Compare commits

...

106 Commits

Author SHA1 Message Date
b6553be1bc [Misc] Slight improvement of the BNB (#19418)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-06-10 13:51:49 +00:00
64a9af5afa Simplify ep kernels installation (#19412)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-06-10 20:06:08 +08:00
e4248849ec [BugFix][CPU] Fix CPU CI by ignore collecting test_pixtral (#19411)
Signed-off-by: jiang.li <jiang1.li@intel.com>
2025-06-10 12:02:40 +00:00
467bef18a3 [BugFix][FlashInfer] Fix attention backend interface mismatch with unexpected keyword use_irope (#19134)
Signed-off-by: Yunqiu Guo <guorachel@meta.com>
2025-06-10 16:48:51 +08:00
5f1ac1e1d1 Revert "[v1] Add fp32 support to v1 engine through flex attn" (#19404) 2025-06-10 01:30:20 -07:00
9368cc90b2 Automatically bind CPU OMP Threads of a rank to CPU ids of a NUMA node. (#17930)
Signed-off-by: Tsai, Louie <louie.tsai@intel.com>
Co-authored-by: Li, Jiang <bigpyj64@gmail.com>
2025-06-10 06:22:05 +00:00
32b3946bb4 Add clear documentation around the impact of debugging flag (#19369)
Signed-off-by: Anna Pendleton <pendleton@google.com>
2025-06-10 06:16:09 +00:00
6b1391ca7e [Misc] refactor neuron_multimodal and profiling (#19397)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-06-10 06:12:42 +00:00
a3f66e75d1 Add security warning to bug report template (#19365)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-06-10 06:06:36 +00:00
319cb1e351 [Core] Batch multi modal input using pinned memory (#19169)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
2025-06-10 13:44:59 +08:00
1efef71645 [Bugfix] Fix modelscope token passed in (#19389)
Signed-off-by: wangli <wangli858794774@gmail.com>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-06-10 13:39:37 +08:00
646d62f636 [Core] Use tuple for kv cache group block ids (#19175)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-06-10 07:01:17 +02:00
6cd4ae8acd [Frontend] Add tqdm_leave_pbar to control progress bar visibility (#19357)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-06-10 04:55:09 +00:00
c016047ed7 Fix docs/mkdocs/hooks/remove_announcement.py (#19382) 2025-06-09 21:36:54 -07:00
9af6d22e4c Use xla flag to improve the quantized model performance (#19303)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-06-10 01:28:45 +00:00
4589b94032 [Bugfix] Fix benchmark_moe.py (#19016)
Signed-off-by: Tianyu Guo <guoty9@mail2.sysu.edu.cn>
2025-06-09 18:04:36 -07:00
cc867be19c [V1] Reuse V0's memory_profiling util for gpu worker memory profiling (#19312)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-06-10 08:40:01 +08:00
3a7cd627a8 [Misc] Fix a config typo in disable_hybrid_kv_cache_manager configuration (#19383)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-06-09 16:41:51 -07:00
8058c91108 [HOT-FIX] Add kv_sharing_target_layer_name argument to cutlass_mla backend (#19374)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
2025-06-09 19:00:07 -04:00
7d44c469fe [TPU]Fix KV cache sharing tests (#19371) 2025-06-09 18:38:15 -04:00
31f58be96a [Frontend] Make TIMEOUT_KEEP_ALIVE configurable through env var (#18472)
Signed-off-by: liusiqian <liusiqian@tal.com>
2025-06-09 21:41:21 +00:00
ebb2f383b8 [Quantization] Bump compressed-tensors version (#19295)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-06-09 14:33:15 -07:00
c1c7dbbeeb [Bugfix][Core] Prevent token lengths exceeding max_model_len in V0 (#19348)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-06-09 23:01:29 +08:00
5cf2daea9a [Misc] Fixes and Optimizations for DeepEP + DeepGEMM combination. (#19298)
Signed-off-by: Varun <vsundarr@redhat.com>
Co-authored-by: Varun <vsundarr@redhat.com>
2025-06-09 10:50:39 -04:00
b8089195b4 [v1] Add fp32 support to v1 engine through flex attn (#19319)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-06-09 22:10:44 +08:00
770e5dcdb8 [full_graph] Fix query_start_loc padding (#19321)
Signed-off-by: Yinghai Lu <yinghai@thinkingmachines.ai>
2025-06-09 21:32:56 +08:00
c57c9415b1 [Docs] Fix a bullet list in usage/security.md (#19358)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-06-09 13:28:51 +00:00
01810f9236 [CI] Introduce rules for llama auto-label (#19323)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-06-09 20:05:42 +08:00
59abbd84f9 [Fix] Allow kernel compilation for CUDA capability 8.7 (#19328)
Signed-off-by: Conroy Cheers <conroy@corncheese.org>
2025-06-09 02:57:23 -07:00
95a6568b5c [CI/Build] Fix LoRA test (#19350)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-06-09 09:52:10 +00:00
0eca5eacd0 [Doc] Fix description in the Automatic Prefix Caching design doc (#19333)
Signed-off-by: cr7258 <chengzw258@163.com>
2025-06-09 17:30:02 +08:00
12e5829221 [doc] improve ci doc (#19307)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-06-09 07:26:12 +00:00
3a4d417707 [Misc] Cleanup compilation tests (#19343)
Signed-off-by: rzou <zou3519@gmail.com>
2025-06-09 15:05:44 +08:00
8335667c22 [Frontend] Remove unreachable code from llm.py (#19288)
Signed-off-by: KsuParkhamchuk <k.parkhamchuk@gmail.com>
2025-06-09 10:22:10 +08:00
e1c4380d4c [Misc] Add documentation update reminder to PR template (#19289)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-06-09 10:20:53 +08:00
e31ae3de36 [Deprecation] Remove inputs arg fallback in Engine classes (#18799)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-06-09 10:19:56 +08:00
2ffb9b6e07 [Bugfix] model_max_length should consider max_model_len in tokenizer_config (#19201) 2025-06-08 07:17:53 -07:00
cda10fa3e2 [Multi Modal] Add an env var for message queue max chunk bytes (#19242)
Signed-off-by: yZhen <yZhen@fb.com>
Co-authored-by: yZhen <yZhen@fb.com>
2025-06-08 21:39:12 +08:00
c123bc33f9 [Quantization] Add compressed-tensors NVFP4 support (#18312) 2025-06-08 09:05:55 -04:00
b9a1791e2c [Hardware][POWER] Add IBM POWER11 Support to CPU Extension Detection (#19082)
Signed-off-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
Co-authored-by: Akash Kaothalkar <akash.kaothalkar@ibm.com>
2025-06-08 09:17:14 +00:00
989dcee981 Add H20-3e fused MoE kernel tuning configs for Qwen3-235B-A22B (#19315)
Signed-off-by: Xu Wenqing <xuwq1993@qq.com>
2025-06-08 16:07:02 +08:00
3d64d366e0 [Misc] Change tests/compile to use VLLM_V1 by default (#19302)
Signed-off-by: rzou <zou3519@gmail.com>
2025-06-08 16:06:48 +08:00
eaa2e51088 [Bugfix] Re-enable use_cudagraph in vLLM v1 (#19299)
Signed-off-by: Richard Zou <zou3519@gmail.com>
2025-06-08 08:56:12 +08:00
d77f7fb871 [Bugfix]: Fix TypeError: 'float' object cannot be interpreted as an integer (#19283)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-06-08 08:16:31 +08:00
2d8476e465 [BugFix][V1] Fix memory profiling bug (#18974)
Signed-off-by: luka <luka@neuralmagic.com>
2025-06-07 10:34:51 -07:00
88be823d57 [AMD] Update compatible packaging version (#19309)
Signed-off-by: pramkuma <Pramendra.Kumar@amd.com>
2025-06-07 20:55:09 +08:00
4e4f63ad45 [Nit][Benchmark]Fix example in benchmark_serving_structured_output.py (#19311)
Signed-off-by: Lifan Shen <lifans@meta.com>
2025-06-07 18:25:38 +08:00
d2f0e7e615 [CI/Build] Improve Llama GGUF test robustness (#19287)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-06-07 17:23:28 +08:00
122cdca5f6 [Misc] refactor context extension (#19246)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-06-07 05:13:21 +00:00
cf02f9b283 Add FlexAttention to V1 (#16078)
Signed-off-by: drisspg <drisspguessous@gmail.com>
2025-06-06 21:58:55 -07:00
c4296b1a27 [CI][PowerPC] Use a more appropriate way to select testcase in tests/models/language/pooling/test_embedding.py (#19253)
Signed-off-by: Aaruni Aggarwal <aaruniagg@gmail.com>
2025-06-07 11:52:52 +08:00
66c508b137 [TPU][Test] Add script to run benchmark on TPU for buildkite (#19039)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-06-06 20:10:24 -07:00
84166fee97 [Kernel] Integrate CUTLASS MoE kernel with PPLX (#18762)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-06-06 18:26:11 -07:00
6e0cd10f72 [Easy][Test] Simplify test_function_tool_use with multiple parametrizes (#19269)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-06-07 09:19:09 +08:00
e010688f50 [Build][ROCm] Update Dockerfile.rocm (#19296)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-06-06 19:35:16 -04:00
441b65d8c7 [Misc][Tools][Benchmark] Fix and improve auto tune script (#19163)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-06-06 23:31:19 +00:00
46ecc57973 [BugFix] Fix tpu_model_runner block_id concatenation (#19228)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-06-06 16:28:17 -07:00
b6a3a9f76d [Core] Fix abrupt request abort (#18485)
Signed-off-by: nicklucche <nlucches@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>

Co-authored-by: Nick Hill <nhill@redhat.com>
2025-06-06 16:27:59 -07:00
ca27f0f9c1 [Bugfix][Core] Update cancellation logic in generate() to handle Generator exits (#19225)
Co-authored-by: Adolfo Victoria <adovi@meta.com>
2025-06-06 20:17:54 +00:00
aad30bd306 [BugFix] Fix MultiConnector test after HMA changes (#19291)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-06-06 20:16:24 +00:00
94ecee6282 Fixed ppc build when it runs on non-RHEL based linux distros (#18422)
Signed-off-by: Nishidha Panpaliya <nishidha.panpaliya@partner.ibm.com>
Signed-off-by: Md. Shafi Hussain <Md.Shafi.Hussain@ibm.com>
Signed-off-by: npanpaliya <nishidha.panpaliya@partner.ibm.com>
Co-authored-by: Md. Shafi Hussain <Md.Shafi.Hussain@ibm.com>
2025-06-06 11:54:26 -07:00
8267f9916f improve logits bias (#19041) 2025-06-06 19:59:25 +08:00
7353492a47 [Core] Raise when non-multi-instance DP clients target a DP rank (#19227)
Signed-off-by: Jon Swenson <jmswen@gmail.com>
2025-06-06 19:03:01 +08:00
7661e92ef8 [Model] Optimize nemotron_h implementation (#19249)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-06-06 10:05:14 +00:00
f168b85725 Unit Test for run_dp_sharded_vision_model (#19103)
Signed-off-by: Siqi Yan <siqi@meta.com>
Co-authored-by: Siqi Yan <siqi@meta.com>
2025-06-06 16:24:02 +08:00
da511d54d8 Fix CompilationConfig repr (#19091)
Signed-off-by: rzou <zou3519@gmail.com>
2025-06-06 16:23:35 +08:00
65c69444b1 [Docs] Improve V1 KVConnector interface documentation (#19172)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-06-06 16:22:45 +08:00
94870359cd [Quantization] Bump compressed-tensors version; update NVFP4A16 test model (#19224)
Signed-off-by: Dipika Sikka <dipikasikka1@gmail.com>
2025-06-06 01:21:54 -07:00
0d49483ea9 [TPU] fix kv cache dtype in model runner (#19244)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-06-06 16:20:16 +08:00
90b78ec5f9 [v1][P/D] Fix a edge case in kv cache schedule (#19182)
Co-authored-by: jinghui <jinghui@fb.com>
2025-06-05 23:32:55 -07:00
91a2ef98ea [Chore] update CODEOWNERS (#19247)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-06-06 06:09:43 +00:00
3da2313d78 Support allowed_token_ids in ChatCompletionRequest (#19143)
Signed-off-by: Xu Song <xusong.vip@gmail.com>
2025-06-06 05:06:48 +00:00
b61dc5f972 [TPU] update torch_xla pin (#19231)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-06-06 04:27:38 +00:00
f8a1a2d108 [v1] Hybrid Memory Allocator (#17996)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
2025-06-05 20:47:09 -07:00
3465b87ef8 [Bugfix] Fix EAGLE vocab embedding construction for Llama 70B (#19033)
Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
2025-06-05 19:10:08 -07:00
c8134bea15 Fix AOPerModuleConfig name changes (#18869)
Signed-off-by: Jerry Zhang <jerryzh168@gmail.com>
2025-06-05 18:51:32 -07:00
cb6d572e85 [Model] NemotronH support (#18863)
Signed-off-by: Luis Vega <2478335+vegaluisjose@users.noreply.github.com>
Co-authored-by: Luis Vega <2478335+vegaluisjose@users.noreply.github.com>
2025-06-05 21:29:28 +00:00
87360308b7 [V1] Use FlashInfer by default on Blackwell GPUs (#19118) 2025-06-05 15:40:39 -04:00
aa49f14832 [Quantization] Skip Fp4 Test for compressed-tensors (#19217) 2025-06-05 18:21:53 +00:00
9ef9173cfa [P/D][NixlConnector] Enable FlashInfer backend (#19090) 2025-06-05 17:10:15 +00:00
85e2b7bb13 [MISC][Bugfix] Use less CPU when message queue has been empty for some time (#16226)
Signed-off-by: Povilas Kanapickas <povilas@radix.lt>
2025-06-05 16:53:08 +00:00
61059bee40 [Hardware][NVIDIA] FP4 MoE kernel optimization (#19110)
Signed-off-by: Chiyue Wei <chiyuew@nvidia.com>
Co-authored-by: Chiyue Wei <chiyuew@nvidia.com>
2025-06-05 09:48:26 -07:00
ec89524f50 Add H20-3e fused MoE kernel tuning configs for DeepSeek-R1/V3 (#19205) 2025-06-05 16:38:54 +00:00
f20f9f063b [mistral_common] Add v11 tokenizer (#19193)
Signed-off-by: Patrick von Platen <patrick.v.platen@gmail.com>
2025-06-05 08:27:41 -07:00
9bc8bb07cf [Bugfix] properly catch PIL-related errors for vision models when incorrect data urls are provided (#19202)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-06-05 12:59:28 +00:00
1aeb925f34 [Frontend] improve vllm run-batch --help display (#19187)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-06-05 11:16:25 +00:00
188a4590d8 [Misc] Do not override NCCL_CUMEM_ENABLE if set explicitly (#19105)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-06-05 11:14:32 +00:00
18093084be [Misc] Remove unnecessary fallback to prefill-decode attention (#19138)
Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
2025-06-05 16:08:26 +08:00
da40380214 [Build] Annotate wheel and container path for release workflow (#19162)
Signed-off-by: simon-mo <simon.mo@hey.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-06-04 23:24:56 -07:00
8fc57501d3 [Bugfix]: Fix the incompatibility issue with stream when Thinking is disabled (#19135)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-06-05 06:24:24 +00:00
af7fc84fd2 [BugFix][Minor] Fix full cuda graph bug when max_num_seqs < 512 (#19171)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-06-05 13:41:25 +08:00
0678b52251 Handle non-serializable objects when dumping benchmark results (#19114) 2025-06-04 22:40:04 -07:00
25b918eee6 [Torch Nightly]add missing dependency (#18770)
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-06-04 21:56:12 -07:00
a408820f2f [Bugfix] Fix port handling in make_zmq_path (#19117) 2025-06-04 21:00:59 -06:00
c56ed8bb0e [Bugfix][Nixl] Fix full prefix cache hit bug (#18632)
Signed-off-by: rshaw@neuralmagic.com <robertgshaw2@gmail.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-06-05 02:07:32 +00:00
78dcf56cb3 [doc] small fix (#19167)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-06-05 09:13:50 +08:00
b2fac67130 [P/D] Heterogeneous TP (#18833)
Signed-off-by: nicklucche <nlucches@redhat.com>
2025-06-04 23:25:34 +00:00
23027e2daf [Misc] refactor: simplify EngineCoreClient.make_async_mp_client in AsyncLLM (#18817)
Signed-off-by: googs1025 <googs1025@gmail.com>
2025-06-04 15:37:25 -07:00
c3fd4d669a [Kernel] Integrate batched/masked deepgemm kernel (#19111)
Signed-off-by: Varun <vsundarr@redhat.com>
Co-authored-by: Varun <vsundarr@redhat.com>
2025-06-04 21:59:18 +00:00
ef3f98b59f [Bugfix] fix v1 cpu worker fails on macOS (#19121) 2025-06-04 20:17:38 +00:00
7ee2590478 [TPU] Update dynamo dump file name in compilation test (#19108)
Signed-off-by: Siyuan Liu <lsiyuan@google.com>
2025-06-04 16:13:43 -04:00
53a5a0ce30 [Perf] Tunings for SM100 FP8 CUTLASS kernel (#18778)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-06-04 10:46:28 -07:00
d459fae0a2 [Bugfix][EP+DP] Fix internode check (#19112)
Signed-off-by: Tyler Michael Smith <tysmith@redhat.com>
2025-06-04 23:39:23 +08:00
c8dcc15921 Allow AsyncLLMEngine.generate to target a specific DP rank (#19102)
Signed-off-by: Jon Swenson <jmswen@gmail.com>
2025-06-04 08:26:47 -07:00
8f4ffbd373 [Doc] Update V1 Guide for embedding models (#19141)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-06-04 22:57:55 +08:00
5f2cd251d2 Sm100 blockwise fp8 swap ab (#18564) 2025-06-04 07:48:45 -07:00
220 changed files with 8159 additions and 2349 deletions

View File

@ -1,5 +1,6 @@
steps:
- label: "Build wheel - CUDA 12.8"
id: build-wheel-cuda-12-8
agents:
queue: cpu_queue_postmerge
commands:
@ -11,6 +12,7 @@ steps:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.6"
id: build-wheel-cuda-12-6
agents:
queue: cpu_queue_postmerge
commands:
@ -28,6 +30,7 @@ steps:
- label: "Build wheel - CUDA 11.8"
# depends_on: block-build-cu118-wheel
id: build-wheel-cuda-11-8
agents:
queue: cpu_queue_postmerge
commands:
@ -44,6 +47,7 @@ steps:
- label: "Build release image"
depends_on: block-release-image-build
id: build-release-image
agents:
queue: cpu_queue_postmerge
commands:
@ -51,6 +55,18 @@ steps:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Annotate release workflow"
depends_on:
- build-release-image
- build-wheel-cuda-12-8
- build-wheel-cuda-12-6
- build-wheel-cuda-11-8
id: annotate-release-workflow
agents:
queue: cpu_queue_postmerge
commands:
- "bash .buildkite/scripts/annotate-release.sh"
- label: "Build and publish TPU release image"
depends_on: ~
if: build.env("NIGHTLY") == "1"
@ -70,9 +86,10 @@ steps:
DOCKER_BUILDKIT: "1"
- input: "Provide Release version here"
id: input-release-version
fields:
- text: "What is the release version?"
key: "release-version"
key: release-version
- block: "Build CPU release image"
key: block-cpu-release-image-build

View File

@ -0,0 +1,31 @@
#!/bin/bash
set -ex
# Get release version and strip leading 'v' if present
RELEASE_VERSION=$(buildkite-agent meta-data get release-version | sed 's/^v//')
if [ -z "$RELEASE_VERSION" ]; then
echo "Error: RELEASE_VERSION is empty. 'release-version' metadata might not be set or is invalid."
exit 1
fi
buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
To download the wheel:
\`\`\`
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
\`\`\`
To download and upload the image:
\`\`\`
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
docker tag vllm/vllm-openai vllm/vllm-openai:latest
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
docker push vllm/vllm-openai:latest
docker push vllm/vllm-openai:v${RELEASE_VERSION}
\`\`\`
EOF

View File

@ -0,0 +1,17 @@
#!/bin/bash
# Usage: ./ci_clean_log.sh ci.log
# This script strips timestamps and color codes from CI log files.
# Check if argument is given
if [ $# -lt 1 ]; then
echo "Usage: $0 ci.log"
exit 1
fi
INPUT_FILE="$1"
# Strip timestamps
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' "$INPUT_FILE"
# Strip colorization
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' "$INPUT_FILE"

View File

@ -7,6 +7,7 @@ set -ex
# Setup cleanup
remove_docker_container() {
if [[ -n "$container_id" ]]; then
podman stop --all -t0
podman rm -f "$container_id" || true
fi
podman system prune -f
@ -37,7 +38,7 @@ function cpu_tests() {
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
pytest -v -s tests/models/language/pooling/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]"
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
}
# All of CPU tests are expected to be finished less than 40 mins.

View File

@ -43,7 +43,10 @@ function cpu_tests() {
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/language/generation -m cpu_model
pytest -v -s tests/models/language/pooling -m cpu_model
pytest -v -s tests/models/multimodal/generation --ignore=tests/models/multimodal/generation/test_mllama.py -m cpu_model"
pytest -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_mllama.py \
--ignore=tests/models/multimodal/generation/test_pixtral.py \
-m cpu_model"
# Run compressed-tensor test
docker exec cpu-test-"$NUMA_NODE" bash -c "

View File

@ -150,7 +150,7 @@ run_and_track_test 9 "test_multimodal.py" \
run_and_track_test 10 "test_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
run_and_track_test 11 "test_struct_output_generate.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k 'not test_structured_output_with_reasoning_matrices'"
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
run_and_track_test 12 "test_moe_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
run_and_track_test 13 "test_lora.py" \

View File

@ -0,0 +1,18 @@
#!/bin/bash
# Usage: ./rerun_test.sh path/to/test.py::test_name
# Check if argument is given
if [ $# -lt 1 ]; then
echo "Usage: $0 path/to/test.py::test_name"
echo "Example: $0 tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]"
exit 1
fi
TEST=$1
COUNT=1
while pytest -sv "$TEST"; do
COUNT=$((COUNT + 1))
echo "RUN NUMBER ${COUNT}"
done

View File

@ -0,0 +1,24 @@
#!/bin/bash
set -euo pipefail
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi

View File

@ -0,0 +1,14 @@
# Environment config
TEST_NAME=llama8b
CONTAINER_NAME=vllm-tpu
# vllm config
MODEL=meta-llama/Llama-3.1-8B-Instruct
MAX_NUM_SEQS=512
MAX_NUM_BATCHED_TOKENS=512
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist
EXPECTED_THROUGHPUT=8.0
INPUT_LEN=1800
OUTPUT_LEN=128

View File

@ -0,0 +1,102 @@
#!/bin/bash
if [ ! -f "$1" ]; then
echo "Error: The env file '$1' does not exist."
exit 1 # Exit the script with a non-zero status to indicate an error
fi
ENV_FILE=$1
# For testing on local vm, use `set -a` to export all variables
source /etc/environment
source $ENV_FILE
remove_docker_container() {
docker rm -f tpu-test || true;
docker rm -f vllm-tpu || true;
docker rm -f $CONTAINER_NAME || true;
}
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build docker image.
# TODO: build the image outside the script and share the image with other
# tpu test if building time is too long.
DOCKER_BUILDKIT=1 docker build \
--build-arg max_jobs=16 \
--build-arg USE_SCCACHE=1 \
--build-arg GIT_REPO_CHECK=0 \
--tag vllm/vllm-tpu-bm \
--progress plain -f docker/Dockerfile.tpu .
LOG_ROOT=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $LOG_ROOT"
if [ -z "$HF_TOKEN" ]; then
echo "Error: HF_TOKEN is not set or is empty."
exit 1
fi
# Make sure mounted disk or dir exists
if [ ! -d "$DOWNLOAD_DIR" ]; then
echo "Error: Folder $DOWNLOAD_DIR does not exist. This is useually a mounted drive. If no mounted drive, just create a folder."
exit 1
fi
echo "Run model $MODEL"
echo
echo "starting docker...$CONTAINER_NAME"
echo
docker run \
-v $DOWNLOAD_DIR:$DOWNLOAD_DIR \
--env-file $ENV_FILE \
-e HF_TOKEN="$HF_TOKEN" \
-e TARGET_COMMIT=$BUILDKITE_COMMIT \
-e MODEL=$MODEL \
-e WORKSPACE=/workspace \
--name $CONTAINER_NAME \
-d \
--privileged \
--network host \
-v /dev/shm:/dev/shm \
vllm/vllm-tpu-bm tail -f /dev/null
echo "run script..."
echo
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/hardware_ci/run_bm.sh"
echo "copy result back..."
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt
BM_LOG="$LOG_ROOT/$TEST_NAME"_bm_log.txt
docker cp "$CONTAINER_NAME:/workspace/vllm_log.txt" "$VLLM_LOG"
docker cp "$CONTAINER_NAME:/workspace/bm_log.txt" "$BM_LOG"
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
echo "throughput for $TEST_NAME at $BUILDKITE_COMMIT: $throughput"
if [ "$BUILDKITE" = "true" ]; then
echo "Running inside Buildkite"
buildkite-agent artifact upload "$VLLM_LOG"
buildkite-agent artifact upload "$BM_LOG"
else
echo "Not running inside Buildkite"
fi
#
# compare the throughput with EXPECTED_THROUGHPUT
# and assert meeting the expectation
#
if [[ -z "$throughput" || ! "$throughput" =~ ^[0-9]+([.][0-9]+)?$ ]]; then
echo "Failed to get the throughput"
exit 1
fi
if (( $(echo "$throughput < $EXPECTED_THROUGHPUT" | bc -l) )); then
echo "Error: throughput($throughput) is less than expected($EXPECTED_THROUGHPUT)"
exit 1
fi

