile/piecewise/test_full_cudagraph.py
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
|
||||
- label: PyTorch Fullgraph Test # 18min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
commands:
|
||||
- pytest -v -s compile/test_full_graph.py
|
||||
|
||||
- label: Kernels Core Operation Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
- label: Kernels Test %N # 1h each
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- tests/kernels/core
|
||||
commands:
|
||||
- pytest -v -s kernels/core
|
||||
|
||||
- label: Kernels Attention Test %N
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- csrc/attention/
|
||||
- vllm/attention
|
||||
- vllm/v1/attention
|
||||
- tests/kernels/attention
|
||||
- tests/kernels
|
||||
commands:
|
||||
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Quantization Test %N
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/kernels/quantization
|
||||
commands:
|
||||
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels MoE Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/moe/
|
||||
- tests/kernels/moe
|
||||
- vllm/model_executor/layers/fused_moe/
|
||||
commands:
|
||||
- pytest -v -s kernels/moe
|
||||
|
||||
- label: Kernels Mamba Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 4
|
||||
|
||||
- label: Tensorizer Test # 11min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amd]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
- tests/tensorizer_loader
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
|
||||
- label: Benchmarks # 9min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/.buildkite"
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- benchmarks/
|
||||
commands:
|
||||
- bash scripts/run-benchmarks.sh
|
||||
- bash run-benchmarks.sh
|
||||
|
||||
- label: Benchmarks CLI Test # 10min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/benchmarks/
|
||||
commands:
|
||||
- pytest -v -s benchmarks/
|
||||
|
||||
- label: Quantization Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
- label: Quantization Test # 33min
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/quantization
|
||||
commands:
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
command: VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
|
||||
- bash ./run-tests.sh -c configs/models-small.txt -t 1
|
||||
|
||||
- label: OpenAI API correctness
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/entrypoints/openai/
|
||||
@ -446,7 +364,6 @@ steps:
|
||||
- pytest -s entrypoints/openai/correctness/
|
||||
|
||||
- label: Encoder Decoder tests # 5min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/encoder_decoder
|
||||
@ -454,117 +371,99 @@ steps:
|
||||
- pytest -v -s encoder_decoder
|
||||
|
||||
- label: OpenAI-Compatible Tool Use # 20 min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: false
|
||||
mirror_hardwares: [ amd ]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
- tests/mistral_tool_use
|
||||
commands:
|
||||
- pytest -v -s tool_use
|
||||
- pytest -v -s mistral_tool_use
|
||||
|
||||
##### models test #####
|
||||
|
||||
- label: Basic Models Test # 24min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py
|
||||
- pytest -v -s models/test_registry.py
|
||||
- pytest -v -s models/test_utils.py
|
||||
- pytest -v -s models/test_vision.py
|
||||
- pytest -v -s models/test_initialization.py
|
||||
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py
|
||||
|
||||
- label: Language Models Test (Standard)
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
- label: Language Models Test (Standard) # 32min
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/language
|
||||
- tests/models/decoder_only/language
|
||||
- tests/models/embedding/language
|
||||
- tests/models/encoder_decoder/language
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
|
||||
- pip freeze | grep -E 'torch'
|
||||
- pytest -v -s models/language -m core_model
|
||||
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/language -m core_model
|
||||
|
||||
- label: Language Models Test (Extended Generation) # 1hr20min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
- label: Language Models Test (Extended) # 1h10min
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/language/generation
|
||||
- tests/models/decoder_only/language
|
||||
- tests/models/embedding/language
|
||||
- tests/models/encoder_decoder/language
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
|
||||
- pytest -v -s models/language/generation -m 'not core_model'
|
||||
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/language -m 'not core_model'
|
||||
|
||||
- label: Language Models Test (Extended Pooling) # 36min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
- label: Multi-Modal Models Test (Standard) # 40min
|
||||
#mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/language/pooling
|
||||
commands:
|
||||
- pytest -v -s models/language/pooling -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Standard)
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/multimodal
|
||||
- tests/models/decoder_only/audio_language
|
||||
- tests/models/decoder_only/vision_language
|
||||
- tests/models/embedding/vision_language
|
||||
- tests/models/encoder_decoder/audio_language
|
||||
- tests/models/encoder_decoder/vision_language
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pip freeze | grep -E 'torch'
|
||||
- pytest -v -s models/multimodal/processing
|
||||
- pytest -v -s --ignore models/multimodal/generation/test_whisper.py models/multimodal -m core_model
|
||||
- cd .. && pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
||||
- pytest -v -s models/multimodal
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/audio_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m core_model
|
||||
- pytest -v -s models/decoder_only/vision_language/test_interleaved.py
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 1
|
||||
mirror_hardwares: [amdexperimental]
|
||||
- label: Multi-Modal Models Test (Extended) 1 # 48m
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/multimodal
|
||||
- tests/models/decoder_only/audio_language
|
||||
- tests/models/decoder_only/vision_language
|
||||
- tests/models/embedding/vision_language
|
||||
- tests/models/encoder_decoder/vision_language
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s --ignore models/multimodal/generation/test_common.py --ignore models/multimodal/processing models/multimodal -m 'not core_model'
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
|
||||
# HACK - run phi3v tests separately to sidestep this transformers bug
|
||||
# https://github.com/huggingface/transformers/issues/34307
|
||||
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 2
|
||||
mirror_hardwares: [amdexperimental]
|
||||
- label: Multi-Modal Models Test (Extended) 2 # 38m
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/multimodal
|
||||
- tests/models/decoder_only/vision_language
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 3
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
optional: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/multimodal
|
||||
commands:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
|
||||
|
||||
- label: Quantized Models Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/models/quantization
|
||||
commands:
|
||||
- pytest -v -s models/quantization
|
||||
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=1) and not core_model and not quant_model'
|
||||
|
||||
# This test is used only in PR development phase to test individual models and should never run on main
|
||||
- label: Custom Models Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
optional: true
|
||||
commands:
|
||||
- echo 'Testing custom models...'
|
||||
@ -576,7 +475,6 @@ steps:
|
||||
##### multi gpus test #####
|
||||
|
||||
- label: Distributed Comm Ops Test # 7min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -587,7 +485,6 @@ steps:
|
||||
- pytest -v -s distributed/test_shm_broadcast.py
|
||||
|
||||
- label: 2 Node Tests (4 GPUs in total) # 16min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
num_nodes: 2
|
||||
@ -606,7 +503,7 @@ steps:
|
||||
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
#mirror_hardwares: [amd]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -621,11 +518,9 @@ steps:
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- vllm/v1/engine/
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
@ -633,26 +528,23 @@ steps:
|
||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||
# Avoid importing model tests that cause CUDA reinitialization error
|
||||
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)'
|
||||
# test sequence parallel
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/plugins/
|
||||
- tests/plugins/
|
||||
commands:
|
||||
# begin platform plugin and general plugin tests, all the code in-between runs on dummy platform
|
||||
# begin platform plugin tests, all the code in-between runs on dummy platform
|
||||
- pip install -e ./plugins/vllm_add_dummy_platform
|
||||
- pytest -v -s plugins_tests/test_platform_plugins.py
|
||||
- pip uninstall vllm_add_dummy_platform -y
|
||||
@ -663,10 +555,8 @@ steps:
|
||||
- pytest -v -s distributed/test_distributed_oot.py
|
||||
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s models/test_oot_registration.py # it needs a clean process
|
||||
- pytest -v -s plugins/lora_resolvers # unit tests for in-tree lora resolver plugins
|
||||
|
||||
- label: Multi-step Tests (4 GPUs) # 36min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -687,7 +577,6 @@ steps:
|
||||
- pytest -v -s multi_step/test_correctness_llm.py
|
||||
|
||||
- label: Pipeline Parallelism Test # 45min
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
@ -701,7 +590,6 @@ steps:
|
||||
- pytest -v -s distributed/test_pipeline_parallel.py
|
||||
|
||||
- label: LoRA TP Test (Distributed)
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
@ -714,10 +602,11 @@ steps:
|
||||
# requires multi-GPU testing for validation.
|
||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||
- pytest -v -s -x lora/test_llama_tp.py
|
||||
- pytest -v -s -x lora/test_minicpmv_tp.py
|
||||
- pytest -v -s -x lora/test_transfomers_model.py
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -727,7 +616,6 @@ steps:
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
|
||||
|
||||
- label: Weight Loading Multiple GPU Test - Large Models # optional
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
gpu: a100
|
||||
@ -766,4 +654,4 @@ steps:
|
||||
- vllm/model_executor/layers/quantization
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
||||
- bash ./run-tests.sh -c configs/models-large.txt -t 4
|
||||
|
@ -50,11 +50,11 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu126"* ]]; then
|
||||
# if $normal_wheel matches cu126, do not upload the index.html
|
||||
echo "Skipping index files for cu126 wheels"
|
||||
elif [[ $normal_wheel == *"cu121"* ]]; then
|
||||
# if $normal_wheel matches cu121, do not upload the index.html
|
||||
echo "Skipping index files for cu121 wheels"
|
||||
else
|
||||
# only upload index.html for cu128 wheels (default wheels)
|
||||
# only upload index.html for cu124 wheels (default wheels)
|
||||
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
|
||||
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
|
||||
fi
|
||||
@ -66,13 +66,12 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu126"* ]]; then
|
||||
# if $normal_wheel matches cu126, do not upload the index.html
|
||||
echo "Skipping index files for cu126 wheels"
|
||||
elif [[ $normal_wheel == *"cu121"* ]]; then
|
||||
# if $normal_wheel matches cu121, do not upload the index.html
|
||||
echo "Skipping index files for cu121 wheels"
|
||||
else
|
||||
# only upload index.html for cu128 wheels (default wheels)
|
||||
# only upload index.html for cu124 wheels (default wheels)
|
||||
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
|
||||
fi
|
||||
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
|
||||
aws s3 cp index.html "s3://vllm-wheels/$version/vllm/index.html"
|
||||
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
|
7
.github/CODEOWNERS
vendored
7
.github/CODEOWNERS
vendored
@ -12,8 +12,6 @@
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# vLLM V1
|
||||
@ -41,8 +39,3 @@ CMakeLists.txt @tlrmchlsmth
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
|
||||
/tests/v1/structured_output @mgoin @russellb
|
||||
/tests/weight_loading @mgoin @youkaichao
|
||||
/tests/lora @jeejeelee
|
||||
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
mkdocs.yaml @hmellor
|
2
.github/ISSUE_TEMPLATE/200-installation.yml
vendored
2
.github/ISSUE_TEMPLATE/200-installation.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
2
.github/ISSUE_TEMPLATE/300-usage.yml
vendored
2
.github/ISSUE_TEMPLATE/300-usage.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
14
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
14
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
@ -14,19 +14,19 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
It is suggested to download and execute the latest script, as vllm might frequently update the diagnosis information needed for accurately and quickly responding to issues.
|
||||
value: |
|
||||
<details>
|
||||
<summary>The output of <code>python collect_env.py</code></summary>
|
||||
<summary>The output of `python collect_env.py`</summary>
|
||||
|
||||
```text
|
||||
Your output of `python collect_env.py` here
|
||||
```
|
||||
|
||||
|
||||
</details>
|
||||
validations:
|
||||
required: true
|
||||
@ -75,20 +75,20 @@ body:
|
||||
```
|
||||
|
||||
```
|
||||
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
|
||||
The error message you got, with the full traceback.
|
||||
```
|
||||
validations:
|
||||
required: true
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the model's output:
|
||||
value: >
|
||||
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
|
||||
|
||||
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
|
||||
|
||||
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
|
||||
|
||||
Thanks for reporting 🙏!
|
||||
Thanks for contributing 🎉!
|
||||
- type: checkboxes
|
||||
id: askllm
|
||||
attributes:
|
||||
|
69
.github/ISSUE_TEMPLATE/450-ci-failure.yml
vendored
69
.github/ISSUE_TEMPLATE/450-ci-failure.yml
vendored
@ -1,69 +0,0 @@
|
||||
name: 🧪 CI failure report
|
||||
description: Report a failing test.
|
||||
title: "[CI Failure]: "
|
||||
labels: ["ci-failure"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Include the name of the failing Buildkite step and test file in the title.
|
||||
- type: input
|
||||
attributes:
|
||||
label: Name of failing test
|
||||
description: |
|
||||
Paste in the fully-qualified name of the failing test from the logs.
|
||||
placeholder: |
|
||||
`path/to/test_file.py::test_name[params]`
|
||||
validations:
|
||||
required: true
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Basic information
|
||||
description: Select all items that apply to the failing test.
|
||||
options:
|
||||
- label: Flaky test
|
||||
- label: Can reproduce locally
|
||||
- label: Caused by external libraries (e.g. bug in `transformers`)
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 🧪 Describe the failing test
|
||||
description: |
|
||||
Please provide a clear and concise description of the failing test.
|
||||
placeholder: |
|
||||
A clear and concise description of the failing test.
|
||||
|
||||
```
|
||||
The error message you got, with the full traceback and the error logs with [dump_input.py:##] if present.
|
||||
```
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 📝 History of failing test
|
||||
description: |
|
||||
Since when did the test start to fail?
|
||||
You can look up its history via [Buildkite Test Suites](https://buildkite.com/organizations/vllm/analytics/suites/ci-1/tests?branch=main).
|
||||
|
||||
If you have time, identify the PR that caused the test to fail on main. You can do so via the following methods:
|
||||
|
||||
- Use Buildkite Test Suites to find the PR where the test failure first occurred, and reproduce the failure locally.
|
||||
|
||||
- Run [`git bisect`](https://git-scm.com/docs/git-bisect) locally.
|
||||
|
||||
- Manually unblock Buildkite steps for suspected PRs on main and check the results. (authorized users only)
|
||||
placeholder: |
|
||||
Approximate timeline and/or problematic PRs
|
||||
|
||||
A link to the Buildkite analytics of the failing test (if available)
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: CC List.
|
||||
description: >
|
||||
The list of people you want to CC. Usually, this includes those who worked on the PR that failed the test.
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for reporting 🙏!
|
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
@ -9,7 +9,7 @@ body:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/index.html first to understand how to add a new model.
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: The model to consider.
|
||||
|
@ -35,7 +35,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
15
.github/PULL_REQUEST_TEMPLATE.md
vendored
15
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -1,15 +1,6 @@
|
||||
## Essential Elements of an Effective PR Description Checklist
|
||||
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
|
||||
- [ ] The test plan, such as providing test command.
|
||||
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
|
||||
FILL IN THE PR DESCRIPTION HERE
|
||||
|
||||
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE BEEN CONSIDERED.
|
||||
|
||||
## Purpose
|
||||
|
||||
## Test Plan
|
||||
|
||||
## Test Result
|
||||
FIX #xxxx (*link existing issues this PR will resolve*)
|
||||
|
||||
<!--- pyml disable-next-line no-emphasis-as-heading -->
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>**
|
||||
|
45
.github/mergify.yml
vendored
45
.github/mergify.yml
vendored
@ -19,7 +19,7 @@ pull_request_rules:
|
||||
- files~=\.buildkite/
|
||||
- files~=^cmake/
|
||||
- files=CMakeLists.txt
|
||||
- files~=^docker/Dockerfile
|
||||
- files~=^Dockerfile
|
||||
- files~=^requirements.*\.txt
|
||||
- files=setup.py
|
||||
actions:
|
||||
@ -55,19 +55,11 @@ pull_request_rules:
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
- files=benchmarks/run_structured_output_benchmark.sh
|
||||
- files=docs/features/structured_outputs.md
|
||||
- files=examples/offline_inference/structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||
- files~=^vllm/model_executor/guided_decoding/
|
||||
- files=tests/model_executor/test_guided_processors.py
|
||||
- files=tests/entrypoints/llm/test_guided_generate.py
|
||||
- files~=^tests/v1/structured_output/
|
||||
- files=tests/v1/entrypoints/llm/test_guided_generate.py
|
||||
- files~=^vllm/v1/structured_output/
|
||||
- files=benchmarks/benchmark_serving_guided.py
|
||||
- files=benchmarks/benchmark_guided.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -126,26 +118,6 @@ pull_request_rules:
|
||||
remove:
|
||||
- tpu
|
||||
|
||||
- name: label-tool-calling
|
||||
description: Automatically add tool-calling label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^tests/tool_use/
|
||||
- files~=^tests/mistral_tool_use/
|
||||
- files~=^tests/entrypoints/openai/tool_parsers/
|
||||
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/
|
||||
- files=docs/features/tool_calling.md
|
||||
- files~=^examples/tool_chat_*
|
||||
- files=examples/offline_inference/chat_with_tools.py
|
||||
- files=examples/online_serving/openai_chat_completion_client_with_tools_required.py
|
||||
- files=examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py
|
||||
- files=examples/online_serving/openai_chat_completion_client_with_tools.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- tool-calling
|
||||
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
@ -161,17 +133,6 @@ pull_request_rules:
|
||||
|
||||
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
|
||||
|
||||
- name: assign reviewer for tensorizer changes
|
||||
conditions:
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
||||
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
- files~=^tests/tensorizer_loader/
|
||||
actions:
|
||||
assign:
|
||||
users:
|
||||
- "sangstar"
|
||||
|
||||
- name: remove 'needs-rebase' label when conflict is resolved
|
||||
conditions:
|
||||
- -conflict
|
||||
|
2
.github/scripts/cleanup_pr_body.sh
vendored
2
.github/scripts/cleanup_pr_body.sh
vendored
@ -26,7 +26,7 @@ sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"
|
||||
|
||||
# Remove HTML <details> section that includes <summary> text of "PR Checklist (Click to Expand)"
|
||||
python3 - <<EOF
|
||||
import regex as re
|
||||
import re
|
||||
|
||||
with open("${NEW}", "r") as file:
|
||||
content = file.read()
|
||||
|
2
.github/workflows/add_label_automerge.yml
vendored
2
.github/workflows/add_label_automerge.yml
vendored
@ -1,6 +1,4 @@
|
||||
name: Add label on auto-merge enabled
|
||||
permissions:
|
||||
pull-requests: write
|
||||
on:
|
||||
pull_request_target:
|
||||
types:
|
||||
|
7
.github/workflows/cleanup_pr_body.yml
vendored
7
.github/workflows/cleanup_pr_body.yml
vendored
@ -20,12 +20,7 @@ jobs:
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m pip install --upgrade pip
|
||||
python3 -m pip install regex
|
||||
|
||||
- name: Update PR description
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: bash .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"
|
||||
run: .github/scripts/cleanup_pr_body.sh "${{ github.event.number }}"
|
||||
|
9
.github/workflows/lint-and-deploy.yaml
vendored
9
.github/workflows/lint-and-deploy.yaml
vendored
@ -2,9 +2,6 @@ name: Lint and Deploy Charts
|
||||
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
lint-and-deploy:
|
||||
runs-on: ubuntu-latest
|
||||
@ -53,7 +50,7 @@ jobs:
|
||||
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
|
||||
|
||||
- name: Build the Docker image vllm cpu
|
||||
run: docker buildx build -f docker/Dockerfile.cpu -t vllm-cpu-env .
|
||||
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .
|
||||
|
||||
- name: Configuration of docker images, network and namespace for the kind cluster
|
||||
run: |
|
||||
@ -69,7 +66,7 @@ jobs:
|
||||
export AWS_SECRET_ACCESS_KEY=minioadmin
|
||||
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
|
||||
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
|
||||
|
||||
|
||||
- name: curl test
|
||||
run: |
|
||||
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
|
||||
@ -82,4 +79,4 @@ jobs:
|
||||
"max_tokens": 7,
|
||||
"temperature": 0
|
||||
}'):$CODE"
|
||||
echo "$CODE"
|
||||
echo "$CODE"
|
3
.github/workflows/pre-commit.yml
vendored
3
.github/workflows/pre-commit.yml
vendored
@ -5,9 +5,6 @@ on:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
pre-commit:
|
||||
runs-on: ubuntu-latest
|
||||
|
2
.github/workflows/reminder_comment.yml
vendored
2
.github/workflows/reminder_comment.yml
vendored
@ -1,6 +1,4 @@
|
||||
name: PR Reminder Comment Bot
|
||||
permissions:
|
||||
pull-requests: write
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened]
|
||||
|
9
.gitignore
vendored
9
.gitignore
vendored
@ -3,6 +3,7 @@
|
||||
|
||||
# vllm-flash-attn built from source
|
||||
vllm/vllm_flash_attn/*
|
||||
!vllm/vllm_flash_attn/fa_utils.py
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
@ -77,6 +78,10 @@ instance/
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
docs/source/getting_started/examples/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
@ -146,7 +151,6 @@ venv.bak/
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
docs/examples
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
@ -199,6 +203,3 @@ benchmarks/**/*.json
|
||||
# Linting
|
||||
actionlint
|
||||
shellcheck*/
|
||||
|
||||
# Ingore moe/marlin_moe gen code
|
||||
csrc/moe/marlin_moe_wna16/kernel_*
|
||||
|
@ -1,6 +1,3 @@
|
||||
default_install_hook_types:
|
||||
- pre-commit
|
||||
- commit-msg
|
||||
default_stages:
|
||||
- pre-commit # Run locally
|
||||
- manual # Run in CI
|
||||
@ -11,45 +8,43 @@ repos:
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.7
|
||||
rev: v0.9.3
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--output-format, github, --fix]
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.4.1
|
||||
rev: v2.4.0
|
||||
hooks:
|
||||
- id: codespell
|
||||
additional_dependencies: ['tomli']
|
||||
args: ['--toml', 'pyproject.toml']
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 6.0.1
|
||||
rev: 0a0b7a830386ba6a31c2ec8316849ae4d1b8240d # 6.0.0
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v20.1.3
|
||||
rev: v19.1.7
|
||||
hooks:
|
||||
- id: clang-format
|
||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
||||
types_or: [c++, cuda]
|
||||
args: [--style=file, --verbose]
|
||||
- repo: https://github.com/jackdewinter/pymarkdown
|
||||
rev: v0.9.29
|
||||
rev: v0.9.27
|
||||
hooks:
|
||||
- id: pymarkdown
|
||||
exclude: '.*\.inc\.md'
|
||||
args: [fix]
|
||||
- repo: https://github.com/rhysd/actionlint
|
||||
rev: v1.7.7
|
||||
hooks:
|
||||
- id: actionlint
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
rev: 0.6.17
|
||||
rev: 0.6.2
|
||||
hooks:
|
||||
- id: pip-compile
|
||||
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
|
||||
args: [requirements/test.in, -o, requirements/test.txt]
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- repo: local
|
||||
hooks:
|
||||
@ -58,7 +53,7 @@ repos:
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests]
|
||||
stages: [pre-commit] # Don't run in CI
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
@ -104,8 +99,8 @@ repos:
|
||||
args:
|
||||
- -c
|
||||
- |
|
||||
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" "$(git rev-parse --git-path COMMIT_EDITMSG)"; then
|
||||
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> "$(git rev-parse --git-path COMMIT_EDITMSG)"
|
||||
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" .git/COMMIT_EDITMSG; then
|
||||
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> .git/COMMIT_EDITMSG
|
||||
fi
|
||||
language: system
|
||||
verbose: true
|
||||
@ -124,25 +119,6 @@ repos:
|
||||
language: system
|
||||
always_run: true
|
||||
pass_filenames: false
|
||||
- id: update-dockerfile-graph
|
||||
name: Update Dockerfile dependency graph
|
||||
entry: tools/update-dockerfile-graph.sh
|
||||
language: script
|
||||
- id: enforce-import-regex-instead-of-re
|
||||
name: Enforce import regex as re
|
||||
entry: python tools/enforce_regex_import.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
additional_dependencies: [regex]
|
||||
# forbid directly import triton
|
||||
- id: forbid-direct-triton-import
|
||||
name: "Forbid direct 'import triton'"
|
||||
entry: python tools/check_triton_import.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
additional_dependencies: [regex]
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
|
@ -8,8 +8,12 @@ build:
|
||||
tools:
|
||||
python: "3.12"
|
||||
|
||||
mkdocs:
|
||||
configuration: mkdocs.yaml
|
||||
sphinx:
|
||||
configuration: docs/source/conf.py
|
||||
fail_on_warning: true
|
||||
|
||||
# If using Sphinx, optionally build your docs in additional formats such as PDF
|
||||
formats: []
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
|
198
CMakeLists.txt
198
CMakeLists.txt
@ -15,6 +15,7 @@ project(vllm_extensions LANGUAGES CXX)
|
||||
|
||||
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
|
||||
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
|
||||
|
||||
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
|
||||
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
|
||||
|
||||
@ -23,15 +24,15 @@ include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
|
||||
# Suppress potential warnings about unused manually-specified variables
|
||||
set(ignoreMe "${VLLM_PYTHON_PATH}")
|
||||
|
||||
# Prevent installation of dependencies (cutlass) by default.
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
|
||||
#
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
#
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
|
||||
|
||||
# Supported NVIDIA architectures.
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
|
||||
@ -43,10 +44,10 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
|
||||
#
|
||||
# Note: the CUDA torch version is derived from pyproject.toml and various
|
||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||
# versions are derived from docker/Dockerfile.rocm
|
||||
# versions are derived from Dockerfile.rocm
|
||||
#
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
|
||||
|
||||
#
|
||||
# Try to find python package with an executable that exactly matches
|
||||
@ -79,15 +80,6 @@ endif()
|
||||
#
|
||||
find_package(Torch REQUIRED)
|
||||
|
||||
# Supported NVIDIA architectures.
|
||||
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
|
||||
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
else()
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Forward the non-CUDA device extensions to external CMake scripts.
|
||||
#
|
||||
@ -182,6 +174,9 @@ include(FetchContent)
|
||||
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
|
||||
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
|
||||
|
||||
#
|
||||
# Set rocm version dev int.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
|
||||
@ -189,6 +184,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
|
||||
|
||||
#
|
||||
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
|
||||
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
|
||||
@ -231,35 +227,29 @@ endif()
|
||||
#
|
||||
|
||||
set(VLLM_EXT_SRC
|
||||
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
|
||||
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
|
||||
"csrc/cache_kernels.cu"
|
||||
"csrc/attention/paged_attention_v1.cu"
|
||||
"csrc/attention/paged_attention_v2.cu"
|
||||
"csrc/attention/merge_attn_states.cu"
|
||||
"csrc/attention/vertical_slash_index.cu"
|
||||
"csrc/pos_encoding_kernels.cu"
|
||||
"csrc/activation_kernels.cu"
|
||||
"csrc/layernorm_kernels.cu"
|
||||
"csrc/layernorm_quant_kernels.cu"
|
||||
"csrc/sampler.cu"
|
||||
"csrc/cuda_view.cu"
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||
"csrc/quantization/fp8/common.cu"
|
||||
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
|
||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||
"csrc/quantization/activation_kernels.cu"
|
||||
"csrc/cuda_utils_kernels.cu"
|
||||
"csrc/prepare_inputs/advance_step.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/torch_bindings.cpp")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
||||
|
||||
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
|
||||
set(CUTLASS_REVISION "v3.9.2" CACHE STRING "CUTLASS revision to use")
|
||||
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
|
||||
# Please keep this in sync with FetchContent_Declare line below.
|
||||
set(CUTLASS_REVISION "v3.8.0" CACHE STRING "CUTLASS revision to use")
|
||||
|
||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
@ -277,7 +267,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
cutlass
|
||||
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
|
||||
# Please keep this in sync with CUTLASS_REVISION line above.
|
||||
GIT_TAG ${CUTLASS_REVISION}
|
||||
GIT_TAG v3.8.0
|
||||
GIT_PROGRESS TRUE
|
||||
|
||||
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
|
||||
@ -289,16 +279,17 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
FetchContent_MakeAvailable(cutlass)
|
||||
|
||||
list(APPEND VLLM_EXT_SRC
|
||||
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
|
||||
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
|
||||
"csrc/quantization/aqlm/gemm_kernels.cu"
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/permute_cols.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp"
|
||||
"csrc/attention/mla/cutlass_mla_entry.cu")
|
||||
"csrc/cutlass_extensions/common.cpp")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_EXT_SRC}"
|
||||
@ -307,55 +298,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# Only build Marlin kernels if we are building for at least some compatible archs.
|
||||
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
|
||||
# are not supported by Machete yet.
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
if (MARLIN_ARCHS)
|
||||
|
||||
#
|
||||
# For the Marlin kernels we automatically generate sources for various
|
||||
# preselected input type pairs and schedules.
|
||||
# Generate sources:
|
||||
set(MARLIN_GEN_SCRIPT
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/gptq_marlin/generate_kernels.py)
|
||||
file(MD5 ${MARLIN_GEN_SCRIPT} MARLIN_GEN_SCRIPT_HASH)
|
||||
|
||||
message(STATUS "Marlin generation script hash: ${MARLIN_GEN_SCRIPT_HASH}")
|
||||
message(STATUS "Last run Marlin generate script hash: $CACHE{MARLIN_GEN_SCRIPT_HASH}")
|
||||
|
||||
if (NOT DEFINED CACHE{MARLIN_GEN_SCRIPT_HASH}
|
||||
OR NOT $CACHE{MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MARLIN_GEN_SCRIPT_HASH})
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_COMMAND} -E env
|
||||
PYTHONPATH=$PYTHONPATH
|
||||
${Python_EXECUTABLE} ${MARLIN_GEN_SCRIPT}
|
||||
RESULT_VARIABLE marlin_generation_result
|
||||
OUTPUT_VARIABLE marlin_generation_result
|
||||
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
|
||||
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log
|
||||
)
|
||||
|
||||
if (NOT marlin_generation_result EQUAL 0)
|
||||
message(FATAL_ERROR "Marlin generation failed."
|
||||
" Result: \"${marlin_generation_result}\""
|
||||
"\nCheck the log for details: "
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/marlin_generation.log")
|
||||
else()
|
||||
set(MARLIN_GEN_SCRIPT_HASH ${MARLIN_GEN_SCRIPT_HASH}
|
||||
CACHE STRING "Last run Marlin generate script hash" FORCE)
|
||||
message(STATUS "Marlin generation completed successfully.")
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Marlin generation script has not changed, skipping generation.")
|
||||
endif()
|
||||
|
||||
file(GLOB MARLIN_TEMPLATE_KERNEL_SRC "csrc/quantization/gptq_marlin/kernel_*.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MARLIN_TEMPLATE_KERNEL_SRC}"
|
||||
CUDA_ARCHS "${MARLIN_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_EXT_SRC ${MARLIN_TEMPLATE_KERNEL_SRC})
|
||||
|
||||
set(MARLIN_SRCS
|
||||
"csrc/quantization/fp8/fp8_marlin.cu"
|
||||
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
|
||||
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
|
||||
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
|
||||
@ -427,7 +373,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
|
||||
)
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
@ -452,9 +397,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
#
|
||||
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
|
||||
# kernels for the remaining archs that are not already built for 3x.
|
||||
# (Build 8.9 for FP8)
|
||||
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
|
||||
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
|
||||
"7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
# subtract out the archs that are already built for 3x
|
||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||
if (SCALED_MM_2X_ARCHS)
|
||||
@ -505,9 +449,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu")
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${FP4_ARCHS}")
|
||||
@ -520,32 +462,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(FP4_ARCHS)
|
||||
endif()
|
||||
|
||||
# CUTLASS MLA Archs and flags
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/attention/mla/cutlass_mla_kernels.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${MLA_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MLA=1")
|
||||
# Add MLA-specific include directories only to MLA source files
|
||||
set_source_files_properties(${SRCS}
|
||||
PROPERTIES INCLUDE_DIRECTORIES "${CUTLASS_DIR}/examples/77_blackwell_fmha;${CUTLASS_DIR}/examples/common")
|
||||
message(STATUS "Building CUTLASS MLA for archs: ${MLA_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building CUTLASS MLA as no compatible archs were found.")
|
||||
# clear MLA_ARCHS
|
||||
set(MLA_ARCHS)
|
||||
endif()
|
||||
|
||||
#
|
||||
# CUTLASS MoE kernels
|
||||
|
||||
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
|
||||
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
|
||||
# to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
|
||||
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
@ -683,54 +606,23 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
CUDA_ARCHS "${CUDA_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
|
||||
# 9.0 for latest bf16 atomicAdd PTX
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
if (MARLIN_MOE_ARCHS)
|
||||
set(MARLIN_MOE_SRC
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu"
|
||||
"csrc/moe/marlin_moe_ops.cu")
|
||||
|
||||
#
|
||||
# For the Marlin MOE kernels we automatically generate sources for various
|
||||
# preselected input type pairs and schedules.
|
||||
# Generate sources:
|
||||
set(MOE_MARLIN_GEN_SCRIPT
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/csrc/moe/marlin_moe_wna16/generate_kernels.py)
|
||||
file(MD5 ${MOE_MARLIN_GEN_SCRIPT} MOE_MARLIN_GEN_SCRIPT_HASH)
|
||||
|
||||
message(STATUS "Marlin MOE generation script hash: ${MOE_MARLIN_GEN_SCRIPT_HASH}")
|
||||
message(STATUS "Last run Marlin MOE generate script hash: $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}")
|
||||
|
||||
if (NOT DEFINED CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}
|
||||
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_COMMAND} -E env
|
||||
PYTHONPATH=$PYTHONPATH
|
||||
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
|
||||
RESULT_VARIABLE moe_marlin_generation_result
|
||||
OUTPUT_VARIABLE moe_marlin_generation_output
|
||||
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
|
||||
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
|
||||
)
|
||||
|
||||
if (NOT moe_marlin_generation_result EQUAL 0)
|
||||
message(FATAL_ERROR "Marlin MOE generation failed."
|
||||
" Result: \"${moe_marlin_generation_result}\""
|
||||
"\nCheck the log for details: "
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log")
|
||||
else()
|
||||
set(MOE_MARLIN_GEN_SCRIPT_HASH ${MOE_MARLIN_GEN_SCRIPT_HASH}
|
||||
CACHE STRING "Last run Marlin MOE generate script hash" FORCE)
|
||||
message(STATUS "Marlin MOE generation completed successfully.")
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Marlin MOE generation script has not changed, skipping generation.")
|
||||
endif()
|
||||
|
||||
file(GLOB MOE_WNAA16_MARLIN_SRC "csrc/moe/marlin_moe_wna16/*.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MOE_WNAA16_MARLIN_SRC}"
|
||||
SRCS "${MARLIN_MOE_SRC}"
|
||||
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}")
|
||||
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building Marlin MOE kernels as no compatible archs found"
|
||||
@ -738,17 +630,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(MOE_PERMUTE_SRC
|
||||
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
|
||||
"csrc/moe/moe_permute_unpermute_op.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MARLIN_PERMUTE_SRC}"
|
||||
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
|
||||
endif()
|
||||
message(STATUS "Enabling moe extension.")
|
||||
define_gpu_extension_target(
|
||||
_moe_C
|
||||
@ -757,8 +638,6 @@ define_gpu_extension_target(
|
||||
SOURCES ${VLLM_MOE_EXT_SRC}
|
||||
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
|
||||
INCLUDE_DIRECTORIES ${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
@ -768,7 +647,6 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
set(VLLM_ROCM_EXT_SRC
|
||||
"csrc/rocm/torch_bindings.cpp"
|
||||
"csrc/rocm/skinny_gemms.cu"
|
||||
"csrc/rocm/attention.cu")
|
||||
|
||||
define_gpu_extension_target(
|
||||
@ -785,7 +663,5 @@ endif()
|
||||
# For CUDA we also build and ship some external projects.
|
||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
include(cmake/external_projects/flashmla.cmake)
|
||||
|
||||
# vllm-flash-attn should be last as it overwrites some CMake functions
|
||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||
endif ()
|
||||
|
@ -1,3 +1,3 @@
|
||||
# Contributing to vLLM
|
||||
|
||||
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing).
|
||||
You may find information about contributing to vLLM on [docs.vllm.ai](https://docs.vllm.ai/en/latest/contributing/overview.html).
|
||||
|
@ -2,14 +2,14 @@
|
||||
# to run the OpenAI compatible server.
|
||||
|
||||
# Please update any changes made here to
|
||||
# docs/contributing/dockerfile/dockerfile.md and
|
||||
# docs/assets/contributing/dockerfile-stages-dependency.png
|
||||
# docs/source/contributing/dockerfile/dockerfile.md and
|
||||
# docs/source/assets/contributing/dockerfile-stages-dependency.png
|
||||
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# prepare basic build environment
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG TARGETPLATFORM
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
@ -19,10 +19,7 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo \
|
||||
&& for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
@ -37,7 +34,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
||||
# as it was causing spam when compiling the CUTLASS kernels
|
||||
@ -70,14 +66,13 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY requirements/cuda.txt requirements/cuda.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/cuda.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
uv pip install --system -r requirements/cuda.txt
|
||||
|
||||
# cuda arch list used by torch
|
||||
# can be useful for both `dev` and `test`
|
||||
# explicitly set the list to avoid issues with torch 2.2
|
||||
# see https://github.com/pytorch/pytorch/pull/123243
|
||||
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0 10.0+PTX'
|
||||
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
# Override the arch list for flash-attn to reduce the binary size
|
||||
ARG vllm_fa_cmake_gpu_arches='80-real;90-real'
|
||||
@ -94,11 +89,9 @@ COPY requirements/build.txt requirements/build.txt
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
uv pip install --system -r requirements/build.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
@ -165,32 +158,24 @@ FROM base as dev
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
# Workaround for #17068
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
|
||||
|
||||
COPY requirements/lint.txt requirements/lint.txt
|
||||
COPY requirements/test.txt requirements/test.txt
|
||||
COPY requirements/dev.txt requirements/dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/dev.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
uv pip install --system -r requirements/dev.txt
|
||||
#################### DEV IMAGE ####################
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
# image with vLLM installed
|
||||
# TODO: Restore to base image after FlashInfer AOT wheel fixed
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS vllm-base
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
WORKDIR /vllm-workspace
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
||||
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
|
||||
|
||||
@ -200,10 +185,7 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim python3-pip \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv libibverbs-dev \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
@ -218,7 +200,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
@ -239,8 +220,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
# Install vllm wheel first, so that torch etc will be installed.
|
||||
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system dist/*.whl --verbose \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
uv pip install --system dist/*.whl --verbose
|
||||
|
||||
# If we need to build FlashInfer wheel before its release:
|
||||
# $ export FLASHINFER_ENABLE_AOT=1
|
||||
@ -257,34 +237,17 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
. /etc/environment && \
|
||||
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
|
||||
# FlashInfer alreary has a wheel for PyTorch 2.7.0 and CUDA 12.8. This is enough for CI use
|
||||
if [[ "$CUDA_VERSION" == 12.8* ]]; then \
|
||||
uv pip install --system https://download.pytorch.org/whl/cu128/flashinfer/flashinfer_python-0.2.5%2Bcu128torch2.7-cp38-abi3-linux_x86_64.whl; \
|
||||
else \
|
||||
export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0+PTX'; \
|
||||
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
|
||||
if [ "$CUDA_MAJOR" -lt 12 ]; then \
|
||||
export FLASHINFER_ENABLE_SM90=0; \
|
||||
fi; \
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/flashinfer-ai/flashinfer@21ea1d2545f74782b91eb8c08fd503ac4c0743fc" ; \
|
||||
fi \
|
||||
uv pip install --system https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post2/flashinfer_python-0.2.1.post2+cu124torch2.6-cp38-abi3-linux_x86_64.whl ; \
|
||||
fi
|
||||
COPY examples examples
|
||||
COPY benchmarks benchmarks
|
||||
COPY ./vllm/collect_env.py .