View File

@ -0,0 +1,94 @@
#!/bin/bash
set -euo pipefail
VLLM_LOG="$WORKSPACE/vllm_log.txt"
BM_LOG="$WORKSPACE/bm_log.txt"
if [ -n "$TARGET_COMMIT" ]; then
head_hash=$(git rev-parse HEAD)
if [ "$TARGET_COMMIT" != "$head_hash" ]; then
echo "Error: target commit $TARGET_COMMIT does not match HEAD: $head_hash"
exit 1
fi
fi
echo "model: $MODEL"
echo
#
# create a log folder
#
mkdir "$WORKSPACE/log"
# TODO: Move to image building.
pip install pandas
pip install datasets
#
# create sonnet_4x
#
echo "Create sonnet_4x.txt"
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
#
# start vllm service in backend
#
echo "lanching vllm..."
echo "logging to $VLLM_LOG"
echo
VLLM_USE_V1=1 vllm serve $MODEL \
--seed 42 \
--disable-log-requests \
--max-num-seqs $MAX_NUM_SEQS \
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
--tensor-parallel-size $TENSOR_PARALLEL_SIZE \
--no-enable-prefix-caching \
--download_dir $DOWNLOAD_DIR \
--max-model-len $MAX_MODEL_LEN > "$VLLM_LOG" 2>&1 &
echo "wait for 20 minutes.."
echo
# sleep 1200
# wait for 10 minutes...
for i in {1..120}; do
# TODO: detect other type of errors.
if grep -Fq "raise RuntimeError" "$VLLM_LOG"; then
echo "Detected RuntimeError, exiting."
exit 1
elif grep -Fq "Application startup complete" "$VLLM_LOG"; then
echo "Application started"
break
else
echo "wait for 10 seconds..."
sleep 10
fi
done
#
# run test
#
echo "run benchmark test..."
echo "logging to $BM_LOG"
echo
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore-eos > "$BM_LOG"
echo "completed..."
echo
throughput=$(grep "Request throughput (req/s):" "$BM_LOG" | sed 's/[^0-9.]//g')
echo "throughput: $throughput"
echo

View File

@ -424,6 +424,9 @@ steps:
- vllm/model_executor/layers/quantization
- tests/quantization
commands:
# temporary install here since we need nightly, will move to requirements/test.in
# after torchao 0.12 release
- pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
- label: LM Eval Small Models # 53min

16
.github/CODEOWNERS vendored
View File

@ -10,15 +10,17 @@
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
/vllm/model_executor/guided_decoding @mgoin @russellb
/vllm/model_executor/guided_decoding @mgoin @russellb @aarnphm
/vllm/multimodal @DarkLight1337 @ywang96
/vllm/vllm_flash_attn @LucasWilkinson
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
/vllm/entrypoints @aarnphm
CMakeLists.txt @tlrmchlsmth
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
/vllm/v1/structured_output @mgoin @russellb
/vllm/v1/structured_output @mgoin @russellb @aarnphm
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
@ -27,8 +29,8 @@ CMakeLists.txt @tlrmchlsmth
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb @aarnphm
/tests/kernels @tlrmchlsmth @WoosukKwon
/tests/model_executor/test_guided_processors.py @mgoin @russellb
/tests/models @DarkLight1337 @ywang96
@ -38,11 +40,11 @@ CMakeLists.txt @tlrmchlsmth
/tests/quantization @mgoin @robertgshaw2-redhat
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
/tests/v1/structured_output @mgoin @russellb
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
/tests/weight_loading @mgoin @youkaichao
/tests/lora @jeejeelee
# Docs
/docs @hmellor
mkdocs.yaml @hmellor
mkdocs.yaml @hmellor

View File

@ -8,6 +8,16 @@ body:
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: markdown
attributes:
value: |
⚠️ **SECURITY WARNING:** Please review any text you paste to ensure it does not contain sensitive information such as:
- API tokens or keys (e.g., Hugging Face tokens, OpenAI API keys)
- Passwords or authentication credentials
- Private URLs or endpoints
- Personal or confidential data
Consider redacting or replacing sensitive values with placeholders like `<YOUR_TOKEN_HERE>` when sharing configuration or code examples.
- type: textarea
attributes:
label: Your current environment

View File

@ -2,6 +2,7 @@
- [ ] The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
- [ ] The test plan, such as providing test command.
- [ ] The test results, such as pasting the results comparison before and after, or e2e results
- [ ] (Optional) The necessary documentation update, such as updating `supported_models.md` and `examples` for a new model.
PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE BEEN CONSIDERED.
@ -11,5 +12,7 @@ PLEASE FILL IN THE PR DESCRIPTION HERE ENSURING ALL CHECKLIST ITEMS ABOVE HAVE B
## Test Result
## (Optional) Documentation Update
<!--- pyml disable-next-line no-emphasis-as-heading -->
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing>** (anything written below this line will be removed by GitHub Actions)

14
.github/mergify.yml vendored
View File

@ -36,6 +36,20 @@ pull_request_rules:
add:
- frontend
- name: label-llama
description: Automatically apply llama label
conditions:
- or:
- files~=^examples/.*llama.*\.py
- files~=^tests/.*llama.*\.py
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
- files~=^vllm/model_executor/models/.*llama.*\.py
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
actions:
label:
add:
- llama
- name: label-multi-modality
description: Automatically apply multi-modality label
conditions:

View File

@ -11,6 +11,8 @@ repos:
hooks:
- id: yapf
args: [--in-place, --verbose]
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
exclude: '(.buildkite|benchmarks|build|examples)/.*'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.7
hooks:

View File

@ -308,7 +308,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
# are not supported by Machete yet.
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_ARCHS)
#
@ -454,7 +454,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# kernels for the remaining archs that are not already built for 3x.
# (Build 8.9 for FP8)
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
"7.5;8.0;8.9+PTX" "${CUDA_ARCHS}")
"7.5;8.0;8.7;8.9+PTX" "${CUDA_ARCHS}")
# subtract out the archs that are already built for 3x
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
if (SCALED_MM_2X_ARCHS)
@ -543,8 +543,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# CUTLASS MoE kernels
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
# to compile MoE kernels that use its output.
# on Hopper). get_cutlass_(pplx_)moe_mm_data should only be compiled
# if it's possible to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
@ -684,7 +684,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
# 9.0 for latest bf16 atomicAdd PTX
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;9.0+PTX" "${CUDA_ARCHS}")
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.7;9.0+PTX" "${CUDA_ARCHS}")
if (MARLIN_MOE_ARCHS)
#

View File

@ -10,11 +10,15 @@
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# TP: ways of tensor parallelism
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
@ -30,31 +34,27 @@
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT_PCT=0
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
echo "result file$ $RESULT"
echo "result file: $RESULT"
echo "model: $MODEL"
echo
rm -rf $LOG_FOLDER
mkdir -p $LOG_FOLDER
cd "$BASE/vllm"
# create sonnet-4x.txt so that we can sample 2048 tokens for input
echo "" > benchmarks/sonnet_4x.txt
for _ in {1..4}
do
cat benchmarks/sonnet.txt >> benchmarks/sonnet_4x.txt
done
pip install datasets
pip install -q datasets
current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
@ -64,53 +64,69 @@ best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0
start_server() {
local gpu_memory_utilization=$1
local max_num_seqs=$2
local max_num_batched_tokens=$3
local vllm_log=$4
pkill -f vllm
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization $gpu_memory_utilization \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size $TP \
--enable-prefix-caching \
--load-format dummy \
--download-dir "$DOWNLOAD_DIR" \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
server_started=1
break
else
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
return 1
else
return 0
fi
}
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
local gpu_memory_utilization=$3
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
pkill -f vllm
# start the server
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization 0.98 \
--max-num-seqs $max_num_seqs \
--max-num-batched-tokens $max_num_batched_tokens \
--tensor-parallel-size 1 \
--enable-prefix-caching \
--load-format dummy \
--download-dir $DOWNLOAD_DIR \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
echo "wait for 10 minutes.."
echo
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
if grep -Fq "Application startup complete" "$vllm_log"; then
echo "Application started"
server_started=1
break
else
# echo "wait for 10 seconds..."
sleep 10
fi
done
if (( ! server_started )); then
echo "server did not start within 10 minutes, terminate the benchmarking. Please check server log at $vllm_log"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
return 1
echo "starting server..."
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log
result=$?
if [[ "$result" -eq 1 ]]; then
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
else
echo "server started."
fi
echo
echo "run benchmark test..."
echo
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
@ -118,29 +134,29 @@ run_benchmark() {
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate inf \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
--num-prompts 1000 \
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
meet_latency_requirement=1
request_rate=inf
fi
if (( ! meet_latency_requirement )); then
# start from request-rate as int(through_put) + 1
request_rate=$((${through_put%.*} + 1))
# start from request-rate as int(throughput) + 1
request_rate=$((${throughput%.*} + 1))
while ((request_rate > 0)); do
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
@ -149,19 +165,18 @@ run_benchmark() {
python benchmarks/benchmark_serving.py \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \
--dataset-path benchmarks/sonnet_4x.txt \
--sonnet-input-len $INPUT_LEN \
--sonnet-output-len $OUTPUT_LEN \
--ignore_eos \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
--request-rate $request_rate \
--percentile-metrics ttft,tpot,itl,e2el \
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 100 \
--sonnet-prefix-len $prefix_len \
--port 8004 > "$bm_log"
through_put=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
--random-prefix-len $prefix_len \
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
@ -173,10 +188,10 @@ run_benchmark() {
fi
# write the results and update the best result.
if ((meet_latency_requirement)); then
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, through put: $through_put, goodput: $goodput" >> "$RESULT"
if (( $(echo "$through_put > $best_throughput" | bc -l) )); then
best_throughput=$through_put
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
best_throughput=$throughput
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
@ -188,22 +203,39 @@ run_benchmark() {
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "pkill -f vllm"
echo
pkill vllm
sleep 10
rm -f $vllm_log
printf '=%.0s' $(seq 1 20)
return 0
}
read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"
num_seqs_list="128 256"
num_batched_tokens_list="512 1024 2048 4096"
for num_seqs in $num_seqs_list; do
for num_batched_tokens in $num_batched_tokens_list; do
run_benchmark $num_seqs $num_batched_tokens
exit 0
# first find out the max gpu-memory-utilization without HBM OOM.
gpu_memory_utilization=0.98
find_gpu_memory_utilization=0
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
result=$?
if [[ "$result" -eq 0 ]]; then
find_gpu_memory_utilization=1
break
else
gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
fi
done
if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
else
echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
exit 1
fi
for num_seqs in "${num_seqs_list[@]}"; do
for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
done
done
echo "finish permutations"

View File

@ -12,7 +12,6 @@ On the client side, run:
--model <your_model> \
--dataset json \
--structured-output-ratio 1.0 \
--structured-output-backend auto \
--request-rate 10 \
--num-prompts 1000

View File

@ -66,4 +66,9 @@ class InfEncoder(json.JSONEncoder):
def write_to_json(filename: str, records: list) -> None:
with open(filename, "w") as f:
json.dump(records, f, cls=InfEncoder)
json.dump(
records,
f,
cls=InfEncoder,
default=lambda o: f"<{type(o).__name__} object is not JSON serializable>",
)

View File

@ -5,11 +5,11 @@ import copy
import itertools
import torch
import triton
from weight_shapes import WEIGHT_SHAPES
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant
from vllm.triton_utils import triton
@triton.testing.perf_report(

View File

@ -91,7 +91,7 @@ def bench_run(
score = torch.randn((m, num_experts), device=device, dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
quant_blocksize = 16
w1_blockscale = torch.empty(

View File

@ -7,8 +7,8 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
from vllm.model_executor.layers.fused_moe.fused_moe import (
cutlass_moe_fp8,
fused_experts,
fused_topk,
)
@ -70,18 +70,9 @@ def bench_run(
w1_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
w2_scale = torch.empty((num_experts, 1, 1), device="cuda", dtype=torch.float32)
ab_strides1 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((num_experts,), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((num_experts,), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((num_experts,), k, device="cuda", dtype=torch.int64)
for expert in range(num_experts):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(w1[expert])
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(w2[expert])
w1_q_notransp = w1_q.clone()
w2_q_notransp = w2_q.clone()
w1_q = w1_q.transpose(1, 2)
w2_q = w2_q.transpose(1, 2)
score = torch.randn((m, num_experts), device="cuda", dtype=dtype)
@ -122,10 +113,6 @@ def bench_run(
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
num_repeats: int,
):
for _ in range(num_repeats):
@ -133,14 +120,10 @@ def bench_run(
a,
w1,
w2,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
w1_scale,
w2_scale,
a1_scale=a_scale,
)
@ -153,10 +136,6 @@ def bench_run(
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
ab_strides1: torch.Tensor,
c_strides1: torch.Tensor,
ab_strides2: torch.Tensor,
c_strides2: torch.Tensor,
):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
@ -165,14 +144,10 @@ def bench_run(
a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
w1_scale,
w2_scale,
a1_scale=a_scale,
)
@ -218,10 +193,6 @@ def bench_run(
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
)
torch.cuda.synchronize()
@ -230,8 +201,8 @@ def bench_run(
with torch.cuda.graph(triton_graph, stream=triton_stream):
run_triton_from_graph(
a,
w1_q_notransp,
w2_q_notransp,
w1_q,
w2_q,
topk_weights,
topk_ids,
w1_scale,
@ -250,18 +221,12 @@ def bench_run(
"w2": w2,
"score": score,
"topk": topk,
"w1_q_notransp": w1_q_notransp,
"w2_q_notransp": w2_q_notransp,
# Cutlass params
"a_scale": a_scale,
"w1_q": w1_q,
"w2_q": w2_q,
"w1_scale": w1_scale,
"w2_scale": w2_scale,
"ab_strides1": ab_strides1,
"c_strides1": c_strides1,
"ab_strides2": ab_strides2,
"c_strides2": c_strides2,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
@ -279,8 +244,8 @@ def bench_run(
# Warmup
run_triton_moe(
a,
w1_q_notransp,
w2_q_notransp,
w1_q,
w2_q,
topk_weights,
topk_ids,
w1_scale,
@ -291,7 +256,7 @@ def bench_run(
results.append(
benchmark.Timer(
stmt="run_triton_moe(a, w1_q_notransp, w2_q_notransp, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
stmt="run_triton_moe(a, w1_q, w2_q, topk_weights, topk_ids, w1_scale, w2_scale, a_scale, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
@ -322,16 +287,12 @@ def bench_run(
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, ab_strides1, c_strides1, ab_strides2, c_strides2, num_runs)", # noqa: E501
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -7,7 +7,6 @@ import time
from contextlib import nullcontext
from datetime import datetime
from itertools import product
from types import SimpleNamespace
from typing import Any, TypedDict
import ray
@ -43,7 +42,7 @@ def benchmark_config(
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
block_quant_shape: List[int] = None,
block_quant_shape: list[int] = None,
use_deep_gemm: bool = False,
) -> float:
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
@ -400,7 +399,7 @@ class BenchmarkWorker:
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: List[int] = None,
block_quant_shape: list[int] = None,
use_deep_gemm: bool = False,
) -> tuple[dict[str, int], float]:
current_platform.seed_everything(self.seed)
@ -532,7 +531,7 @@ def save_configs(
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
block_quant_shape: List[int],
block_quant_shape: list[int],
) -> None:
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
@ -563,7 +562,6 @@ def main(args: argparse.Namespace):
config = get_config(model=args.model, trust_remote_code=args.trust_remote_code)
if args.model_prefix:
config = getattr(config, args.model_prefix)
config = SimpleNamespace(**config)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
@ -595,11 +593,7 @@ def main(args: argparse.Namespace):
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = (
torch.float16
if current_platform.is_rocm()
else getattr(torch, config.torch_dtype)
)
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_quant_shape = get_weight_block_size_safety(config)

View File

@ -75,6 +75,7 @@ if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
else()
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
find_isa(${CPUINFO} "Power11" POWER11_FOUND)
find_isa(${CPUINFO} "POWER10" POWER10_FOUND)
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
@ -106,13 +107,19 @@ elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
message(WARNING "vLLM CPU backend using AVX2 ISA")
elseif (POWER9_FOUND OR POWER10_FOUND)
elseif (POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
message(STATUS "PowerPC detected")
# Check for PowerPC VSX support
list(APPEND CXX_COMPILE_FLAGS
"-mvsx"
"-mcpu=native"
"-mtune=native")
if (POWER9_FOUND)
list(APPEND CXX_COMPILE_FLAGS
"-mvsx"
"-mcpu=power9"
"-mtune=power9")
elseif (POWER10_FOUND OR POWER11_FOUND)
list(APPEND CXX_COMPILE_FLAGS
"-mvsx"
"-mcpu=power10"
"-mtune=power10")
endif()
elseif (ASIMD_FOUND)
message(STATUS "ARMv8 or later architecture detected")

View File

@ -30,4 +30,8 @@ torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
int64_t BLOCK_SIZE_K, int64_t bit);
#endif
bool moe_permute_unpermute_supported();
bool moe_permute_unpermute_supported();
void shuffle_rows(const torch::Tensor& input_tensor,
const torch::Tensor& dst2src_map,
torch::Tensor& output_tensor);

View File

@ -130,6 +130,62 @@ void moe_unpermute(
});
}
template <typename T>
__global__ void shuffleInputRowsKernel(const T* input,
const int32_t* dst2src_map, T* output,
int64_t num_src_rows,
int64_t num_dst_rows, int64_t num_cols) {
int64_t dest_row_idx = blockIdx.x;
int64_t const source_row_idx = dst2src_map[dest_row_idx];
if (blockIdx.x < num_dst_rows) {
// Load 128-bits per thread
constexpr int64_t ELEM_PER_THREAD = 128 / sizeof(T) / 8;
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
// Duplicate and permute rows
auto const* source_row_ptr =
reinterpret_cast<DataElem const*>(input + source_row_idx * num_cols);
auto* dest_row_ptr =
reinterpret_cast<DataElem*>(output + dest_row_idx * num_cols);
int64_t const start_offset = threadIdx.x;
int64_t const stride = blockDim.x;
int64_t const num_elems_in_col = num_cols / ELEM_PER_THREAD;
for (int elem_index = start_offset; elem_index < num_elems_in_col;
elem_index += stride) {
dest_row_ptr[elem_index] = source_row_ptr[elem_index];
}
}
}
void shuffle_rows(const torch::Tensor& input_tensor,
const torch::Tensor& dst2src_map,
torch::Tensor& output_tensor) {
TORCH_CHECK(input_tensor.scalar_type() == output_tensor.scalar_type(),
"Input and output tensors must have the same data type");
auto stream = at::cuda::getCurrentCUDAStream().stream();
int64_t const blocks = output_tensor.size(0);
int64_t const threads = 256;
int64_t const num_dest_rows = output_tensor.size(0);
int64_t const num_src_rows = input_tensor.size(0);
int64_t const num_cols = input_tensor.size(1);
TORCH_CHECK(!(num_cols % (128 / sizeof(input_tensor.scalar_type()) / 8)),
"num_cols must be divisible by 128 / "
"sizeof(input_tensor.scalar_type()) / 8");
MOE_DISPATCH(input_tensor.scalar_type(), [&] {
shuffleInputRowsKernel<scalar_t><<<blocks, threads, 0, stream>>>(
reinterpret_cast<scalar_t*>(input_tensor.data_ptr()),
dst2src_map.data_ptr<int32_t>(),
reinterpret_cast<scalar_t*>(output_tensor.data_ptr()), num_src_rows,
num_dest_rows, num_cols);
});
}
#else
void moe_permute(const torch::Tensor& input, const torch::Tensor& topk_weights,

View File

@ -14,12 +14,13 @@
__VA_ARGS__(); \
break; \
}
#define MOE_DISPATCH_FLOAT_CASE(...) \
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__)
#define MOE_DISPATCH_FLOAT_CASE(...) \
MOE_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e5m2, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
MOE_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__)
#define MOE_DISPATCH(TYPE, ...) \
MOE_SWITCH(TYPE, MOE_DISPATCH_FLOAT_CASE(__VA_ARGS__))
@ -39,6 +40,11 @@ template <>
struct ScalarType2CudaType<at::ScalarType::BFloat16> {
using type = __nv_bfloat16;
};
// uint8 for packed fp4
template <>
struct ScalarType2CudaType<at::ScalarType::Byte> {
using type = uint8_t;
};
// #if __CUDA_ARCH__ >= 890
// fp8

View File

@ -81,6 +81,12 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
m.def("moe_permute_unpermute_supported() -> bool");
m.impl("moe_permute_unpermute_supported", &moe_permute_unpermute_supported);
// Row shuffle for MoE
m.def(
"shuffle_rows(Tensor input_tensor, Tensor dst2src_map, Tensor! "
"output_tensor) -> ()");
m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
#endif
}

View File

@ -236,7 +236,8 @@ void cutlass_moe_mm(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides);
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch);
void cutlass_fp4_group_mm(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
@ -248,7 +249,16 @@ void get_cutlass_moe_mm_data(
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
const int64_t num_experts, const int64_t n, const int64_t k);
const int64_t num_experts, const int64_t n, const int64_t k,
const std::optional<torch::Tensor>& blockscale_offsets);
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,
const torch::Tensor& expert_num_tokens,
const int64_t num_local_experts,
const int64_t padded_m, const int64_t n,
const int64_t k);
void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,

View File

@ -9,10 +9,6 @@ void cutlass_scaled_mm_blockwise_sm100_fp8(torch::Tensor& out,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
TORCH_CHECK(
a.size(0) % 4 == 0,
"Input tensor must have a number of rows that is a multiple of 4. ",
"but got: ", a.size(0), " rows.");
if (out.dtype() == torch::kBFloat16) {
cutlass_gemm_blockwise_sm100_fp8_dispatch<cutlass::bfloat16_t>(
out, a, b, a_scales, b_scales);

View File

@ -1,5 +1,6 @@
#pragma once
#include "cuda_utils.h"
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
@ -22,49 +23,49 @@ namespace vllm {
using namespace cute;
template <typename OutType, typename MmaTileShape, typename ScalesPerTile,
class ClusterShape, typename EpilogueScheduler,
typename MainloopScheduler>
// clang-format off
template <class OutType, int ScaleGranularityM,
int ScaleGranularityN, int ScaleGranularityK,
class MmaTileShape, class ClusterShape,
class EpilogueScheduler, class MainloopScheduler,
bool swap_ab_ = false>
struct cutlass_3x_gemm_fp8_blockwise {
static constexpr bool swap_ab = swap_ab_;
using ElementAB = cutlass::float_e4m3_t;
using ElementA = ElementAB;
using LayoutA = cutlass::layout::RowMajor;
using LayoutA_Transpose = typename cutlass::layout::LayoutTranspose<LayoutA>::type;
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
using ElementB = ElementAB;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutB_Transpose = typename cutlass::layout::LayoutTranspose<LayoutB>::type;
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
using ElementC = void;
using ElementD = OutType;
using LayoutD = cutlass::layout::RowMajor;
using LayoutD_Transpose = typename cutlass::layout::LayoutTranspose<LayoutD>::type;
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
using ElementC = void; // TODO: support bias
using LayoutC = LayoutD;
using LayoutC_Transpose = LayoutD_Transpose;
static constexpr int AlignmentC = AlignmentD;
using ElementAccumulator = float;
using ElementCompute = float;
using ElementBlockScale = float;
// MMA and Cluster Tile Shapes
// Shape of the tile computed by tcgen05 MMA, could be across 2 SMs if Cluster
// Shape %2 == 0 using MmaTileShape_MNK = Shape<_128,_128,_128>;
static constexpr int ScaleMsPerTile = size<0>(ScalesPerTile{});
static constexpr int ScaleGranularityM =
size<0>(MmaTileShape{}) / ScaleMsPerTile;
static constexpr int ScaleGranularityN =
size<1>(MmaTileShape{}) / size<1>(ScalesPerTile{});
static constexpr int ScaleGranularityK =
size<2>(MmaTileShape{}) / size<2>(ScalesPerTile{});
using ScaleConfig = conditional_t<swap_ab,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::K, cute::UMMA::Major::MN>,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>>;
// Shape of the threadblocks in a cluster
using ClusterShape_MNK = ClusterShape;
using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>;
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
@ -73,7 +74,6 @@ struct cutlass_3x_gemm_fp8_blockwise {
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
using ElementScalar = float;
// clang-format off
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag,
@ -84,33 +84,47 @@ struct cutlass_3x_gemm_fp8_blockwise {
ElementAccumulator,
ElementCompute,
ElementC,
LayoutC,
conditional_t<swap_ab, LayoutC_Transpose, LayoutC>,
AlignmentC,
ElementD,
LayoutD,
conditional_t<swap_ab, LayoutD_Transpose, LayoutD>,
AlignmentD,
EpilogueScheduler,
DefaultOperation
>::CollectiveOp;
using StageCountType = cutlass::gemm::collective::StageCountAuto;
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
using CollectiveMainloop = conditional_t<swap_ab,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementB,
cute::tuple<LayoutB_Transpose, LayoutSFA>,
AlignmentB,
ElementA,
cute::tuple<LayoutA_Transpose, LayoutSFB>,
AlignmentA,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp;
// clang-format on
MainloopScheduler
>::CollectiveOp,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp>;
using KernelType = enable_sm100_only<cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue>>;
@ -123,6 +137,7 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
static constexpr bool swap_ab = Gemm::swap_ab;
using GemmKernel = typename Gemm::GemmKernel;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
@ -136,7 +151,6 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0), n = b.size(1), k = a.size(1);
auto prob_shape = cute::make_shape(m, n, k, 1);
StrideA a_stride;
StrideB b_stride;
@ -146,11 +160,13 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
b_stride =
cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
c_stride =
cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(m, n, 1));
cutlass::make_cute_packed_stride(StrideC{}, swap_ab ? cute::make_shape(n, m, 1) : cute::make_shape(m, n, 1));
LayoutSFA layout_SFA =
LayoutSFA layout_SFA = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFA(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
LayoutSFB layout_SFB =
LayoutSFB layout_SFB = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFB(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
@ -158,9 +174,22 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
auto a_scales_ptr = static_cast<float*>(a_scales.data_ptr());
auto b_scales_ptr = static_cast<float*>(b_scales.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB};
auto mainloop_args = [&](){
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
if (swap_ab) {
return typename GemmKernel::MainloopArguments{
b_ptr, b_stride, a_ptr, a_stride,
b_scales_ptr, layout_SFA, a_scales_ptr, layout_SFB
};
}
else {
return typename GemmKernel::MainloopArguments{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB
};
}
}();
auto prob_shape = swap_ab ? cute::make_shape(n, m, k, 1) : cute::make_shape(m, n, k, 1);
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
@ -175,29 +204,74 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
auto m = a.size(0);
auto k = a.size(1);
auto n = b.size(1);
int sms;
int32_t m = a.size(0), n = b.size(1), k = a.size(1), sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
auto should_use_2sm = [&sms](int m, int n, int tile1SM = 128) {
return std::ceil(static_cast<float>(m) / tile1SM) *
std::ceil(static_cast<float>(n) / tile1SM) >=
sms;
};
bool use_2sm = should_use_2sm(m, n);
if (use_2sm) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, Shape<_256, _128, _128>, Shape<_256, _1, _1>,
Shape<_2, _2, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
constexpr int TILE_K = 128;
// TODO: better heuristics
bool swap_ab = (m < 16) || (m % 4 != 0);
bool use_tma_epilogue = (m * n) % 4 == 0;
if (!swap_ab) {
constexpr int TILE_N = 128;
int tile_m = 256;
if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 64) <= sms) {
tile_m = 64;
}
else if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 128) <= sms) {
tile_m = 128;
}
if (tile_m == 64) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else if (tile_m == 128) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else { // tile_m == 256
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
}
}
} else {
// TODO: Test more tile N configs
constexpr int TILE_M = 128;
constexpr int TILE_N = 16;
// TMA epilogue isn't compatible with Swap A/B
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, Shape<_128, _128, _128>, Shape<_128, _1, _1>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
out, a, b, a_scales, b_scales);
}
}