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
. /etc/environment && \
|
||||
uv pip list
|
||||
|
||||
# Even when we build Flashinfer with AOT mode, there's still
|
||||
# Although we build Flashinfer with AOT mode, there's still
|
||||
# some issues w.r.t. JIT compilation. Therefore we need to
|
||||
# install build dependencies for JIT compilation.
|
||||
# TODO: Remove this once FlashInfer AOT wheel is fixed
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
|
||||
uv pip install --system -r requirements/build.txt
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
@ -298,18 +261,10 @@ ADD . /vllm-workspace/
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
# Workaround for #17068
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
|
||||
if [ "$CUDA_MAJOR" -ge 12 ]; then \
|
||||
uv pip install --system -r requirements/dev.txt; \
|
||||
fi
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/dev.txt
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
@ -328,15 +283,12 @@ COPY vllm/v1 /usr/local/lib/python3.12/dist-packages/vllm/v1
|
||||
# will not be imported by other tests
|
||||
RUN mkdir test_docs
|
||||
RUN mv docs test_docs/
|
||||
RUN cp -r examples test_docs/
|
||||
RUN mv vllm test_docs/
|
||||
RUN mv mkdocs.yaml test_docs/
|
||||
#################### TEST IMAGE ####################
|
||||
|
||||
#################### OPENAI API SERVER ####################
|
||||
# base openai image with additional requirements, for any subsequent openai-style images
|
||||
FROM vllm-base AS vllm-openai-base
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
@ -18,8 +18,6 @@ WORKDIR /workspace/
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
|
||||
ENV LD_PRELOAD=""
|
||||
|
||||
# Install minimal dependencies and uv
|
||||
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
@ -34,7 +32,6 @@ ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
|
||||
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
|
||||
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
@ -51,6 +48,9 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --upgrade pip && \
|
||||
uv pip install -r requirements/cpu.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install intel-openmp==2024.2.1 intel_extension_for_pytorch==2.6.0
|
||||
|
||||
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/opt/venv/lib/libiomp5.so:$LD_PRELOAD"
|
||||
|
||||
RUN echo 'ulimit -c 0' >> ~/.bashrc
|
||||
@ -75,7 +75,6 @@ RUN --mount=type=bind,source=.git,target=.git \
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/workspace/vllm/.deps,sharing=locked \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel
|
||||
|
||||
@ -86,7 +85,7 @@ WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt-get install -y --no-install-recommends vim numactl xz-utils
|
||||
apt-get install -y --no-install-recommends vim numactl
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
@ -109,11 +108,8 @@ FROM base AS vllm-test
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
cp requirements/test.in requirements/test-cpu.in && \
|
||||
sed -i '/mamba_ssm/d' requirements/test-cpu.in && \
|
||||
uv pip compile requirements/test-cpu.in -o requirements/cpu-test.txt && \
|
||||
uv pip install -r requirements/cpu-test.txt
|
||||
--mount=type=bind,src=requirements/test.txt,target=requirements/test.txt \
|
||||
uv pip install -r requirements/test.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=vllm-build,src=/workspace/vllm/dist,target=dist \
|
||||
@ -122,7 +118,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ADD ./tests/ ./tests/
|
||||
ADD ./examples/ ./examples/
|
||||
ADD ./benchmarks/ ./benchmarks/
|
||||
ADD ./vllm/collect_env.py .
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
@ -1,4 +1,4 @@
|
||||
FROM vault.habana.ai/gaudi-docker/1.20.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
FROM vault.habana.ai/gaudi-docker/1.19.1/ubuntu22.04/habanalabs/pytorch-installer-2.5.1:latest
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
@ -1,6 +1,6 @@
|
||||
# default base image
|
||||
# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
|
||||
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.6.0-neuronx-py310-sdk2.23.0-ubuntu22.04"
|
||||
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.5.1-neuronx-py310-sdk2.21.0-ubuntu22.04"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
|
||||
@ -21,8 +21,9 @@ VOLUME [ ${APP_MOUNT} ]
|
||||
WORKDIR ${APP_MOUNT}/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas tenacity
|
||||
RUN python3 -m pip install neuronx-cc==2.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
|
||||
RUN python3 -m pip install sentencepiece transformers==4.45.2 -U
|
||||
RUN python3 -m pip install neuronx-cc==2.16.345.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install pytest
|
||||
|
||||
# uninstall transformers-neuronx package explicitly to avoid version conflict
|
||||
@ -34,7 +35,7 @@ RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
RUN python3 -m pip install -U \
|
||||
'cmake>=3.26.1' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
-r requirements/neuron.txt
|
||||
|
||||
ENV VLLM_TARGET_DEVICE neuron
|
||||
@ -48,8 +49,6 @@ RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
# FIXME: `--no-deps` argument is temporarily added to resolve transformers package version conflict
|
||||
RUN python3 -m pip install transformers-neuronx==0.13.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U --no-deps
|
||||
|
||||
RUN python3 -m pip install sentencepiece transformers==4.48.0 -U
|
||||
|
||||
# overwrite entrypoint to run bash script
|
||||
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
|
||||
|
@ -21,8 +21,12 @@ ENV UV_LINK_MODE=copy
|
||||
# Note: A dummy file 'control' is created in /tmp/ to artificially create dependencies between stages when building stages in parallel
|
||||
# when `--jobs=<N>` is passed with podman build command
|
||||
RUN microdnf install -y openssl-devel dnf \
|
||||
&& dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm \
|
||||
&& dnf config-manager --set-enabled codeready-builder-for-rhel-9-ppc64le-rpms \
|
||||
&& dnf install -y https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-gpg-keys-9.0-24.el9.noarch.rpm \
|
||||
https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-stream-repos-9.0-24.el9.noarch.rpm \
|
||||
https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm \
|
||||
&& dnf config-manager --add-repo https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os \
|
||||
&& dnf config-manager --add-repo https://mirror.stream.centos.org/9-stream/AppStream/`arch`/os \
|
||||
&& dnf config-manager --set-enabled crb \
|
||||
&& dnf install -y \
|
||||
git tar gcc-toolset-13 automake libtool numactl-devel lapack-devel \
|
||||
pkgconfig xsimd zeromq-devel kmod findutils protobuf* \
|
||||
@ -34,7 +38,7 @@ RUN microdnf install -y openssl-devel dnf \
|
||||
&& ln -sf /usr/lib64/libatomic.so.1 /usr/lib64/libatomic.so \
|
||||
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
|
||||
&& python -m pip install -U pip uv \
|
||||
&& uv pip install wheel build "setuptools<70" setuptools_scm setuptools_rust meson-python 'cmake<4' ninja cython scikit_build_core scikit_build \
|
||||
&& uv pip install wheel build "setuptools<70" setuptools_scm setuptools_rust meson-python cmake ninja cython scikit_build_core scikit_build \
|
||||
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
|
||||
&& curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y \
|
||||
&& cd /tmp && touch control
|
||||
@ -122,16 +126,13 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
FROM base-builder AS cv-builder
|
||||
|
||||
ARG MAX_JOBS
|
||||
ARG OPENCV_VERSION=86
|
||||
# patch for version 4.11.0.86
|
||||
ARG OPENCV_PATCH=97f3f39
|
||||
ARG OPENCV_VERSION=84
|
||||
ARG ENABLE_HEADLESS=1
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
git clone --recursive https://github.com/opencv/opencv-python.git -b ${OPENCV_VERSION} && \
|
||||
cd opencv-python && \
|
||||
sed -i -E -e 's/"setuptools.+",/"setuptools",/g' pyproject.toml && \
|
||||
cd opencv && git cherry-pick --no-commit $OPENCV_PATCH && cd .. && \
|
||||
sed -i 's/"setuptools==59.2.0",/"setuptools<70.0",/g' pyproject.toml && \
|
||||
python -m build --wheel --installer=uv --outdir /opencvwheels/
|
||||
|
||||
###############################################################
|
||||
@ -147,15 +148,9 @@ COPY --from=arrow-builder /tmp/control /dev/null
|
||||
COPY --from=cv-builder /tmp/control /dev/null
|
||||
|
||||
ARG VLLM_TARGET_DEVICE=cpu
|
||||
ARG GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1
|
||||
|
||||
# this step installs vllm and populates uv cache
|
||||
# with all the transitive dependencies
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
git clone https://github.com/huggingface/xet-core.git && cd xet-core/hf_xet/ && \
|
||||
uv pip install maturin && \
|
||||
uv build --wheel --out-dir /hf_wheels/
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
|
||||
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
|
||||
@ -164,7 +159,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
source /opt/rh/gcc-toolset-13/enable && \
|
||||
uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl && \
|
||||
sed -i -e 's/.*torch.*//g' /src/pyproject.toml /src/requirements/*.txt && \
|
||||
uv pip install pandas pythran pybind11 /hf_wheels/*.whl && \
|
||||
uv pip install pandas pythran pybind11 && \
|
||||
# sentencepiece.pc is in some pkgconfig inside uv cache
|
||||
export PKG_CONFIG_PATH=$(find / -type d -name "pkgconfig" 2>/dev/null | tr '\n' ':') && \
|
||||
uv pip install -r /src/requirements/common.txt -r /src/requirements/cpu.txt -r /src/requirements/build.txt --no-build-isolation && \
|
||||
@ -243,7 +238,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
&& python -m pip install -U pip uv --no-cache \
|
||||
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
|
||||
&& make -C /numactl install \
|
||||
&& uv pip install 'cmake<4' \
|
||||
&& uv pip install cmake \
|
||||
&& cmake --install /lapack/build \
|
||||
&& uv pip uninstall cmake
|
||||
|
||||
@ -252,9 +247,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
|
||||
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
|
||||
--mount=type=bind,from=cv-builder,source=/opencvwheels/,target=/opencvwheels/,ro \
|
||||
--mount=type=bind,from=vllmcache-builder,source=/hf_wheels/,target=/hf_wheels/,ro \
|
||||
--mount=type=bind,from=vllmcache-builder,source=/vllmwheel/,target=/vllmwheel/,ro \
|
||||
HOME=/root uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl /hf_wheels/*.whl /vllmwheel/*.whl
|
||||
HOME=/root uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl /vllmwheel/*.whl
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
WORKDIR /workspace/vllm
|
@ -1,5 +1,7 @@
|
||||
# default base image
|
||||
ARG REMOTE_VLLM="0"
|
||||
ARG USE_CYTHON="0"
|
||||
ARG BUILD_RPD="1"
|
||||
ARG COMMON_WORKDIR=/app
|
||||
ARG BASE_IMAGE=rocm/vllm-dev:base
|
||||
|
||||
@ -34,10 +36,12 @@ FROM fetch_vllm_${REMOTE_VLLM} AS fetch_vllm
|
||||
# -----------------------
|
||||
# vLLM build stages
|
||||
FROM fetch_vllm AS build_vllm
|
||||
ARG USE_CYTHON
|
||||
# Build vLLM
|
||||
RUN cd vllm \
|
||||
&& python3 -m pip install -r requirements/rocm.txt \
|
||||
&& python3 setup.py clean --all \
|
||||
&& if [ ${USE_CYTHON} -eq "1" ]; then python3 tests/build_cython.py build_ext --inplace; fi \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist
|
||||
FROM scratch AS export_vllm
|
||||
ARG COMMON_WORKDIR
|
||||
@ -86,6 +90,13 @@ RUN case "$(which python3)" in \
|
||||
*) ;; esac
|
||||
|
||||
RUN python3 -m pip install --upgrade huggingface-hub[cli]
|
||||
ARG BUILD_RPD
|
||||
RUN if [ ${BUILD_RPD} -eq "1" ]; then \
|
||||
git clone -b nvtx_enabled https://github.com/ROCm/rocmProfileData.git \
|
||||
&& cd rocmProfileData/rpd_tracer \
|
||||
&& pip install -r requirements.txt && cd ../ \
|
||||
&& make && make install \
|
||||
&& cd hipMarker && python3 setup.py install ; fi
|
||||
|
||||
# Install vLLM
|
||||
RUN --mount=type=bind,from=export_vllm,src=/,target=/install \
|
||||
@ -103,10 +114,8 @@ COPY --from=export_vllm /examples ${COMMON_WORKDIR}/vllm/examples
|
||||
ENV RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
|
||||
ENV TOKENIZERS_PARALLELISM=false
|
||||
|
||||
# ENV that can improve safe tensor loading, and end-to-end time
|
||||
ENV SAFETENSORS_FAST_GPU=1
|
||||
|
||||
# Performance environment variable.
|
||||
ENV HIP_FORCE_DEV_KERNARG=1
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
@ -1,18 +1,18 @@
|
||||
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.3.1-complete
|
||||
ARG HIPBLASLT_BRANCH="db8e93b4"
|
||||
ARG HIPBLASLT_BRANCH="4d40e36"
|
||||
ARG HIPBLAS_COMMON_BRANCH="7c1566b"
|
||||
ARG LEGACY_HIPBLASLT_OPTION=
|
||||
ARG RCCL_BRANCH="648a58d"
|
||||
ARG RCCL_REPO="https://github.com/ROCm/rccl"
|
||||
ARG TRITON_BRANCH="e5be006"
|
||||
ARG TRITON_REPO="https://github.com/triton-lang/triton.git"
|
||||
ARG PYTORCH_BRANCH="295f2ed4"
|
||||
ARG PYTORCH_VISION_BRANCH="v0.21.0"
|
||||
ARG PYTORCH_BRANCH="3a585126"
|
||||
ARG PYTORCH_VISION_BRANCH="v0.19.1"
|
||||
ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
|
||||
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
|
||||
ARG FA_BRANCH="1a7f4dfa"
|
||||
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
|
||||
ARG AITER_BRANCH="c1debd8"
|
||||
ARG FA_BRANCH="b7d29fb"
|
||||
ARG FA_REPO="https://github.com/ROCm/flash-attention.git"
|
||||
ARG AITER_BRANCH="21d47a9"
|
||||
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
@ -20,7 +20,7 @@ FROM ${BASE_IMAGE} AS base
|
||||
ENV PATH=/opt/rocm/llvm/bin:$PATH
|
||||
ENV ROCM_PATH=/opt/rocm
|
||||
ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx1100;gfx1101;gfx1200;gfx1201
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942
|
||||
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
@ -31,11 +31,8 @@ ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install Python and other dependencies
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y software-properties-common git curl sudo vim less libgfortran5 \
|
||||
&& for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done \
|
||||
&& apt-get install -y software-properties-common git curl sudo vim less \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
python${PYTHON_VERSION}-lib2to3 python-is-python3 \
|
||||
@ -45,7 +42,7 @@ RUN apt-get update -y \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
RUN pip install -U packaging 'cmake<4' ninja wheel setuptools pybind11 Cython
|
||||
RUN pip install -U packaging cmake ninja wheel setuptools pybind11 Cython
|
||||
|
||||
FROM base AS build_hipblaslt
|
||||
ARG HIPBLASLT_BRANCH
|
||||
@ -63,8 +60,7 @@ RUN cd hipBLAS-common \
|
||||
RUN git clone https://github.com/ROCm/hipBLASLt
|
||||
RUN cd hipBLASLt \
|
||||
&& git checkout ${HIPBLASLT_BRANCH} \
|
||||
&& apt-get install -y llvm-dev \
|
||||
&& ./install.sh -dc --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \
|
||||
&& ./install.sh -d --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \
|
||||
&& cd build/release \
|
||||
&& make package
|
||||
RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/hipBLAS-common/build/*.deb /app/install
|
||||
@ -114,24 +110,11 @@ RUN git clone ${FA_REPO}
|
||||
RUN cd flash-attention \
|
||||
&& git checkout ${FA_BRANCH} \
|
||||
&& git submodule update --init \
|
||||
&& GPU_ARCHS=$(echo ${PYTORCH_ROCM_ARCH} | sed -e 's/;gfx1[0-9]\{3\}//g') python3 setup.py bdist_wheel --dist-dir=dist
|
||||
&& MAX_JOBS=64 GPU_ARCHS=${PYTORCH_ROCM_ARCH} python3 setup.py bdist_wheel --dist-dir=dist
|
||||
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
|
||||
&& cp /app/vision/dist/*.whl /app/install \
|
||||
&& cp /app/flash-attention/dist/*.whl /app/install
|
||||
|
||||
FROM base AS build_aiter
|
||||
ARG AITER_BRANCH
|
||||
ARG AITER_REPO
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN git clone --recursive ${AITER_REPO}
|
||||
RUN cd aiter \
|
||||
&& git checkout ${AITER_BRANCH} \
|
||||
&& git submodule update --init --recursive \
|
||||
&& pip install -r requirements.txt
|
||||
RUN pip install pyyaml && cd aiter && PREBUILD_KERNELS=1 GPU_ARCHS=gfx942 python3 setup.py bdist_wheel --dist-dir=dist && ls /app/aiter/dist/*.whl
|
||||
RUN mkdir -p /app/install && cp /app/aiter/dist/*.whl /app/install
|
||||
|
||||
FROM base AS final
|
||||
RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
|
||||
dpkg -i /install/*deb \
|
||||
@ -147,12 +130,19 @@ RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_aiter,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
|
||||
ARG AITER_REPO
|
||||
ARG AITER_BRANCH
|
||||
RUN git clone --recursive ${AITER_REPO}
|
||||
RUN cd aiter \
|
||||
&& git checkout ${AITER_BRANCH} \
|
||||
&& git submodule update --init --recursive \
|
||||
&& pip install -r requirements.txt \
|
||||
&& PREBUILD_KERNELS=1 GPU_ARCHS=gfx942 python3 setup.py develop && pip show aiter
|
||||
|
||||
ARG BASE_IMAGE
|
||||
ARG HIPBLAS_COMMON_BRANCH
|
||||
ARG HIPBLASLT_BRANCH
|
||||
ARG HIPBLAS_COMMON_BRANCH
|
||||
ARG LEGACY_HIPBLASLT_OPTION
|
||||
ARG RCCL_BRANCH
|
||||
ARG RCCL_REPO
|
||||
@ -164,8 +154,6 @@ ARG PYTORCH_REPO
|
||||
ARG PYTORCH_VISION_REPO
|
||||
ARG FA_BRANCH
|
||||
ARG FA_REPO
|
||||
ARG AITER_BRANCH
|
||||
ARG AITER_REPO
|
||||
RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "HIPBLAS_COMMON_BRANCH: ${HIPBLAS_COMMON_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "HIPBLASLT_BRANCH: ${HIPBLASLT_BRANCH}" >> /app/versions.txt \
|
||||
@ -179,5 +167,6 @@ RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "PYTORCH_REPO: ${PYTORCH_REPO}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_VISION_REPO: ${PYTORCH_VISION_REPO}" >> /app/versions.txt \
|
||||
&& echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "FA_REPO: ${FA_REPO}" >> /app/versions.txt \
|
||||
&& echo "AITER_BRANCH: ${AITER_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
|
@ -16,7 +16,7 @@ ENV LANG=C.UTF-8 \
|
||||
RUN microdnf install -y \
|
||||
which procps findutils tar vim git gcc gcc-gfortran g++ make patch zlib-devel \
|
||||
libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \
|
||||
openssl-devel openblas openblas-devel autoconf automake libtool cmake numpy && \
|
||||
openssl-devel openblas openblas-devel autoconf automake libtool cmake && \
|
||||
microdnf clean all
|
||||
|
||||
# Python Installation
|
||||
@ -58,7 +58,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
cd ../../python && \
|
||||
export PYARROW_PARALLEL=4 && \
|
||||
export ARROW_BUILD_TYPE=release && \
|
||||
uv pip install -r requirements-build.txt && \
|
||||
uv pip install -r requirements/build.txt && \
|
||||
python setup.py build_ext --build-type=$ARROW_BUILD_TYPE --bundle-arrow-cpp bdist_wheel
|
||||
|
||||
FROM python-install AS numa-build
|
||||
@ -84,58 +84,18 @@ RUN curl https://sh.rustup.rs -sSf | sh -s -- -y && \
|
||||
rustup default stable && \
|
||||
rustup show
|
||||
|
||||
FROM python-install AS torch
|
||||
ARG TORCH_VERSION=2.7.0
|
||||
ENV export _GLIBCXX_USE_CXX11_ABI=1
|
||||
ENV CARGO_HOME=/root/.cargo
|
||||
ENV RUSTUP_HOME=/root/.rustup
|
||||
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
|
||||
|
||||
WORKDIR /tmp
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
|
||||
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
|
||||
git clone https://github.com/pytorch/pytorch.git && \
|
||||
cd pytorch && \
|
||||
git checkout v2.7.0 && \
|
||||
git submodule sync && \
|
||||
git submodule update --init --recursive && \
|
||||
uv pip install cmake ninja && \
|
||||
uv pip install -r requirements.txt && \
|
||||
python setup.py bdist_wheel
|
||||
|
||||
|
||||
FROM python-install AS torch-vision
|
||||
# Install torchvision
|
||||
ARG TORCH_VERSION=2.7.0
|
||||
ARG TORCH_VERSION=2.7.0.dev20250304
|
||||
ARG TORCH_VISION_VERSION=v0.20.1
|
||||
WORKDIR /tmp
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=torch,source=/tmp/pytorch/dist,target=/tmp/torch-wheels/ \
|
||||
git clone https://github.com/pytorch/vision.git && \
|
||||
cd vision && \
|
||||
git checkout $TORCH_VISION_VERSION && \
|
||||
TORCH_WHL_FILE=$(ls /tmp/torch-wheels/*.whl | head -n 1) && \
|
||||
uv pip install -v $TORCH_WHL_FILE && \
|
||||
uv pip install -v torch==${TORCH_VERSION} --extra-index-url https://download.pytorch.org/whl/nightly/cpu && \
|
||||
python setup.py bdist_wheel
|
||||
|
||||
FROM python-install AS hf-xet-builder
|
||||
# Install hf-xet
|
||||
WORKDIR /tmp
|
||||
ENV CARGO_HOME=/root/.cargo
|
||||
ENV RUSTUP_HOME=/root/.rustup
|
||||
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
|
||||
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
|
||||
git clone https://github.com/huggingface/xet-core.git && \
|
||||
cd xet-core/hf_xet/ && \
|
||||
uv pip install maturin patchelf && \
|
||||
python -m maturin build --release --out dist && \
|
||||
mkdir -p /tmp/hf-xet/dist && \
|
||||
cp dist/*.whl /tmp/hf-xet/dist/
|
||||
|
||||
# Final build stage
|
||||
FROM python-install AS vllm-cpu
|
||||
ARG PYTHON_VERSION
|
||||
@ -147,7 +107,6 @@ ENV UV_LINK_MODE=copy
|
||||
ENV CARGO_HOME=/root/.cargo
|
||||
ENV RUSTUP_HOME=/root/.rustup
|
||||
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
|
||||
ENV GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1
|
||||
|
||||
COPY . /workspace/vllm
|
||||
WORKDIR /workspace/vllm
|
||||
@ -161,18 +120,13 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
|
||||
--mount=type=bind,from=pyarrow,source=/tmp/arrow/python/dist,target=/tmp/arrow-wheels \
|
||||
--mount=type=bind,from=torch-vision,source=/tmp/vision/dist,target=/tmp/vision-wheels/ \
|
||||
--mount=type=bind,from=hf-xet-builder,source=/tmp/hf-xet/dist,target=/tmp/hf-xet-wheels/ \
|
||||
--mount=type=bind,from=torch,source=/tmp/pytorch/dist,target=/tmp/torch-wheels/ \
|
||||
sed -i '/^torch/d' requirements/build.txt && \
|
||||
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl | head -n 1) && \
|
||||
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl | head -n 1) && \
|
||||
HF_XET_WHL_FILE=$(ls /tmp/hf-xet-wheels/*.whl | head -n 1) && \
|
||||
TORCH_WHL_FILE=$(ls /tmp/torch-wheels/*.whl | head -n 1) && \
|
||||
uv pip install -v \
|
||||
$ARROW_WHL_FILE \
|
||||
$VISION_WHL_FILE \
|
||||
$HF_XET_WHL_FILE \
|
||||
$TORCH_WHL_FILE \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/cpu \
|
||||
--index-strategy unsafe-best-match \
|
||||
-r requirements/build.txt \
|
||||
-r requirements/cpu.txt
|
||||
@ -195,5 +149,4 @@ USER 2000
|
||||
WORKDIR /home/vllm
|
||||
|
||||
# Set the default entrypoint
|
||||
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
|
||||
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
|
@ -23,7 +23,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
python3 -m pip install \
|
||||
-r requirements/tpu.txt
|
||||
RUN python3 -m pip install -e .
|
||||
RUN python3 setup.py develop
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
@ -40,6 +40,12 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
python3 setup.py install
|
||||
|
||||
# Please refer xpu doc, we need manually install intel-extension-for-pytorch 2.6.10+xpu due to there are some conflict dependencies with torch 2.6.0+xpu
|
||||
# FIXME: This will be fix in ipex 2.7. just leave this here for awareness.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install intel-extension-for-pytorch==2.6.10+xpu \
|
||||
--extra-index-url=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
FROM vllm-base AS vllm-openai
|
44
README.md
44
README.md
@ -1,7 +1,7 @@
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-dark.png">
|
||||
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/assets/logos/vllm-logo-text-light.png" width=55%>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
|
||||
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
@ -10,26 +10,29 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
</h3>
|
||||
|
||||
<p align="center">
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://blog.vllm.ai/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
</p>
|
||||
|
||||
---
|
||||
|
||||
[2025/03] We are collaborating with Ollama to host an [Inference Night](https://lu.ma/vllm-ollama) at Y Combinator in San Francisco on Thursday, March 27, at 6 PM. Discuss all things inference local or data center!
|
||||
|
||||
[2025/04] We're hosting our first-ever *vLLM Asia Developer Day* in Singapore on *April 3rd*! This is a full-day event (9 AM - 9 PM SGT) in partnership with SGInnovate, AMD, and Embedded LLM. Meet the vLLM team and learn about LLM inference for RL, MI300X, and more! [Register Now](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2025/05] We hosted [NYC vLLM Meetup](https://lu.ma/c1rqyf1f)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1_q_aW_ioMJWUImf1s1YM-ZhjXz8cUeL0IJvaquOYBeA/edit?usp=sharing).
|
||||
- [2025/05] vLLM is now a hosted project under PyTorch Foundation! Please find the announcement [here](https://pytorch.org/blog/pytorch-foundation-welcomes-vllm/).
|
||||
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
|
||||
|
||||
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
|
||||
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
|
||||
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
|
||||
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
|
||||
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
|
||||
|
||||
<details>
|
||||
<summary>Previous News</summary>
|
||||
|
||||
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
|
||||
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
|
||||
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
|
||||
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
|
||||
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
|
||||
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
|
||||
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
|
||||
@ -58,8 +61,8 @@ vLLM is fast with:
|
||||
- Efficient management of attention key and value memory with [**PagedAttention**](https://blog.vllm.ai/2023/06/20/vllm.html)
|
||||
- Continuous batching of incoming requests
|
||||
- Fast model execution with CUDA/HIP graph
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [AutoRound](https://arxiv.org/abs/2309.05516), INT4, INT8, and FP8
|
||||
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer
|
||||
- Quantizations: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), INT4, INT8, and FP8.
|
||||
- Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
|
||||
- Speculative decoding
|
||||
- Chunked prefill
|
||||
|
||||
@ -72,14 +75,14 @@ vLLM is flexible and easy to use with:
|
||||
- Tensor parallelism and pipeline parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
|
||||
- Prefix caching support
|
||||
- Multi-LoRA support
|
||||
- Multi-lora support
|
||||
|
||||
vLLM seamlessly supports most popular open-source models on HuggingFace, including:
|
||||
- Transformer-like LLMs (e.g., Llama)
|
||||
- Mixture-of-Expert LLMs (e.g., Mixtral, Deepseek-V2 and V3)
|
||||
- Embedding Models (e.g., E5-Mistral)
|
||||
- Embedding Models (e.g. E5-Mistral)
|
||||
- Multi-modal LLMs (e.g., LLaVA)
|
||||
|
||||
Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).
|
||||
@ -100,14 +103,14 @@ Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
|
||||
## Contributing
|
||||
|
||||
We welcome and value any contributions and collaborations.
|
||||
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/latest/contributing/index.html) for how to get involved.
|
||||
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
|
||||
|
||||
## Sponsors
|
||||
|
||||
vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!
|
||||
|
||||
<!-- Note: Please sort them in alphabetical order. -->
|
||||
<!-- Note: Please keep these consistent with docs/community/sponsors.md -->
|
||||
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->
|
||||
Cash Donations:
|
||||
- a16z
|
||||
- Dropbox
|
||||
@ -123,7 +126,6 @@ Compute Resources:
|
||||
- Databricks
|
||||
- DeepInfra
|
||||
- Google Cloud
|
||||
- Intel
|
||||
- Lambda Lab
|
||||
- Nebius
|
||||
- Novita AI
|
||||
@ -162,4 +164,4 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
|
||||
|
||||
## Media Kit
|
||||
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit)
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).
|
||||
|
@ -8,6 +8,4 @@ Please report security issues privately using [the vulnerability submission form
|
||||
|
||||
---
|
||||
|
||||
Please see the [Security Guide in the vLLM documentation](https://docs.vllm.ai/en/latest/usage/security.html) for more information on vLLM's security assumptions and recommendations.
|
||||
|
||||
Please see [PyTorch's Security Policy](https://github.com/pytorch/pytorch/blob/main/SECURITY.md) for more information and recommendations on how to securely interact with models.
|
||||
|
@ -51,12 +51,6 @@ become available.
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>likaixin/InstructCoder</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-AIMO</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-Other</strong></td>
|
||||
@ -64,12 +58,6 @@ become available.
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Custom</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>Local file: <code>data.jsonl</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
@ -130,38 +118,6 @@ P99 ITL (ms): 8.39
|
||||
==================================================
|
||||
```
|
||||
|
||||
### Custom Dataset
|
||||
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
|
||||
|
||||
```
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
|
||||
```bash
|
||||
# start server
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
```bash
|
||||
# run benchmarking script
|
||||
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
|
||||
--backend vllm \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name custom \
|
||||
--dataset-path <path-to-your-data-jsonl> \
|
||||
--custom-skip-chat-template \
|
||||
--num-prompts 80 \
|
||||
--max-concurrency 1 \
|
||||
--temperature=0.3 \
|
||||
--top-p=0.75 \
|
||||
--result-dir "./log/"
|
||||
```
|
||||
|
||||
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
```bash
|
||||
@ -184,9 +140,10 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
--speculative-model "[ngram]" \
|
||||
--ngram_prompt_lookup_min 2 \
|
||||
--ngram-prompt-lookup-max 5 \
|
||||
--num_speculative_tokens 5
|
||||
```
|
||||
|
||||
``` bash
|
||||
@ -230,45 +187,6 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--num-prompts 10 \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
**`philschmid/mt-bench`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path philschmid/mt-bench \
|
||||
--num-prompts 80
|
||||
```
|
||||
|
||||
### Running With Sampling Parameters
|
||||
|
||||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
parameters can be specified. Example client command:
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--top-k 10 \
|
||||
--top-p 0.9 \
|
||||
--temperature 0.5 \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
---
|
||||
## Example - Offline Throughput Benchmark
|
||||
|
||||
@ -321,9 +239,10 @@ python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--output-len=100 \
|
||||
--num-prompts=2048 \
|
||||
--async-engine \
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
--speculative-model="[ngram]" \
|
||||
--ngram_prompt_lookup_min=2 \
|
||||
--ngram-prompt-lookup-max=5 \
|
||||
--num_speculative_tokens=5
|
||||
```
|
||||
|
||||
```
|
||||
@ -359,18 +278,6 @@ python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--backend vllm \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
### Benchmark with LoRA Adapters
|
||||
|
||||
``` bash
|
||||
|
@ -1,212 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
|
||||
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
|
||||
# It also supports additional requirement: e2e latency and prefix cache.
|
||||
|
||||
# Pre-requisite:
|
||||
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
|
||||
# 2. If the model is customized, replace the MODEL's config with the customized config.
|
||||
# 3. Set variables (ALL REQUIRED)
|
||||
# BASE: your directory for vllm repo
|
||||
# MODEL: the model served by vllm
|
||||
# DOWNLOAD_DIR: directory to download and load model weights.
|
||||
# INPUT_LEN: request input len
|
||||
# OUTPUT_LEN: request output len
|
||||
# MIN_CACHE_HIT_PCT: prefix cache rate
|
||||
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
|
||||
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
|
||||
# 5. The final result will be saved in RESULT file.
|
||||
|
||||
|
||||
# Example use cases
|
||||
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
|
||||
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
|
||||
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
|
||||
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
|
||||
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
|
||||
|
||||
TAG=$(date +"%Y_%m_%d_%H_%M")
|
||||
BASE=""
|
||||
MODEL="meta-llama/Llama-3.1-8B-Instruct"
|
||||
DOWNLOAD_DIR=""
|
||||
INPUT_LEN=4000
|
||||
OUTPUT_LEN=16
|
||||
MIN_CACHE_HIT_PCT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
|
||||
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
|
||||
RESULT="$LOG_FOLDER/result.txt"
|
||||
|
||||
echo "result file$ $RESULT"
|
||||
echo "model: $MODEL"
|
||||
echo
|
||||
|
||||
rm -rf $LOG_FOLDER
|
||||
mkdir -p $LOG_FOLDER
|
||||
|
||||
cd "$BASE/vllm"
|
||||
# create sonnet-4x.txt so that we can sample 2048 tokens for input
|
||||
echo "" > benchmarks/sonnet_4x.txt
|
||||
for _ in {1..4}
|
||||
do
|
||||
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
|
||||
done
|
||||
|
||||
pip install datasets
|
||||
|
||||
current_hash=$(git rev-parse HEAD)
|
||||
echo "hash:$current_hash" >> "$RESULT"
|
||||
echo "current_hash: $current_hash"
|
||||
|
||||
best_throughput=0
|
||||
best_max_num_seqs=0
|
||||
best_num_batched_tokens=0
|
||||
best_goodput=0
|
||||
run_benchmark() {
|
||||
local max_num_seqs=$1
|
||||
local max_num_batched_tokens=$2
|
||||
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
|
||||
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
|
||||
echo "vllm_log: $vllm_log"
|
||||
echo
|
||||
rm -f $vllm_log
|
||||
|
||||
# start the server
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
|
||||
--disable-log-requests \
|
||||
--port 8004 \
|
||||
--gpu-memory-utilization 0.98 \
|
||||
--max-num-seqs $max_num_seqs \
|
||||
--max-num-batched-tokens $max_num_batched_tokens \
|
||||
--tensor-parallel-size 1 \
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir $DOWNLOAD_DIR \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
echo "wait for 10 minutes.."
|
||||
echo
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
if grep -Fq "Application startup complete" "$vllm_log"; then
|
||||
echo "Application started"
|
||||
server_started=1
|
||||
break
|
||||
else
|
||||
# echo "wait for 10 seconds..."
|
||||
sleep 10
|
||||
fi
|
||||
done
|
||||
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
return 1
|
||||
fi
|
||||
|
||||
echo "run benchmark test..."
|
||||
echo
|
||||
meet_latency_requirement=0
|
||||
# get a basic qps by using request-rate inf
|
||||
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
|
||||
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
--request-rate inf \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
meet_latency_requirement=1
|
||||
fi
|
||||
|
||||
if (( ! meet_latency_requirement )); then
|
||||
# start from request-rate as int(through_put) + 1
|
||||
request_rate=$((${through_put%.*} + 1))
|
||||
while ((request_rate > 0)); do
|
||||
# clear prefix cache
|
||||
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
|
||||
sleep 5
|
||||
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path benchmarks/sonnet_4x.txt \
|
||||
--sonnet-input-len $INPUT_LEN \
|
||||
--sonnet-output-len $OUTPUT_LEN \
|
||||
--ignore_eos \
|
||||
--disable-tqdm \
|
||||
--request-rate $request_rate \
|
||||
--percentile-metrics ttft,tpot,itl,e2el \
|
||||
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
|
||||
--num-prompts 100 \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--port 8004 > "$bm_log"
|
||||
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
|
||||
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
|
||||
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
|
||||
meet_latency_requirement=1
|
||||
break
|
||||
fi
|
||||
request_rate=$((request_rate-1))
|
||||
done
|
||||
fi
|
||||
# write the results and update the best result.
|
||||
if ((meet_latency_requirement)); then
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
|
||||
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
|
||||
best_throughput=$through_put
|
||||
best_max_num_seqs=$max_num_seqs
|
||||
best_num_batched_tokens=$max_num_batched_tokens
|
||||
best_goodput=$goodput
|
||||
fi
|
||||
else
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
|
||||
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
|
||||
fi
|
||||
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||
|
||||
echo "pkill -f vllm"
|
||||
echo
|
||||
pkill vllm
|
||||
sleep 10
|
||||
rm -f $vllm_log
|
||||
printf '=%.0s' $(seq 1 20)
|
||||
return 0
|
||||
}
|
||||
|
||||
|
||||
num_seqs_list="128 256"
|
||||
num_batched_tokens_list="512 1024 2048 4096"
|
||||
for num_seqs in $num_seqs_list; do
|
||||
for num_batched_tokens in $num_batched_tokens_list; do
|
||||
run_benchmark $num_seqs $num_batched_tokens
|
||||
exit 0
|
||||
done
|
||||
done
|
||||
echo "finish permutations"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput" >> "$RESULT"
|
||||
|
@ -1,7 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
@ -13,7 +11,8 @@ from typing import Optional, Union
|
||||
import aiohttp
|
||||
import huggingface_hub.constants
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
||||
PreTrainedTokenizerFast)
|
||||
|
||||
# NOTE(simon): do not import vLLM here so the benchmark script
|
||||
# can run without vLLM installed.
|
||||
@ -33,7 +32,6 @@ class RequestFuncInput:
|
||||
extra_body: Optional[dict] = None
|
||||
multi_modal_content: Optional[dict] = None
|
||||
ignore_eos: bool = False
|
||||
language: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -43,7 +41,8 @@ class RequestFuncOutput:
|
||||
latency: float = 0.0
|
||||
output_tokens: int = 0
|
||||
ttft: float = 0.0 # Time to first token
|
||||
itl: list[float] = field(default_factory=list) # list of inter-token latencies
|
||||
itl: list[float] = field(
|
||||
default_factory=list) # list of inter-token latencies
|
||||
tpot: float = 0.0 # avg next-token latencies
|
||||
prompt_len: int = 0
|
||||
error: str = ""
|
||||
@ -56,9 +55,8 @@ async def async_request_tgi(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
params = {
|
||||
"max_new_tokens": request_func_input.output_len,
|
||||
"do_sample": True,
|
||||
@ -105,7 +103,8 @@ async def async_request_tgi(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
@ -132,9 +131,8 @@ async def async_request_trt_llm(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"accumulate_tokens": True,
|
||||
"text_input": request_func_input.prompt,
|
||||
@ -159,7 +157,8 @@ async def async_request_trt_llm(
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data:")
|
||||
|
||||
data = json.loads(chunk)
|
||||
output.generated_text += data["text_output"]
|
||||
@ -171,7 +170,8 @@ async def async_request_trt_llm(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
@ -195,23 +195,15 @@ async def async_request_deepspeed_mii(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("completions", "profile")), (
|
||||
"OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
)
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
|
||||
"top_p": 1.0,
|
||||
}
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
@ -222,22 +214,12 @@ async def async_request_deepspeed_mii(
|
||||
|
||||
st = time.perf_counter()
|
||||
try:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
async with session.post(url=request_func_input.api_url,
|
||||
json=payload) as response:
|
||||
if response.status == 200:
|
||||
parsed_resp = await response.json()
|
||||
output.latency = time.perf_counter() - st
|
||||
if "choices" in parsed_resp:
|
||||
output.generated_text = parsed_resp["choices"][0]["text"]
|
||||
elif "text" in parsed_resp:
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
else:
|
||||
output.error = (
|
||||
"Unexpected response format: "
|
||||
"neither 'choices' nor 'text' found"
|
||||
)
|
||||
output.success = False
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
output.success = True
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
@ -257,20 +239,17 @@ async def async_request_openai_completions(
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("completions", "profile")), (
|
||||
"OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
)
|
||||
assert api_url.endswith(
|
||||
("completions", "profile")
|
||||
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model_name
|
||||
if request_func_input.model_name
|
||||
else request_func_input.model,
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
"temperature": 0.0,
|
||||
"repetition_penalty": 1.0,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"logprobs": request_func_input.logprobs,
|
||||
"stream": True,
|
||||
@ -282,7 +261,9 @@ async def async_request_openai_completions(
|
||||
payload["ignore_eos"] = request_func_input.ignore_eos
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
|
||||
}
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
@ -291,9 +272,8 @@ async def async_request_openai_completions(
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
async with session.post(url=api_url, json=payload,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
first_chunk_received = False
|
||||
async for chunk_bytes in response.content:
|
||||
@ -301,7 +281,8 @@ async def async_request_openai_completions(
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
if chunk != "[DONE]":
|
||||
data = json.loads(chunk)
|
||||
|
||||
@ -321,20 +302,21 @@ async def async_request_openai_completions(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
generated_text += text or ""
|
||||
if usage := data.get("usage"):
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
if first_chunk_received:
|
||||
output.success = True
|
||||
else:
|
||||
output.success = False
|
||||
output.error = (
|
||||
"Never received a valid chunk to calculate TTFT."
|
||||
"This response will be marked as failed!"
|
||||
)
|
||||
"This response will be marked as failed!")
|
||||
output.generated_text = generated_text
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
@ -355,22 +337,23 @@ async def async_request_openai_chat_completions(
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("chat/completions", "profile")), (
|
||||
"OpenAI Chat Completions API URL must end with 'chat/completions'."