View File

@ -15,6 +15,7 @@ using c3x::cutlass_gemm_caller;
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_default {
// M in (128, inf)
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
@ -25,6 +26,34 @@ struct sm100_fp8_config_default {
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _64>;
using ClusterShape = Shape<_2, _2, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M64 {
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
@ -39,8 +68,28 @@ inline void cutlass_gemm_sm100_fp8_dispatch(torch::Tensor& out,
using Cutlass3xGemmDefault =
typename sm100_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
using Cutlass3xGemmM64 =
typename sm100_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm100_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
if (mp2 <= 64) {
// m in [1, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
template <template <typename, typename, typename> typename Epilogue,

View File

@ -84,7 +84,8 @@ void run_cutlass_moe_mm_sm90(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
TORCH_CHECK(a_tensors.size(0) > 0, "No input A tensors provided.");
TORCH_CHECK(b_tensors.size(0) > 0, "No input B tensors provided.");
TORCH_CHECK(out_tensors.size(0) > 0, "No output tensors provided.");
@ -113,19 +114,23 @@ void run_cutlass_moe_mm_sm90(
if (n >= 8192) {
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides);
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else if (k >= 8192) {
cutlass_group_gemm_caller<Cutlass3xGemmK8192>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides);
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else if (m <= 16) {
cutlass_group_gemm_caller<Cutlass3xGemmM16>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides);
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else {
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides);
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
}
}
@ -134,15 +139,18 @@ void dispatch_moe_mm_sm90(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
if (out_tensors.dtype() == torch::kBFloat16) {
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::bfloat16_t>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides);
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else {
run_cutlass_moe_mm_sm90<cutlass::float_e4m3_t, cutlass::half_t>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides);
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
}
}
@ -153,8 +161,9 @@ void cutlass_moe_mm_sm90(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
dispatch_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides);
c_strides, per_act_token, per_out_ch);
}

View File

@ -76,7 +76,8 @@ void cutlass_group_gemm_caller(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
@ -84,9 +85,6 @@ void cutlass_group_gemm_caller(
int k_size = a_tensors.size(1);
int n_size = out_tensors.size(1);
bool per_act_token = a_scales.numel() != 1;
bool per_out_ch = b_scales.numel() != num_experts;
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
auto options_int =

View File

@ -7,7 +7,7 @@
constexpr uint64_t THREADS_PER_EXPERT = 512;
__global__ void compute_problem_sizes(const int* __restrict__ topk_ids,
__global__ void compute_problem_sizes(const uint32_t* __restrict__ topk_ids,
int32_t* problem_sizes1,
int32_t* problem_sizes2,
int32_t* atomic_buffer,
@ -45,7 +45,24 @@ __global__ void compute_expert_offsets(
}
}
__global__ void compute_arg_sorts(const int* __restrict__ topk_ids,
__global__ void compute_expert_blockscale_offsets(
const int32_t* __restrict__ problem_sizes1, int32_t* expert_offsets,
int32_t* blockscale_offsets, int32_t* atomic_buffer,
const int num_experts) {
int32_t tot_offset = 0;
int32_t tot_offset_round = 0;
expert_offsets[0] = 0;
blockscale_offsets[0] = 0;
for (int i = 0; i < num_experts; ++i) {
atomic_buffer[i] = tot_offset;
tot_offset += problem_sizes1[i * 3];
expert_offsets[i + 1] = tot_offset;
tot_offset_round += (problem_sizes1[i * 3] + (128 - 1)) / 128 * 128;
blockscale_offsets[i + 1] = tot_offset_round;
}
}
__global__ void compute_arg_sorts(const uint32_t* __restrict__ topk_ids,
const int32_t* __restrict__ expert_offsets,
int32_t* input_permutation,
int32_t* output_permutation,
@ -77,7 +94,8 @@ void get_cutlass_moe_mm_data_caller(
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
const int64_t num_experts, const int64_t n, const int64_t k) {
const int64_t num_experts, const int64_t n, const int64_t k,
const std::optional<torch::Tensor>& blockscale_offsets) {
auto stream = at::cuda::getCurrentCUDAStream(topk_ids.device().index());
auto options_int32 =
torch::TensorOptions().dtype(torch::kInt32).device(topk_ids.device());
@ -85,19 +103,61 @@ void get_cutlass_moe_mm_data_caller(
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
compute_problem_sizes<<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<const uint32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n, k);
compute_expert_offsets<<<1, 1, 0, stream>>>(
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
if (blockscale_offsets.has_value()) {
compute_expert_blockscale_offsets<<<1, 1, 0, stream>>>(
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(blockscale_offsets.value().data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
} else {
compute_expert_offsets<<<1, 1, 0, stream>>>(
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
}
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<const uint32_t*>(topk_ids.data_ptr()),
static_cast<const int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(input_permutation.data_ptr()),
static_cast<int32_t*>(output_permutation.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(),
topk_ids.size(1));
}
__global__ void compute_pplx_data(int32_t* expert_offsets,
int32_t* problem_sizes1,
int32_t* problem_sizes2,
const int32_t* __restrict__ expert_num_tokens,
const int padded_m, const int n,
const int k) {
int expert_idx = threadIdx.x;
expert_offsets[expert_idx] = expert_idx * padded_m;
problem_sizes1[expert_idx * 3] = expert_num_tokens[expert_idx];
problem_sizes1[expert_idx * 3 + 1] = 2 * n;
problem_sizes1[expert_idx * 3 + 2] = k;
problem_sizes2[expert_idx * 3] = expert_num_tokens[expert_idx];
problem_sizes2[expert_idx * 3 + 1] = k;
problem_sizes2[expert_idx * 3 + 2] = n;
}
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,
const torch::Tensor& expert_num_tokens,
const int64_t num_local_experts,
const int64_t padded_m,
const int64_t n, const int64_t k) {
auto stream = at::cuda::getCurrentCUDAStream(expert_offsets.device().index());
compute_pplx_data<<<1, num_local_experts, 0, stream>>>(
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
k);
}

View File

@ -36,7 +36,8 @@ void cutlass_moe_mm_sm90(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides);
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch);
#endif
@ -54,7 +55,16 @@ void get_cutlass_moe_mm_data_caller(
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
const int64_t num_experts, const int64_t n, const int64_t k);
const int64_t num_experts, const int64_t n, const int64_t k,
const std::optional<torch::Tensor>& blockscale_offsets);
void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,
const torch::Tensor& expert_num_tokens,
const int64_t num_local_experts,
const int64_t padded_m,
const int64_t n, const int64_t k);
#endif
void cutlass_scaled_mm_azp_sm75(torch::Tensor& c, torch::Tensor const& a,
@ -206,12 +216,13 @@ void cutlass_moe_mm(
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides) {
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
int32_t version_num = get_sm_version_num();
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides);
c_strides, per_act_token, per_out_ch);
return;
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
@ -224,7 +235,8 @@ void get_cutlass_moe_mm_data(
const torch::Tensor& topk_ids, torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1, torch::Tensor& problem_sizes2,
torch::Tensor& input_permutation, torch::Tensor& output_permutation,
const int64_t num_experts, const int64_t n, const int64_t k) {
const int64_t num_experts, const int64_t n, const int64_t k,
const std::optional<torch::Tensor>& blockscale_offsets) {
// This function currently gets compiled only if we have a valid cutlass moe
// mm to run it for.
int32_t version_num = get_sm_version_num();
@ -232,7 +244,8 @@ void get_cutlass_moe_mm_data(
(defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM90)
get_cutlass_moe_mm_data_caller(topk_ids, expert_offsets, problem_sizes1,
problem_sizes2, input_permutation,
output_permutation, num_experts, n, k);
output_permutation, num_experts, n, k,
blockscale_offsets);
return;
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
@ -242,6 +255,29 @@ void get_cutlass_moe_mm_data(
version_num, ". Required capability: 90");
}
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
torch::Tensor& problem_sizes1,
torch::Tensor& problem_sizes2,
const torch::Tensor& expert_num_tokens,
const int64_t num_local_experts,
const int64_t padded_m, const int64_t n,
const int64_t k) {
// This function currently gets compiled only if we have a valid cutlass moe
// mm to run it for.
int32_t version_num = get_sm_version_num();
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
get_cutlass_pplx_moe_mm_data_caller(expert_offsets, problem_sizes1,
problem_sizes2, expert_num_tokens,
num_local_experts, padded_m, n, k);
return;
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"No compiled get_cutlass_pplx_moe_mm_data: no cutlass_scaled_mm kernel "
"for CUDA device capability: ",
version_num, ". Required capability: 90");
}
void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,

View File

@ -435,7 +435,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"cutlass_moe_mm(Tensor! out_tensors, Tensor a_tensors, Tensor b_tensors, "
" Tensor a_scales, Tensor b_scales, Tensor expert_offsets, "
" Tensor problem_sizes, Tensor a_strides, "
" Tensor b_strides, Tensor c_strides) -> ()",
" Tensor b_strides, Tensor c_strides, bool per_act_token, "
" bool per_out_ch) -> ()",
{stride_tag});
ops.impl("cutlass_moe_mm", torch::kCUDA, &cutlass_moe_mm);
@ -450,10 +451,26 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
" Tensor! problem_sizes1, Tensor! problem_sizes2, "
" Tensor! input_permutation, "
" Tensor! output_permutation, int num_experts, "
" int n, int k) -> ()",
" int n, int k, Tensor? blockscale_offsets) -> ()",
{stride_tag});
ops.impl("get_cutlass_moe_mm_data", torch::kCUDA, &get_cutlass_moe_mm_data);
// A function that computes data required to run fused MoE with w8a8 grouped
// GEMM and PPLX. It takes expert_num_tokens and non_zero_expert_idxs
// as an input, and computes expert_offsets (token start indices of each
// expert). In addition to this, it computes problem sizes for each expert's
// multiplication used by the two mms called from fused MoE operation.
ops.def(
"get_cutlass_pplx_moe_mm_data(Tensor! expert_offsets, "
" Tensor! problem_sizes1, "
" Tensor! problem_sizes2, "
" Tensor expert_num_tokens, "
" int num_local_experts, int padded_m, "
" int n, int k) -> ()",
{stride_tag});
ops.impl("get_cutlass_pplx_moe_mm_data", torch::kCUDA,
&get_cutlass_pplx_moe_mm_data);
// Check if cutlass scaled_mm supports block quantization (used by DeepSeekV3)
ops.def(
"cutlass_scaled_mm_supports_block_fp8(int cuda_device_capability) -> "

View File

@ -312,4 +312,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Logging to confirm the torch versions
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'
# Logging to confirm all the packages are installed
RUN pip freeze
#################### UNITTEST IMAGE #############################

View File

@ -1,10 +1,41 @@
ARG BASE_UBI_IMAGE_TAG=9.5-1741850109
###############################################################
# Stage to build openblas
###############################################################
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS openblas-builder
ARG MAX_JOBS
ARG OPENBLAS_VERSION=0.3.29
RUN microdnf install -y dnf && dnf install -y gcc-toolset-13 make wget unzip \
&& source /opt/rh/gcc-toolset-13/enable \
&& wget https://github.com/OpenMathLib/OpenBLAS/releases/download/v$OPENBLAS_VERSION/OpenBLAS-$OPENBLAS_VERSION.zip \
&& unzip OpenBLAS-$OPENBLAS_VERSION.zip \
&& cd OpenBLAS-$OPENBLAS_VERSION \
&& make -j${MAX_JOBS} TARGET=POWER9 BINARY=64 USE_OPENMP=1 USE_THREAD=1 NUM_THREADS=120 DYNAMIC_ARCH=1 INTERFACE64=0 \
&& cd /tmp && touch control
###############################################################
# base stage with dependencies coming from centos mirrors
###############################################################
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS centos-deps-builder
RUN microdnf install -y dnf && \
dnf install -y https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-gpg-keys-9.0-24.el9.noarch.rpm \
https://mirror.stream.centos.org/9-stream/BaseOS/`arch`/os/Packages/centos-stream-repos-9.0-24.el9.noarch.rpm \
https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
dnf config-manager --set-enabled crb
RUN dnf install -y openjpeg2-devel lcms2-devel tcl-devel tk-devel fribidi-devel && \
dnf remove -y centos-gpg-keys-9.0-24.el9.noarch centos-stream-repos-9.0-24.el9.noarch
###############################################################
# base stage with basic dependencies
###############################################################
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS base-builder
FROM centos-deps-builder AS base-builder
ARG PYTHON_VERSION=3.12
ARG OPENBLAS_VERSION=0.3.29
@ -20,25 +51,27 @@ ENV UV_LINK_MODE=copy
# Note: A symlink for libatomic.so is created for gcc-13 (linker fails to find libatomic otherwise - reqd. for sentencepiece)
# Note: A dummy file 'control' is created in /tmp/ to artificially create dependencies between stages when building stages in parallel
# when `--jobs=<N>` is passed with podman build command
RUN microdnf install -y openssl-devel dnf \
&& dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm \
&& dnf config-manager --set-enabled codeready-builder-for-rhel-9-ppc64le-rpms \
COPY --from=openblas-builder /tmp/control /dev/null
RUN --mount=type=bind,from=openblas-builder,source=/OpenBLAS-$OPENBLAS_VERSION/,target=/openblas/,rw \
dnf install -y openssl-devel \
&& dnf install -y \
git tar gcc-toolset-13 automake libtool numactl-devel lapack-devel \
git tar gcc-toolset-13 automake libtool \
pkgconfig xsimd zeromq-devel kmod findutils protobuf* \
libtiff-devel libjpeg-devel openjpeg2-devel zlib-devel \
freetype-devel lcms2-devel libwebp-devel tcl-devel tk-devel \
harfbuzz-devel fribidi-devel libraqm-devel libimagequant-devel libxcb-devel \
libtiff-devel libjpeg-devel zlib-devel freetype-devel libwebp-devel \
harfbuzz-devel libraqm-devel libimagequant-devel libxcb-devel \
python${PYTHON_VERSION}-devel python${PYTHON_VERSION}-pip \
&& dnf clean all \
&& PREFIX=/usr/local make -C /openblas install \
&& ln -sf /usr/lib64/libatomic.so.1 /usr/lib64/libatomic.so \
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
&& python -m pip install -U pip uv \
&& uv pip install wheel build "setuptools<70" setuptools_scm setuptools_rust meson-python 'cmake<4' ninja cython scikit_build_core scikit_build \
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
&& curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y \
&& cd /tmp && touch control
###############################################################
# Stage to build torch family
###############################################################
@ -48,6 +81,8 @@ FROM base-builder AS torch-builder
ARG MAX_JOBS
ARG TORCH_VERSION=2.6.0
ARG _GLIBCXX_USE_CXX11_ABI=1
ARG OPENBLAS_VERSION=0.3.29
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone --recursive https://github.com/pytorch/pytorch.git -b v${TORCH_VERSION} && \
@ -109,7 +144,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
.. && \
make install -j ${MAX_JOBS:-$(nproc)} && \
cd ../../python/ && \
uv pip install -v -r requirements-wheel-build.txt && \
uv pip install -v -r requirements-build.txt && uv pip install numpy==2.1.3 && \
pip show numpy && ls -lrt /opt/vllm/lib/python3.12/site-packages/numpy && \
PYARROW_PARALLEL=${PYARROW_PARALLEL:-$(nproc)} \
python setup.py build_ext \
--build-type=release --bundle-arrow-cpp \
@ -132,47 +168,9 @@ RUN --mount=type=cache,target=/root/.cache/uv \
cd opencv-python && \
sed -i -E -e 's/"setuptools.+",/"setuptools",/g' pyproject.toml && \
cd opencv && git cherry-pick --no-commit $OPENCV_PATCH && cd .. && \
uv pip install scikit-build && \
python -m build --wheel --installer=uv --outdir /opencvwheels/
###############################################################
# Stage to build vllm - this stage builds and installs
# vllm, tensorizer and vllm-tgis-adapter and builds uv cache
# for transitive dependencies - eg. grpcio
###############################################################
FROM base-builder AS vllmcache-builder
COPY --from=torch-builder /tmp/control /dev/null
COPY --from=arrow-builder /tmp/control /dev/null
COPY --from=cv-builder /tmp/control /dev/null
ARG VLLM_TARGET_DEVICE=cpu
ARG GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1
# this step installs vllm and populates uv cache
# with all the transitive dependencies
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone https://github.com/huggingface/xet-core.git && cd xet-core/hf_xet/ && \
uv pip install maturin && \
uv build --wheel --out-dir /hf_wheels/
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
--mount=type=bind,from=cv-builder,source=/opencvwheels/,target=/opencvwheels/,ro \
--mount=type=bind,src=.,dst=/src/,rw \
source /opt/rh/gcc-toolset-13/enable && \
uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl && \
sed -i -e 's/.*torch.*//g' /src/pyproject.toml /src/requirements/*.txt && \
uv pip install pandas pythran pybind11 /hf_wheels/*.whl && \
# sentencepiece.pc is in some pkgconfig inside uv cache
export PKG_CONFIG_PATH=$(find / -type d -name "pkgconfig" 2>/dev/null | tr '\n' ':') && \
uv pip install -r /src/requirements/common.txt -r /src/requirements/cpu.txt -r /src/requirements/build.txt --no-build-isolation && \
cd /src/ && \
uv build --wheel --out-dir /vllmwheel/ --no-build-isolation && \
uv pip install /vllmwheel/*.whl
###############################################################
# Stage to build numactl
###############################################################
@ -188,6 +186,49 @@ RUN git clone --recursive https://github.com/numactl/numactl.git -b v${NUMACTL_V
&& autoreconf -i && ./configure \
&& make -j ${MAX_JOBS:-$(nproc)}
###############################################################
# Stage to build vllm - this stage builds and installs
# vllm, tensorizer and vllm-tgis-adapter and builds uv cache
# for transitive dependencies - eg. grpcio
###############################################################
FROM base-builder AS vllmcache-builder
COPY --from=torch-builder /tmp/control /dev/null
COPY --from=arrow-builder /tmp/control /dev/null
COPY --from=cv-builder /tmp/control /dev/null
COPY --from=numa-builder /tmp/control /dev/null
ARG VLLM_TARGET_DEVICE=cpu
ARG GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1
# this step installs vllm and populates uv cache
# with all the transitive dependencies
RUN --mount=type=cache,target=/root/.cache/uv \
source /opt/rh/gcc-toolset-13/enable && \
git clone https://github.com/huggingface/xet-core.git && cd xet-core/hf_xet/ && \
uv pip install maturin && \
uv build --wheel --out-dir /hf_wheels/
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=torch-builder,source=/torchwheels/,target=/torchwheels/,ro \
--mount=type=bind,from=arrow-builder,source=/arrowwheels/,target=/arrowwheels/,ro \
--mount=type=bind,from=cv-builder,source=/opencvwheels/,target=/opencvwheels/,ro \
--mount=type=bind,from=numa-builder,source=/numactl/,target=/numactl/,rw \
--mount=type=bind,src=.,dst=/src/,rw \
source /opt/rh/gcc-toolset-13/enable && \
uv pip install /opencvwheels/*.whl /arrowwheels/*.whl /torchwheels/*.whl && \
sed -i -e 's/.*torch.*//g' /src/pyproject.toml /src/requirements/*.txt && \
uv pip install pandas pythran pybind11 /hf_wheels/*.whl && \
make -C /numactl install && \
# sentencepiece.pc is in some pkgconfig inside uv cache
export PKG_CONFIG_PATH=$(find / -type d -name "pkgconfig" 2>/dev/null | tr '\n' ':') && \
uv pip install -r /src/requirements/common.txt -r /src/requirements/cpu.txt -r /src/requirements/build.txt --no-build-isolation && \
cd /src/ && \
uv build --wheel --out-dir /vllmwheel/ --no-build-isolation && \
uv pip install /vllmwheel/*.whl
###############################################################
# Stage to build lapack
###############################################################
@ -217,6 +258,7 @@ ENV PATH=${VIRTUAL_ENV}/bin:$PATH
ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig/
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib64:/usr/local/lib:/usr/lib64:/usr/lib
ENV UV_LINK_MODE=copy
ENV OMP_NUM_THREADS=16
# create artificial dependencies between stages for independent stages to build in parallel
COPY --from=torch-builder /tmp/control /dev/null
@ -225,11 +267,13 @@ COPY --from=cv-builder /tmp/control /dev/null
COPY --from=vllmcache-builder /tmp/control /dev/null
COPY --from=numa-builder /tmp/control /dev/null
COPY --from=lapack-builder /tmp/control /dev/null
COPY --from=openblas-builder /tmp/control /dev/null
# install gcc-11, python, openblas, numactl, lapack
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=numa-builder,source=/numactl/,target=/numactl/,rw \
--mount=type=bind,from=lapack-builder,source=/lapack/,target=/lapack/,rw \
--mount=type=bind,from=openblas-builder,source=/OpenBLAS-$OPENBLAS_VERSION/,target=/openblas/,rw \
rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
microdnf install --nodocs -y \
tar findutils openssl \
@ -241,8 +285,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
&& microdnf clean all \
&& python${PYTHON_VERSION} -m venv ${VIRTUAL_ENV} \
&& python -m pip install -U pip uv --no-cache \
&& curl -sL https://ftp2.osuosl.org/pub/ppc64el/openblas/latest/Openblas_${OPENBLAS_VERSION}_ppc64le.tar.gz | tar xvf - -C /usr/local \
&& make -C /numactl install \
&& PREFIX=/usr/local make -C /openblas install \
&& uv pip install 'cmake<4' \
&& cmake --install /lapack/build \
&& uv pip uninstall cmake

View File

@ -13,7 +13,7 @@ RUN apt-get update -q -y && apt-get install -q -y \
sqlite3 libsqlite3-dev libfmt-dev libmsgpack-dev libsuitesparse-dev \
apt-transport-https ca-certificates wget curl
# Remove sccache
RUN python3 -m pip install --upgrade pip && pip install setuptools_scm
RUN python3 -m pip install --upgrade pip
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
ARG COMMON_WORKDIR
WORKDIR ${COMMON_WORKDIR}
@ -28,7 +28,8 @@ ARG VLLM_REPO="https://github.com/vllm-project/vllm.git"
ARG VLLM_BRANCH="main"
ONBUILD RUN git clone ${VLLM_REPO} \
&& cd vllm \
&& git checkout ${VLLM_BRANCH}
&& git fetch -v --prune -- origin ${VLLM_BRANCH} \
&& git checkout FETCH_HEAD
FROM fetch_vllm_${REMOTE_VLLM} AS fetch_vllm
# -----------------------

View File

@ -64,15 +64,13 @@ Download the full log file from Buildkite locally.
Strip timestamps and colorization:
```bash
# Strip timestamps
sed -i 's/^\[[0-9]\{4\}-[0-9]\{2\}-[0-9]\{2\}T[0-9]\{2\}:[0-9]\{2\}:[0-9]\{2\}Z\] //' ci.log
<gh-file:.buildkite/scripts/ci-clean-log.sh>
# Strip colorization
sed -i -r 's/\x1B\[[0-9;]*[mK]//g' ci.log
```bash
./ci-clean-log.sh ci.log
```
Use a tool for quick copy-pasting:
Use a tool [wl-clipboard](https://github.com/bugaevc/wl-clipboard) for quick copy-pasting:
```bash
tail -525 ci_build.log | wl-copy
@ -89,10 +87,10 @@ tail -525 ci_build.log | wl-copy
CI test failures may be flaky. Use a bash loop to run repeatedly:
<gh-file:.buildkite/scripts/rerun-test.sh>
```bash
COUNT=1; while pytest -sv tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]; do
COUNT=$[$COUNT + 1]; echo "RUN NUMBER ${COUNT}";
done
./rerun-test.sh tests/v1/engine/test_engine_core_client.py::test_kv_cache_events[True-tcp]
```
## Submitting a PR

View File

@ -144,7 +144,7 @@ As a result, we will have the following components when the KV cache manager is
**Running request:** Workflow for the scheduler to schedule a running request with KV cache block allocation:
1. The scheduler calls `kv_cache_manager.append_slots()`. It does the following steps:
1. The scheduler calls `kv_cache_manager.allocate_slots()`. It does the following steps:
1. Compute the number of new required blocks, and return if there are no sufficient blocks to allocate.
2. Allocate new blocks by popping the heads of the free queue. If the head block is a cached block, this also “evicts” the block so that no other requests can reuse it anymore from now on.
3. Append token IDs to the slots in existing blocks as well as the new blocks. If a block is full, we add it to the Cache Block to cache it.

View File

@ -110,8 +110,9 @@ vLLM CPU backend supports the following vLLM features:
## Related runtime environment variables
- `VLLM_CPU_KVCACHE_SPACE`: specify the KV Cache size (e.g, `VLLM_CPU_KVCACHE_SPACE=40` means 40 GiB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
- `VLLM_CPU_OMP_THREADS_BIND`: specify the CPU cores dedicated to the OpenMP threads. For example, `VLLM_CPU_OMP_THREADS_BIND=0-31` means there will be 32 OpenMP threads bound on 0-31 CPU cores. `VLLM_CPU_OMP_THREADS_BIND=0-31|32-63` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores.
- `VLLM_CPU_KVCACHE_SPACE`: specify the KV Cache size (e.g, `VLLM_CPU_KVCACHE_SPACE=40` means 40 GiB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users. Default value is `0`.
- `VLLM_CPU_OMP_THREADS_BIND`: specify the CPU cores dedicated to the OpenMP threads. For example, `VLLM_CPU_OMP_THREADS_BIND=0-31` means there will be 32 OpenMP threads bound on 0-31 CPU cores. `VLLM_CPU_OMP_THREADS_BIND=0-31|32-63` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores. By setting to `auto`, the OpenMP threads of each rank are bound to the CPU cores in each NUMA node. By setting to `all`, the OpenMP threads of each rank uses all CPU cores available on the system. Default value is `auto`.
- `VLLM_CPU_NUM_OF_RESERVED_CPU`: specify the number of CPU cores which are not dedicated to the OpenMP threads for each rank. The variable only takes effect when VLLM_CPU_OMP_THREADS_BIND is set to `auto`. Default value is `0`.
- `VLLM_CPU_MOE_PREPACK`: whether to use prepack for MoE layer. This will be passed to `ipex.llm.modules.GatedMLPMOE`. Default is `1` (True). On unsupported CPUs, you might need to set this to `0` (False).
## Performance tips
@ -133,7 +134,15 @@ export VLLM_CPU_OMP_THREADS_BIND=0-29
vllm serve facebook/opt-125m
```
- If using vLLM CPU backend on a machine with hyper-threading, it is recommended to bind only one OpenMP thread on each physical CPU core using `VLLM_CPU_OMP_THREADS_BIND`. On a hyper-threading enabled platform with 16 logical CPU cores / 8 physical CPU cores:
or using default auto thread binding:
```console
export VLLM_CPU_KVCACHE_SPACE=40
export VLLM_CPU_NUM_OF_RESERVED_CPU=2
vllm serve facebook/opt-125m
```
- If using vLLM CPU backend on a machine with hyper-threading, it is recommended to bind only one OpenMP thread on each physical CPU core using `VLLM_CPU_OMP_THREADS_BIND` or using auto thread binding feature by default. On a hyper-threading enabled platform with 16 logical CPU cores / 8 physical CPU cores:
```console
$ lscpu -e # check the mapping between logical CPU cores and physical CPU cores
@ -178,6 +187,12 @@ $ python examples/offline_inference/basic/basic.py
VLLM_CPU_KVCACHE_SPACE=40 VLLM_CPU_OMP_THREADS_BIND="0-31|32-63" vllm serve meta-llama/Llama-2-7b-chat-hf -tp=2 --distributed-executor-backend mp
```
or using default auto thread binding:
```console
VLLM_CPU_KVCACHE_SPACE=40 vllm serve meta-llama/Llama-2-7b-chat-hf -tp=2 --distributed-executor-backend mp
```
- For each thread id list in `VLLM_CPU_OMP_THREADS_BIND`, users should guarantee threads in the list belong to a same NUMA node.
- Meanwhile, users should also take care of memory capacity of each NUMA node. The memory usage of each TP rank is the sum of `weight shard size` and `VLLM_CPU_KVCACHE_SPACE`, if it exceeds the capacity of a single NUMA node, TP worker will be killed due to out-of-memory.

View File

@ -1,6 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from pathlib import Path
from typing import Literal
@ -8,10 +9,9 @@ def on_startup(command: Literal["build", "gh-deploy", "serve"], dirty: bool):
# see https://docs.readthedocs.io/en/stable/reference/environment-variables.html # noqa
if os.getenv('READTHEDOCS_VERSION_TYPE') == "tag":
# remove the warning banner if the version is a tagged release
docs_dir = os.path.dirname(__file__)
announcement_path = os.path.join(docs_dir,
"mkdocs/overrides/main.html")
mkdocs_dir = Path(__file__).parent.parent
announcement_path = mkdocs_dir / "overrides/main.html"
# The file might be removed already if the build is triggered multiple
# times (readthedocs build both HTML and PDF versions separately)
if os.path.exists(announcement_path):
if announcement_path.exists():
os.remove(announcement_path)

View File

@ -10,7 +10,7 @@ shorter Pod startup times and CPU memory usage. Tensor encryption is also suppor
For more information on CoreWeave's Tensorizer, please refer to
[CoreWeave's Tensorizer documentation](https://github.com/coreweave/tensorizer). For more information on serializing a vLLM model, as well a general usage guide to using Tensorizer with vLLM, see
the [vLLM example script](https://docs.vllm.ai/en/latest/examples/tensorize_vllm_model.html).
the [vLLM example script](https://docs.vllm.ai/en/latest/examples/others/tensorize_vllm_model.html).
!!! note
Note that to use this feature you will need to install `tensorizer` by running `pip install vllm[tensorizer]`.

View File

@ -346,6 +346,7 @@ Specified using `--task generate`.
| `MixtralForCausalLM` | Mixtral-8x7B, Mixtral-8x7B-Instruct | `mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc. | ✅︎ | ✅︎ |
| `MPTForCausalLM` | MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter | `mosaicml/mpt-7b`, `mosaicml/mpt-7b-storywriter`, `mosaicml/mpt-30b`, etc. | | ✅︎ |
| `NemotronForCausalLM` | Nemotron-3, Nemotron-4, Minitron | `nvidia/Minitron-8B-Base`, `mgoin/Nemotron-4-340B-Base-hf-FP8`, etc. | ✅︎ | ✅︎ |
| `NemotronHForCausalLM` | Nemotron-H | `nvidia/Nemotron-H-8B-Base-8K`, `nvidia/Nemotron-H-47B-Base-8K`, `nvidia/Nemotron-H-56B-Base-8K`, etc. | ✅︎ | ✅︎ |
| `OLMoForCausalLM` | OLMo | `allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc. | | ✅︎ |
| `OLMo2ForCausalLM` | OLMo2 | `allenai/OLMo-2-0425-1B`, etc. | | ✅︎ |
| `OLMoEForCausalLM` | OLMoE | `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc. | | ✅︎ |

View File

@ -31,6 +31,7 @@ refer to the [PyTorch Security
Guide](https://github.com/pytorch/pytorch/security/policy#using-distributed-features).
Key points from the PyTorch security guide:
- PyTorch Distributed features are intended for internal communication only
- They are not built for use in untrusted environments or networks
- No authorization protocol is included for performance reasons

View File

@ -40,7 +40,7 @@ If other strategies don't solve the problem, it's likely that the vLLM instance
- `export VLLM_LOGGING_LEVEL=DEBUG` to turn on more logging.
- `export CUDA_LAUNCH_BLOCKING=1` to identify which CUDA kernel is causing the problem.
- `export NCCL_DEBUG=TRACE` to turn on more logging for NCCL.
- `export VLLM_TRACE_FUNCTION=1` to record all function calls for inspection in the log files to tell which function crashes or hangs.
- `export VLLM_TRACE_FUNCTION=1` to record all function calls for inspection in the log files to tell which function crashes or hangs. Do not use this flag unless absolutely needed for debugging, it will cause significant delays in startup time.
## Incorrect network setup

View File

@ -55,7 +55,7 @@ This living user guide outlines a few known **important changes and limitations*
| **Spec Decode** | <nobr>🚧 WIP ([PR #13933](https://github.com/vllm-project/vllm/pull/13933))</nobr>|
| **Prompt Logprobs with Prefix Caching** | <nobr>🟡 Planned ([RFC #13414](https://github.com/vllm-project/vllm/issues/13414))</nobr>|
| **Structured Output Alternative Backends** | <nobr>🟡 Planned</nobr> |
| **Embedding Models** | <nobr>🚧 WIP ([PR #18015](https://github.com/vllm-project/vllm/pull/18015))</nobr> |
| **Embedding Models** | <nobr>🚧 WIP ([PR #16188](https://github.com/vllm-project/vllm/pull/16188))</nobr> |
| **Mamba Models** | <nobr>🟡 Planned</nobr> |
| **Encoder-Decoder Models** | <nobr>🟠 Delayed</nobr> |
| **Request-level Structured Output Backend** | <nobr>🔴 Deprecated</nobr> |
@ -145,9 +145,9 @@ vLLM V1 currently excludes model architectures with the `SupportsV0Only` protoco
and the majority fall into the following categories. V1 support for these models will be added eventually.
**Embedding Models**
Initially, we will create a [separate model runner](https://github.com/vllm-project/vllm/pull/18015) to provide V1 support without conflicting with other ongoing work.
The initial support will be provided by [PR #16188](https://github.com/vllm-project/vllm/pull/16188).
Later, we will consider using [hidden states processor](https://github.com/vllm-project/vllm/issues/12249), which is based on [global logits processor](https://github.com/vllm-project/vllm/pull/13360) to enable simultaneous generation and embedding using the same engine instance in V1. [PR #16188](https://github.com/vllm-project/vllm/pull/16188) is the first step towards enabling this.
Later, we will consider using [hidden states processor](https://github.com/vllm-project/vllm/issues/12249), which is based on [global logits processor](https://github.com/vllm-project/vllm/pull/13360) to enable simultaneous generation and embedding using the same engine instance in V1.
**Mamba Models**
Models using selective state-space mechanisms (instead of standard transformer attention)

View File

@ -1,37 +1,51 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This script demonstrates how to extend the context length
of a Qwen model using the YARN method (rope_scaling)
and run a simple chat example.
Usage:
python examples/offline_inference/context_extension.py
"""
from vllm import LLM, SamplingParams
rope_theta = 1000000
original_max_position_embeddings = 32768
factor = 4.0
# Use yarn to extend context
hf_overrides = {
"rope_theta": rope_theta,
"rope_scaling": {
"rope_type": "yarn",
"factor": factor,
"original_max_position_embeddings": original_max_position_embeddings,
},
"max_model_len": int(original_max_position_embeddings * factor),
}
def create_llm():
rope_theta = 1000000
original_max_position_embeddings = 32768
factor = 4.0
llm = LLM(model="Qwen/Qwen3-0.6B", hf_overrides=hf_overrides)
# Use yarn to extend context
hf_overrides = {
"rope_theta": rope_theta,
"rope_scaling": {
"rope_type": "yarn",
"factor": factor,
"original_max_position_embeddings": original_max_position_embeddings,
},
"max_model_len": int(original_max_position_embeddings * factor),
}
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=128,
)
llm = LLM(model="Qwen/Qwen3-0.6B", hf_overrides=hf_overrides)
return llm
conversation = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hello! How can I assist you today?"},
]
outputs = llm.chat(conversation, sampling_params, use_tqdm=False)
def run_llm_chat(llm):
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=128,
)
conversation = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hello! How can I assist you today?"},
]
outputs = llm.chat(conversation, sampling_params, use_tqdm=False)
return outputs
def print_outputs(outputs):
@ -44,4 +58,11 @@ def print_outputs(outputs):
print("-" * 80)
print_outputs(outputs)
def main():
llm = create_llm()
outputs = run_llm_chat(llm)
print_outputs(outputs)
if __name__ == "__main__":
main()

View File

@ -64,7 +64,7 @@ def print_outputs(outputs):
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
if __name__ == "__main__":
def main():
assert (
len(PROMPTS) == len(IMAGES) == len(SAMPLING_PARAMS)
), f"""Text, image prompts and sampling parameters should have the
@ -104,3 +104,7 @@ if __name__ == "__main__":
# test batch-size = 4
outputs = llm.generate(batched_inputs, batched_sample_params)
print_outputs(outputs)
if __name__ == "__main__":
main()

View File

@ -70,7 +70,7 @@ def main(args: argparse.Namespace):
return
if __name__ == "__main__":
def parse_args():
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion."
@ -102,5 +102,9 @@ if __name__ == "__main__":
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@ -0,0 +1,58 @@
# SPDX-License-Identifier: Apache-2.0
import asyncio
from typing import Optional
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
"""
To run this example, run the following commands simultaneously with
different CUDA_VISIBLE_DEVICES:
python examples/online_serving/multi_instance_data_parallel.py
vllm serve ibm-research/PowerMoE-3b -dp 2 -dpr 1 \
--data-parallel-address 127.0.0.1 --data-parallel-rpc-port 62300 \
--data-parallel-size-local 1 --enforce-eager --headless
Once both instances have completed the handshake, this example will
send a request to the instance with DP rank 1.
"""
async def main():
engine_args = AsyncEngineArgs(
model="ibm-research/PowerMoE-3b",
data_parallel_size=2,
dtype="auto",
max_model_len=2048,
data_parallel_address="127.0.0.1",
data_parallel_rpc_port=62300,
data_parallel_size_local=1,
enforce_eager=True,
)
engine_client = AsyncLLMEngine.from_engine_args(engine_args)
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=100,
)
prompt = "Who won the 2004 World Series?"
final_output: Optional[RequestOutput] = None
async for output in engine_client.generate(
prompt=prompt,
sampling_params=sampling_params,
request_id="abcdef",
data_parallel_rank=1,
):
final_output = output
if final_output:
print(final_output.outputs[0].text)
if __name__ == "__main__":
asyncio.run(main())

View File

@ -37,7 +37,7 @@ pyyaml
six>=1.16.0; python_version > '3.11' # transitive dependency of pandas that needs to be the latest version for python 3.12
setuptools>=77.0.3,<80; python_version > '3.11' # Setuptools is used by triton, we need to ensure a modern version is installed for 3.12+ so that it does not try to import distutils, which was removed in 3.12
einops # Required for Qwen2-VL.
compressed-tensors == 0.9.4 # required for compressed-tensors
compressed-tensors == 0.10.1 # required for compressed-tensors
depyf==0.18.0 # required for profiling and debugging with compilation config
cloudpickle # allows pickling lambda functions in model_executor/models/registry.py
watchfiles # required for http server to monitor the updates of TLS files

View File

@ -27,3 +27,5 @@ triton==3.2.0; platform_machine == "x86_64"
# Intel Extension for PyTorch, only for x86_64 CPUs
intel-openmp==2024.2.1; platform_machine == "x86_64"
intel_extension_for_pytorch==2.7.0; platform_machine == "x86_64"
py-libnuma; platform_system != "Darwin"
psutil; platform_system != "Darwin"

View File

@ -9,7 +9,9 @@ pytest-shard
pytest-timeout
librosa # required by audio tests in entrypoints/openai
sentence-transformers
sentence-transformers # required for embedding tests
transformers==4.51.3
transformers_stream_generator # required for qwen-vl test
numba == 0.61.2; python_version > '3.9'
# testing utils
boto3
@ -38,4 +40,7 @@ matplotlib # required for qwen-vl test
# required for Multi-Modal Models Test (Standard)
num2words # required for smolvlm test
pqdm
timm # required for internvl test
timm # required for internvl test
schemathesis>=3.39.15 # Required for openai schema test.
mteb>=1.38.11, <2 # required for mteb test

View File

@ -12,7 +12,8 @@ ray>=2.10.0,<2.45.0
peft
pytest-asyncio
tensorizer>=2.9.0
setuptools-scm>=8
packaging>=24.2
setuptools>=77.0.3,<80.0.0
setuptools-scm>=8
runai-model-streamer==0.11.0
runai-model-streamer-s3==0.11.0

View File

@ -18,9 +18,9 @@ setuptools==78.1.0
--find-links https://storage.googleapis.com/libtpu-releases/index.html
--find-links https://storage.googleapis.com/jax-releases/jax_nightly_releases.html
--find-links https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
torch==2.8.0.dev20250529
torchvision==0.22.0.dev20250529
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250529-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250529-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250529-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
torch==2.8.0.dev20250605
torchvision==0.23.0.dev20250605
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250605-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250605-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250605-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"

View File

@ -8,6 +8,7 @@ import uvicorn
from fastapi.responses import JSONResponse, Response
import vllm.entrypoints.api_server
import vllm.envs as envs
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.utils import FlexibleArgumentParser
@ -46,9 +47,8 @@ if __name__ == "__main__":
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngineWithStats.from_engine_args(engine_args)
vllm.entrypoints.api_server.engine = engine
uvicorn.run(
app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=vllm.entrypoints.api_server.TIMEOUT_KEEP_ALIVE)
uvicorn.run(app,
host=args.host,
port=args.port,
log_level="debug",
timeout_keep_alive=envs.VLLM_HTTP_TIMEOUT_KEEP_ALIVE)

View File

@ -384,3 +384,25 @@ async def test_delayed_generator(async_engine, stop):
assert final_output is not None
assert len(final_output.outputs[0].token_ids) == 10
assert final_output.finished
@pytest.mark.asyncio(scope="module")
async def test_invalid_argument(async_engine):
scheduler_config = await async_engine.get_scheduler_config()
if scheduler_config.num_scheduler_steps != 1:
pytest.skip("no need to test this one with multistep")
sampling_params = SamplingParams(
temperature=0,
min_tokens=10,
max_tokens=10,
)
# Targeting specific DP rank only supported in v1 multi-instance DP
with pytest.raises(ValueError):
async for _ in async_engine.generate("test",
sampling_params,
request_id=uid(),
data_parallel_rank=0):
pass

View File

@ -128,15 +128,21 @@ def test_models(
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"model, distributed_executor_backend, attention_backend, "
"test_suite", [
("distilbert/distilgpt2", "ray", "", "L4"),
("distilbert/distilgpt2", "mp", "", "L4"),
("meta-llama/Llama-3.2-1B-Instruct", "ray", "", "L4"),
("meta-llama/Llama-3.2-1B-Instruct", "mp", "", "L4"),
("distilbert/distilgpt2", "ray", "", "A100"),
("distilbert/distilgpt2", "mp", "", "A100"),
("distilbert/distilgpt2", "mp", "FLASHINFER", "A100"),
("meta-llama/Meta-Llama-3-8B", "ray", "FLASHINFER", "A100"),
"test_suite, extra_env", [
("distilbert/distilgpt2", "ray", "", "L4", {}),
("distilbert/distilgpt2", "mp", "", "L4", {}),
("distilbert/distilgpt2", "ray", "", "L4", {
"VLLM_SLEEP_WHEN_IDLE": "1"
}),
("distilbert/distilgpt2", "mp", "", "L4", {
"VLLM_SLEEP_WHEN_IDLE": "1"
}),
("meta-llama/Llama-3.2-1B-Instruct", "ray", "", "L4", {}),
("meta-llama/Llama-3.2-1B-Instruct", "mp", "", "L4", {}),
("distilbert/distilgpt2", "ray", "", "A100", {}),
("distilbert/distilgpt2", "mp", "", "A100", {}),
("distilbert/distilgpt2", "mp", "FLASHINFER", "A100", {}),
("meta-llama/Meta-Llama-3-8B", "ray", "FLASHINFER", "A100", {}),
])
@pytest.mark.parametrize("enable_prompt_embeds", [True, False])
def test_models_distributed(
@ -148,6 +154,7 @@ def test_models_distributed(
distributed_executor_backend: str,
attention_backend: str,
test_suite: str,
extra_env: dict[str, str],
enable_prompt_embeds: bool,
) -> None:
@ -173,6 +180,9 @@ def test_models_distributed(
attention_backend,
)
for k, v in extra_env.items():
monkeypatch_context.setenv(k, v)
dtype = "half"
max_tokens = 5

View File

@ -1,15 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
# TEST V1: this should be removed. Right now V1 overrides
# all the torch compile logic. We should re-enable this
# as we add torch compile support back to V1.
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch):
"""
Since this module is V0 only, set VLLM_USE_V1=0 for
all tests in the module.
"""
monkeypatch.setenv('VLLM_USE_V1', '0')

View File

@ -13,6 +13,7 @@ from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
set_current_vllm_config)
from vllm.envs import VLLM_USE_V1
from vllm.utils import direct_register_custom_op
global_counter = 0
@ -76,6 +77,7 @@ class SillyModel(nn.Module):
def _test_simple_piecewise_compile(*, use_inductor):
assert VLLM_USE_V1
vllm_config = VllmConfig(compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
@ -95,7 +97,7 @@ def _test_simple_piecewise_compile(*, use_inductor):
num_piecewise_graphs_seen=5, # 2 * num_layers + 1
num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
num_backend_compilations=3, # num_piecewise_capturable_graphs_seen
num_cudagraph_caputured=
num_cudagraph_captured=
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
):

View File

@ -327,7 +327,7 @@ def _test_toy_llama(*, use_inductor):
num_piecewise_graphs_seen=0,
num_piecewise_capturable_graphs_seen=0,
num_backend_compilations=0,
num_cudagraph_caputured=0,
num_cudagraph_captured=0,
):
outputs.append(
run_model(llama_config, use_inductor=False, use_compile=False))
@ -343,7 +343,7 @@ def _test_toy_llama(*, use_inductor):
num_piecewise_graphs_seen=1,
num_piecewise_capturable_graphs_seen=1,
num_backend_compilations=1, # num_piecewise_capturable_graphs_seen
num_cudagraph_caputured=
num_cudagraph_captured=
2, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
**kwargs,
):
@ -361,7 +361,7 @@ def _test_toy_llama(*, use_inductor):
llama_config.num_layers, # 1 + num_layers
num_backend_compilations=1 +
llama_config.num_layers, # num_piecewise_capturable_graphs_seen
num_cudagraph_caputured=2 *
num_cudagraph_captured=2 *
(1 + llama_config.num_layers
), # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
):

View File

@ -0,0 +1,34 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import vllm
from vllm.compilation.counter import compilation_counter
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
set_current_vllm_config)
from .piecewise.test_simple import SillyModel
@pytest.mark.parametrize("enabled", [True, False])
def test_use_cudagraphs(enabled):
assert vllm.envs.VLLM_USE_V1
vllm_config = VllmConfig(compilation_config=CompilationConfig(
level=CompilationLevel.PIECEWISE,
use_cudagraph=enabled,
cudagraph_capture_sizes=[100],
))
with set_current_vllm_config(vllm_config):
model = SillyModel(vllm_config=vllm_config, prefix='')
inputs = torch.randn(100, device="cuda")
with compilation_counter.expect(
num_graphs_seen=1, # one graph for the model
num_cudagraph_captured=1 if enabled else 0,
):
# first run is warmup
model(inputs)
# second run does CUDAGraphs recording (if enabled)
model(inputs)

View File

@ -25,6 +25,12 @@ TOKEN_IDS = [
]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
"""We can run both engines for this test."""
pass
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
@ -104,3 +110,19 @@ def test_multiple_sampling_params(llm: LLM):
# sampling_params is None, default params should be applied
outputs = llm.generate(PROMPTS, sampling_params=None)
assert len(PROMPTS) == len(outputs)
def test_max_model_len():
max_model_len = 20
llm = LLM(
model=MODEL_NAME,
max_model_len=max_model_len,
gpu_memory_utilization=0.10,
enforce_eager=True, # reduce test time
)
sampling_params = SamplingParams(max_tokens=max_model_len + 10)
outputs = llm.generate(PROMPTS, sampling_params)
for output in outputs:
num_total_tokens = len(output.prompt_token_ids) + len(
output.outputs[0].token_ids)
assert num_total_tokens == max_model_len

View File

@ -22,7 +22,9 @@ def server(): # noqa: F811
"--guided-decoding-backend",
"xgrammar",
"--tool-call-parser",
"hermes"
"hermes",
"--reasoning-parser",
"qwen3",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
@ -37,7 +39,12 @@ async def client(server):
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_required_tool_use(client: openai.AsyncOpenAI, model_name: str):
@pytest.mark.parametrize("stream", [True, False])