|
||||
)
|
||||
assert api_url.endswith(
|
||||
("chat/completions", "profile")
|
||||
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
if request_func_input.multi_modal_content:
|
||||
content.append(request_func_input.multi_modal_content)
|
||||
payload = {
|
||||
"model": request_func_input.model_name
|
||||
if request_func_input.model_name
|
||||
else request_func_input.model,
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"messages": [
|
||||
{"role": "user", "content": content},
|
||||
{
|
||||
"role": "user",
|
||||
"content": content
|
||||
},
|
||||
],
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
@ -396,16 +379,16 @@ async def async_request_openai_chat_completions(
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(
|
||||
url=api_url, json=payload, headers=headers
|
||||
) as response:
|
||||
async with session.post(url=api_url, json=payload,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
@ -419,11 +402,13 @@ async def async_request_openai_chat_completions(
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(timestamp - most_recent_timestamp)
|
||||
output.itl.append(timestamp -
|
||||
most_recent_timestamp)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get("completion_tokens")
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
@ -443,115 +428,8 @@ async def async_request_openai_chat_completions(
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_openai_audio(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||
import soundfile
|
||||
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("transcriptions", "translations")), (
|
||||
"OpenAI Chat Completions API URL must end with 'transcriptions' "
|
||||
)
|
||||
"or `translations`."
|
||||
|
||||
async with aiohttp.ClientSession(
|
||||
trust_env=True, timeout=AIOHTTP_TIMEOUT
|
||||
) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
payload = {
|
||||
"model": request_func_input.model_name
|
||||
if request_func_input.model_name
|
||||
else request_func_input.model,
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
"language": "en",
|
||||
# Flattened due to multipart/form-data
|
||||
"stream_include_usage": True,
|
||||
"stream_continuous_usage_stats": True,
|
||||
}
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
|
||||
# Send audio file
|
||||
def to_bytes(y, sr):
|
||||
buffer = io.BytesIO()
|
||||
soundfile.write(buffer, y, sr, format="WAV")
|
||||
buffer.seek(0)
|
||||
return buffer
|
||||
|
||||
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
|
||||
form = aiohttp.FormData()
|
||||
form.add_field("file", f, content_type="audio/wav")
|
||||
for key, value in payload.items():
|
||||
form.add_field(key, str(value))
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(
|
||||
url=api_url, data=form, headers=headers
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get("content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(
|
||||
timestamp - most_recent_timestamp
|
||||
)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens"
|
||||
)
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
if os.getenv("VLLM_USE_MODELSCOPE", "False").lower() == "true":
|
||||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
||||
from modelscope import snapshot_download
|
||||
|
||||
from vllm.model_executor.model_loader.weight_utils import get_lock
|
||||
@ -562,8 +440,7 @@ def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
|
||||
)
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
|
||||
return model_path
|
||||
return pretrained_model_name_or_path
|
||||
@ -576,23 +453,23 @@ def get_tokenizer(
|
||||
**kwargs,
|
||||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||
if pretrained_model_name_or_path is not None and not os.path.exists(
|
||||
pretrained_model_name_or_path
|
||||
):
|
||||
pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
|
||||
pretrained_model_name_or_path):
|
||||
pretrained_model_name_or_path = get_model(
|
||||
pretrained_model_name_or_path)
|
||||
if tokenizer_mode == "slow":
|
||||
if kwargs.get("use_fast", False):
|
||||
raise ValueError("Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
raise ValueError(
|
||||
"Cannot use the fast tokenizer in slow tokenizer mode.")
|
||||
kwargs["use_fast"] = False
|
||||
if tokenizer_mode == "mistral":
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import MistralTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"MistralTokenizer requires vllm package.\n"
|
||||
"Please install it with `pip install vllm` "
|
||||
"to use mistral tokenizer mode."
|
||||
) from e
|
||||
return MistralTokenizer.from_pretrained(str(pretrained_model_name_or_path))
|
||||
raise ImportError("MistralTokenizer requires vllm package.\n"
|
||||
"Please install it with `pip install vllm` "
|
||||
"to use mistral tokenizer mode.") from e
|
||||
return MistralTokenizer.from_pretrained(
|
||||
str(pretrained_model_name_or_path))
|
||||
else:
|
||||
return AutoTokenizer.from_pretrained(
|
||||
pretrained_model_name_or_path,
|
||||
@ -608,15 +485,7 @@ ASYNC_REQUEST_FUNCS = {
|
||||
"deepspeed-mii": async_request_deepspeed_mii,
|
||||
"openai": async_request_openai_completions,
|
||||
"openai-chat": async_request_openai_chat_completions,
|
||||
"openai-audio": async_request_openai_audio,
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
"scalellm": async_request_openai_completions,
|
||||
"sglang": async_request_openai_completions,
|
||||
"llama.cpp": async_request_openai_completions,
|
||||
}
|
||||
|
||||
OPENAI_COMPATIBLE_BACKENDS = [
|
||||
k
|
||||
for k, v in ASYNC_REQUEST_FUNCS.items()
|
||||
if v in (async_request_openai_completions, async_request_openai_chat_completions)
|
||||
]
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
This module defines a framework for sampling benchmark requests from various
|
||||
datasets. Each dataset subclass of BenchmarkDataset must implement sample
|
||||
@ -10,6 +9,9 @@ generation. Supported dataset types include:
|
||||
- BurstGPT
|
||||
- HuggingFace
|
||||
- VisionArena
|
||||
|
||||
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
|
||||
SampleRequest instances, similar to the approach used in ShareGPT.
|
||||
"""
|
||||
|
||||
import base64
|
||||
@ -33,7 +35,6 @@ from transformers import PreTrainedTokenizerBase
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.lora.utils import get_adapter_absolute_path
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.multimodal.image import convert_image_mode
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -63,7 +64,6 @@ class SampleRequest:
|
||||
|
||||
class BenchmarkDataset(ABC):
|
||||
DEFAULT_SEED = 0
|
||||
IS_MULTIMODAL = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -81,12 +81,14 @@ class BenchmarkDataset(ABC):
|
||||
self.dataset_path = dataset_path
|
||||
# Set the random seed, ensuring that a None value is replaced with the
|
||||
# default seed.
|
||||
self.random_seed = random_seed if random_seed is not None else self.DEFAULT_SEED
|
||||
self.random_seed = (random_seed
|
||||
if random_seed is not None else self.DEFAULT_SEED)
|
||||
self.data = None
|
||||
|
||||
def apply_multimodal_chat_transformation(
|
||||
self, prompt: str, mm_content: Optional[MultiModalDataDict] = None
|
||||
) -> list[dict]:
|
||||
self,
|
||||
prompt: str,
|
||||
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
|
||||
"""
|
||||
Transform a prompt and optional multimodal content into a chat format.
|
||||
This method is used for chat models that expect a specific conversation
|
||||
@ -108,7 +110,8 @@ class BenchmarkDataset(ABC):
|
||||
NotImplementedError: If a subclass does not implement this method.
|
||||
"""
|
||||
# TODO (jenniferzhao): add support for downloading data
|
||||
raise NotImplementedError("load_data must be implemented in subclasses.")
|
||||
raise NotImplementedError(
|
||||
"load_data must be implemented in subclasses.")
|
||||
|
||||
def get_random_lora_request(
|
||||
self,
|
||||
@ -154,9 +157,8 @@ class BenchmarkDataset(ABC):
|
||||
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
|
||||
|
||||
@abstractmethod
|
||||
def sample(
|
||||
self, tokenizer: PreTrainedTokenizerBase, num_requests: int
|
||||
) -> list[SampleRequest]:
|
||||
def sample(self, tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int) -> list[SampleRequest]:
|
||||
"""
|
||||
Abstract method to generate sample requests from the dataset.
|
||||
|
||||
@ -174,9 +176,8 @@ class BenchmarkDataset(ABC):
|
||||
"""
|
||||
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||
|
||||
def maybe_oversample_requests(
|
||||
self, requests: list[SampleRequest], num_requests: int
|
||||
) -> None:
|
||||
def maybe_oversample_requests(self, requests: list[SampleRequest],
|
||||
num_requests: int) -> None:
|
||||
"""
|
||||
Oversamples the list of requests if its size is less than the desired
|
||||
number.
|
||||
@ -187,9 +188,11 @@ class BenchmarkDataset(ABC):
|
||||
"""
|
||||
if len(requests) < num_requests:
|
||||
random.seed(self.random_seed)
|
||||
additional = random.choices(requests, k=num_requests - len(requests))
|
||||
additional = random.choices(requests,
|
||||
k=num_requests - len(requests))
|
||||
requests.extend(additional)
|
||||
logger.info("Oversampled requests to reach %d total samples.", num_requests)
|
||||
logger.info("Oversampled requests to reach %d total samples.",
|
||||
num_requests)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -214,14 +217,14 @@ def is_valid_sequence(
|
||||
"""
|
||||
# Check for invalid conditions
|
||||
prompt_too_short = prompt_len < min_len
|
||||
output_too_short = (not skip_min_output_len_check) and (output_len < min_len)
|
||||
output_too_short = (not skip_min_output_len_check) and (output_len
|
||||
< min_len)
|
||||
prompt_too_long = prompt_len > max_prompt_len
|
||||
combined_too_long = (prompt_len + output_len) > max_total_len
|
||||
|
||||
# Return True if none of the invalid conditions are met
|
||||
return not (
|
||||
prompt_too_short or output_too_short or prompt_too_long or combined_too_long
|
||||
)
|
||||
return not (prompt_too_short or output_too_short or prompt_too_long
|
||||
or combined_too_long)
|
||||
|
||||
|
||||
@cache
|
||||
@ -253,28 +256,28 @@ def process_image(image: Any) -> Mapping[str, Any]:
|
||||
Raises:
|
||||
ValueError: If the input is not a supported type.
|
||||
"""
|
||||
if isinstance(image, dict) and "bytes" in image:
|
||||
image = Image.open(BytesIO(image["bytes"]))
|
||||
if isinstance(image, dict) and 'bytes' in image:
|
||||
image = Image.open(BytesIO(image['bytes']))
|
||||
if isinstance(image, Image.Image):
|
||||
image = convert_image_mode(image, "RGB")
|
||||
image = image.convert("RGB")
|
||||
with io.BytesIO() as image_data:
|
||||
image.save(image_data, format="JPEG")
|
||||
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
|
||||
image_base64 = base64.b64encode(
|
||||
image_data.getvalue()).decode("utf-8")
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
},
|
||||
}
|
||||
|
||||
if isinstance(image, str):
|
||||
image_url = (
|
||||
image if image.startswith(("http://", "file://")) else f"file://{image}"
|
||||
)
|
||||
image_url = (image if image.startswith(
|
||||
("http://", "file://")) else f"file://{image}")
|
||||
return {"type": "image_url", "image_url": {"url": image_url}}
|
||||
|
||||
raise ValueError(
|
||||
f"Invalid image input {image}. Must be a PIL.Image.Image"
|
||||
" or str or dictionary with raw image bytes."
|
||||
)
|
||||
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
|
||||
" or str or dictionary with raw image bytes.")
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -285,7 +288,7 @@ def process_image(image: Any) -> Mapping[str, Any]:
|
||||
class RandomDataset(BenchmarkDataset):
|
||||
# Default values copied from benchmark_serving.py for the random dataset.
|
||||
DEFAULT_PREFIX_LEN = 0
|
||||
DEFAULT_RANGE_RATIO = 0.0
|
||||
DEFAULT_RANGE_RATIO = 1.0
|
||||
DEFAULT_INPUT_LEN = 1024
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
|
||||
@ -305,62 +308,35 @@ class RandomDataset(BenchmarkDataset):
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
**kwargs,
|
||||
) -> list[SampleRequest]:
|
||||
# Enforce range_ratio < 1
|
||||
assert range_ratio < 1.0, (
|
||||
"random_range_ratio must be < 1.0 to ensure a valid sampling range"
|
||||
)
|
||||
|
||||
vocab_size = tokenizer.vocab_size
|
||||
num_special_tokens = tokenizer.num_special_tokens_to_add()
|
||||
real_input_len = input_len - num_special_tokens
|
||||
|
||||
prefix_token_ids = (
|
||||
np.random.randint(0, vocab_size, size=prefix_len).tolist()
|
||||
if prefix_len > 0
|
||||
else []
|
||||
)
|
||||
prefix_token_ids = (np.random.randint(
|
||||
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
|
||||
|
||||
# New sampling logic: [X * (1 - b), X * (1 + b)]
|
||||
input_low = int(real_input_len * (1 - range_ratio))
|
||||
input_high = int(real_input_len * (1 + range_ratio))
|
||||
output_low = int(output_len * (1 - range_ratio))
|
||||
output_high = int(output_len * (1 + range_ratio))
|
||||
input_low = int(input_len * range_ratio)
|
||||
output_low = int(output_len * range_ratio)
|
||||
|
||||
# Add logging for debugging
|
||||
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
|
||||
logger.info("Sampling output_len from [%s, %s]", output_low, output_high)
|
||||
|
||||
input_lens = np.random.randint(input_low, input_high + 1, size=num_requests)
|
||||
output_lens = np.random.randint(output_low, output_high + 1, size=num_requests)
|
||||
input_lens = np.random.randint(input_low,
|
||||
input_len + 1,
|
||||
size=num_requests)
|
||||
output_lens = np.random.randint(output_low,
|
||||
output_len + 1,
|
||||
size=num_requests)
|
||||
offsets = np.random.randint(0, vocab_size, size=num_requests)
|
||||
|
||||
requests = []
|
||||
for i in range(num_requests):
|
||||
inner_seq = (
|
||||
(offsets[i] + i + np.arange(input_lens[i])) % vocab_size
|
||||
).tolist()
|
||||
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
|
||||
vocab_size).tolist()
|
||||
token_sequence = prefix_token_ids + inner_seq
|
||||
prompt = tokenizer.decode(token_sequence)
|
||||
# After decoding the prompt we have to encode and decode it again.
|
||||
# This is done because in some cases N consecutive tokens
|
||||
# give a string tokenized into != N number of tokens.
|
||||
# For example for GPT2Tokenizer:
|
||||
# [6880, 6881] -> ['Ġcalls', 'here'] ->
|
||||
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
|
||||
# To avoid uncontrolled change of the prompt length,
|
||||
# the encoded sequence is truncated before being decode again.
|
||||
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
|
||||
: input_lens[i]
|
||||
]
|
||||
prompt = tokenizer.decode(re_encoded_sequence)
|
||||
total_input_len = prefix_len + int(input_lens[i])
|
||||
requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=total_input_len,
|
||||
expected_output_len=int(output_lens[i]),
|
||||
)
|
||||
)
|
||||
))
|
||||
return requests
|
||||
|
||||
|
||||
@ -387,8 +363,7 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
self.data = json.load(f)
|
||||
# Filter entries with at least two conversation turns.
|
||||
self.data = [
|
||||
entry
|
||||
for entry in self.data
|
||||
entry for entry in self.data
|
||||
if "conversations" in entry and len(entry["conversations"]) >= 2
|
||||
]
|
||||
random.seed(self.random_seed)
|
||||
@ -414,123 +389,31 @@ class ShareGPTDataset(BenchmarkDataset):
|
||||
)
|
||||
|
||||
lora_request, tokenizer = self.get_random_lora_request(
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
|
||||
)
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_ids)
|
||||
new_output_len = len(completion_ids) if output_len is None else output_len
|
||||
if not is_valid_sequence(
|
||||
prompt_len,
|
||||
new_output_len,
|
||||
skip_min_output_len_check=output_len is not None,
|
||||
):
|
||||
new_output_len = (len(completion_ids)
|
||||
if output_len is None else output_len)
|
||||
if not is_valid_sequence(prompt_len,
|
||||
new_output_len,
|
||||
skip_min_output_len_check=output_len
|
||||
is not None):
|
||||
continue
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, None)
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, None)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=new_output_len,
|
||||
lora_request=lora_request,
|
||||
)
|
||||
)
|
||||
))
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Custom Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class CustomDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the Custom dataset. Loads data from a JSONL file and generates
|
||||
sample requests based on conversation turns. E.g.,
|
||||
```
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
# self.data will be a list of dictionaries
|
||||
# e.g., [{"prompt": "What is the capital of India?"}, ...]
|
||||
# This will be the standardized format which load_data()
|
||||
# has to convert into depending on the filetype of dataset_path.
|
||||
# sample() will assume this standardized format of self.data
|
||||
self.data = []
|
||||
|
||||
# Load the JSONL file
|
||||
if self.dataset_path.endswith(".jsonl"):
|
||||
jsonl_data = pd.read_json(path_or_buf=self.dataset_path, lines=True)
|
||||
|
||||
# check if the JSONL file has a 'prompt' column
|
||||
if "prompt" not in jsonl_data.columns:
|
||||
raise ValueError("JSONL file must contain a 'prompt' column.")
|
||||
|
||||
# Convert each row to a dictionary and append to self.data
|
||||
# This will convert the DataFrame to a list of dictionaries
|
||||
# where each dictionary corresponds to a row in the DataFrame.
|
||||
# This is the standardized format we want for self.data
|
||||
for _, row in jsonl_data.iterrows():
|
||||
self.data.append(row.to_dict())
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Only JSONL format is supported for CustomDataset."
|
||||
)
|
||||
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
skip_chat_template: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item["prompt"]
|
||||
|
||||
# apply template
|
||||
if not skip_chat_template:
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Sonnet Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
@ -572,45 +455,42 @@ class SonnetDataset(BenchmarkDataset):
|
||||
) -> list:
|
||||
# Calculate average token length for a poem line.
|
||||
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
|
||||
avg_len = sum(len(tokens) for tokens in tokenized_lines) / len(tokenized_lines)
|
||||
avg_len = sum(len(tokens)
|
||||
for tokens in tokenized_lines) / len(tokenized_lines)
|
||||
|
||||
# Build the base prompt.
|
||||
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
||||
base_msg = [{"role": "user", "content": base_prompt}]
|
||||
base_fmt = tokenizer.apply_chat_template(
|
||||
base_msg, add_generation_prompt=True, tokenize=False
|
||||
)
|
||||
base_fmt = tokenizer.apply_chat_template(base_msg,
|
||||
add_generation_prompt=True,
|
||||
tokenize=False)
|
||||
base_offset = len(tokenizer(base_fmt).input_ids)
|
||||
if input_len <= base_offset:
|
||||
raise ValueError(
|
||||
f"'input_len' must be higher than the base prompt length "
|
||||
f"({base_offset})."
|
||||
)
|
||||
f"({base_offset}).")
|
||||
|
||||
# Determine how many poem lines to use.
|
||||
num_input_lines = round((input_len - base_offset) / avg_len)
|
||||
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
|
||||
num_prefix_lines = round((prefix_len - base_offset) / avg_len)
|
||||
prefix_lines = self.data[:num_prefix_lines]
|
||||
|
||||
samples = []
|
||||
while len(samples) < num_requests:
|
||||
extra_lines = random.choices(
|
||||
self.data, k=num_input_lines - num_prefix_lines
|
||||
)
|
||||
for _ in range(num_requests):
|
||||
extra_lines = random.choices(self.data,
|
||||
k=num_input_lines - num_prefix_lines)
|
||||
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
|
||||
msg = [{"role": "user", "content": prompt}]
|
||||
prompt_formatted = tokenizer.apply_chat_template(
|
||||
msg, add_generation_prompt=True, tokenize=False
|
||||
)
|
||||
msg, add_generation_prompt=True, tokenize=False)
|
||||
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
||||
if prompt_len <= input_len:
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt_formatted if return_prompt_formatted else prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
)
|
||||
)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt_formatted
|
||||
if return_prompt_formatted else prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
return samples
|
||||
|
||||
|
||||
@ -630,9 +510,7 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(
|
||||
self,
|
||||
):
|
||||
def load_data(self, ):
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
@ -646,7 +524,8 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
|
||||
def _sample_loaded_data(self, num_requests: int) -> list:
|
||||
if num_requests <= len(self.data):
|
||||
data = self.data.sample(n=num_requests, random_state=self.random_seed)
|
||||
data = self.data.sample(n=num_requests,
|
||||
random_state=self.random_seed)
|
||||
else:
|
||||
data = self.data.sample(
|
||||
n=num_requests,
|
||||
@ -670,8 +549,7 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
input_len = int(data[i][2])
|
||||
output_len = int(data[i][3])
|
||||
lora_req, tokenizer = self.get_random_lora_request(
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path
|
||||
)
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||
vocab_size = tokenizer.vocab_size
|
||||
# Generate a synthetic prompt: a list of token IDs computed as (i +
|
||||
# j) modulo vocab_size.
|
||||
@ -683,8 +561,7 @@ class BurstGPTDataset(BenchmarkDataset):
|
||||
prompt_len=input_len,
|
||||
expected_output_len=output_len,
|
||||
lora_request=lora_req,
|
||||
)
|
||||
)
|
||||
))
|
||||
return samples
|
||||
|
||||
|
||||
@ -705,6 +582,15 @@ class HuggingFaceDataset(BenchmarkDataset):
|
||||
) -> None:
|
||||
super().__init__(dataset_path=dataset_path, **kwargs)
|
||||
|
||||
# Validate dataset path
|
||||
if self.SUPPORTED_DATASET_PATHS and \
|
||||
self.dataset_path not in self.SUPPORTED_DATASET_PATHS:
|
||||
raise ValueError(
|
||||
f"{self.__class__.__name__} "
|
||||
f"only supports: {', '.join(self.SUPPORTED_DATASET_PATHS)}. "
|
||||
"Please consider contributing if you would "
|
||||
"like to add support for additional dataset formats.")