@pytest.mark.parametrize("tool_choice", ["auto", "required"])
@pytest.mark.parametrize("enable_thinking", [True, False])
async def test_function_tool_use(client: openai.AsyncOpenAI, model_name: str,
stream: bool, tool_choice: str,
enable_thinking: bool):
tools = [
{
"type": "function",
@ -126,30 +133,38 @@ async def test_required_tool_use(client: openai.AsyncOpenAI, model_name: str):
"forecast for the next 5 days, in fahrenheit?",
},
]
if not stream:
# Non-streaming test
chat_completion = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice=tool_choice,
extra_body={
"chat_template_kwargs": {
"enable_thinking": enable_thinking
}
})
# Non-streaming test
chat_completion = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice="required",
)
assert chat_completion.choices[0].message.tool_calls is not None
assert len(chat_completion.choices[0].message.tool_calls) > 0
else:
# Streaming test
output_stream = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice=tool_choice,
stream=True,
extra_body={
"chat_template_kwargs": {
"enable_thinking": enable_thinking
}
})
assert chat_completion.choices[0].message.tool_calls is not None
assert len(chat_completion.choices[0].message.tool_calls) > 0
output = []
async for chunk in output_stream:
if chunk.choices and chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
# Streaming test
stream = await client.chat.completions.create(
messages=messages,
model=model_name,
tools=tools,
tool_choice="required",
stream=True,
)
output = []
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.tool_calls:
output.extend(chunk.choices[0].delta.tool_calls)
assert len(output) > 0
assert len(output) > 0

View File

@ -162,12 +162,14 @@ def make_deepep_ll_a2a(pg: ProcessGroup,
low_latency_mode=True,
num_qps_per_rank=deepep_ll_args.num_experts //
pgi.world_size)
return DeepEPLLPrepareAndFinalize(
buffer=buffer,
world_size=pgi.world_size,
dp_size=dp_size,
max_tokens_per_rank=deepep_ll_args.max_tokens_per_rank,
quant_dtype=q_dtype,
block_shape=block_shape,
use_fp8_dispatch=deepep_ll_args.use_fp8_dispatch,
)
@ -185,4 +187,5 @@ def make_deepep_a2a(pg: ProcessGroup,
block_shape)
assert deepep_ll_args is not None
return make_deepep_ll_a2a(pg, pgi, dp_size, deepep_ll_args, q_dtype)
return make_deepep_ll_a2a(pg, pgi, dp_size, deepep_ll_args, q_dtype,
block_shape)

View File

@ -193,14 +193,10 @@ def run_8_bit(moe_tensors: MOETensors8Bit,
kwargs = {
'a': moe_tensors.a,
'w1_q': moe_tensors.w1_q.transpose(1, 2), # type: ignore[union-attr]
'w2_q': moe_tensors.w2_q.transpose(1, 2), # type: ignore[union-attr]
'w1_q': moe_tensors.w1_q, # type: ignore[union-attr]
'w2_q': moe_tensors.w2_q, # type: ignore[union-attr]
'topk_weights': topk_weights,
'topk_ids': topk_ids,
'ab_strides1': moe_tensors.ab_strides1,
'c_strides1': moe_tensors.c_strides1,
'ab_strides2': moe_tensors.ab_strides2,
'c_strides2': moe_tensors.c_strides2,
'w1_scale': moe_tensors.w1_scale,
'w2_scale': moe_tensors.w2_scale,
'a1_scale': moe_tensors.a_scale

View File

@ -1,6 +1,8 @@
# SPDX-License-Identifier: Apache-2.0
"""
Test DeepEP + DeepGEMM integration
DeepGEMM are gemm kernels specialized for the
fp8 block-quantized case.
"""
import dataclasses
@ -33,10 +35,14 @@ except ImportError:
if has_deep_ep:
from vllm.model_executor.layers.fused_moe.deepep_ht_prepare_finalize import ( # noqa: E501
DeepEPHTPrepareAndFinalize)
from vllm.model_executor.layers.fused_moe.deepep_ll_prepare_finalize import ( # noqa: E501
DeepEPLLPrepareAndFinalize)
from .deepep_utils import DeepEPHTArgs, make_deepep_a2a
from .deepep_utils import DeepEPHTArgs, DeepEPLLArgs, make_deepep_a2a
if has_deep_gemm:
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
BatchedDeepGemmExperts)
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
DeepGemmExperts)
@ -53,6 +59,13 @@ requires_deep_gemm = pytest.mark.skipif(
P = ParamSpec("P")
def next_power_of_2(x):
import math
if x == 0:
return 1
return 2**math.ceil(math.log2(x))
def per_block_cast_to_fp8(
x: torch.Tensor,
block_size_n: int = 128) -> tuple[torch.Tensor, torch.Tensor]:
@ -126,6 +139,9 @@ class TestConfig:
n: int
num_experts: int
block_size: list[int]
# configs for testing low-latency kernels
low_latency: bool
use_fp8_dispatch: Optional[bool] = False
@dataclasses.dataclass
@ -170,9 +186,43 @@ class TestTensors:
config=config)
def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
num_local_experts: int, q_dtype: Optional[torch.dtype],
block_shape: list[int]) -> FusedMoEModularKernel:
def make_ll_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo,
max_tokens_per_rank: int, dp_size: int,
hidden_size: int, q_dtype: Optional[torch.dtype],
test_config: TestConfig) -> FusedMoEModularKernel:
assert test_config.low_latency
assert test_config.use_fp8_dispatch is not None
a2a: DeepEPLLPrepareAndFinalize = make_deepep_a2a(
pg=pg,
pgi=pgi,
dp_size=dp_size,
deepep_ht_args=None,
deepep_ll_args=DeepEPLLArgs(
max_tokens_per_rank=max_tokens_per_rank,
hidden_size=hidden_size,
num_experts=test_config.num_experts,
use_fp8_dispatch=test_config.use_fp8_dispatch),
q_dtype=q_dtype,
block_shape=test_config.block_size)
fused_experts = BatchedDeepGemmExperts(max_num_tokens=max_tokens_per_rank,
world_size=pgi.world_size,
dp_size=dp_size,
block_shape=test_config.block_size)
mk = FusedMoEModularKernel(prepare_finalize=a2a,
fused_experts=fused_experts)
return mk
def make_ht_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo,
dp_size: int, num_local_experts: int,
q_dtype: Optional[torch.dtype],
test_config: TestConfig) -> FusedMoEModularKernel:
assert not test_config.low_latency
assert test_config.use_fp8_dispatch is None
a2a: DeepEPHTPrepareAndFinalize = make_deepep_a2a(
pg=pg,
@ -181,7 +231,7 @@ def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
deepep_ht_args=DeepEPHTArgs(num_local_experts=num_local_experts),
deepep_ll_args=None,
q_dtype=q_dtype,
block_shape=block_shape)
block_shape=test_config.block_size)
fused_experts = DeepGemmExperts()
mk = FusedMoEModularKernel(prepare_finalize=a2a,
@ -189,12 +239,42 @@ def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
return mk
def deep_ep_moe_impl(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
test_tensors: TestTensors, w1: torch.Tensor,
w2: torch.Tensor, w1_scale: Optional[torch.Tensor],
w2_scale: Optional[torch.Tensor],
num_experts: int) -> torch.Tensor:
def make_modular_kernel(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
num_local_experts: int,
test_tensors: TestTensors) -> FusedMoEModularKernel:
q_dtype = torch.float8_e4m3fn
test_config = test_tensors.config
mk: FusedMoEModularKernel
# Make modular kernel
if test_config.low_latency:
max_tokens_per_rank = max(
64, next_power_of_2(test_tensors.rank_tokens.size(0)))
hidden_size = test_tensors.rank_tokens.size(-1)
mk = make_ll_modular_kernel(pg=pg,
pgi=pgi,
max_tokens_per_rank=max_tokens_per_rank,
dp_size=dp_size,
hidden_size=hidden_size,
q_dtype=q_dtype,
test_config=test_config)
else:
mk = make_ht_modular_kernel(pg, pgi, dp_size, num_local_experts,
q_dtype, test_config)
return mk
def deepep_deepgemm_moe_impl(pg: ProcessGroup, pgi: ProcessGroupInfo,
dp_size: int, test_tensors: TestTensors,
w1: torch.Tensor, w2: torch.Tensor,
w1_scale: Optional[torch.Tensor],
w2_scale: Optional[torch.Tensor]) -> torch.Tensor:
test_config = test_tensors.config
num_experts = test_config.num_experts
num_local_experts = w1.size(0)
def build_expert_map():
@ -208,14 +288,17 @@ def deep_ep_moe_impl(pg: ProcessGroup, pgi: ProcessGroupInfo, dp_size: int,
return expert_map.to(device=torch.cuda.current_device(),
dtype=torch.int32)
q_dtype = torch.float8_e4m3fn
# Make modular kernel
mk: FusedMoEModularKernel = make_modular_kernel(
pg, pgi, dp_size, num_local_experts, q_dtype,
test_tensors.config.block_size)
pg=pg,
pgi=pgi,
dp_size=dp_size,
num_local_experts=num_local_experts,
test_tensors=test_tensors)
a1_scale = test_tensors.rank_token_scales
# Low-Latency kernels can't dispatch scales.
a1_scale = (None
if test_config.low_latency else test_tensors.rank_token_scales)
out = mk.forward(hidden_states=test_tensors.rank_tokens,
w1=w1,
@ -258,7 +341,7 @@ def triton_impl(a: torch.Tensor, topk_ids: torch.Tensor,
allow_deep_gemm=False)
def _deep_ep_moe(
def _test_deepep_deepgemm_moe(
pgi: ProcessGroupInfo,
dp_size: int,
config: TestConfig,
@ -302,7 +385,7 @@ def _deep_ep_moe(
w1_scale_ep = w1_scale[e_start:e_end]
w2_scale_ep = w2_scale[e_start:e_end]
deepep_moe = deep_ep_moe_impl(
deepep_moe = deepep_deepgemm_moe_impl(
pg,
pgi,
dp_size,
@ -311,7 +394,6 @@ def _deep_ep_moe(
w2_ep,
w1_scale_ep,
w2_scale_ep,
config.num_experts,
)
torch.testing.assert_close(
@ -335,15 +417,21 @@ MNKs = [
(222, 1024, 2048),
]
TOPKS = [2, 6]
NUM_EXPERTS = [32]
@pytest.mark.parametrize("mnk", MNKs)
@pytest.mark.parametrize("num_experts", [32])
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("num_experts", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOPKS)
@pytest.mark.parametrize("world_dp_size", [(2, 1)])
@requires_deep_ep
@requires_deep_gemm
def test_deep_ep_moe(mnk: tuple[int, int, int], num_experts: int, topk: int,
world_dp_size: tuple[int, int]):
def test_ht_deepep_deepgemm_moe(mnk: tuple[int, int, int], num_experts: int,
topk: int, world_dp_size: tuple[int, int]):
"""
Tests for High-Throughput DeepEP + DeepGemm integration.
"""
m, n, k = mnk
current_platform.seed_everything(7)
@ -354,6 +442,58 @@ def test_deep_ep_moe(mnk: tuple[int, int, int], num_experts: int, topk: int,
block_m = deep_gemm.get_m_alignment_for_contiguous_layout()
block_size = [block_m, block_m]
world_size, dp_size = world_dp_size
config = TestConfig(topk=topk,
m=m,
k=k,
n=n,
num_experts=num_experts,
block_size=block_size,
low_latency=False,
use_fp8_dispatch=None)
w1, w2, w1_scale, w2_scale = make_block_quant_fp8_weights(
num_experts, n, k, block_size)
parallel_launch(world_size, _test_deepep_deepgemm_moe, dp_size, config, w1,
w2, w1_scale, w2_scale)
MNKs = [
(1, 128, 2560),
(2, 128, 2560),
(3, 1024, 2560),
(32, 128, 2560),
(45, 512, 2560),
(64, 1024, 2560),
(222, 1024, 2560),
]
# Fix tests for USE_FP8_DISPATCH=True
USE_FP8_DISPATCH = [False]
@pytest.mark.parametrize("mnk", MNKs)
@pytest.mark.parametrize("num_experts", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOPKS)
@pytest.mark.parametrize("use_fp8_dispatch", USE_FP8_DISPATCH)
@pytest.mark.parametrize("block_size", [[128, 128]])
@pytest.mark.parametrize("world_dp_size", [(2, 1)])
@requires_deep_ep
@requires_deep_gemm
def test_ll_deepep_deepgemm_moe(mnk: tuple[int, int,
int], num_experts: int, topk: int,
use_fp8_dispatch: bool, block_size: list[int],
world_dp_size: tuple[int, int]):
"""
Tests for Low-Latency DeepEP + DeepGemm integration.
"""
m, n, k = mnk
current_platform.seed_everything(7)
if topk > num_experts:
pytest.skip(f"Skipping test: topk={topk} > E={num_experts}")
world_size, dp_size = world_dp_size
config = TestConfig(
topk=topk,
@ -362,10 +502,12 @@ def test_deep_ep_moe(mnk: tuple[int, int, int], num_experts: int, topk: int,
n=n,
num_experts=num_experts,
block_size=block_size,
low_latency=True,
use_fp8_dispatch=use_fp8_dispatch,
)
w1, w2, w1_scale, w2_scale = make_block_quant_fp8_weights(
num_experts, n, k, block_size)
parallel_launch(world_size, _deep_ep_moe, dp_size, config, w1, w2,
w1_scale, w2_scale)
parallel_launch(world_size, _test_deepep_deepgemm_moe, dp_size, config, w1,
w2, w1_scale, w2_scale)

View File

@ -80,7 +80,10 @@ def test_cutlass_fp4_moe_no_graph(m: int, n: int, k: int, e: int, topk: int,
w2[expert], w2_gs[expert])
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
topk_weights, topk_ids, _ = fused_topk(a,
score,
topk,
renormalize=False)
a1_gs = torch.ones((e, ), device="cuda", dtype=torch.float32)
a2_gs = torch.ones((e, ), device="cuda", dtype=torch.float32)

View File

@ -0,0 +1,287 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from tests.pplx_utils import ProcessGroupInfo, parallel_launch
from vllm import _custom_ops as ops
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe.cutlass_moe import CutlassExpertsFp8
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
from vllm.model_executor.layers.fused_moe.modular_kernel import (
FusedMoEModularKernel)
from vllm.platforms import current_platform
try:
from pplx_kernels import AllToAll
from pplx_kernels.nvshmem import (nvshmem_alloc_empty_unique_id,
nvshmem_finalize, nvshmem_get_unique_id,
nvshmem_init)
has_pplx = True
except ImportError:
has_pplx = False
requires_pplx = pytest.mark.skipif(
not has_pplx,
reason="Requires PPLX kernels",
)
NUM_EXPERTS = [40, 64]
TOP_KS = [6, 8]
def rank_chunk(num, r, w):
rem = num % w
return (num // w) + (1 if r < rem else 0)
def chunk_by_rank(t, r, w):
num = t.shape[0]
chunk = rank_chunk(num, r, w)
rem = num % w
if rem == 0 or r < rem:
return t[(r * chunk):(r + 1) * chunk].contiguous()
else:
long_chunks = (num // w + 1) * rem
short_chunks = (r - rem) * chunk
start = long_chunks + short_chunks
return t[start:start + chunk].contiguous()
def pplx_cutlass_moe(
pgi: ProcessGroupInfo,
dp_size: int,
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
a1_scale: torch.Tensor,
out_dtype,
per_act_token: bool,
per_out_ch: bool,
):
from vllm.model_executor.layers.fused_moe.pplx_prepare_finalize import (
PplxPrepareAndFinalize)
assert torch.cuda.current_device() == pgi.local_rank
num_tokens, hidden_dim = a.shape
num_experts = w1.shape[0]
block_size = hidden_dim # TODO support more cases
device = pgi.device
rank = pgi.rank
world_size = pgi.world_size
rank_num_tokens = rank_chunk(num_tokens, rank, world_size)
max_num_tokens = rank_chunk(num_tokens, 0, world_size)
topk = topk_ids.shape[1]
if block_size == hidden_dim:
scale_elems = 4 # hack to circumvent pplx data format requirements
else:
scale_elems = (hidden_dim + block_size - 1) // block_size
ata = AllToAll.internode(
max_num_tokens=max_num_tokens,
num_experts=num_experts,
experts_per_token=topk,
rank=rank,
world_size=pgi.world_size,
dp_size=dp_size,
hidden_dim=hidden_dim,
hidden_dim_bytes=hidden_dim, # because a.dtype.itemsize == 1
hidden_dim_scale_bytes=scale_elems * torch.float32.itemsize,
)
w1 = w1.to(device)
w2 = w2.to(device)
w1_scale = w1_scale.to(device)
w2_scale = w2_scale.to(device)
a1_scale = a1_scale.to(device)
prepare_finalize = PplxPrepareAndFinalize(
ata,
max_num_tokens,
pgi.world_size,
rank,
dp_size,
quant_dtype=torch.float8_e4m3fn,
per_act_token=per_act_token,
)
experts = CutlassExpertsFp8((num_experts + world_size - 1) // world_size,
out_dtype, per_act_token, per_out_ch)
fused_cutlass_experts = FusedMoEModularKernel(
prepare_finalize,
experts,
)
a_chunk = chunk_by_rank(a, rank, world_size).to(device)
chunk_topk_weight = chunk_by_rank(topk_weights, rank,
world_size).to(device)
chunk_topk_ids = chunk_by_rank(topk_ids, rank,
world_size).to(torch.uint32).to(device)
out = fused_cutlass_experts(
a_chunk,
chunk_by_rank(w1, rank, world_size),
chunk_by_rank(w2, rank, world_size),
chunk_topk_weight,
chunk_topk_ids,
global_num_experts=num_experts,
expert_map=None, #TODO
w1_scale=chunk_by_rank(w1_scale, rank, world_size),
w2_scale=chunk_by_rank(w2_scale, rank, world_size),
a1_scale=chunk_by_rank(a1_scale, rank, world_size)
if per_act_token else a1_scale[rank])
torch.cuda.synchronize()
ata.destroy()
return out[:rank_num_tokens]
vllm_config = VllmConfig()
vllm_config.scheduler_config.max_num_seqs = 128
vllm_config.scheduler_config.max_model_len = 8192
def torch_moe2(a, w1, w2, topk_weight, topk_ids):
M, K = a.shape
topk = topk_ids.shape[1]
a = a.view(M, -1, K).repeat(1, topk, 1).reshape(-1, K)
out = torch.zeros(M * topk, w2.shape[1], dtype=a.dtype, device=a.device)
num_experts = w1.shape[0]
for i in range(num_experts):
mask = (topk_ids == i).view(-1)
if mask.sum():
out[mask] = SiluAndMul()(
a[mask] @ w1[i].transpose(0, 1)) @ w2[i].transpose(0, 1)
return (out.view(M, -1, w2.shape[1]) *
topk_weight.view(M, -1, 1).to(out.dtype)).sum(dim=1)
def _pplx_moe(
pgi: ProcessGroupInfo,
dp_size: int,
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
a1_scale: torch.Tensor,
out_dtype,
a_full: torch.Tensor,
w1_full: torch.Tensor,
w2_full: torch.Tensor,
per_act_token: bool,
per_out_ch: bool,
):
uid = nvshmem_get_unique_id(
) if pgi.rank == 0 else nvshmem_alloc_empty_unique_id()
torch.distributed.broadcast(uid, src=0)
nvshmem_init(uid, pgi.rank, pgi.world_size)
with set_current_vllm_config(vllm_config):
torch_output = torch_moe2(a_full, w1_full, w2_full, topk_weights,
topk_ids)
pplx_output = pplx_cutlass_moe(pgi, dp_size, a, w1, w2, w1_scale,
w2_scale, topk_weights, topk_ids,
a1_scale, out_dtype, per_act_token,
per_out_ch)
torch_output = chunk_by_rank(torch_output, pgi.rank,
pgi.world_size).to(pplx_output.device)
# Uncomment if more debugging is needed
# print("PPLX OUT:", pplx_output)
# print("TORCH OUT:", torch_output)
torch.testing.assert_close(pplx_output, torch_output, atol=0.05, rtol=0)
nvshmem_finalize()
@pytest.mark.parametrize("m", [2, 224])
@pytest.mark.parametrize("n", [3072])
@pytest.mark.parametrize("k", [1536])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("world_dp_size", [[2, 1]]) #, [4, 2]])
@pytest.mark.skipif(
(lambda x: x is None or not ops.cutlass_group_gemm_supported(x.to_int()))(
current_platform.get_device_capability()),
reason="Grouped gemm is not supported on this GPU type.")
@requires_pplx
def test_cutlass_moe_pplx(
m: int,
n: int,
k: int,
e: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
world_dp_size: tuple[int, int],
):
current_platform.seed_everything(7)
with set_current_vllm_config(vllm_config):
dtype = torch.half
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10.0
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10.0
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10.0
n_b_scales = 2 * n if per_out_ch else 1
k_b_scales = k if per_out_ch else 1
w1_q = torch.empty((e, 2 * n, k),
device="cuda",
dtype=torch.float8_e4m3fn)
w2_q = torch.empty((e, k, n), device="cuda", dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((e, n_b_scales, 1),
device="cuda",
dtype=torch.float32)
w2_scale = torch.empty((e, k_b_scales, 1),
device="cuda",
dtype=torch.float32)
for expert in range(e):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(
w1[expert], use_per_token_if_dynamic=per_out_ch)
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(
w2[expert], use_per_token_if_dynamic=per_out_ch)
w1_d = torch.empty_like(w1)
w2_d = torch.empty_like(w2)
for expert in range(e):
w1_d[expert] = (w1_q[expert].float() * w1_scale[expert]).half()
w2_d[expert] = (w2_q[expert].float() * w2_scale[expert]).half()
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids, _ = fused_topk(a,
score,
topk,
renormalize=False)
world_size, dp_size = world_dp_size
a_scale1 = torch.randn(
(m if per_act_token else 1, 1), device="cuda",
dtype=torch.float32) / 10.0
if not per_act_token:
a_scale1 = a_scale1.repeat(world_size, 1)
parallel_launch(world_size, _pplx_moe, dp_size, a, w1_q, w2_q,
w1_scale, w2_scale, topk_weights, topk_ids, a_scale1,
dtype, a, w1_d, w2_d, per_act_token, per_out_ch)

View File

@ -4,10 +4,7 @@
Run `pytest tests/kernels/test_pplx_moe.py`.
"""
import dataclasses
import os
import traceback
from typing import Callable, Optional
from typing import Optional
import pytest
import torch
@ -21,10 +18,7 @@ try:
except ImportError:
has_pplx = False
from torch.multiprocessing import (
spawn) # pyright: ignore[reportPrivateImportUsage]
from typing_extensions import Concatenate, ParamSpec
from tests.pplx_utils import ProcessGroupInfo, parallel_launch
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import override_config
@ -36,6 +30,11 @@ from vllm.model_executor.layers.fused_moe.modular_kernel import (
FusedMoEModularKernel)
from vllm.platforms import current_platform
requires_pplx = pytest.mark.skipif(
not has_pplx,
reason="Requires PPLX kernels",
)
PPLX_PREPARE_COMBOS = [(4, 128, 128), (32, 1024, 512), (64, 1024, 512),
(222, 2048, 1024)]
@ -57,122 +56,6 @@ vllm_config = VllmConfig()
vllm_config.scheduler_config.max_num_seqs = 128
vllm_config.scheduler_config.max_model_len = 8192
P = ParamSpec("P")
requires_pplx = pytest.mark.skipif(
not has_pplx,
reason="Requires PPLX kernels",
)
@dataclasses.dataclass
class ProcessGroupInfo:
world_size: int
world_local_size: int
rank: int
node_rank: int
local_rank: int
device: torch.device
def _worker_parallel_launch(
local_rank: int,
world_size: int,
world_local_size: int,
node_rank: int,
init_method: str,
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
rank = node_rank * world_local_size + local_rank
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
torch.distributed.init_process_group(
backend="cpu:gloo,cuda:nccl",
init_method=init_method,
rank=rank,
world_size=world_size,
device_id=device,
)
barrier = torch.tensor([rank], device=device)
torch.distributed.all_reduce(barrier)
try:
worker(
ProcessGroupInfo(
world_size=world_size,
world_local_size=world_local_size,
rank=rank,
node_rank=node_rank,
local_rank=local_rank,
device=device,
),
*args,
**kwargs,
)
except Exception as ex:
print(ex)
traceback.print_exc()
raise
finally:
torch.distributed.destroy_process_group()
def parallel_launch(
world_size: int,
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
assert not kwargs
spawn(
_worker_parallel_launch,
args=(
world_size,
world_size,
0,
"tcp://localhost:29500",
worker,
) + args,
nprocs=world_size,
join=True,
)
def parallel_launch_from_env(
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
"""
Launches a worker function in parallel across all processes in the current
environment. The environment must have the following variables set:
- WORLD_SIZE: The total number of processes.
- WORLD_LOCAL_SIZE: The number of processes on the current node.
- NODE_RANK: The rank of the current
- MASTER_ADDR: The address of the master process.
- MASTER_PORT: The port of the master process.
"""
assert not kwargs
world_size = int(os.environ["WORLD_SIZE"])
world_local_size = int(os.environ["WORLD_LOCAL_SIZE"])
node_rank = int(os.environ["NODE_RANK"])
assert "MASTER_ADDR" in os.environ
assert "MASTER_PORT" in os.environ
spawn(
_worker_parallel_launch,
args=(
world_size,
world_local_size,
node_rank,
"env://",
worker,
) + args,
nprocs=world_local_size,
join=True,
)
def torch_prepare(
a: torch.Tensor,
@ -391,7 +274,7 @@ def pplx_prepare_finalize(pgi: ProcessGroupInfo, dp_size: int, a: torch.Tensor,
chunk_topk_weight = chunk_by_rank(topk_weight, rank, world_size).to(device)
chunk_topk_ids = chunk_by_rank(topk_ids, rank, world_size).to(device)
b_a, b_a_scale, expert_num_tokens = prepare_finalize.prepare(
b_a, b_a_scale, expert_num_tokens, _, _ = prepare_finalize.prepare(
a_chunk,
None,
None,

View File

@ -632,7 +632,8 @@ def test_cutlass_fp8_group_gemm(num_experts: int, per_act_token: bool,
ops.cutlass_moe_mm(out_tensors_stacked, a_tensors_stacked,
b_tensors_stacked, a_scales_tensors_stacked,
b_scales_tensors_stacked, expert_offsets[:-1],
problem_sizes, ab_strides, ab_strides, c_strides)
problem_sizes, ab_strides, ab_strides, c_strides,
per_act_token, per_out_ch)
# Validate each group's result against the baseline
for g in range(num_experts):

View File

@ -0,0 +1,93 @@
# SPDX-License-Identifier: Apache-2.0
"""Integration tests for FlexAttention backend vs default backend"""
import random
import numpy as np
import pytest
import torch
from packaging import version
from vllm import LLM, SamplingParams
TORCH_VERSION = version.parse(torch.__version__)
MINIMUM_TORCH_VERSION = version.parse("2.7.0")
def set_seed(seed):
"""Set seeds for reproducibility"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
@pytest.mark.skipif(
not torch.cuda.is_available() or TORCH_VERSION < MINIMUM_TORCH_VERSION,
reason="CUDA not available or PyTorch version < 2.7",
)
def test_flex_attention_vs_default_backend(monkeypatch):
"""Test that FlexAttention produces the same outputs as the default backend.
This test compares the outputs from the FlexAttention backend with
the default backend, ensuring they are identical when using the same seed.
"""
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
seed = 42
max_tokens = 32
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
]
sampling_params = SamplingParams(temperature=0.0,
top_p=1.0,
seed=seed,
max_tokens=max_tokens)
# Run with flex attention
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_ATTENTION_BACKEND", "FLEX_ATTENTION")
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
set_seed(seed)
llm_flex = LLM(
model_name,
tensor_parallel_size=1,
num_gpu_blocks_override=128,
enforce_eager=True,
)
output_flex = llm_flex.generate(prompts, sampling_params)
# Run with default backend
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
set_seed(seed)
llm_default = LLM(
model_name,
tensor_parallel_size=1,
num_gpu_blocks_override=128,
enforce_eager=True,
)
output_default = llm_default.generate(prompts, sampling_params)
# Compare outputs from both backends
for i, (flex_result,
default_result) in enumerate(zip(output_flex, output_default)):
prompt = prompts[i]
flex_text = flex_result.outputs[0].text
default_text = default_result.outputs[0].text
assert flex_text == default_text, (
f"FlexAttention output doesn't match default for: {prompt!r}\n"
f"FlexAttention: {flex_text!r}\n"
f"Default: {default_text!r}")
if __name__ == "__main__":
pytest.main([__file__])

View File

@ -164,11 +164,6 @@ def mixtral_lora_files():
return snapshot_download(repo_id="SangBinCho/mixtral-lora")
@pytest.fixture(scope="session")
def gemma_lora_files():
return snapshot_download(repo_id="wskwon/gemma-7b-test-lora")
@pytest.fixture(scope="session")
def chatglm3_lora_files():
return snapshot_download(repo_id="jeeejeee/chatglm3-text2sql-spider")

View File

@ -4,9 +4,6 @@ import subprocess
import sys
from typing import Union
import pytest
import ray
import vllm
from vllm import LLM
from vllm.lora.request import LoRARequest
@ -121,37 +118,6 @@ def test_llama_lora(sql_lora_files):
generate_and_test(llm, sql_lora_files)
# Skipping for v1 as v1 doesn't have a good way to expose the num_gpu_blocks
# used by the engine yet.
@pytest.mark.skip_v1
@create_new_process_for_each_test()
def test_llama_lora_warmup(sql_lora_files):
"""Test that the LLM initialization works with a warmup LORA path and
is more conservative"""
@ray.remote(num_gpus=1)
def get_num_gpu_blocks_lora():
llm = vllm.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16)
num_gpu_blocks_lora_warmup = llm.llm_engine.cache_config.num_gpu_blocks
return num_gpu_blocks_lora_warmup
@ray.remote(num_gpus=1)
def get_num_gpu_blocks_no_lora():
llm = vllm.LLM(MODEL_PATH, max_num_seqs=16)
num_gpu_blocks_no_lora_warmup = (
llm.llm_engine.cache_config.num_gpu_blocks)
return num_gpu_blocks_no_lora_warmup
num_gpu_blocks_lora_warmup = ray.get(get_num_gpu_blocks_lora.remote())
num_gpu_blocks_no_lora_warmup = ray.get(
get_num_gpu_blocks_no_lora.remote())
assert num_gpu_blocks_lora_warmup < num_gpu_blocks_no_lora_warmup, (
"The warmup with lora should be more "
"conservative than without lora, therefore the number of "
"memory blocks for the KV cache should be "
"less when using lora than when not using lora")
@multi_gpu_test(num_gpus=4)
@create_new_process_for_each_test()
def test_llama_lora_tp4(sql_lora_files):

View File

@ -15,13 +15,6 @@ MODEL_PATH = "meta-llama/Llama-2-7b-hf"
LORA_MODULE_PATH = "yard1/llama-2-7b-sql-lora-test"
LORA_RANK = 8
# @pytest.fixture(autouse=True)
# def v1(run_with_both_engines_lora):
# # Simple autouse wrapper to run both engines for each test
# # This can be promoted up to conftest.py to run for every
# # test in a package
# pass
def make_lora_request(lora_id: int):
return LoRARequest(lora_name=f"{lora_id}",

View File

@ -11,14 +11,6 @@ MODEL_PATH = "microsoft/phi-2"
PROMPT_TEMPLATE = "### Instruct: {sql_prompt}\n\n### Context: {context}\n\n### Output:" # noqa: E501
@pytest.fixture(autouse=True)
def v1(run_with_both_engines_lora):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
prompts = [
PROMPT_TEMPLATE.format(
@ -59,7 +51,7 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
# Skipping for V1 for now as we are hitting,
# "Head size 80 is not supported by FlashAttention." error.
@pytest.mark.skip_v1
@pytest.mark.skip(reason="Head size 80 is not supported by FlashAttention")
def test_phi2_lora(phi2_lora_files):
# We enable enforce_eager=True here to reduce VRAM usage for lora-test CI,
# Otherwise, the lora-test will fail due to CUDA OOM.

View File

@ -16,6 +16,8 @@ from vllm.lora.request import LoRARequest
from vllm.v1.worker.gpu_worker import Worker as V1Worker
from vllm.worker.worker import Worker
NUM_LORAS = 16
@patch.dict(os.environ, {"RANK": "0"})
def test_worker_apply_lora(sql_lora_files):
@ -58,12 +60,12 @@ def test_worker_apply_lora(sql_lora_files):
device_config=DeviceConfig("cuda"),
cache_config=CacheConfig(
block_size=16,
gpu_memory_utilization=1.0,
swap_space=0,
cache_dtype="auto",
),
lora_config=LoRAConfig(max_lora_rank=8, max_cpu_loras=32,
max_loras=32),
lora_config=LoRAConfig(max_lora_rank=8,
max_cpu_loras=NUM_LORAS,
max_loras=NUM_LORAS),
)
worker = worker_cls(
vllm_config=vllm_config,
@ -78,9 +80,9 @@ def test_worker_apply_lora(sql_lora_files):
set_active_loras(worker, [])
assert worker.list_loras() == set()
n_loras = 32
lora_requests = [
LoRARequest(str(i + 1), i + 1, sql_lora_files) for i in range(n_loras)
LoRARequest(str(i + 1), i + 1, sql_lora_files)
for i in range(NUM_LORAS)
]
set_active_loras(worker, lora_requests)
@ -89,12 +91,12 @@ def test_worker_apply_lora(sql_lora_files):
for lora_request in lora_requests
}
for i in range(32):
for i in range(NUM_LORAS):
random.seed(i)
iter_lora_requests = random.choices(lora_requests,
k=random.randint(1, n_loras))
k=random.randint(1, NUM_LORAS))
random.shuffle(iter_lora_requests)
iter_lora_requests = iter_lora_requests[:-random.randint(0, n_loras)]
iter_lora_requests = iter_lora_requests[:-random.randint(0, NUM_LORAS)]
set_active_loras(worker, lora_requests)
assert worker.list_loras().issuperset(
{lora_request.lora_int_id

View File

@ -38,7 +38,7 @@ class GGUFTestConfig(NamedTuple):
LLAMA_CONFIG = GGUFTestConfig(
original_model="meta-llama/Llama-3.2-1B-Instruct",
gguf_repo="bartowski/Llama-3.2-1B-Instruct-GGUF",
gguf_filename="Llama-3.2-1B-Instruct-IQ4_XS.gguf",
gguf_filename="Llama-3.2-1B-Instruct-Q6_K.gguf",
)
QWEN2_CONFIG = GGUFTestConfig(

View File

@ -212,6 +212,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"MptForCausalLM": _HfExamplesInfo("mpt", is_available_online=False),
"MPTForCausalLM": _HfExamplesInfo("mosaicml/mpt-7b"),
"NemotronForCausalLM": _HfExamplesInfo("nvidia/Minitron-8B-Base"),
"NemotronHForCausalLM": _HfExamplesInfo("nvidia/Nemotron-H-8B-Base-8K",
trust_remote_code=True),
"OlmoForCausalLM": _HfExamplesInfo("allenai/OLMo-1B-hf"),
"Olmo2ForCausalLM": _HfExamplesInfo("allenai/OLMo-2-0425-1B"),
"OlmoeForCausalLM": _HfExamplesInfo("allenai/OLMoE-1B-7B-0924-Instruct"),

View File

@ -86,6 +86,8 @@ def test_can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch):
} if model_info.speculative_model else None,
trust_remote_code=model_info.trust_remote_code,
max_model_len=model_info.max_model_len,
# these tests seem to produce leftover memory
gpu_memory_utilization=0.80,
load_format="dummy",
hf_overrides=hf_overrides,
)

View File

@ -9,12 +9,21 @@ from typing import TYPE_CHECKING, NamedTuple, Optional
import numpy as np
import pytest
import torch
import torch.multiprocessing as mp
from PIL import Image, ImageChops
from tests.utils import multi_gpu_test
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import (init_distributed_environment,
initialize_model_parallel)
from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import PlaceholderRange
from vllm.multimodal.utils import (MediaConnector,
merge_and_sort_multimodal_metadata)
merge_and_sort_multimodal_metadata,
run_dp_sharded_vision_model)
from vllm.platforms import current_platform
from vllm.utils import get_open_port, update_environment_variables
if TYPE_CHECKING:
from vllm.multimodal.hasher import MultiModalHashDict
@ -141,6 +150,19 @@ async def test_fetch_image_local_files(image_url: str):
f"file://{temp_dir}/../{os.path.basename(image_url)}")
@pytest.mark.asyncio
async def test_fetch_image_error_conversion():
connector = MediaConnector()
broken_img = ""
# PIL.UnidentifiedImageError should be converted to ValueError
with pytest.raises(ValueError):
await connector.fetch_image_async(broken_img)
with pytest.raises(ValueError):
connector.fetch_image(broken_img)
@pytest.mark.asyncio
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
@ -400,3 +422,90 @@ def test_merge_and_sort_multimodal_metadata_with_interleaving():
assert modalities == expected_modalities
assert ranges == expected_ranges
assert hashes == expected_hashes
class SimpleLinearModel(torch.nn.Module):
"""A simple linear vision model for testing."""
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
super().__init__()
self.flatten = torch.nn.Flatten()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x: torch.Tensor):
# Flatten the input and apply linear transformation
x = self.flatten(x)
return self.linear(x)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"batch_size",
[
1, # Single image
4, # Small batch
5, # Odd batch size (for testing padding)
],
)
def test_run_dp_sharded_vision_model(batch_size: int):
world_size = 2
# Launch processes
mp.spawn(
run_dp_sharded_vision_model_vs_direct,
args=(
world_size,
batch_size,
get_open_port(),
),
nprocs=world_size,
)
def run_dp_sharded_vision_model_vs_direct(local_rank: int, world_size: int,
batch_size: int, master_port: int):
"""
Test that run_dp_sharded_vision_model produces the same results as
calling the model directly.
"""
# Set random seed for reproducibility
current_platform.seed_everything(0)
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
torch.set_default_device(device)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': str(master_port),
})
# initialize distributed
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
# Create a test input tensor
image_input = torch.randn(batch_size, 3, 224, 224)
# Create a simple linear model
vision_model = SimpleLinearModel()
# Run the model directly on the full input
with torch.inference_mode():
direct_output = vision_model(image_input)
# Run the model through the sharded function
with torch.inference_mode():
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
# Check that the world size is setup correctly
assert get_tensor_model_parallel_world_size() == world_size
# Check that the outputs have the same shape
assert direct_output.shape == sharded_output.shape
# Check that the outputs are close (they should be identical)
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)

123
tests/pplx_utils.py Normal file
View File

@ -0,0 +1,123 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses
import os
import traceback
from typing import Callable
import torch
from torch.multiprocessing import (
spawn) # pyright: ignore[reportPrivateImportUsage]
from typing_extensions import Concatenate, ParamSpec
P = ParamSpec("P")
@dataclasses.dataclass
class ProcessGroupInfo:
world_size: int
world_local_size: int
rank: int
node_rank: int
local_rank: int
device: torch.device
def _worker_parallel_launch(
local_rank: int,
world_size: int,
world_local_size: int,
node_rank: int,
init_method: str,
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
rank = node_rank * world_local_size + local_rank
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
torch.distributed.init_process_group(
backend="cpu:gloo,cuda:nccl",
init_method=init_method,
rank=rank,
world_size=world_size,
device_id=device,
)
barrier = torch.tensor([rank], device=device)
torch.distributed.all_reduce(barrier)
try:
worker(
ProcessGroupInfo(
world_size=world_size,
world_local_size=world_local_size,
rank=rank,
node_rank=node_rank,
local_rank=local_rank,
device=device,
),
*args,
**kwargs,
)
except Exception as ex:
print(ex)
traceback.print_exc()
raise
finally:
torch.distributed.destroy_process_group()
def parallel_launch(
world_size: int,
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
assert not kwargs
spawn(
_worker_parallel_launch,
args=(
world_size,
world_size,
0,
"tcp://localhost:29500",
worker,
) + args,
nprocs=world_size,
join=True,
)
def parallel_launch_from_env(
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
"""
Launches a worker function in parallel across all processes in the current
environment. The environment must have the following variables set:
- WORLD_SIZE: The total number of processes.
- WORLD_LOCAL_SIZE: The number of processes on the current node.
- NODE_RANK: The rank of the current
- MASTER_ADDR: The address of the master process.
- MASTER_PORT: The port of the master process.
"""
assert not kwargs
world_size = int(os.environ["WORLD_SIZE"])
world_local_size = int(os.environ["WORLD_LOCAL_SIZE"])
node_rank = int(os.environ["NODE_RANK"])
assert "MASTER_ADDR" in os.environ
assert "MASTER_PORT" in os.environ
spawn(
_worker_parallel_launch,
args=(
world_size,
world_local_size,
node_rank,
"env://",
worker,
) + args,
nprocs=world_local_size,
join=True,
)

View File

@ -14,9 +14,10 @@ from compressed_tensors.quantization import QuantizationType
from tests.models.utils import check_logprobs_close
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
CompressedTensors24, CompressedTensorsLinearMethod,
CompressedTensorsW4A16Fp4, CompressedTensorsW4A16Sparse24,
CompressedTensorsW8A8Fp8, CompressedTensorsW8A8Int8,
CompressedTensorsW8A16Fp8, CompressedTensorsWNA16)
CompressedTensorsW4A4Fp4, CompressedTensorsW4A16Fp4,
CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8Fp8,
CompressedTensorsW8A8Int8, CompressedTensorsW8A16Fp8,
CompressedTensorsWNA16)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
sparse_cutlass_supported)
from vllm.platforms import current_platform
@ -651,9 +652,13 @@ def test_compressed_tensors_2of4_sparse_compressed(vllm_runner, args_2of4):
assert output
def test_compressed_tensors_nvfp4a16(vllm_runner):
# run weight only example
model = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP4"
@pytest.mark.parametrize(
"args",
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-NVFP4A16",
CompressedTensorsW4A16Fp4),
("nm-testing/TinyLlama-1.1B-Chat-v1.0-NVFP4", CompressedTensorsW4A4Fp4)])
def test_compressed_tensors_nvfp4(vllm_runner, args):
model, scheme = args
with vllm_runner(model, enforce_eager=True) as llm:
def check_model(model):
@ -662,7 +667,7 @@ def test_compressed_tensors_nvfp4a16(vllm_runner):
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Fp4)
assert isinstance(qkv_proj.scheme, scheme)
assert qkv_proj.scheme.group_size == 16
llm.apply_model(check_model)

View File

@ -13,7 +13,7 @@ TORCHAO_AVAILABLE = importlib.util.find_spec("torchao") is not None
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
def test_pre_quantized_model(vllm_runner):
with vllm_runner("drisspg/float8_dynamic_act_float8_weight-opt-125m",
with vllm_runner("drisspg/fp8-opt-125m",
quantization="torchao",
dtype="bfloat16",
enforce_eager=True) as llm:
@ -30,10 +30,10 @@ def test_pre_quantized_model(vllm_runner):
"cuda:0",
# {"": "cuda"},
])
def test_opt_125m_int4wo_model_loading_with_params(vllm_runner,
def test_opt_125m_int8wo_model_loading_with_params(vllm_runner,
pt_load_map_location):
torch._dynamo.reset()
model_name = "jerryzh168/opt-125m-int4wo"
model_name = "jerryzh168/opt-125m-int8wo-partial-quant"
with vllm_runner(model_name=model_name,
quantization="torchao",
dtype="bfloat16",

View File

@ -6,6 +6,7 @@ from typing import Literal, Union
import pytest
from vllm.compilation.backends import VllmBackend
from vllm.config import (LoadConfig, ModelConfig, PoolerConfig, VllmConfig,
config, get_field)
from vllm.model_executor.layers.pooler import PoolingType
@ -44,6 +45,18 @@ def test_config(test_config, expected_error):
config(test_config)
def test_compile_config_repr_succeeds():
# setup: VllmBackend mutates the config object
config = VllmConfig()
backend = VllmBackend(config)
backend.configure_post_pass()
# test that repr(config) succeeds
val = repr(config)
assert 'VllmConfig' in val
assert 'inductor_passes' in val
def test_get_field():
@dataclass

View File

@ -70,7 +70,8 @@ def _run_incremental_decode(tokenizer,
None,
0.0,
None,
cache_salt=None)
cache_salt=None,
data_parallel_rank=None)
if fast is None:
detokenizer = IncrementalDetokenizer.from_new_request(

View File

@ -64,9 +64,10 @@ def test_tpu_compilation():
numbers = [int(part) for part in parts if part.isdigit()]
return numbers[0]
# Check all the compilations are as expected
# Check all the compilations are as expected. The dump files include the
# captured graph for the forward function of the nn.Module.
compiled_fns = sorted(glob.glob(
os.path.join(temp_dir, "__compiled_fn*Captured*.py")),
os.path.join(temp_dir, "__compiled_fn*Forward_graph*.py")),
key=lambda s: extract_compiled_index(s))
for i, compiled_fn in enumerate(compiled_fns):

View File

@ -27,7 +27,7 @@ TOP_KS = [2, 6]
# The Pallas GMM kernel requires num_tokens * topk to be a multiple of 16
@pytest.mark.parametrize("m", [8, 16, 64, 2048])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 512, 1024])
@pytest.mark.parametrize("k", [128, 511, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("ep_size", EP_SIZE)

View File

@ -15,8 +15,8 @@ from vllm.v1.core.kv_cache_manager import KVCacheManager
from vllm.v1.core.kv_cache_utils import (
FreeKVCacheBlockQueue, KVCacheBlock, PrefixCachingMetrics,
estimate_max_model_len, generate_block_hash_extra_keys,
get_max_concurrency_for_kv_cache_config, hash_block_tokens,
hash_request_tokens, unify_kv_cache_configs)
get_kv_cache_config, get_max_concurrency_for_kv_cache_config,
hash_block_tokens, hash_request_tokens, unify_kv_cache_configs)
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
KVCacheGroupSpec, KVCacheTensor,
SlidingWindowSpec)
@ -63,6 +63,20 @@ def new_kv_cache_spec(block_size=16,
sliding_window=sliding_window)
def new_sliding_window_spec(block_size=16,
num_kv_heads=2,
head_size=64,
dtype=torch.float32,
use_mla=False,
sliding_window=1):
return SlidingWindowSpec(block_size=block_size,
num_kv_heads=num_kv_heads,
head_size=head_size,
dtype=dtype,
use_mla=use_mla,
sliding_window=sliding_window)
def test_none_hash(monkeypatch):
import vllm.v1.core.kv_cache_utils
@ -403,10 +417,10 @@ def test_unify_kv_cache_configs():
same_kv_cache_config = [
KVCacheConfig(
num_blocks=10,
tensors={
"layer1": KVCacheTensor(100),
"layer2": KVCacheTensor(100),
},
kv_cache_tensors=[
KVCacheTensor(size=100, shared_by=["layer1"]),
KVCacheTensor(size=100, shared_by=["layer2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
KVCacheGroupSpec(["layer2"],
@ -415,10 +429,10 @@ def test_unify_kv_cache_configs():
),
KVCacheConfig(
num_blocks=20,
tensors={
"layer1": KVCacheTensor(100),
"layer2": KVCacheTensor(100),
},
kv_cache_tensors=[
KVCacheTensor(size=100, shared_by=["layer1"]),
KVCacheTensor(size=100, shared_by=["layer2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
KVCacheGroupSpec(["layer2"],
@ -433,10 +447,10 @@ def test_unify_kv_cache_configs():
need_sort_kv_cache_config = [
KVCacheConfig(
num_blocks=10,
tensors={
"layer1": KVCacheTensor(100),
"layer2": KVCacheTensor(100),
},
kv_cache_tensors=[
KVCacheTensor(size=100, shared_by=["layer1"]),
KVCacheTensor(size=100, shared_by=["layer2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
KVCacheGroupSpec(["layer2"],
@ -445,10 +459,10 @@ def test_unify_kv_cache_configs():
),
KVCacheConfig(
num_blocks=20,
tensors={
"layer1": KVCacheTensor(100),
"layer2": KVCacheTensor(100),
},
kv_cache_tensors=[
KVCacheTensor(size=100, shared_by=["layer1"]),
KVCacheTensor(size=100, shared_by=["layer2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer2"],
new_kv_cache_spec(num_kv_heads=4)),
@ -464,10 +478,10 @@ def test_unify_kv_cache_configs():
diff_kv_cache_config = [
KVCacheConfig(
num_blocks=10,
tensors={
"layer1": KVCacheTensor(100),
"layer2": KVCacheTensor(100),
},
kv_cache_tensors=[
KVCacheTensor(size=100, shared_by=["layer1"]),
KVCacheTensor(size=100, shared_by=["layer2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
KVCacheGroupSpec(["layer2"],
@ -476,10 +490,10 @@ def test_unify_kv_cache_configs():
),
KVCacheConfig(
num_blocks=20,
tensors={
"layer1": KVCacheTensor(100),
"layer2": KVCacheTensor(100),
},
kv_cache_tensors=[
KVCacheTensor(size=100, shared_by=["layer1"]),
KVCacheTensor(size=100, shared_by=["layer2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer1"], new_kv_cache_spec()),
KVCacheGroupSpec(["layer2"],
@ -636,7 +650,7 @@ def test_get_max_concurrency_for_kv_cache_config():
kv_cache_config_full_attention = KVCacheConfig(
num_blocks=int(1024 * 1.5),
tensors={},
kv_cache_tensors=[],
kv_cache_groups=[
KVCacheGroupSpec([f"layer_{i}" for i in range(32)],
full_attention_spec),
@ -648,7 +662,7 @@ def test_get_max_concurrency_for_kv_cache_config():
kv_cache_config_sliding_window = KVCacheConfig(
num_blocks=129 * 3,
tensors={},
kv_cache_tensors=[],
kv_cache_groups=[
KVCacheGroupSpec([f"layer_{i}" for i in range(32)],
sliding_window_spec),
@ -660,7 +674,7 @@ def test_get_max_concurrency_for_kv_cache_config():
kv_cache_config_hybrid_model = KVCacheConfig(
num_blocks=(1024 + 129) * 3,
tensors={},
kv_cache_tensors=[],
kv_cache_groups=[
KVCacheGroupSpec([f"layer_{i}" for i in range(32)],
full_attention_spec),
@ -678,9 +692,9 @@ def test_allocate_with_lookahead():
block_size = 4
config = KVCacheConfig(
num_blocks=10,
tensors={
"layer1": KVCacheTensor(100),
},
kv_cache_tensors=[
KVCacheTensor(size=100, shared_by=["layer1"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer1"],
new_kv_cache_spec(block_size=block_size)),
@ -702,7 +716,7 @@ def test_allocate_with_lookahead():
num_new_tokens=3,
num_lookahead_tokens=2, # Total required: 3+2=5 tokens
)
assert len(blocks.blocks) == 2 # ceil(5/4)=2 blocks
assert len(blocks.get_block_ids()[0]) == 2 # ceil(5/4)=2 blocks
# Test case 2: With precomputed blocks
kv_cache_manager = KVCacheManager(kv_cache_config=config,
@ -713,7 +727,7 @@ def test_allocate_with_lookahead():
num_new_tokens=3,
num_lookahead_tokens=2,
)
assert len(blocks.blocks) == 2
assert len(blocks.get_block_ids()[0]) == 2
# Test case 3: With precomputed blocks
# required_blocks = ceil((3 + 4) / 4) = 2
@ -724,4 +738,165 @@ def test_allocate_with_lookahead():
num_new_tokens=3,
num_lookahead_tokens=4,
)
assert len(blocks.blocks) == 2
assert len(blocks.get_block_ids()[0]) == 2
def test_get_kv_cache_config():
# pass max_model_len to pass check_enough_kv_cache_memory
model_config = ModelConfig(max_model_len=16)
vllm_config = VllmConfig(model_config=model_config)
mem_per_block_per_layer = 16 * 2 * 64 * 4 * 2