|
||||
|
||||
self.dataset_split = dataset_split
|
||||
self.dataset_subset = dataset_subset
|
||||
self.load_data()
|
||||
@ -727,23 +613,19 @@ class HuggingFaceDataset(BenchmarkDataset):
|
||||
|
||||
class ConversationDataset(HuggingFaceDataset):
|
||||
"""Dataset for conversation data with multimodal support."""
|
||||
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"lmms-lab/LLaVA-OneVision-Data",
|
||||
"Aeala/ShareGPT_Vicuna_unfiltered",
|
||||
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
# Filter examples with at least 2 conversations
|
||||
filtered_data = self.data.filter(lambda x: len(x["conversations"]) >= 2)
|
||||
filtered_data = self.data.filter(
|
||||
lambda x: len(x["conversations"]) >= 2)
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
@ -759,22 +641,24 @@ class ConversationDataset(HuggingFaceDataset):
|
||||
completion_len = len(completion_ids)
|
||||
output_len = completion_len if dynamic_output else output_len
|
||||
assert isinstance(output_len, int) and output_len > 0
|
||||
if dynamic_output and not is_valid_sequence(prompt_len, completion_len):
|
||||
if dynamic_output and not is_valid_sequence(
|
||||
prompt_len, completion_len):
|
||||
continue
|
||||
mm_content = process_image(item["image"]) if "image" in item else None
|
||||
mm_content = process_image(
|
||||
item["image"]) if "image" in item else None
|
||||
if enable_multimodal_chat:
|
||||
# Note: when chat is enabled the request prompt_len is no longer
|
||||
# accurate and we will be using request output to count the
|
||||
# actual prompt len and output len
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, mm_content)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
)
|
||||
)
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -791,10 +675,11 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"lmarena-ai/VisionArena-Chat": lambda x: x["conversation"][0][0]["content"],
|
||||
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x["turns"][0][0]["content"],
|
||||
"lmarena-ai/VisionArena-Chat":
|
||||
lambda x: x["conversation"][0][0]["content"],
|
||||
"lmarena-ai/vision-arena-bench-v0.1":
|
||||
lambda x: x["turns"][0][0]["content"]
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
@ -804,14 +689,16 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
|
||||
if parser_fn is None:
|
||||
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
|
||||
raise ValueError(
|
||||
f"Unsupported dataset path: {self.dataset_path}")
|
||||
prompt = parser_fn(item)
|
||||
mm_content = process_image(item["images"][0])
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
@ -819,15 +706,15 @@ class VisionArenaDataset(HuggingFaceDataset):
|
||||
# Note: when chat is enabled the request prompt_len is no longer
|
||||
# accurate and we will be using request output to count the
|
||||
# actual prompt len
|
||||
prompt = self.apply_multimodal_chat_transformation(prompt, mm_content)
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, mm_content)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
)
|
||||
)
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
@ -852,316 +739,25 @@ class InstructCoderDataset(HuggingFaceDataset):
|
||||
"likaixin/InstructCoder",
|
||||
}
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = f"{item['input']}\n\n{item['instruction']} Just output \
|
||||
the code, do not include any explanation."
|
||||
|
||||
# apply template
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
prompt = f"{item['instruction']}:\n{item['input']}"
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# MT-Bench Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class MTBenchDataset(HuggingFaceDataset):
|
||||
"""
|
||||
MT-Bench Dataset.
|
||||
https://huggingface.co/datasets/philschmid/mt-bench
|
||||
|
||||
We create a single turn dataset for MT-Bench.
|
||||
This is similar to Spec decoding benchmark setup in vLLM
|
||||
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
|
||||
""" # noqa: E501
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"philschmid/mt-bench",
|
||||
}
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
sampled_requests = []
|
||||
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = item["turns"][0]
|
||||
|
||||
# apply template
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=False,
|
||||
)
|
||||
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# AIMO Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class AIMODataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a AIMO dataset with reasoning questions.
|
||||
"""
|
||||
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"AI-MO/aimo-validation-aime",
|
||||
"AI-MO/NuminaMath-1.5",
|
||||
"AI-MO/NuminaMath-CoT",
|
||||
}
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt, completion = item["problem"], item["solution"]
|
||||
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_ids)
|
||||
completion_len = len(completion_ids)
|
||||
output_len = completion_len if dynamic_output else output_len
|
||||
assert isinstance(output_len, int) and output_len > 0
|
||||
if dynamic_output and not is_valid_sequence(
|
||||
prompt_len, completion_len, max_prompt_len=2048, max_total_len=32000
|
||||
):
|
||||
continue
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=None,
|
||||
)
|
||||
)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Next Edit Prediction Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
zeta_prompt = """### Instruction:
|
||||
You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.
|
||||
|
||||
### User Edits:
|
||||
|
||||
{}
|
||||
|
||||
### User Excerpt:
|
||||
|
||||
{}
|
||||
|
||||
### Response:
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
def _format_zeta_prompt(
|
||||
sample: dict, original_start_marker: str = "<|editable_region_start|>"
|
||||
) -> dict:
|
||||
"""Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
|
||||
|
||||
This function formats examples from the NEP dataset
|
||||
into prompts and expected outputs. It could be
|
||||
further extended to support more NEP datasets.
|
||||
|
||||
Args:
|
||||
sample: The dataset sample containing events,
|
||||
inputs, and outputs.
|
||||
original_start_marker: The marker indicating the
|
||||
start of the editable region. Defaults to
|
||||
"<|editable_region_start|>".
|
||||
|
||||
Returns:
|
||||
A dictionary with the formatted prompts and expected outputs.
|
||||
"""
|
||||
events = sample["events"]
|
||||
input = sample["input"]
|
||||
output = sample["output"]
|
||||
prompt = zeta_prompt.format(events, input)
|
||||
|
||||
# following the original implementation, extract the focused region
|
||||
# from the raw output
|
||||
output_start_index = output.find(original_start_marker)
|
||||
output_focused_region = output[output_start_index:]
|
||||
expected_output = output_focused_region
|
||||
|
||||
return {"prompt": prompt, "expected_output": expected_output}
|
||||
|
||||
|
||||
class NextEditPredictionDataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a Next Edit Prediction dataset.
|
||||
"""
|
||||
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"zed-industries/zeta",
|
||||
}
|
||||
MAPPING_PROMPT_FUNCS = {
|
||||
"zed-industries/zeta": _format_zeta_prompt,
|
||||
}
|
||||
|
||||
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int, **kwargs):
|
||||
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(self.dataset_path)
|
||||
if formatting_prompt_func is None:
|
||||
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
|
||||
samples = []
|
||||
for sample in self.data:
|
||||
sample = formatting_prompt_func(sample)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=sample["prompt"],
|
||||
prompt_len=len(tokenizer(sample["prompt"]).input_ids),
|
||||
expected_output_len=len(
|
||||
tokenizer(sample["expected_output"]).input_ids
|
||||
),
|
||||
)
|
||||
)
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# ASR Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class ASRDataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a ASR dataset for transcription.
|
||||
Tested on the following set:
|
||||
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| Dataset | Domain | Speaking Style | hf-subset |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
|
||||
| | | | release3-speaker-adaptation |
|
||||
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
|
||||
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
|
||||
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
|
||||
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
|
||||
| AMI | Meetings | Spontaneous | ihm, sdm |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"openslr/librispeech_asr",
|
||||
"facebook/voxpopuli",
|
||||
"LIUM/tedlium",
|
||||
"edinburghcstr/ami",
|
||||
"speechcolab/gigaspeech",
|
||||
"kensho/spgispeech",
|
||||
}
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
# TODO Whisper-specific. Abstract interface when more models are supported.
|
||||
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>"
|
||||
skip_long_audios: bool = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
import librosa
|
||||
|
||||
output_len = output_len if output_len is not None else self.DEFAULT_OUTPUT_LEN
|
||||
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests = []
|
||||
skipped = 0
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
audio = item["audio"]
|
||||
y, sr = audio["array"], audio["sampling_rate"]
|
||||
duration_s = librosa.get_duration(y=y, sr=sr)
|
||||
# Whisper max supported duration
|
||||
if self.skip_long_audios and duration_s > 30:
|
||||
skipped += 1
|
||||
continue
|
||||
|
||||
mm_content = {"audio": (y, sr)}
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
)
|
||||
)
|
||||
if skipped:
|
||||
logger.warning(
|
||||
"%d samples discarded from dataset due to"
|
||||
" their length being greater than"
|
||||
" what Whisper supports.",
|
||||
skipped,
|
||||
)
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
@ -1,34 +1,36 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark the latency of processing a single batch of requests."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from typing import Any, Optional
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from benchmark_utils import (convert_to_pytorch_benchmark_format, get_requests,
|
||||
validate_dataset, write_to_json)
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
import vllm.envs as envs
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.inputs import PromptType
|
||||
from vllm.inputs import TextPrompt, TokensPrompt
|
||||
from vllm.sampling_params import BeamSearchParams
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(
|
||||
args: argparse.Namespace, results: dict[str, Any]
|
||||
) -> None:
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any]) -> None:
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={"latency": results["latencies"]},
|
||||
extra_info={k: results[k] for k in ["avg_latency", "percentiles"]},
|
||||
)
|
||||
extra_info={k: results[k]
|
||||
for k in ["avg_latency", "percentiles"]})
|
||||
if pt_records:
|
||||
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
|
||||
write_to_json(pt_file, pt_records)
|
||||
@ -43,34 +45,40 @@ def main(args: argparse.Namespace):
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert llm.llm_engine.model_config.max_model_len >= (
|
||||
args.input_len + args.output_len
|
||||
), (
|
||||
"Please ensure that max_model_len is greater than"
|
||||
" the sum of input_len and output_len."
|
||||
)
|
||||
args.input_len +
|
||||
args.output_len), ("Please ensure that max_model_len is greater than"
|
||||
" the sum of input_len and output_len.")
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
temperature=1.0,
|
||||
temperature=0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize,
|
||||
)
|
||||
print(sampling_params)
|
||||
dummy_prompt_token_ids = np.random.randint(
|
||||
10000, size=(args.batch_size, args.input_len)
|
||||
)
|
||||
dummy_prompts: list[PromptType] = [
|
||||
{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()
|
||||
]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
requests = get_requests(args.batch_size, args, tokenizer)
|
||||
prompts: list[Union[TextPrompt, TokensPrompt]] = []
|
||||
for request in requests:
|
||||
prompts.append(
|
||||
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
|
||||
multi_modal_data=request.multi_modal_data)
|
||||
if "prompt_token_ids" in request.prompt else \
|
||||
TextPrompt(prompt=request.prompt,
|
||||
multi_modal_data=request.multi_modal_data))
|
||||
|
||||
def llm_generate():
|
||||
if not args.use_beam_search:
|
||||
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False)
|
||||
llm.generate(prompts,
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=False)
|
||||
else:
|
||||
llm.beam_search(
|
||||
dummy_prompts,
|
||||
prompts,
|
||||
BeamSearchParams(
|
||||
beam_width=args.n,
|
||||
max_tokens=args.output_len,
|
||||
@ -80,9 +88,16 @@ def main(args: argparse.Namespace):
|
||||
|
||||
def run_to_completion(profile_dir: Optional[str] = None):
|
||||
if profile_dir:
|
||||
llm.start_profile()
|
||||
llm_generate()
|
||||
llm.stop_profile()
|
||||
with torch.profiler.profile(
|
||||
activities=[
|
||||
torch.profiler.ProfilerActivity.CPU,
|
||||
torch.profiler.ProfilerActivity.CUDA,
|
||||
],
|
||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
||||
str(profile_dir)),
|
||||
) as p:
|
||||
llm_generate()
|
||||
print(p.key_averages().table(sort_by="self_cuda_time_total"))
|
||||
else:
|
||||
start_time = time.perf_counter()
|
||||
llm_generate()
|
||||
@ -95,7 +110,10 @@ def main(args: argparse.Namespace):
|
||||
run_to_completion(profile_dir=None)
|
||||
|
||||
if args.profile:
|
||||
profile_dir = envs.VLLM_TORCH_PROFILER_DIR
|
||||
profile_dir = args.profile_result_dir
|
||||
if not profile_dir:
|
||||
profile_dir = (Path(".") / "vllm_benchmark_result" /
|
||||
f"latency_result_{time.time()}")
|
||||
print(f"Profiling (results will be saved to '{profile_dir}')...")
|
||||
run_to_completion(profile_dir=profile_dir)
|
||||
return
|
||||
@ -126,8 +144,7 @@ def main(args: argparse.Namespace):
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the latency of processing a single batch of "
|
||||
"requests till completion."
|
||||
)
|
||||
"requests till completion.")
|
||||
parser.add_argument("--input-len", type=int, default=32)
|
||||
parser.add_argument("--output-len", type=int, default=128)
|
||||
parser.add_argument("--batch-size", type=int, default=8)
|
||||
@ -144,14 +161,22 @@ if __name__ == "__main__":
|
||||
default=10,
|
||||
help="Number of iterations to run for warmup.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-iters", type=int, default=30, help="Number of iterations to run."
|
||||
)
|
||||
parser.add_argument("--num-iters",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of iterations to run.")
|
||||
parser.add_argument(
|
||||
"--profile",
|
||||
action="store_true",
|
||||
help="profile the generation process of a single batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--profile-result-dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help=("path to save the pytorch profiler output. Can be visualized "
|
||||
"with ui.perfetto.dev or Tensorboard."),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
type=str,
|
||||
@ -161,20 +186,47 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=(
|
||||
"Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"
|
||||
),
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
default="sharegpt")
|
||||
# random dataset
|
||||
parser.add_argument(
|
||||
"--random-range-ratio",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Range of sampled ratio of input/output length, "
|
||||
"used only for RandomDataSet.",
|
||||
)
|
||||
parser.add_argument("--dataset-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset")
|
||||
|
||||
# LoRA
|
||||
parser.add_argument(
|
||||
"--lora-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the lora adapters to use. This can be an absolute path, "
|
||||
"a relative path, or a Hugging Face model identifier.")
|
||||
|
||||
parser.add_argument("--prefix-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Number of prefix tokens per request."
|
||||
"This is for the RandomDataset and SonnetDataset")
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
# V1 enables prefix caching by default which skews the latency
|
||||
# numbers. We need to disable prefix caching by default.
|
||||
parser.set_defaults(enable_prefix_caching=False)
|
||||
args = parser.parse_args()
|
||||
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
|
||||
raise OSError(
|
||||
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
|
||||
"Please set it to a valid path to use torch profiler."
|
||||
)
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
args.backend = "vllm"
|
||||
validate_dataset(args)
|
||||
random.seed(0)
|
||||
main(args)
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Offline benchmark to test the long document QA throughput.
|
||||
|
||||
@ -77,7 +76,7 @@ def repeat_prompts(prompts, repeat_count, mode: str):
|
||||
- 'random': Shuffle the prompts randomly after repetition.
|
||||
- 'tile': Repeat the entire prompt list in sequence.
|
||||
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
|
||||
- 'interleave': Repeat each prompt consecutively before moving to
|
||||
- 'interleave': Repeat each prompt consecutively before moving to
|
||||
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
|
||||
|
||||
Returns:
|
||||
@ -87,21 +86,20 @@ def repeat_prompts(prompts, repeat_count, mode: str):
|
||||
ValueError: If an invalid mode is provided.
|
||||
"""
|
||||
print("Repeat mode: ", mode)
|
||||
if mode == "random":
|
||||
if mode == 'random':
|
||||
repeated_prompts = prompts * repeat_count
|
||||
random.shuffle(repeated_prompts)
|
||||
return repeated_prompts
|
||||
elif mode == "tile":
|
||||
elif mode == 'tile':
|
||||
return prompts * repeat_count
|
||||
elif mode == "interleave":
|
||||
elif mode == 'interleave':
|
||||
repeated_prompts = []
|
||||
for prompt in prompts:
|
||||
repeated_prompts.extend([prompt] * repeat_count)
|
||||
return repeated_prompts
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Invalid mode: {mode}, only support 'random', 'tile', 'interleave'"
|
||||
)
|
||||
raise ValueError(f"Invalid mode: {mode}, only support "
|
||||
"'random', 'tile', 'interleave'")
|
||||
|
||||
|
||||
def main(args):
|
||||
@ -111,16 +109,16 @@ def main(args):
|
||||
# we append the document id at the beginning to avoid any of the document
|
||||
# being the prefix of other documents
|
||||
prompts = [
|
||||
str(i) + " ".join(["hi"] * args.document_length)
|
||||
str(i) + ' '.join(['hi'] * args.document_length)
|
||||
for i in range(args.num_documents)
|
||||
]
|
||||
|
||||
prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)
|
||||
|
||||
warmup_prompts = [
|
||||
"This is warm up request " + str(i) + " ".join(["hi"] * args.document_length)
|
||||
for i in range(args.num_documents)
|
||||
]
|
||||
"This is warm up request " + str(i) + \
|
||||
' '.join(['hi'] * args.document_length)
|
||||
for i in range(args.num_documents)]
|
||||
|
||||
# Create the LLM engine
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
@ -144,52 +142,42 @@ def main(args):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the performance with or "
|
||||
"without automatic prefix caching."
|
||||
)
|
||||
description=
|
||||
'Benchmark the performance with or without automatic prefix caching.')
|
||||
|
||||
parser.add_argument(
|
||||
"--document-length",
|
||||
'--document-length',
|
||||
type=int,
|
||||
# Roughly the number of tokens for a system paper,
|
||||
# excluding images
|
||||
default=20000,
|
||||
help="Range of input lengths for sampling prompts, "
|
||||
'specified as "min:max" (e.g., "128:256").',
|
||||
)
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
|
||||
parser.add_argument(
|
||||
"--num-documents",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Range of input lengths for sampling prompts, "
|
||||
'specified as "min:max" (e.g., "128:256").',
|
||||
)
|
||||
parser.add_argument('--num-documents',
|
||||
type=int,
|
||||
default=8,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
|
||||
parser.add_argument("--output-len", type=int, default=10)
|
||||
parser.add_argument('--output-len', type=int, default=10)
|
||||
|
||||
parser.add_argument(
|
||||
"--repeat-count",
|
||||
type=int,
|
||||
default=2,
|
||||
help="Number of times to repeat each prompt",
|
||||
)
|
||||
parser.add_argument('--repeat-count',
|
||||
type=int,
|
||||
default=2,
|
||||
help='Number of times to repeat each prompt')
|
||||
|
||||
parser.add_argument(
|
||||
"--repeat-mode",
|
||||
type=str,
|
||||
default="random",
|
||||
help="The mode to repeat prompts. The supported "
|
||||
'modes are "random", "tile", and "interleave". '
|
||||
"See repeat_prompts() in the source code for details.",
|
||||
)
|
||||
parser.add_argument("--repeat-mode",
|
||||
type=str,
|
||||
default='random',
|
||||
help='The mode to repeat prompts. The supported '
|
||||
'modes are "random", "tile", and "interleave". '
|
||||
'See repeat_prompts() in the source code for details.')
|
||||
|
||||
parser.add_argument(
|
||||
"--shuffle-seed",
|
||||
type=int,
|
||||
default=0,
|
||||
help='Random seed when the repeat mode is "random"',
|
||||
)
|
||||
parser.add_argument("--shuffle-seed",
|
||||
type=int,
|
||||
default=0,
|
||||
help='Random seed when the repeat mode is "random"')
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Benchmark the efficiency of prefix caching.