# all layers are full attention -> single group
kv_cache_specs_full = {
'layer_1': new_kv_cache_spec(),
'layer_2': new_kv_cache_spec(),
}
kv_cache_config_full = get_kv_cache_config(
vllm_config, kv_cache_specs_full, mem_per_block_per_layer * 2 * 32)
assert kv_cache_config_full == KVCacheConfig(
num_blocks=32,
kv_cache_tensors=[
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_1"]),
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer_1", "layer_2"], new_kv_cache_spec())
])
# all layers are sliding window -> single group
kv_cache_specs_sliding = {
'layer_1': new_sliding_window_spec(),
'layer_2': new_sliding_window_spec(),
}
kv_cache_config_sliding = get_kv_cache_config(
vllm_config, kv_cache_specs_sliding, mem_per_block_per_layer * 2 * 32)
assert kv_cache_config_sliding == KVCacheConfig(
num_blocks=32,
kv_cache_tensors=[
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_1"]),
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer_1", "layer_2"], new_sliding_window_spec())
])
# full + sliding, but disable_hybrid_kv_cache_manager
vllm_config.scheduler_config.disable_hybrid_kv_cache_manager = True
kv_cache_specs_hybrid = {
'layer_1': new_kv_cache_spec(),
'layer_2': new_sliding_window_spec(),
}
kv_cache_config_hybrid = get_kv_cache_config(
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 2 * 32)
assert kv_cache_config_hybrid == KVCacheConfig(
num_blocks=32,
kv_cache_tensors=[
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_1"]),
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer_1", "layer_2"],
new_kv_cache_spec(sliding_window=1)),
],
)
vllm_config.scheduler_config.disable_hybrid_kv_cache_manager = False
# full + sliding, with hybrid_kv_cache_manager
kv_cache_specs_hybrid = {
'layer_1': new_kv_cache_spec(),
'layer_2': new_sliding_window_spec(),
}
kv_cache_config_hybrid = get_kv_cache_config(
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 2 * 32)
assert kv_cache_config_hybrid == KVCacheConfig(
num_blocks=64,
kv_cache_tensors=[
KVCacheTensor(size=mem_per_block_per_layer * 64,
shared_by=["layer_1", "layer_2"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer_1"], new_kv_cache_spec()),
KVCacheGroupSpec(["layer_2"], new_sliding_window_spec()),
],
)
# 2 full + 4 sliding, 2 layers per group
kv_cache_specs_hybrid = {
'layer_1': new_kv_cache_spec(),
'layer_2': new_kv_cache_spec(),
'layer_3': new_sliding_window_spec(),
'layer_4': new_sliding_window_spec(),
'layer_5': new_sliding_window_spec(),
'layer_6': new_sliding_window_spec(),
}
kv_cache_config_hybrid = get_kv_cache_config(
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 2 * 32)
assert kv_cache_config_hybrid == KVCacheConfig(
num_blocks=32,
kv_cache_tensors=[
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_1", "layer_3", "layer_5"]),
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_2", "layer_4", "layer_6"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer_1", "layer_2"], new_kv_cache_spec()),
KVCacheGroupSpec(["layer_3", "layer_4"],
new_sliding_window_spec()),
KVCacheGroupSpec(["layer_5", "layer_6"],
new_sliding_window_spec()),
],
)
# 3 full + 7 sliding, pad to 3 full + 9 sliding
kv_cache_specs_hybrid = {
'layer_1': new_kv_cache_spec(),
'layer_2': new_kv_cache_spec(),
'layer_3': new_kv_cache_spec(),
'layer_4': new_sliding_window_spec(),
'layer_5': new_sliding_window_spec(),
'layer_6': new_sliding_window_spec(),
'layer_7': new_sliding_window_spec(),
'layer_8': new_sliding_window_spec(),
'layer_9': new_sliding_window_spec(),
'layer_10': new_sliding_window_spec(),
}
kv_cache_config_hybrid = get_kv_cache_config(
vllm_config, kv_cache_specs_hybrid, mem_per_block_per_layer * 3 * 32)
assert kv_cache_config_hybrid == KVCacheConfig(
num_blocks=32,
kv_cache_tensors=[
KVCacheTensor(
size=mem_per_block_per_layer * 32,
shared_by=["layer_1", "layer_4", "layer_7", "layer_10"]),
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_2", "layer_5", "layer_8"]),
KVCacheTensor(size=mem_per_block_per_layer * 32,
shared_by=["layer_3", "layer_6", "layer_9"]),
],
kv_cache_groups=[
KVCacheGroupSpec(["layer_1", "layer_2", "layer_3"],
new_kv_cache_spec()),
KVCacheGroupSpec(["layer_4", "layer_5", "layer_6"],
new_sliding_window_spec()),
KVCacheGroupSpec(["layer_7", "layer_8", "layer_9"],
new_sliding_window_spec()),
KVCacheGroupSpec(["layer_10"], new_sliding_window_spec()),
],
)
# different hidden size, unimplemented
kv_cache_specs_hybrid = {
'layer_1': new_kv_cache_spec(head_size=128),
'layer_2': new_kv_cache_spec(),
}
with pytest.raises(NotImplementedError):
get_kv_cache_config(vllm_config, kv_cache_specs_hybrid,
mem_per_block_per_layer * 2 * 32)

View File

@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Compare the with and without prefix caching."""
import copy
from typing import Optional
import pytest
@ -13,8 +14,8 @@ from vllm.sampling_params import SamplingParams
from vllm.utils import sha256
from vllm.v1.core.block_pool import BlockPool
from vllm.v1.core.kv_cache_manager import KVCacheManager, Request
from vllm.v1.core.kv_cache_utils import (BlockHash, KVCacheBlock,
hash_block_tokens)
from vllm.v1.core.kv_cache_utils import (BlockHash, BlockHashWithGroupId,
KVCacheBlock, hash_block_tokens)
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
KVCacheGroupSpec, SlidingWindowSpec)
@ -47,7 +48,7 @@ def make_request(request_id,
def make_kv_cache_config(block_size: int, num_blocks: int) -> KVCacheConfig:
return KVCacheConfig(
num_blocks=num_blocks,
tensors={},
kv_cache_tensors=[],
kv_cache_groups=[
KVCacheGroupSpec(
["layer"],
@ -57,6 +58,38 @@ def make_kv_cache_config(block_size: int, num_blocks: int) -> KVCacheConfig:
)
def make_kv_cache_config_hybrid_model(block_size: int,
num_blocks: int) -> KVCacheConfig:
return KVCacheConfig(
num_blocks=num_blocks,
kv_cache_tensors=[],
kv_cache_groups=[
KVCacheGroupSpec(
["layer1"],
FullAttentionSpec(block_size, 1, 1, torch.float32, False),
),
KVCacheGroupSpec(
["layer2"],
SlidingWindowSpec(block_size,
1,
1,
torch.float32,
False,
sliding_window=2 * block_size),
),
KVCacheGroupSpec(
["layer3"],
SlidingWindowSpec(block_size,
1,
1,
torch.float32,
False,
sliding_window=2 * block_size),
),
],
)
@pytest.mark.parametrize("hash_algo", ["sha256", "hash"])
def test_prefill(hash_algo):
manager = KVCacheManager(
@ -79,12 +112,12 @@ def test_prefill(hash_algo):
req0 = make_request("0", all_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
assert len(manager.req_to_block_hashes[req0.request_id]) == 3
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req0, 55,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
# Check full block metadata
parent_block_hash = None
@ -92,7 +125,8 @@ def test_prefill(hash_algo):
block_tokens = tuple(all_token_ids[(block_id - 1) * 16:block_id * 16])
block_hash = hash_block_tokens(hash_fn, parent_block_hash,
block_tokens)
assert manager.block_pool.blocks[block_id].block_hash == block_hash
assert manager.block_pool.blocks[
block_id].block_hash.block_hash == block_hash
assert manager.block_pool.blocks[block_id].ref_cnt == 1
parent_block_hash = block_hash.hash_value
@ -107,14 +141,14 @@ def test_prefill(hash_algo):
req1 = make_request("1", common_token_ids + unique_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
assert computed_blocks.get_block_ids() == [[1, 2, 3]]
assert computed_blocks.get_block_ids() == ([1, 2, 3], )
assert num_computed_tokens == 3 * 16
num_new_tokens = 53 - 3 * 16
blocks = manager.allocate_slots(req1, num_new_tokens,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[5]]
for block in computed_blocks.blocks:
assert blocks.get_block_ids() == ([5], )
for block in computed_blocks.blocks[0]:
assert block.ref_cnt == 2
# At this point, we should have 5 free blocks left.
@ -141,13 +175,13 @@ def test_prefill(hash_algo):
req2 = make_request("2", common_token_ids + unique_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
assert len(manager.req_to_block_hashes[req2.request_id]) == 3
assert computed_blocks.get_block_ids() == [[1, 2, 3]]
assert computed_blocks.get_block_ids() == ([1, 2, 3], )
assert num_computed_tokens == 3 * 16
num_new_tokens = 53 - 3 * 16
blocks = manager.allocate_slots(req2, num_new_tokens,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[6]]
assert blocks.get_block_ids() == ([6], )
# Although we only have 6 free blocks, we have 8 blocks in
# the free block queue due to lazy removal.
@ -165,18 +199,150 @@ def test_prefill(hash_algo):
# Cache miss and eviction.
req3 = make_request("3", [99] * (16 * 10))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req3)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req3, 16 * 10,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
# This block ID order also checks the eviction order.
assert blocks.get_block_ids() == [[7, 8, 9, 10, 4, 5, 6, 3, 2, 1]]
assert blocks.get_block_ids() == ([7, 8, 9, 10, 4, 5, 6, 3, 2, 1], )
assert manager.block_pool.free_block_queue.num_free_blocks == 0
assert manager.block_pool.free_block_queue.free_list_head is None
assert manager.block_pool.free_block_queue.free_list_tail is None
def test_prefill_hybrid_model():
block_size = 16
manager = KVCacheManager(
make_kv_cache_config_hybrid_model(block_size, 21),
max_model_len=8192,
enable_caching=True,
)
hash_fn = hash
# Complete 3 blocks (48 tokens)
common_token_ids = [i for i in range(3) for _ in range(block_size)]
# Fully cache miss
# Incomplete 1 block (7 tokens)
unique_token_ids = [3] * 7
all_token_ids = common_token_ids + unique_token_ids
req0 = make_request("0", all_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
assert len(manager.req_to_block_hashes[req0.request_id]) == 3
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req0, 55,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == ([1, 2, 3, 4], [5, 6, 7,
8], [9, 10, 11, 12])
# Check full block metadata
parent_block_hash = None
for length, block_ids in zip((1, 2, 3),
((1, 5, 9), (2, 6, 10), (3, 7, 11))):
block_tokens = tuple(all_token_ids[(length - 1) * 16:length * 16])
block_hash = hash_block_tokens(hash_fn, parent_block_hash,
block_tokens)
for block_id in block_ids:
assert manager.block_pool.blocks[
block_id].block_hash.block_hash == block_hash
assert manager.block_pool.blocks[block_id].ref_cnt == 1
parent_block_hash = block_hash.hash_value
# Check partial block metadata
for block_id in (4, 8, 12):
assert manager.block_pool.blocks[block_id].block_hash is None
assert manager.block_pool.blocks[block_id].ref_cnt == 1
# Cache hit in the common prefix
# Incomplete 1 block (5 tokens)
unique_token_ids = [3] * 5
req1 = make_request("1", common_token_ids + unique_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
assert computed_blocks.get_block_ids() == ([1, 2, 3], [0, 6,
7], [0, 10, 11])
assert num_computed_tokens == 3 * 16
num_new_tokens = 53 - 3 * 16
blocks = manager.allocate_slots(req1, num_new_tokens,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == ([13], [14], [15])
for block_per_group in computed_blocks.blocks:
for block in block_per_group:
if block != manager.block_pool.null_block:
assert block.ref_cnt == 2
block_hashes = manager.req_to_block_hashes[req1.request_id]
manager.free(req0)
manager.free(req1)
cached_block_hash_to_block_bak = copy.copy(
manager.block_pool.cached_block_hash_to_block)
def test_partial_request_hit(request_id: str,
hash_to_evict: list[BlockHashWithGroupId],
expect_hit_length: int):
req = make_request(request_id, common_token_ids + unique_token_ids)
for hash_with_group_id in hash_to_evict:
manager.block_pool.cached_block_hash_to_block.pop(
hash_with_group_id)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
assert len(manager.req_to_block_hashes[req.request_id]) == 3
assert num_computed_tokens == expect_hit_length * block_size
for block_per_group in computed_blocks.blocks:
assert len(block_per_group) == num_computed_tokens // block_size
for hash_with_group_id in hash_to_evict:
manager.block_pool.cached_block_hash_to_block[
hash_with_group_id] = cached_block_hash_to_block_bak[
hash_with_group_id]
manager.free(req)
# Evict the blocks outside sliding window, does not affect the hit length.
test_partial_request_hit("2", [
BlockHashWithGroupId(block_hashes[0], 1),
BlockHashWithGroupId(block_hashes[0], 2)
], 3)
# Evict the first block of full attention, makes total cache miss.
test_partial_request_hit("3", [
BlockHashWithGroupId(block_hashes[0], 0),
], 0)
# Evict the last block of all layers, reduces the hit length to 2.
test_partial_request_hit("4", [
BlockHashWithGroupId(block_hashes[2], 0),
BlockHashWithGroupId(block_hashes[2], 1),
BlockHashWithGroupId(block_hashes[2], 2),
], 2)
# Evict the last block of full attention, reduces the hit length to 2.
test_partial_request_hit("5", [BlockHashWithGroupId(block_hashes[2], 0)],
2)
# Evict the last block of sliding window, reduces the hit length to 2.
test_partial_request_hit("6", [BlockHashWithGroupId(block_hashes[2], 1)],
2)
# Evict the last block of sliding window, reduces the hit length to 2.
test_partial_request_hit("7", [BlockHashWithGroupId(block_hashes[2], 2)],
2)
# Evict different set of blocks for full attention and sliding window makes
# total cache miss.
# The cache hit length of full attention is 1 * block_size.
# The cache hit length of sliding window is 2 * block_size.
# Then it is cache miss as the two type of layers have different hit length.
test_partial_request_hit("8", [
BlockHashWithGroupId(block_hashes[2], 0),
BlockHashWithGroupId(block_hashes[0], 1),
BlockHashWithGroupId(block_hashes[0], 2),
], 0)
def test_prefill_plp():
'''Test prefill with APC and some prompt logprobs (plp) requests.
@ -203,13 +369,13 @@ def test_prefill_plp():
req0 = make_request("0", all_token_ids, prompt_logprobs=5)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
assert len(manager.req_to_block_hashes[req0.request_id]) == 0
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req0, 55,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
req0_block_hashes = [b.block_hash for b in blocks.blocks]
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
req0_block_hashes = [b.block_hash for b in blocks.blocks[0]]
# Check full block metadata
parent_block_hash = None
@ -217,7 +383,8 @@ def test_prefill_plp():
block_tokens = tuple(all_token_ids[(block_id - 1) * 16:block_id * 16])
block_hash = hash_block_tokens(hash_fn, parent_block_hash,
block_tokens)
assert manager.block_pool.blocks[block_id].block_hash == block_hash
assert manager.block_pool.blocks[
block_id].block_hash.block_hash == block_hash
assert manager.block_pool.blocks[block_id].ref_cnt == 1
parent_block_hash = block_hash.hash_value
@ -233,14 +400,14 @@ def test_prefill_plp():
req1 = make_request("1", common_token_ids + unique_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
assert computed_blocks.get_block_ids() == [[1, 2, 3]]
assert computed_blocks.get_block_ids() == ([1, 2, 3], )
assert num_computed_tokens == 3 * 16
num_new_tokens = 53 - 3 * 16
blocks = manager.allocate_slots(req1, num_new_tokens,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[5]]
for block in computed_blocks.blocks:
assert blocks.get_block_ids() == ([5], )
for block in computed_blocks.blocks[0]:
assert block.ref_cnt == 2
# At this point, we should have 5 free blocks left.
@ -269,15 +436,15 @@ def test_prefill_plp():
prompt_logprobs=5)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
assert len(manager.req_to_block_hashes[req2.request_id]) == 0
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req2, 55,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
block_ids = blocks.get_block_ids()
# Duplicate cached blocks have different ids but same hashes vs request #0
assert [b.block_hash for b in blocks.blocks] == req0_block_hashes
assert block_ids != [[1, 2, 3, 4]]
assert [b.block_hash for b in blocks.blocks[0]] == req0_block_hashes
assert block_ids != ([1, 2, 3, 4], )
# Request #2 block hashes are valid since request #0 hashes are.
# Check block reference counts.
@ -302,22 +469,22 @@ def test_decode():
unique_token_ids = [3] * 7
req0 = make_request("0", common_token_ids + unique_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req0, 55,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
# Append slots without allocating a new block.
req0.num_computed_tokens = 55
for _ in range(4):
req0.append_output_token_ids(8)
new_blocks = manager.allocate_slots(req0, 4,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert new_blocks is not None and len(new_blocks.blocks) == 0
assert manager.single_type_manager.req_to_blocks[
assert new_blocks is not None and len(new_blocks.blocks[0]) == 0
assert manager.coordinator.single_type_managers[0].req_to_blocks[
req0.request_id][-1].block_hash is None
# Append slots with allocating a new block.
@ -327,12 +494,12 @@ def test_decode():
for _ in range(9 + 10):
req0.append_output_token_ids(7)
new_blocks = manager.allocate_slots(req0, 19,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert new_blocks is not None and len(new_blocks.blocks) == 1
assert manager.single_type_manager.req_to_blocks[
assert new_blocks is not None and len(new_blocks.blocks[0]) == 1
assert manager.coordinator.single_type_managers[0].req_to_blocks[
req0.request_id][-2].block_hash is not None
assert manager.single_type_manager.req_to_blocks[
assert manager.coordinator.single_type_managers[0].req_to_blocks[
req0.request_id][-1].block_hash is None
@ -346,23 +513,23 @@ def test_evict():
last_token_id = 5 * 16 + 7
req0 = make_request("0", list(range(last_token_id)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req0, 5 * 16 + 7,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 6 # 5 full + 1 partial
assert len(blocks.blocks[0]) == 6 # 5 full + 1 partial
# 3 blocks.
req1 = make_request("1", list(range(last_token_id,
last_token_id + 3 * 16)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req1, 3 * 16,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 3 # 3 full blocks
assert len(blocks.blocks[0]) == 3 # 3 full blocks
last_token_id += 3 * 16
# 10 - (6 + 3) == 1
@ -379,12 +546,12 @@ def test_evict():
# Touch the first 2 blocks.
req2 = make_request("2", list(range(2 * 16 + 3)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
assert computed_blocks.get_block_ids() == [[1, 2]]
assert computed_blocks.get_block_ids() == ([1, 2], )
assert num_computed_tokens == 2 * 16
blocks = manager.allocate_slots(req2, 3,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[10]]
assert blocks.get_block_ids() == ([10], )
assert manager.block_pool.free_block_queue.num_free_blocks == 7
@ -404,12 +571,12 @@ def test_hash_block_correct_reuse():
num_tokens = block_size * 1
req = make_request("0", list(range(num_tokens)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req, num_tokens,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 1
assert len(blocks.blocks[0]) == 1
# Deallocate the block.
manager.free(req)
@ -418,15 +585,15 @@ def test_hash_block_correct_reuse():
# block is cleared.
req = make_request("1", list(range(num_tokens - 1)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req, num_tokens - 1,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 1
assert len(blocks.blocks[0]) == 1
assert manager.block_pool.blocks[
blocks.blocks[0].block_id].block_hash is None
assert manager.block_pool.blocks[blocks.blocks[0]
[0].block_id].block_hash is None
def test_computed_blocks_not_evicted():
@ -445,24 +612,24 @@ def test_computed_blocks_not_evicted():
num_tokens = block_size * 1
req0 = make_request("0", list(range(num_tokens)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req0, num_tokens,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 1
assert blocks.blocks[0].block_id == 1
assert len(blocks.blocks[0]) == 1
assert blocks.blocks[0][0].block_id == 1
# Allocate another block.
req1 = make_request("1", list(range(num_tokens, num_tokens * 2)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req1, num_tokens,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 1
assert blocks.blocks[0].block_id == 2
assert len(blocks.blocks[0]) == 1
assert blocks.blocks[0][0].block_id == 2
# Free the blocks.
manager.free(req0)
@ -472,15 +639,15 @@ def test_computed_blocks_not_evicted():
# cached block rather than the first one.
req2 = make_request("2", list(range(num_tokens * 2)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
assert len(computed_blocks.blocks) == 1
assert computed_blocks.blocks[0].block_id == 1
assert len(computed_blocks.blocks[0]) == 1
assert computed_blocks.blocks[0][0].block_id == 1
assert num_computed_tokens == block_size
blocks = manager.allocate_slots(req2, num_tokens * 2 - num_tokens,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 1
assert blocks.blocks[0].block_id == 2
assert len(blocks.blocks[0]) == 1
assert blocks.blocks[0][0].block_id == 2
def test_basic_prefix_caching_disabled():
@ -497,12 +664,12 @@ def test_basic_prefix_caching_disabled():
req1 = make_request("1", list(range(10))) # 2 blocks and some more
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req1, 10,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 3
assert len(blocks.blocks[0]) == 3
# Free the blocks.
manager.free(req1)
@ -510,20 +677,20 @@ def test_basic_prefix_caching_disabled():
# No caching.
req2 = make_request("2", list(range(16))) # shared prefix
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req2, 16,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert len(blocks.blocks) == 4
assert len(blocks.blocks[0]) == 4
# New requests should not have any blocks.
req3 = make_request("3", list(range(4)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req3)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
blocks = manager.allocate_slots(req3, 4,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert not blocks
@ -558,6 +725,7 @@ def test_cache_blocks(hash_fn):
num_full_blocks=2,
block_size=block_size,
hash_fn=hash_fn,
kv_cache_group_id=0,
)
assert len(block_pool.cached_block_hash_to_block) == 2
@ -573,11 +741,83 @@ def test_cache_blocks(hash_fn):
num_full_blocks=3,
block_size=block_size,
hash_fn=hash_fn,
kv_cache_group_id=0,
)
assert len(block_pool.cached_block_hash_to_block) == 3
assert blocks[0].block_hash is not None
def test_cache_blocks_multi_group():
"""
This tests that blocks are cached correctly for different kv cache groups.
"""
block_size = 4
block_pool = BlockPool(num_gpu_blocks=10, enable_caching=True)
# Req:
# Block 0/4: [0, 1, 2, 3]
# Block 1/5: [4, 5, 6, 7]
# Block 2/6: [8, 9, 10, 11]
# Block 3/7: [12, 13]
req = make_request("0", list(range(14)))
# Cache the blocks for group 0.
blocks = [KVCacheBlock(block_id=i) for i in range(2)]
block_hashes: list[BlockHash] = []
block_pool.cache_full_blocks(
request=req,
blocks=blocks,
block_hashes=block_hashes,
num_cached_blocks=0,
num_full_blocks=2,
block_size=block_size,
hash_fn=hash,
kv_cache_group_id=0,
)
assert len(block_pool.cached_block_hash_to_block) == 2
assert len(block_hashes) == 2
assert all([block.block_hash is not None for block in blocks])
# Cache the blocks for group 1.
blocks = [KVCacheBlock(block_id=i) for i in range(3)]
block_pool.cache_full_blocks(
request=req,
blocks=blocks,
block_hashes=block_hashes,
num_cached_blocks=0,
num_full_blocks=3,
block_size=block_size,
hash_fn=hash,
kv_cache_group_id=1,
)
assert len(block_pool.cached_block_hash_to_block) == 5
assert len(block_hashes) == 3
assert all([block.block_hash is not None for block in blocks])
# Block hash 0: hit for group 0 and 1
# Block hash 1: hit for group 0 and 1
# Block hash 2: hit for group 1
assert block_pool.get_cached_block(block_hashes[0],
kv_cache_group_ids=[0]) is not None
assert block_pool.get_cached_block(block_hashes[1],
kv_cache_group_ids=[0]) is not None
assert block_pool.get_cached_block(block_hashes[2],
kv_cache_group_ids=[0]) is None
assert block_pool.get_cached_block(block_hashes[0],
kv_cache_group_ids=[1]) is not None
assert block_pool.get_cached_block(block_hashes[1],
kv_cache_group_ids=[1]) is not None
assert block_pool.get_cached_block(block_hashes[2],
kv_cache_group_ids=[1]) is not None
assert block_pool.get_cached_block(block_hashes[0],
kv_cache_group_ids=[0, 1]) is not None
assert block_pool.get_cached_block(block_hashes[1],
kv_cache_group_ids=[0, 1]) is not None
assert block_pool.get_cached_block(block_hashes[2],
kv_cache_group_ids=[0, 1]) is None
def test_mm_prefix_caching():
"""
This tests that the multi-modal prefix caching is correct.
@ -614,7 +854,7 @@ def test_mm_prefix_caching():
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
# Completed block should have hashes with extra keys.
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
block_hashes = manager.req_to_block_hashes[req0.request_id]
assert len(block_hashes) == 3
@ -623,18 +863,18 @@ def test_mm_prefix_caching():
assert block_hashes[2].extra_keys == ("bbb", )
blocks = manager.allocate_slots(req0, 59,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
req0.num_computed_tokens = 59
# Append slots without allocating a new block.
for _ in range(5):
req0.append_output_token_ids(8)
new_blocks = manager.allocate_slots(req0, 5,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert new_blocks is not None and len(new_blocks.blocks) == 0
assert new_blocks is not None and len(new_blocks.blocks[0]) == 0
# The just completed block should have hashes with extra keys.
assert len(block_hashes) == 4
@ -652,7 +892,7 @@ def test_mm_prefix_caching():
mm_positions=mm_positions,
mm_hashes=mm_hashes)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert len(computed_blocks.blocks) == 3
assert len(computed_blocks.blocks[0]) == 3
assert num_computed_tokens == 3 * 16
@ -675,7 +915,7 @@ def test_cache_key_salting():
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
# Completed block should have hashes with extra keys.
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
block_hashes = manager.req_to_block_hashes[req0.request_id]
assert len(block_hashes) == 3
@ -684,18 +924,18 @@ def test_cache_key_salting():
assert block_hashes[2].extra_keys is None
blocks = manager.allocate_slots(req0, 59,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
req0.num_computed_tokens = 59
# Append slots without allocating a new block.
for _ in range(5):
req0.append_output_token_ids(8)
new_blocks = manager.allocate_slots(req0, 5,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert new_blocks is not None and len(new_blocks.blocks) == 0
assert new_blocks is not None and len(new_blocks.blocks[0]) == 0
# Now one more block that should not have extra keys.
assert len(block_hashes) == 4
@ -706,14 +946,14 @@ def test_cache_key_salting():
req1 = make_request("1", token_ids, cache_salt="salt1")
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
# Should match only a prefix of 3 blocks.
assert len(computed_blocks.blocks) == 3
assert len(computed_blocks.blocks[0]) == 3
assert num_computed_tokens == 3 * block_size
# Test cache miss with same content but different salt.
token_ids = common_token_ids + [4] * 11
req2 = make_request("2", token_ids, cache_salt="salt2")
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
assert len(computed_blocks.blocks) == 0
assert len(computed_blocks.blocks[0]) == 0
assert num_computed_tokens == 0
block_hashes = manager.req_to_block_hashes[req2.request_id]
assert len(block_hashes) == 3
@ -738,20 +978,24 @@ def test_prefill_not_enough_free_blocks_with_computed_blocks():
common_token_ids = [i for i in range(3) for _ in range(16)]
req0 = make_request("0", common_token_ids)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req0)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
manager.allocate_slots(req0, 48,
len(computed_blocks.blocks) * 16, computed_blocks)
block_part0 = manager.single_type_manager.req_to_blocks[req0.request_id]
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
block_part0 = manager.coordinator.single_type_managers[0].req_to_blocks[
req0.request_id]
# | Common-0 | Common-1 | Common-2 | Req1-3 | Req1-4 | Req1-5 | ... |
req1 = make_request("1", common_token_ids * 2)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req1)
assert computed_blocks.blocks == block_part0
assert computed_blocks.blocks[0] == block_part0
assert num_computed_tokens == 3 * 16
manager.allocate_slots(req1, 48,
len(computed_blocks.blocks) * 16, computed_blocks)
block_part1 = manager.single_type_manager.req_to_blocks[req1.request_id]
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
block_part1 = manager.coordinator.single_type_managers[0].req_to_blocks[
req1.request_id]
# | Common-0 | Common-1 | Common-2 | Req1-3 (F) | Req1-4 (F) |
# | Req1-5(F)| ... |
manager.free(req1)
@ -762,10 +1006,11 @@ def test_prefill_not_enough_free_blocks_with_computed_blocks():
# | Req1-5(F)| Req2-0 | Req2-1 | ... |
req2 = make_request("2", [7] * block_size * 2)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req2)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
manager.allocate_slots(req2, block_size * 2,
len(computed_blocks.blocks) * 16, computed_blocks)
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
# Req3 is Req2 + 3 new blocks, so the first 6 blocks are computed,
# but it cannot be allocated due to insufficient free blocks (2).
@ -773,11 +1018,11 @@ def test_prefill_not_enough_free_blocks_with_computed_blocks():
assert manager.block_pool.free_block_queue.num_free_blocks == 5
req3 = make_request("3", common_token_ids * 3)
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req3)
assert computed_blocks.blocks == block_part1
assert computed_blocks.blocks[0] == block_part1
assert num_computed_tokens == 6 * 16
# Req3 cannot be allocated.
assert manager.allocate_slots(req3, 48,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks) is None
# Block 0-2 are used by Req 1.
assert {block.ref_cnt for block in block_part1[:3]} == {1}
@ -797,18 +1042,18 @@ def test_reset_prefix_cache():
all_token_ids = full_block_token_ids + unique_token_ids
req0 = make_request("0", all_token_ids)
blocks = manager.allocate_slots(req0, 55)
assert blocks.get_block_ids() == [[1, 2, 3, 4]]
assert blocks.get_block_ids() == ([1, 2, 3, 4], )
unique_token_ids = [4] * 7
all_token_ids = full_block_token_ids + unique_token_ids
req1 = make_request("1", all_token_ids)
computed_blocks, _ = manager.get_computed_blocks(req1)
assert len(manager.req_to_block_hashes[req1.request_id]) == 3
assert len(computed_blocks.blocks) == 3
assert len(computed_blocks.blocks[0]) == 3
blocks = manager.allocate_slots(req1, 7,
len(computed_blocks.blocks) * 16,
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
assert blocks.get_block_ids() == [[5]]
assert blocks.get_block_ids() == ([5], )
# Failed to reset prefix cache because some blocks are not freed yet.
assert not manager.reset_prefix_cache()
@ -836,10 +1081,11 @@ def test_prefix_cache_stats_disabled():
# Call all functions that check whether log_stats is disabled.
req = make_request("0", list(range(16)))
computed_blocks, num_computed_tokens = manager.get_computed_blocks(req)
assert not computed_blocks.blocks
assert not computed_blocks.blocks[0]
assert num_computed_tokens == 0
manager.allocate_slots(req, 16,
len(computed_blocks.blocks) * 16, computed_blocks)
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
manager.reset_prefix_cache()
# Ensure prefix_cache_stats remains None
@ -918,7 +1164,8 @@ def test_eagle_enabled_removes_last_block():
# Prime the cache
computed_blocks, _ = manager.get_computed_blocks(req)
manager.allocate_slots(req, len(token_ids),
len(computed_blocks.blocks) * 16, computed_blocks)
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
manager.free(req)
# New request with same tokens + Eagle enabled
@ -928,7 +1175,7 @@ def test_eagle_enabled_removes_last_block():
# Should retain 1 block:
# 1. Original 3 blocks → pop last hash → 2 matched blocks
# 2. drop last matched block → 1 remaining block
assert len(computed_blocks.blocks) == 1
assert len(computed_blocks.blocks[0]) == 1
assert num_tokens == 1 * block_size # 16 tokens
@ -948,14 +1195,15 @@ def test_eagle_with_partial_blocks():
# Prime the cache
computed_blocks, _ = manager.get_computed_blocks(req)
manager.allocate_slots(req, len(token_ids),
len(computed_blocks.blocks) * 16, computed_blocks)
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
manager.free(req)
# New request with Eagle enabled
req_eagle = make_request("partial_eagle", token_ids)
computed_blocks, num_tokens = manager.get_computed_blocks(req_eagle)
# Original match: 2 full blocks → Eagle removes 1 → 1 remaining
assert len(computed_blocks.blocks) == 1
assert len(computed_blocks.blocks[0]) == 1
assert num_tokens == 1 * block_size
@ -973,7 +1221,7 @@ def test_eagle_with_sliding_window():
manager = KVCacheManager(
KVCacheConfig(
num_blocks=10,
tensors={},
kv_cache_tensors=[],
kv_cache_groups=[KVCacheGroupSpec(['layer'], sliding_window_spec)],
),
max_model_len=8192,
@ -988,7 +1236,8 @@ def test_eagle_with_sliding_window():
# Prime the cache
computed_blocks, _ = manager.get_computed_blocks(req)
manager.allocate_slots(req, len(token_ids),
len(computed_blocks.blocks) * 16, computed_blocks)
len(computed_blocks.blocks[0]) * 16,
computed_blocks)
# record the block hash of the first block in the request for later use
block_hash_first_block = manager.req_to_block_hashes[req.request_id][0]
assert block_hash_first_block is not None
@ -998,13 +1247,14 @@ def test_eagle_with_sliding_window():
req_eagle = make_request("partial_eagle", token_ids)
computed_blocks, num_tokens = manager.get_computed_blocks(req_eagle)
# Original match: 2 full blocks → Eagle removes 1 → 1 remaining
assert len(computed_blocks.blocks) == 1
assert len(computed_blocks.blocks[0]) == 1
assert num_tokens == 1 * block_size
# Evict the first block in the request
assert manager.block_pool.get_cached_block(
block_hash_first_block) is not None
manager.block_pool.cached_block_hash_to_block.pop(block_hash_first_block)
block_hash_first_block, kv_cache_group_ids=[0]) is not None
manager.block_pool.cached_block_hash_to_block.pop(
BlockHashWithGroupId(block_hash_first_block, 0))
# New request
req_after_evict = make_request("partial_eagle_after_evict", token_ids)
@ -1012,5 +1262,5 @@ def test_eagle_with_sliding_window():
# Cache miss. The only hit prefix is [NULL_BLOCK, BLOCK_2] if eagle is
# not considered. But after dropping the last matched block due to eagle,
# there will be no matched prefix.
assert len(computed_blocks.blocks) == 0
assert len(computed_blocks.blocks[0]) == 0
assert num_tokens == 0

View File

@ -97,7 +97,7 @@ def create_scheduler(
)
kv_cache_config = KVCacheConfig(
num_blocks=num_blocks, # A large number of blocks to hold all requests
tensors={},
kv_cache_tensors=[],
kv_cache_groups=[
KVCacheGroupSpec(['layer'],
FullAttentionSpec(block_size, 1, 1, torch.float32,
@ -814,10 +814,10 @@ def _assert_right_kv_cache_manager(
# Make sure the request stats are right.
EXPECTED_TOTAL_BLOCKS = num_tokens // block_size
for req_id in req_ids:
blocks = (scheduler.kv_cache_manager.single_type_manager.
req_to_blocks[req_id])
blocks = (scheduler.kv_cache_manager.coordinator.
single_type_managers[0].req_to_blocks[req_id])
hashes = scheduler.kv_cache_manager.req_to_block_hashes[req_id]
assert (scheduler.kv_cache_manager.single_type_manager.
assert (scheduler.kv_cache_manager.coordinator.single_type_managers[0].
num_cached_block[req_id] == EXPECTED_TOTAL_BLOCKS)
assert len(blocks) == EXPECTED_TOTAL_BLOCKS
assert len(hashes) == EXPECTED_TOTAL_BLOCKS
@ -1198,11 +1198,11 @@ def assert_scheduler_empty(scheduler: Scheduler):
assert len(scheduler.encoder_cache_manager.cached) == 0
# KVCache Manager.
assert len(
scheduler.kv_cache_manager.single_type_manager.req_to_blocks) == 0
assert len(scheduler.kv_cache_manager.coordinator.single_type_managers[0].
req_to_blocks) == 0
assert len(scheduler.kv_cache_manager.req_to_block_hashes) == 0
assert len(
scheduler.kv_cache_manager.single_type_manager.num_cached_block) == 0
assert len(scheduler.kv_cache_manager.coordinator.single_type_managers[0].
num_cached_block) == 0
num_free_blocks = (
scheduler.kv_cache_manager.block_pool.free_block_queue.num_free_blocks)
assert num_free_blocks == (

View File

@ -4,7 +4,8 @@
import torch
from vllm.v1.core.block_pool import BlockPool
from vllm.v1.core.kv_cache_utils import BlockHash, KVCacheBlock
from vllm.v1.core.kv_cache_utils import (BlockHash, BlockHashWithGroupId,
KVCacheBlock)
from vllm.v1.core.single_type_kv_cache_manager import SlidingWindowManager
from vllm.v1.kv_cache_interface import SlidingWindowSpec
@ -12,9 +13,8 @@ from vllm.v1.kv_cache_interface import SlidingWindowSpec
def get_sliding_window_manager(sliding_window_spec, block_pool):
return SlidingWindowManager(sliding_window_spec,
block_pool,
use_eagle=False,
num_kv_cache_groups=1,
caching_hash_fn=lambda x: x)
caching_hash_fn=lambda x: x,
kv_cache_group_id=0)
def test_sliding_window_possible_cached_prefix():
@ -42,13 +42,18 @@ def test_sliding_window_possible_cached_prefix():
for i, (block_hash,
is_cached) in enumerate(zip(block_hash_list, block_is_cached)):
if is_cached:
block_pool.cached_block_hash_to_block[block_hash] = {
i: block_pool.blocks[i + 10]
}
block_pool.cached_block_hash_to_block[BlockHashWithGroupId(
block_hash, 0)] = {
i: block_pool.blocks[i + 10],
}
computed_blocks = manager.find_longest_cache_hit(
block_hash_list,
len(block_hash_list) * block_size)
block_hashes=block_hash_list,
max_length=len(block_hash_list) * block_size,
kv_cache_group_ids=[0],
block_pool=block_pool,
kv_cache_spec=sliding_window_spec,
use_eagle=False)[0]
assert len(computed_blocks) == expect_length
assert all(block == block_pool.null_block
@ -95,13 +100,13 @@ def test_sliding_window_remove_skipped_blocks():
null_block_id = block_pool.null_block.block_id
def id_to_block_table(ids):
def id_to_block_table(ids) -> list[KVCacheBlock]:
return [
KVCacheBlock(id_)
if id_ != null_block_id else block_pool.null_block for id_ in ids
]
def assert_block_id(block_table, ids):
def assert_block_id(block_table: list[KVCacheBlock], ids: list[int]):
for block, id_ in zip(block_table, ids):
if id_ == null_block_id:
assert block == block_pool.null_block

View File

@ -18,7 +18,7 @@ class TestConfig:
model_config = {
"bigcode/starcoder2-3b": TestConfig(4096, (800, 1100)),
"google/gemma-2-2b-it": TestConfig(4096, (400, 800)),
"google/gemma-3-1b-it": TestConfig(4096, (400, 800)),
}
@ -26,7 +26,7 @@ model_config = {
"model",
[
"bigcode/starcoder2-3b", # sliding window only
"google/gemma-2-2b-it", # sliding window + full attention
"google/gemma-3-1b-it", # sliding window + full attention
])
@pytest.mark.parametrize("batch_size", [5])
@pytest.mark.parametrize("seed", [1])

View File

@ -22,9 +22,11 @@ if not current_platform.is_cuda():
pytest.skip(reason="V1 currently only supported on CUDA.",
allow_module_level=True)
TEXT_ENGINE_ARGS = AsyncEngineArgs(model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
disable_log_requests=True)
TEXT_ENGINE_ARGS = AsyncEngineArgs(
model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
disable_log_requests=True,
)
VISION_ENGINE_ARGS = AsyncEngineArgs(model="Qwen/Qwen2-VL-2B-Instruct",
enforce_eager=True,
@ -41,28 +43,33 @@ VISION_PROMPT = {
"prompt": VISION_PROMPT_TEMPLATE,
"multi_modal_data": {
"image": ImageAsset("stop_sign").pil_image
}
},
}
async def generate(engine: AsyncLLM,
request_id: str,
prompt: PromptType,
output_kind: RequestOutputKind,
max_tokens: int,
n: int = 1,
prompt_logprobs: Optional[int] = None) -> tuple[int, str]:
async def generate(
engine: AsyncLLM,
request_id: str,
prompt: PromptType,
output_kind: RequestOutputKind,
max_tokens: int,
n: int = 1,
prompt_logprobs: Optional[int] = None,
cancel_after: Optional[int] = None,
) -> tuple[int, str]:
# Ensure generate doesn't complete too fast for cancellation test.
await asyncio.sleep(0.2)
count = 0
sampling_params = SamplingParams(max_tokens=max_tokens,
ignore_eos=True,
output_kind=output_kind,
temperature=0.5,
seed=33,
n=n,
prompt_logprobs=prompt_logprobs)
sampling_params = SamplingParams(
max_tokens=max_tokens,
ignore_eos=True,
output_kind=output_kind,
temperature=0.5,
seed=33,
n=n,
prompt_logprobs=prompt_logprobs,
)
async for out in engine.generate(request_id=request_id,
prompt=prompt,
sampling_params=sampling_params):
@ -73,20 +80,27 @@ async def generate(engine: AsyncLLM,
else:
count = num_tokens
await asyncio.sleep(0.)
if cancel_after is not None and count >= cancel_after:
return count, request_id
await asyncio.sleep(0.0)
return count, request_id
@pytest.mark.parametrize(
"output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
@pytest.mark.parametrize("engine_args,prompt",
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
(VISION_ENGINE_ARGS, VISION_PROMPT)])
@pytest.mark.parametrize(
"engine_args,prompt",
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
)
@pytest.mark.asyncio
async def test_load(monkeypatch: pytest.MonkeyPatch,
output_kind: RequestOutputKind,
engine_args: AsyncEngineArgs, prompt: PromptType):
async def test_load(
monkeypatch: pytest.MonkeyPatch,
output_kind: RequestOutputKind,
engine_args: AsyncEngineArgs,
prompt: PromptType,
):
# TODO(rickyx): Remove monkeypatch once we have a better way to test V1
# so that in the future when we switch, we don't have to change all the
# tests.
@ -125,13 +139,17 @@ async def test_load(monkeypatch: pytest.MonkeyPatch,
@pytest.mark.parametrize(
"output_kind", [RequestOutputKind.DELTA, RequestOutputKind.FINAL_ONLY])
@pytest.mark.parametrize("engine_args,prompt",
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
(VISION_ENGINE_ARGS, VISION_PROMPT)])
@pytest.mark.parametrize(
"engine_args,prompt",
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
)
@pytest.mark.asyncio
async def test_abort(monkeypatch: pytest.MonkeyPatch,
output_kind: RequestOutputKind,
engine_args: AsyncEngineArgs, prompt: PromptType):
async def test_abort(
monkeypatch: pytest.MonkeyPatch,
output_kind: RequestOutputKind,
engine_args: AsyncEngineArgs,
prompt: PromptType,
):
with monkeypatch.context() as m, ExitStack() as after:
m.setenv("VLLM_USE_V1", "1")
@ -150,8 +168,9 @@ async def test_abort(monkeypatch: pytest.MonkeyPatch,
# Create concurrent requests.
tasks: list[asyncio.Task] = []
for idx, request_id in enumerate(request_ids):
max_tokens = NUM_EXPECTED_TOKENS_LONG if (
idx in REQUEST_IDS_TO_ABORT) else NUM_EXPECTED_TOKENS
max_tokens = (NUM_EXPECTED_TOKENS_LONG if
(idx
in REQUEST_IDS_TO_ABORT) else NUM_EXPECTED_TOKENS)
n = 3 if idx in PARALLEL_SAMPLE_REQ_IDS else 1
tasks.append(
asyncio.create_task(
@ -192,12 +211,17 @@ async def test_abort(monkeypatch: pytest.MonkeyPatch,
@pytest.mark.parametrize("n", [1, 3])
@pytest.mark.parametrize("engine_args,prompt",
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
(VISION_ENGINE_ARGS, VISION_PROMPT)])
@pytest.mark.parametrize(
"engine_args,prompt",
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
)
@pytest.mark.asyncio
async def test_finished_flag(monkeypatch: pytest.MonkeyPatch, n: int,
engine_args: AsyncEngineArgs, prompt: PromptType):
async def test_finished_flag(
monkeypatch: pytest.MonkeyPatch,
n: int,
engine_args: AsyncEngineArgs,
prompt: PromptType,
):
with monkeypatch.context() as m, ExitStack() as after:
m.setenv("VLLM_USE_V1", "1")
@ -205,11 +229,13 @@ async def test_finished_flag(monkeypatch: pytest.MonkeyPatch, n: int,
engine = AsyncLLM.from_engine_args(engine_args)
after.callback(engine.shutdown)
sampling_params = SamplingParams(max_tokens=100,
output_kind=RequestOutputKind.DELTA,
temperature=1.0,
seed=33,
n=n)
sampling_params = SamplingParams(
max_tokens=100,
output_kind=RequestOutputKind.DELTA,
temperature=1.0,
seed=33,
n=n,
)
outputs = [
out
async for out in engine.generate(request_id="request-33",
@ -222,6 +248,63 @@ async def test_finished_flag(monkeypatch: pytest.MonkeyPatch, n: int,
assert outputs[-1].finished
@pytest.mark.parametrize(
"engine_args,prompt",
[(TEXT_ENGINE_ARGS, TEXT_PROMPT), (VISION_ENGINE_ARGS, VISION_PROMPT)],
)
@pytest.mark.asyncio
async def test_mid_stream_cancellation(monkeypatch: pytest.MonkeyPatch,
engine_args: AsyncEngineArgs,
prompt: PromptType):
"""Test that requests can be cancelled mid-stream."""
with monkeypatch.context() as m, ExitStack() as after:
m.setenv("VLLM_USE_V1", "1")
engine = AsyncLLM.from_engine_args(engine_args)
after.callback(engine.shutdown)
NUM_REQUESTS = 100
NUM_TOKENS = 1000
NUM_EXPECTED_TOKENS = 20
request_ids = [f"request-{i}" for i in range(NUM_REQUESTS)]
# Create concurrent requests that will be cancelled mid-stream
tasks = []
for request_id in request_ids:
tasks.append(
asyncio.create_task(
generate(
engine,
request_id,
prompt,
RequestOutputKind.DELTA,
NUM_TOKENS,
cancel_after=NUM_EXPECTED_TOKENS,
)))
# Wait for all tasks to complete
results = await asyncio.gather(*tasks)
# Verify all tasks were cancelled at the expected point
for num_generated_tokens, request_id in results:
assert num_generated_tokens == NUM_EXPECTED_TOKENS, (
f"{request_id} generated {num_generated_tokens} tokens but "
f"expected to cancel after {NUM_EXPECTED_TOKENS}")
# Make sure no requests are left hanging
assert not engine.output_processor.has_unfinished_requests()
# Confirm we can reuse the request id after the cancellations.
request_id = request_ids[0]
task = asyncio.create_task(
generate(engine, request_id, prompt, RequestOutputKind.DELTA,
NUM_EXPECTED_TOKENS))
num_generated_tokens, request_id = await task
assert num_generated_tokens == NUM_EXPECTED_TOKENS
assert not engine.output_processor.has_unfinished_requests()
class MockLoggingStatLogger(LoggingStatLogger):
def __init__(self, vllm_config: VllmConfig, engine_index: int = 0):
@ -250,3 +333,32 @@ async def test_customize_loggers(monkeypatch):
assert len(engine.stat_loggers) == 1
assert len(engine.stat_loggers[0]) == 1
engine.stat_loggers[0][0].log.assert_called_once()
@pytest.mark.asyncio(scope="module")
async def test_dp_rank_argument(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m, ExitStack() as after:
m.setenv("VLLM_USE_V1", "1")
engine = AsyncLLM.from_engine_args(TEXT_ENGINE_ARGS)
after.callback(engine.shutdown)
sampling_params = SamplingParams(max_tokens=100,
output_kind=RequestOutputKind.DELTA,
temperature=1.0,
seed=33)
# Test with valid DP rank.
async for _ in engine.generate(request_id="request-34",
prompt=TEXT_PROMPT,
sampling_params=sampling_params,
data_parallel_rank=0):
pass
# Test with out-of-range DP rank.
with pytest.raises(ValueError):
async for _ in engine.generate(request_id="request-35",
prompt=TEXT_PROMPT,
sampling_params=sampling_params,
data_parallel_rank=1):
pass

View File

@ -42,6 +42,7 @@ def make_request() -> EngineCoreRequest:
arrival_time=time.time(),
lora_request=None,
cache_salt=None,
data_parallel_rank=None,
)

Some files were not shown because too many files have changed in this diff Show More