|
||||
|
||||
@ -64,15 +63,14 @@ class Request:
|
||||
output_len: int
|
||||
|
||||
|
||||
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> list[int]:
|
||||
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
|
||||
vocab = tokenizer.get_vocab()
|
||||
all_special_ids = set(tokenizer.all_special_ids)
|
||||
|
||||
# Remove the special tokens.
|
||||
return random.choices(
|
||||
[v for k, v in vocab.items() if k not in all_special_ids],
|
||||
k=length,
|
||||
)
|
||||
vocab = {
|
||||
k: v
|
||||
for k, v in vocab.items() if k not in tokenizer.all_special_ids
|
||||
}
|
||||
return random.choices(list(vocab.values()), k=length)
|
||||
|
||||
|
||||
def sample_requests_from_dataset(
|
||||
@ -91,10 +89,8 @@ def sample_requests_from_dataset(
|
||||
# Filter out the conversations with less than 2 turns.
|
||||
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
||||
# Only keep the first two turns of each conversation.
|
||||
dataset = [
|
||||
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
||||
for data in dataset
|
||||
]
|
||||
dataset = [(data["conversations"][0]["value"],
|
||||
data["conversations"][1]["value"]) for data in dataset]
|
||||
|
||||
# Shuffle the dataset.
|
||||
random.shuffle(dataset)
|
||||
@ -115,9 +111,8 @@ def sample_requests_from_dataset(
|
||||
completion = dataset[i][1]
|
||||
completion_token_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = (
|
||||
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
|
||||
)
|
||||
output_len = (len(completion_token_ids)
|
||||
if fixed_output_len is None else fixed_output_len)
|
||||
if min_len <= prompt_len <= max_len:
|
||||
filtered_requests.append(Request(prompt, prompt_len, output_len))
|
||||
|
||||
@ -131,27 +126,27 @@ def sample_requests_from_random(
|
||||
fixed_output_len: Optional[int],
|
||||
prefix_len: int,
|
||||
) -> list[Request]:
|
||||
|
||||
requests = []
|
||||
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
|
||||
min_len, max_len = input_length_range
|
||||
|
||||
for i in range(num_requests):
|
||||
unique_part_token_ids = sample_tokens(
|
||||
tokenizer, random.randint(min_len - prefix_len, max_len - prefix_len)
|
||||
)
|
||||
tokenizer,
|
||||
random.randint(min_len - prefix_len, max_len - prefix_len))
|
||||
prompt_token_ids = prefix_token_ids + unique_part_token_ids
|
||||
prompt = tokenizer.decode(prompt_token_ids)
|
||||
prompt_len = len(prompt_token_ids)
|
||||
assert min_len <= prompt_len <= max_len, (
|
||||
f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
|
||||
)
|
||||
assert (min_len <= prompt_len <= max_len
|
||||
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
|
||||
requests.append(Request(prompt, prompt_len, fixed_output_len))
|
||||
return requests
|
||||
|
||||
|
||||
def repeat_and_sort_requests(
|
||||
requests: list[Request], repeat_count: int, sort: bool = False
|
||||
) -> list[str]:
|
||||
def repeat_and_sort_requests(requests: list[Request],
|
||||
repeat_count: int,
|
||||
sort: bool = False) -> list[str]:
|
||||
repeated_requests = requests * repeat_count
|
||||
if sort:
|
||||
repeated_requests.sort(key=lambda x: x[1])
|
||||
@ -162,14 +157,14 @@ def repeat_and_sort_requests(
|
||||
|
||||
def main(args):
|
||||
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
|
||||
input_length_range = tuple(map(int, args.input_length_range.split(":")))
|
||||
input_length_range = tuple(map(int, args.input_length_range.split(':')))
|
||||
random.seed(args.seed)
|
||||
if args.dataset_path is not None:
|
||||
if args.prefix_len > 0:
|
||||
raise ValueError(
|
||||
"prefix-len is not supported when dataset-path is provided."
|
||||
)
|
||||
print(f"Start to sample {args.num_prompts} prompts from {args.dataset_path}")
|
||||
raise ValueError("prefix-len is not supported when "
|
||||
"dataset-path is provided.")
|
||||
print(f"Start to sample {args.num_prompts} prompts "
|
||||
f"from {args.dataset_path}")
|
||||
filtered_requests = sample_requests_from_dataset(
|
||||
dataset_path=args.dataset_path,
|
||||
num_requests=args.num_prompts,
|
||||
@ -199,16 +194,14 @@ def main(args):
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize,
|
||||
)
|
||||
sampling_params = SamplingParams(temperature=0,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize)
|
||||
|
||||
print("Testing filtered requests")
|
||||
prompts = repeat_and_sort_requests(
|
||||
filtered_requests, repeat_count=args.repeat_count, sort=args.sort
|
||||
)
|
||||
prompts = repeat_and_sort_requests(filtered_requests,
|
||||
repeat_count=args.repeat_count,
|
||||
sort=args.sort)
|
||||
|
||||
print("------start generating------")
|
||||
test_prefix(
|
||||
@ -220,35 +213,29 @@ def main(args):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the performance with or without "
|
||||
"automatic prefix caching."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset-path", type=str, default=None, help="Path to the dataset."
|
||||
)
|
||||
parser.add_argument("--output-len", type=int, default=10)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
type=int,
|
||||
required=True,
|
||||
help="Number of the prompts sampled from dataset",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repeat-count",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of times to repeat each prompt",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sort", action="store_true", help="Sort prompts by input length"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-length-range",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Range of input lengths for sampling prompts,"
|
||||
'specified as "min:max" (e.g., "128:256").',
|
||||
)
|
||||
description=
|
||||
'Benchmark the performance with or without automatic prefix caching.')
|
||||
parser.add_argument("--dataset-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset.")
|
||||
parser.add_argument('--output-len', type=int, default=10)
|
||||
parser.add_argument('--num-prompts',
|
||||
type=int,
|
||||
required=True,
|
||||
help="Number of the prompts sampled from dataset")
|
||||
parser.add_argument('--repeat-count',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of times to repeat each prompt')
|
||||
parser.add_argument('--sort',
|
||||
action='store_true',
|
||||
help='Sort prompts by input length')
|
||||
parser.add_argument('--input-length-range',
|
||||
type=str,
|
||||
required=True,
|
||||
help='Range of input lengths for sampling prompts,'
|
||||
'specified as "min:max" (e.g., "128:256").')
|
||||
parser.add_argument(
|
||||
"--prefix-len",
|
||||
type=int,
|
||||
@ -259,12 +246,10 @@ if __name__ == "__main__":
|
||||
"when dataset-path is not provided.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=(
|
||||
"Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"
|
||||
),
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
|
@ -1,7 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Benchmark offline prioritization."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
@ -15,7 +13,7 @@ from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
# Select a equi-probable random priority
|
||||
#Select a equi-probable random priority
|
||||
def get_random_flag():
|
||||
return 0 if random.random() < 0.5 else 1
|
||||
|
||||
@ -35,10 +33,8 @@ def sample_requests(
|
||||
# Filter out the conversations with less than 2 turns.
|
||||
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
||||
# Only keep the first two turns of each conversation.
|
||||
dataset = [
|
||||
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
||||
for data in dataset
|
||||
]
|
||||
dataset = [(data["conversations"][0]["value"],
|
||||
data["conversations"][1]["value"]) for data in dataset]
|
||||
|
||||
# Shuffle the dataset.
|
||||
random.shuffle(dataset)
|
||||
@ -55,9 +51,8 @@ def sample_requests(
|
||||
completion = dataset[i][1]
|
||||
completion_token_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = (
|
||||
len(completion_token_ids) if fixed_output_len is None else fixed_output_len
|
||||
)
|
||||
output_len = len(completion_token_ids
|
||||
) if fixed_output_len is None else fixed_output_len
|
||||
if prompt_len < 4 or output_len < 4:
|
||||
# Prune too short sequences.
|
||||
continue
|
||||
@ -79,16 +74,13 @@ def run_vllm(
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
|
||||
for request in requests
|
||||
), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" input_len and output_len for all requests."
|
||||
)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" input_len and output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts = []
|
||||
@ -105,8 +97,7 @@ def run_vllm(
|
||||
ignore_eos=True,
|
||||
max_tokens=output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
)
|
||||
)
|
||||
))
|
||||
|
||||
start = time.perf_counter()
|
||||
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
|
||||
@ -120,33 +111,26 @@ def main(args: argparse.Namespace):
|
||||
|
||||
# Sample the requests.
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code
|
||||
)
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
if args.dataset is None:
|
||||
# Synthesize a prompt with the given input length.
|
||||
prompt = "hi" * (args.input_len - 1)
|
||||
requests = [
|
||||
(prompt, args.input_len, args.output_len, get_random_flag())
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
requests = [(prompt, args.input_len, args.output_len,
|
||||
get_random_flag()) for _ in range(args.num_prompts)]
|
||||
else:
|
||||
requests = sample_requests(
|
||||
args.dataset, args.num_prompts, tokenizer, args.output_len
|
||||
)
|
||||
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
|
||||
args.output_len)
|
||||
|
||||
if args.backend == "vllm":
|
||||
elapsed_time = run_vllm(
|
||||
requests, args.n, EngineArgs.from_cli_args(args), args.disable_detokenize
|
||||
)
|
||||
elapsed_time = run_vllm(requests, args.n,
|
||||
EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {args.backend}")
|
||||
total_num_tokens = sum(
|
||||
prompt_len + output_len for _, prompt_len, output_len, priority in requests
|
||||
)
|
||||
print(
|
||||
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} tokens/s"
|
||||
)
|
||||
total_num_tokens = sum(prompt_len + output_len
|
||||
for _, prompt_len, output_len, priority in requests)
|
||||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json:
|
||||
@ -163,44 +147,41 @@ def main(args: argparse.Namespace):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
||||
parser.add_argument("--backend",
|
||||
type=str,
|
||||
choices=["vllm", "hf", "mii"],
|
||||
default="vllm")
|
||||
parser.add_argument("--dataset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset.")
|
||||
parser.add_argument("--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Input prompt length for each request")
|
||||
parser.add_argument("--output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.")
|
||||
parser.add_argument("--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.")
|
||||
parser.add_argument("--num-prompts",
|
||||
type=int,
|
||||
default=200,
|
||||
help="Number of prompts to process.")
|
||||
parser.add_argument(
|
||||
"--backend", type=str, choices=["vllm", "hf", "mii"], default="vllm"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset", type=str, default=None, help="Path to the dataset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Input prompt length for each request",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--n", type=int, default=1, help="Number of generated sequences per prompt."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts", type=int, default=200, help="Number of prompts to process."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
'--output-json',
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to save the throughput results in JSON format.",
|
||||
)
|
||||
help='Path to save the throughput results in JSON format.')
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=(
|
||||
"Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"
|
||||
),
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
r"""Benchmark online serving throughput with structured outputs.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
@ -12,7 +11,7 @@ On the client side, run:
|
||||
--model <your_model> \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--structured-output-backend auto \
|
||||
--structured-output-backend xgrammar \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
|
||||
@ -20,7 +19,6 @@ On the client side, run:
|
||||
--endpoint /generate_stream
|
||||
to the end of the command above.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import copy
|
||||
@ -38,15 +36,11 @@ from typing import Optional
|
||||
import datasets
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
||||
RequestFuncOutput)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
from backend_request_func import (
|
||||
ASYNC_REQUEST_FUNCS,
|
||||
RequestFuncInput,
|
||||
RequestFuncOutput,
|
||||
)
|
||||
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
except ImportError:
|
||||
@ -57,9 +51,8 @@ try:
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from vllm.v1.structured_output.backend_xgrammar import (
|
||||
has_xgrammar_unsupported_json_features,
|
||||
)
|
||||
from vllm.v1.structured_output.utils import (
|
||||
has_xgrammar_unsupported_json_features)
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
|
||||
@ -105,7 +98,6 @@ class SampleRequest:
|
||||
prompt_len: The length of the prompt in tokens.
|
||||
expected_output_len: The expected length of the output in tokens.
|
||||
"""
|
||||
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
@ -114,61 +106,60 @@ class SampleRequest:
|
||||
completion: str = None
|
||||
|
||||
|
||||
def sample_requests(
|
||||
tokenizer: PreTrainedTokenizerBase, args: argparse.Namespace
|
||||
) -> list[SampleRequest]:
|
||||
if args.dataset == "json" or args.dataset == "json-unique":
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> list[SampleRequest]:
|
||||
if args.dataset == 'json' or args.dataset == 'json-unique':
|
||||
if args.json_schema_path is None:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
args.json_schema_path = os.path.join(
|
||||
dir_path, "structured_schemas", "structured_schema_1.json"
|
||||
)
|
||||
args.json_schema_path = os.path.join(dir_path,
|
||||
"structured_schemas",
|
||||
"structured_schema_1.json")
|
||||
json_schemas = []
|
||||
with open(args.json_schema_path) as f:
|
||||
schema = json.load(f)
|
||||
|
||||
if args.dataset == "json-unique":
|
||||
json_schemas = [copy.deepcopy(schema) for _ in range(args.num_prompts)]
|
||||
if args.dataset == 'json-unique':
|
||||
json_schemas = [
|
||||
copy.deepcopy(schema) for _ in range(args.num_prompts)
|
||||
]
|
||||
for i in range(len(json_schemas)):
|
||||
if "properties" not in json_schemas[i]:
|
||||
json_schemas[i]["properties"] = {}
|
||||
json_schemas[i]["properties"][f"__optional_field_{uuid.uuid4()}"] = {
|
||||
"type": "string",
|
||||
"description": "An unique optional field to avoid cached schemas",
|
||||
}
|
||||
else:
|
||||
json_schemas = [schema] * args.num_prompts
|
||||
json_schemas[i]["properties"][
|
||||
f"__optional_field_{uuid.uuid4()}"] = {
|
||||
"type":
|
||||
"string",
|
||||
"description":
|
||||
"An unique optional field to avoid cached schemas"
|
||||
}
|
||||
|
||||
def gen_prompt(index: int):
|
||||
return f"Generate an example of a brief user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
|
||||
schema = json_schemas[index % len(json_schemas)]
|
||||
return f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
|
||||
|
||||
def get_schema(index: int):
|
||||
return json_schemas[index % len(json_schemas)]
|
||||
|
||||
requests = [
|
||||
SampleRequest(
|
||||
prompt=gen_prompt(i),
|
||||
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
|
||||
expected_output_len=args.output_len,
|
||||
schema=get_schema(i),
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
SampleRequest(prompt=gen_prompt(i),
|
||||
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
|
||||
expected_output_len=args.output_len,
|
||||
schema=get_schema(i),
|
||||
structure_type=args.structure_type)
|
||||
for i in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "grammar":
|
||||
schema = """
|
||||
root ::= select_statement
|
||||
?start: select_statement
|
||||
|
||||
select_statement ::= "SELECT " column " from " table " where " condition
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
|
||||
column ::= "col_1 " | "col_2 "
|
||||
?column_list: column_name ("," column_name)*
|
||||
|
||||
table ::= "table_1 " | "table_2 "
|
||||
?table_name: identifier
|
||||
|
||||
condition ::= column "= " number
|
||||
?column_name: identifier
|
||||
|
||||
number ::= "1 " | "2 "
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
"""
|
||||
prompt = "Generate an SQL query to show the 'username' \
|
||||
and 'email' from the 'users' table."
|
||||
@ -176,13 +167,11 @@ def sample_requests(
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
@ -196,13 +185,11 @@ def sample_requests(
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=regex,
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=regex,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
@ -213,55 +200,47 @@ def sample_requests(
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=choice,
|
||||
structure_type=args.structure_type,
|
||||
)
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=choice,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "xgrammar_bench":
|
||||
requests: list[SampleRequest] = []
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval", split="train")
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
|
||||
split="train")
|
||||
full_dataset_len = len(dataset)
|
||||
|
||||
def _filter_func(item):
|
||||
import json
|
||||
|
||||
schema = json.loads(item["schema"])
|
||||
return not has_xgrammar_unsupported_json_features(schema)
|
||||
|
||||
dataset = dataset.filter(_filter_func)
|
||||
num_filtered_out = full_dataset_len - len(dataset)
|
||||
print(
|
||||
f"dataset has {len(dataset)} entries after filtering "
|
||||
f"out {num_filtered_out} entries with unsupported features"
|
||||
)
|
||||
print(f"dataset has {len(dataset)} entries after filtering "
|
||||
f"out {num_filtered_out} entries with unsupported features")
|
||||
len_dataset = len(dataset)
|
||||
for data_point_idx in range(args.num_prompts):
|
||||
idx = data_point_idx
|
||||
while idx >= len_dataset:
|
||||
idx -= len_dataset
|
||||
schema = dataset["schema"][idx]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
dataset["prompt"][idx], tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
|
||||
tokenize=False)
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
completion = dataset["completion"][idx]
|
||||
|
||||
requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type,
|
||||
completion=completion,
|
||||
)
|
||||
)
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type,
|
||||
completion=completion))
|
||||
|
||||
return requests
|
||||
|
||||
@ -293,8 +272,7 @@ async def get_request(
|
||||
|
||||
# Calculate scale parameter theta to maintain the desired request_rate.
|
||||
assert burstiness > 0, (
|
||||
f"A positive burstiness factor is expected, but given {burstiness}."
|
||||
)
|
||||
f"A positive burstiness factor is expected, but given {burstiness}.")
|
||||
theta = 1.0 / (request_rate * burstiness)
|
||||
|
||||
for i, request in enumerate(input_requests):
|
||||
@ -336,8 +314,8 @@ def calculate_metrics(
|
||||
# multiple output tokens may be bundled together
|
||||
# Note : this may inflate the output token count slightly
|
||||
output_len = len(
|
||||
tokenizer(outputs[i].generated_text, add_special_tokens=False).input_ids
|
||||
)
|
||||
tokenizer(outputs[i].generated_text,
|
||||
add_special_tokens=False).input_ids)
|
||||
actual_output_lens.append(output_len)
|
||||
total_input += input_requests[i].prompt_len
|
||||
tpot = 0
|
||||
@ -361,19 +339,16 @@ def calculate_metrics(
|
||||
|
||||
if "ttft" in goodput_config_dict:
|
||||
valid_metrics.append(ttfts)
|
||||
slo_values.append(
|
||||
goodput_config_dict["ttft"] / MILLISECONDS_TO_SECONDS_CONVERSION
|
||||
)
|
||||
slo_values.append(goodput_config_dict["ttft"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "tpot" in goodput_config_dict:
|
||||
valid_metrics.append(all_tpots)
|
||||
slo_values.append(
|
||||
goodput_config_dict["tpot"] / MILLISECONDS_TO_SECONDS_CONVERSION
|
||||
)
|
||||
slo_values.append(goodput_config_dict["tpot"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "e2el" in goodput_config_dict:
|
||||
valid_metrics.append(e2els)
|
||||
slo_values.append(
|
||||
goodput_config_dict["e2el"] / MILLISECONDS_TO_SECONDS_CONVERSION
|
||||
)
|
||||
slo_values.append(goodput_config_dict["e2el"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
|
||||
for req_metric in zip(*valid_metrics):
|
||||
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
|
||||
@ -384,8 +359,7 @@ def calculate_metrics(
|
||||
warnings.warn(
|
||||
"All requests failed. This is likely due to a misconfiguration "
|
||||
"on the benchmark arguments.",
|
||||
stacklevel=2,
|
||||
)
|
||||
stacklevel=2)
|
||||
metrics = BenchmarkMetrics(
|
||||
completed=completed,
|
||||
total_input=total_input,
|
||||
@ -394,31 +368,27 @@ def calculate_metrics(
|
||||
request_goodput=good_completed / dur_s,
|
||||
output_throughput=sum(actual_output_lens) / dur_s,
|
||||
total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s,
|
||||
mean_ttft_ms=np.mean(ttfts or 0)
|
||||
* 1000, # ttfts is empty if streaming is not supported by backend
|
||||
mean_ttft_ms=np.mean(ttfts or 0) *
|
||||
1000, # ttfts is empty if streaming is not supported by backend
|
||||
std_ttft_ms=np.std(ttfts or 0) * 1000,
|
||||
median_ttft_ms=np.median(ttfts or 0) * 1000,
|
||||
percentiles_ttft_ms=[
|
||||
(p, np.percentile(ttfts or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
mean_tpot_ms=np.mean(tpots or 0) * 1000,
|
||||
std_tpot_ms=np.std(tpots or 0) * 1000,
|
||||
median_tpot_ms=np.median(tpots or 0) * 1000,
|
||||
percentiles_tpot_ms=[
|
||||
(p, np.percentile(tpots or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
mean_itl_ms=np.mean(itls or 0) * 1000,
|
||||
std_itl_ms=np.std(itls or 0) * 1000,
|
||||
median_itl_ms=np.median(itls or 0) * 1000,
|
||||
percentiles_itl_ms=[
|
||||
(p, np.percentile(itls or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
mean_e2el_ms=np.mean(e2els or 0) * 1000,
|
||||
std_e2el_ms=np.std(e2els or 0) * 1000,
|
||||
median_e2el_ms=np.median(e2els or 0) * 1000,
|
||||
percentiles_e2el_ms=[
|
||||
(p, np.percentile(e2els or 0, p) * 1000) for p in selected_percentiles
|
||||
],
|
||||
percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000)
|
||||
for p in selected_percentiles],
|
||||
)
|
||||
|
||||
return metrics, actual_output_lens
|
||||
@ -440,6 +410,7 @@ async def benchmark(
|
||||
ignore_eos: bool,
|
||||
max_concurrency: Optional[int],
|
||||
structured_output_ratio: float,
|
||||
structured_output_backend: str,
|
||||
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||
):
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
@ -451,17 +422,18 @@ async def benchmark(
|
||||
extra_body = {}
|
||||
# Add the schema to the extra_body
|
||||
extra_body[request.structure_type] = request.schema
|
||||
# Add the specific structured_output_backend
|
||||
extra_body["guided_decoding_backend"] = structured_output_backend
|
||||
return extra_body
|
||||
|
||||
print("Starting initial single prompt test run...")
|
||||
structured_output_req_idx = random.sample(
|
||||
range(len(input_requests)), int(len(input_requests) * structured_output_ratio)
|
||||
)
|
||||
range(len(input_requests)),
|
||||
int(len(input_requests) * structured_output_ratio))
|
||||
|
||||
test_request = input_requests[0]
|
||||
test_req_extra_body = (
|
||||
prepare_extra_body(test_request) if 0 in structured_output_req_idx else None
|
||||
)
|
||||
test_req_extra_body = (prepare_extra_body(test_request)
|
||||
if 0 in structured_output_req_idx else None)
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=test_request.prompt,
|
||||
@ -475,8 +447,7 @@ async def benchmark(
|
||||
if not test_output.success:
|
||||
raise ValueError(
|
||||
"Initial test run failed - Please make sure benchmark arguments "
|
||||
f"are correctly specified. Error: {test_output.error}"
|
||||
)
|
||||
f"are correctly specified. Error: {test_output.error}")
|
||||
else:
|
||||
print("Initial test run completed. Starting main benchmark run...")
|
||||
|
||||
@ -495,7 +466,10 @@ async def benchmark(
|
||||
if profile_output.success:
|
||||
print("Profiler started")
|
||||
|
||||
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
|
||||
if burstiness == 1.0:
|
||||
distribution = "Poisson process"
|
||||
else:
|
||||
distribution = "Gamma distribution"
|
||||
|
||||
print(f"Traffic request rate: {request_rate}")
|
||||
print(f"Burstiness factor: {burstiness} ({distribution})")
|
||||
@ -507,21 +481,24 @@ async def benchmark(
|
||||
# and it will simplify the code in limited_request_func.
|
||||
# semaphore = (asyncio.Semaphore(max_concurrency)
|
||||
# if max_concurrency else contextlib.nullcontext())
|
||||
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
|
||||
semaphore = (asyncio.Semaphore(max_concurrency)
|
||||
if max_concurrency else None)
|
||||
|
||||
async def limited_request_func(request_func_input, pbar):
|
||||
if semaphore is None:
|
||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
return await request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)
|
||||
async with semaphore:
|
||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
return await request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
tasks: list[asyncio.Task] = []
|
||||
expected: list[str] = []
|
||||
async for i, request in get_request(input_requests, request_rate, burstiness):
|
||||
extra_body = (
|
||||
prepare_extra_body(request) if i in structured_output_req_idx else None
|
||||
)
|
||||
async for i, request in get_request(input_requests, request_rate,
|
||||
burstiness):
|
||||
extra_body = prepare_extra_body(
|
||||
request) if i in structured_output_req_idx else None
|
||||
request_func_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=request.prompt,
|
||||
@ -534,9 +511,8 @@ async def benchmark(
|
||||
expected.append(request.completion)
|
||||
tasks.append(
|
||||
asyncio.create_task(
|
||||
limited_request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
)
|
||||
)
|
||||
limited_request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)))
|
||||
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
|
||||
if profile:
|
||||
@ -568,58 +544,54 @@ async def benchmark(
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
)
|
||||
|
||||
print("{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
|
||||
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
|
||||
print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
|
||||
print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
|
||||
print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
|
||||
benchmark_duration))
|
||||
print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
|
||||
print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Request throughput (req/s):", metrics.request_throughput
|
||||
)
|
||||
)
|
||||
print("{:<40} {:<10}".format("Total generated tokens:",
|
||||
metrics.total_output))
|
||||
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
|
||||
metrics.request_throughput))
|
||||
if goodput_config_dict:
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Request goodput (req/s):", metrics.request_goodput
|
||||
)
|
||||
)
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Output token throughput (tok/s):", metrics.output_throughput
|
||||
)
|
||||
)
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
"Total Token throughput (tok/s):", metrics.total_token_throughput
|
||||
)
|
||||
)
|
||||
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
|
||||
metrics.request_goodput))
|
||||
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
|
||||
metrics.output_throughput))
|
||||
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
|
||||
metrics.total_token_throughput))
|
||||
|
||||
result = {
|
||||
"duration": benchmark_duration,
|
||||
"completed": metrics.completed,
|
||||
"total_input_tokens": metrics.total_input,
|
||||
"total_output_tokens": metrics.total_output,
|
||||
"request_throughput": metrics.request_throughput,
|
||||
"output_throughput": metrics.output_throughput,
|
||||
"total_token_throughput": metrics.total_token_throughput,
|
||||
"ttft_description": pd.Series([output.ttft for output in outputs])
|
||||
.describe()
|
||||
.to_dict(),
|
||||
"tpot_description": pd.Series([output.tpot for output in outputs])
|
||||
.describe()
|
||||
.to_dict(),
|
||||
"duration":
|
||||
benchmark_duration,
|
||||
"completed":
|
||||
metrics.completed,
|
||||
"total_input_tokens":
|
||||
metrics.total_input,
|
||||
"total_output_tokens":
|
||||
metrics.total_output,
|
||||
"request_throughput":
|
||||
metrics.request_throughput,
|
||||
"output_throughput":
|
||||
metrics.output_throughput,
|
||||
"total_token_throughput":
|
||||
metrics.total_token_throughput,
|
||||
"ttft_description":
|
||||
pd.Series([output.ttft for output in outputs]).describe().to_dict(),
|
||||
"tpot_description":
|
||||
pd.Series([output.tpot for output in outputs]).describe().to_dict(),
|
||||
"input_lens": [output.prompt_len for output in outputs],
|
||||
"output_lens": actual_output_lens,
|
||||
"output_lens":
|
||||
actual_output_lens,
|
||||
"ttfts": [output.ttft for output in outputs],
|
||||
"itls": [output.itl for output in outputs],
|
||||
"errors": [output.error for output in outputs],
|
||||
}
|
||||
|
||||
ret = [
|
||||
{"generated": output.generated_text, "expected": gt}
|
||||
for output, gt in zip(outputs, expected)
|
||||
]
|
||||
ret = [{
|
||||
'generated': output.generated_text,
|
||||
'expected': gt
|
||||
} for output, gt in zip(outputs, expected)]
|
||||
|
||||
def process_one_metric(
|
||||
# E.g., "ttft"
|
||||
@ -633,35 +605,29 @@ async def benchmark(
|
||||
# metric.
|
||||
if metric_attribute_name not in selected_percentile_metrics:
|
||||
return
|
||||
print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
f"Mean {metric_name} (ms):",
|
||||
getattr(metrics, f"mean_{metric_attribute_name}_ms"),
|
||||
)
|
||||
)
|
||||
print(
|
||||
"{:<40} {:<10.2f}".format(
|
||||
f"Median {metric_name} (ms):",
|
||||
getattr(metrics, f"median_{metric_attribute_name}_ms"),
|
||||
)
|
||||
)
|
||||
print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-'))
|
||||
print("{:<40} {:<10.2f}".format(
|
||||
f"Mean {metric_name} (ms):",
|
||||
getattr(metrics, f"mean_{metric_attribute_name}_ms")))
|
||||
print("{:<40} {:<10.2f}".format(
|
||||
f"Median {metric_name} (ms):",
|
||||
getattr(metrics, f"median_{metric_attribute_name}_ms")))
|
||||
result[f"mean_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"mean_{metric_attribute_name}_ms"
|
||||
)
|
||||
metrics, f"mean_{metric_attribute_name}_ms")
|
||||
result[f"median_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"median_{metric_attribute_name}_ms"
|
||||
)
|
||||
metrics, f"median_{metric_attribute_name}_ms")
|
||||
result[f"std_{metric_attribute_name}_ms"] = getattr(
|
||||
metrics, f"std_{metric_attribute_name}_ms"
|
||||
)
|
||||
for p, value in getattr(metrics, f"percentiles_{metric_attribute_name}_ms"):
|
||||
metrics, f"std_{metric_attribute_name}_ms")
|
||||
for p, value in getattr(metrics,
|
||||
f"percentiles_{metric_attribute_name}_ms"):
|
||||
p_word = str(int(p)) if int(p) == p else str(p)
|
||||
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", value))
|
||||
print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):",
|
||||
value))
|
||||
result[f"p{p_word}_{metric_attribute_name}_ms"] = value
|
||||
|
||||
process_one_metric("ttft", "TTFT", "Time to First Token")
|
||||
process_one_metric("tpot", "TPOT", "Time per Output Token (excl. 1st token)")
|
||||
process_one_metric("tpot", "TPOT",
|
||||
"Time per Output Token (excl. 1st token)")
|
||||
process_one_metric("itl", "ITL", "Inter-token Latency")
|
||||
process_one_metric("e2el", "E2EL", "End-to-end Latency")
|
||||
|
||||
@ -671,13 +637,13 @@ async def benchmark(
|
||||
|
||||
|
||||
def evaluate(ret, args):
|
||||
|
||||
def _eval_correctness_json(expected, actual):
|
||||
# extract json string from string using regex
|
||||
import regex as re
|
||||
|
||||
actual = actual.replace("\n", "").replace(" ", "").strip()
|
||||
import re
|
||||
actual = actual.replace('\n', '').replace(' ', '').strip()
|
||||
try:
|
||||
actual = re.search(r"\{.*\}", actual).group()
|
||||
actual = re.search(r'\{.*\}', actual).group()
|
||||
actual = json.loads(actual)
|
||||
except Exception:
|
||||
return False
|
||||
@ -688,33 +654,29 @@ def evaluate(ret, args):
|
||||
return actual in args.choice
|
||||
|
||||
def _eval_correctness_regex(expected, actual):
|
||||
import regex as re
|
||||
|
||||
import re
|
||||
return re.match(args.regex, actual) is not None
|
||||
|
||||
def _eval_correctness(expected, actual):
|
||||
if args.structure_type == "guided_json":
|
||||
if args.structure_type == 'guided_json':
|
||||
return _eval_correctness_json(expected, actual)
|
||||
elif args.structure_type == "guided_regex":
|
||||
elif args.structure_type == 'guided_regex':
|
||||
return _eval_correctness_regex(expected, actual)
|
||||
elif args.structure_type == "guided_choice":
|
||||
elif args.structure_type == 'guided_choice':
|
||||
return _eval_correctness_choice(expected, actual)
|
||||
else:
|
||||
return None
|
||||
|
||||
scores = []
|
||||
for res in ret:
|
||||
score = _eval_correctness(res["expected"], res["generated"])
|
||||
res["correctness"] = score
|
||||
score = _eval_correctness(res['expected'], res['generated'])
|
||||
res['correctness'] = score
|
||||
scores.append(score)
|
||||
|
||||
not_none_scores = [score for score in scores if score is not None]
|
||||
|
||||
return (
|
||||
(sum(not_none_scores) / len(not_none_scores) * 100)
|
||||
if len(not_none_scores) > 0
|
||||
else None
|
||||
)
|
||||
return (sum(not_none_scores) / len(not_none_scores) *
|
||||
100) if len(not_none_scores) > 0 else None
|
||||
|
||||
|
||||
def parse_goodput(slo_pairs):
|
||||
@ -726,10 +688,9 @@ def parse_goodput(slo_pairs):
|
||||
except ValueError as err:
|
||||
raise argparse.ArgumentTypeError(
|
||||
"Invalid format found for service level objectives. "
|
||||
'Specify service level objectives for goodput as "KEY:VALUE" '
|
||||
"Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
"pairs, where the key is a metric name, and the value is a "
|
||||
"number in milliseconds."
|
||||
) from err
|
||||
"number in milliseconds.") from err
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
@ -743,14 +704,12 @@ def check_goodput_args(args):
|
||||
raise ValueError(
|
||||
f"Invalid metric name found, {slo_name}: {slo_val}. "
|
||||
"The service level objective name should be one of "
|
||||
f"{str(VALID_NAMES)}. "
|
||||
)
|
||||
f"{str(VALID_NAMES)}. ")
|
||||
if slo_val < 0:
|
||||
raise ValueError(
|
||||
f"Invalid value found, {slo_name}: {slo_val}. "
|
||||
"The service level objective value should be "
|
||||
"non-negative."
|
||||
)
|
||||
"non-negative.")
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
@ -776,19 +735,19 @@ def main(args: argparse.Namespace):
|
||||
tokenizer_mode=args.tokenizer_mode,
|
||||
)
|
||||
|
||||
if args.dataset == "grammar":
|
||||
args.structure_type = "guided_grammar"
|
||||
elif args.dataset == "regex":
|
||||
args.structure_type = "guided_regex"
|
||||
elif args.dataset == "choice":
|
||||
args.structure_type = "guided_choice"
|
||||
if args.dataset == 'grammar':
|
||||
args.structure_type = 'guided_grammar'
|
||||
elif args.dataset == 'regex':
|
||||
args.structure_type = 'guided_regex'
|
||||
elif args.dataset == 'choice':
|
||||
args.structure_type = 'guided_choice'
|
||||
else:
|
||||
args.structure_type = "guided_json"
|
||||
args.structure_type = 'guided_json'
|
||||
|
||||
if args.no_structured_output:
|
||||
args.structured_output_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f"{args.structured_output_ratio}guided"
|
||||
result_file_name = f'{args.structured_output_ratio}guided'
|
||||
result_file_name += f"_{backend}"
|
||||
result_file_name += f"_{args.request_rate}qps"
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
@ -816,29 +775,37 @@ def main(args: argparse.Namespace):
|
||||
disable_tqdm=args.disable_tqdm,
|
||||
profile=args.profile,
|
||||
selected_percentile_metrics=args.percentile_metrics.split(","),
|
||||
selected_percentiles=[float(p) for p in args.metric_percentiles.split(",")],
|
||||
selected_percentiles=[
|
||||
float(p) for p in args.metric_percentiles.split(",")
|
||||
],
|
||||
ignore_eos=args.ignore_eos,
|
||||
max_concurrency=args.max_concurrency,
|
||||
structured_output_ratio=args.structured_output_ratio,
|
||||
structured_output_backend=args.structured_output_backend,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
)
|
||||
)
|
||||
))
|
||||
|
||||
# Save config and results to json
|
||||
score = evaluate(ret, args)
|
||||
print("correct_rate(%)", score, "\n")
|
||||
print("correct_rate(%)", score, '\n')
|
||||
if args.save_results:
|
||||
results = {
|
||||
"backend": backend,
|
||||
"model_id": model_id,
|
||||
"tokenizer_id": tokenizer_id,
|
||||
"num_prompts": args.num_prompts,
|
||||
"request_rate": args.request_rate
|
||||
if args.request_rate < float("inf")
|
||||
else "inf",
|
||||
"burstiness": args.burstiness,
|
||||
"max_concurrency": args.max_concurrency,
|
||||
"correct_rate(%)": score,
|
||||
"backend":
|
||||
backend,
|
||||
"model_id":
|
||||
model_id,
|
||||
"tokenizer_id":
|
||||
tokenizer_id,
|
||||
"num_prompts":
|
||||
args.num_prompts,
|
||||
"request_rate":
|
||||
args.request_rate if args.request_rate < float("inf") else "inf",
|
||||
"burstiness":
|
||||
args.burstiness,
|
||||
"max_concurrency":
|
||||
args.max_concurrency,
|
||||
"correct_rate(%)":
|
||||
score
|
||||
}
|
||||
results = {"outputs": ret, **results, **benchmark_result}
|
||||
|
||||
@ -847,14 +814,13 @@ def main(args: argparse.Namespace):
|
||||
result_file_name = args.result_filename
|
||||
if args.result_dir:
|
||||
result_file_name = os.path.join(args.result_dir, result_file_name)
|
||||
with open(result_file_name, "w", encoding="utf-8") as outfile:
|
||||
with open(result_file_name, "w", encoding='utf-8') as outfile:
|
||||
json.dump(results, outfile, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the online serving throughput."
|
||||
)
|
||||
description="Benchmark the online serving throughput.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
@ -876,14 +842,16 @@ if __name__ == "__main__":
|
||||
default="/v1/completions",
|
||||
help="API endpoint.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default="json",
|
||||
choices=["json", "json-unique", "grammar", "regex", "choice", "xgrammar_bench"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--json-schema-path", type=str, default=None, help="Path to json schema."
|
||||
)
|
||||
parser.add_argument("--dataset",
|
||||
default='json',
|
||||
choices=[
|
||||
'json', 'json-unique', 'grammar', 'regex',
|
||||
'choice', 'xgrammar_bench'
|
||||
])
|
||||
parser.add_argument("--json_schema_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to json schema.")
|
||||
parser.add_argument(
|
||||
"--max-concurrency",
|
||||
type=int,
|
||||
@ -895,8 +863,7 @@ if __name__ == "__main__":
|
||||
"initiated, this argument will control how many are actually allowed "
|
||||
"to execute at a time. This means that when used in combination, the "
|
||||
"actual request rate may be lower than specified with --request-rate, "
|
||||
"if the server is not processing requests fast enough to keep up.",
|
||||
)
|
||||
"if the server is not processing requests fast enough to keep up.")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
@ -906,13 +873,15 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer-mode",
|
||||
type=str,
|
||||
default="auto",
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
@ -989,51 +958,50 @@ if __name__ == "__main__":
|
||||
"--ignore-eos",
|
||||
action="store_true",
|
||||
help="Set ignore_eos flag when sending the benchmark request."
|
||||
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.",
|
||||
)
|
||||
"Warning: ignore_eos is not supported in deepspeed_mii and tgi.")
|
||||
parser.add_argument(
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-separated list of selected metrics to report percentils. "
|
||||
help="Comma-seperated list of selected metrics to report percentils. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
'Allowed metric names are "ttft", "tpot", "itl", "e2el". '
|
||||
'Default value is "ttft,tpot,itl".',
|
||||
)
|
||||
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
|
||||
"Default value is \"ttft,tpot,itl\".")
|
||||
parser.add_argument(
|
||||
"--metric-percentiles",
|
||||
type=str,
|
||||
default="99",
|
||||
help="Comma-separated list of percentiles for selected metrics. "
|
||||
'To report 25-th, 50-th, and 75-th percentiles, use "25,50,75". '
|
||||
'Default value is "99". '
|
||||
'Use "--percentile-metrics" to select metrics.',
|
||||
help="Comma-seperated list of percentiles for selected metrics. "
|
||||
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
|
||||
"Default value is \"99\". "
|
||||
"Use \"--percentile-metrics\" to select metrics.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--goodput",
|
||||
nargs="+",
|
||||
required=False,
|
||||
help='Specify service level objectives for goodput as "KEY:VALUE" '
|
||||
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
"pairs, where the key is a metric name, and the value is in "
|
||||
'milliseconds. Multiple "KEY:VALUE" pairs can be provided, '
|
||||
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
|
||||
"separated by spaces. Allowed request level metric names are "
|
||||
'"ttft", "tpot", "e2el". For more context on the definition of '
|
||||
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
|
||||
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
|
||||
"and the blog: https://hao-ai-lab.github.io/blogs/distserve",
|
||||
)
|
||||
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
|
||||
|
||||
parser.add_argument("--no-structured-output",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.")
|
||||
parser.add_argument("--structured-output-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Structured Outputs requests")
|
||||
parser.add_argument(
|
||||
"--no-structured-output",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--structured-output-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Structured Outputs requests",
|
||||
)
|
||||
"--structured-output-backend",
|
||||
type=str,
|
||||
choices=["outlines", "lm-format-enforcer", "xgrammar", "guidance"],
|
||||
default="xgrammar",
|
||||
help="Backend to use for structured outputs")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user