mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Compare commits
1122 Commits
ci/build/2
...
codex/add-
Author | SHA1 | Date | |
---|---|---|---|
14299bfcaf | |||
b10c64c834 | |||
0925b28a8e | |||
99722d5f0e | |||
4c91a28e30 | |||
b038d9c40c | |||
2ba60ec7fe | |||
bd7157a071 | |||
be429d0cfd | |||
c253745eb8 | |||
daec4d2624 | |||
6c9fdbf725 | |||
483ea64611 | |||
e20eba753b | |||
bbc1b29665 | |||
acb1bfa601 | |||
75c7ad9918 | |||
5550ff9c25 | |||
3aeb19a39e | |||
8c017b3490 | |||
9c2c2287a0 | |||
fec2b341ad | |||
87bc0c492f | |||
fe3b9372ad | |||
bde9e2272a | |||
08405609cc | |||
ab81379ea6 | |||
4ffd6e8942 | |||
965c5f4914 | |||
4d055ef465 | |||
17c540a993 | |||
4d4d6bad19 | |||
11ae016bd7 | |||
41d3071918 | |||
fb5e10d3fb | |||
b2f78cbad4 | |||
23583ee28c | |||
01c977e96d | |||
b3dda72c23 | |||
fb0571b077 | |||
2ed8b6b3d0 | |||
013abde6ef | |||
a5464dcf92 | |||
ac3ed5a815 | |||
e6ba2000ae | |||
aa255ff55a | |||
7bb736d00e | |||
9f4e30904b | |||
5afd3276df | |||
43721bc67f | |||
02d709a6f1 | |||
4a510ab487 | |||
314fa8abbf | |||
334535b6fb | |||
dcbb3f1871 | |||
00417f4e44 | |||
ed344f4116 | |||
e51928793e | |||
d2740fafbf | |||
17838e50ef | |||
44c8555621 | |||
f7d318de2b | |||
76f0d05bc6 | |||
7d8975de84 | |||
785d8b6410 | |||
f6cdc9a02f | |||
509cdc0370 | |||
9b6504c307 | |||
e19b16dde6 | |||
582f2c6be7 | |||
f8a0acbdbe | |||
1317034379 | |||
0ecc553ee6 | |||
f96bc3649c | |||
938c43ea7f | |||
0a9ef0cfce | |||
e5b438a247 | |||
0b99f5d302 | |||
1f491aa0c8 | |||
de92d916fe | |||
a1063628a4 | |||
d796375258 | |||
14f8456344 | |||
4794c2bd92 | |||
d3cbaa08dc | |||
828523ad8e | |||
136a17fe6e | |||
f57438338d | |||
5d598680e3 | |||
8f4b313c37 | |||
f93e348010 | |||
f54f85129e | |||
d4d1a6024f | |||
db1764e4e0 | |||
7f83b4ee8e | |||
5c3bae1a6a | |||
5210dc3940 | |||
650b51f9f9 | |||
6256697997 | |||
71557a5f7c | |||
f3c378ffa7 | |||
f5ed68ef63 | |||
efdef57b1f | |||
b8a4572157 | |||
302ef403a2 | |||
8865da157b | |||
f0862eae43 | |||
8c851f6d04 | |||
7cfa420f49 | |||
a27b288e4a | |||
e471d7ca7e | |||
c43ca8259e | |||
85a65e7f51 | |||
a2986b3e33 | |||
96b9aa5aa0 | |||
e66d787bce | |||
bfad142e25 | |||
9354660036 | |||
07ca70af8d | |||
2dcd12d357 | |||
579d2e5458 | |||
0512c04aee | |||
7e0ef4084a | |||
4aed506b65 | |||
a86b4c58e8 | |||
ff4810ba73 | |||
9d6964926e | |||
0e65818910 | |||
380f17527c | |||
b92ab3deda | |||
acaa2c0a4a | |||
82af928c41 | |||
87efc681db | |||
c3a722fcb2 | |||
aba48f7db1 | |||
04b5f9802d | |||
efc8f7d814 | |||
6d87a2838c | |||
e6cdbd6792 | |||
df850c4912 | |||
720394de43 | |||
88a49745af | |||
ca683a2a72 | |||
e9f1b8c9e9 | |||
ea97940d6c | |||
fdd32750f0 | |||
c715ba3735 | |||
9c4cb68339 | |||
780eb03d9b | |||
ef9676a1f1 | |||
70b1b330e1 | |||
d1d063a588 | |||
7e6edb1469 | |||
74704d4553 | |||
d2f816d6ff | |||
577d498212 | |||
fd85c9f426 | |||
d32c611f45 | |||
01ad27faff | |||
481545b397 | |||
d3cc8427c0 | |||
4821ac1b4d | |||
4497c8f821 | |||
2e36cdbe2b | |||
fe3edb4cf0 | |||
29350922c6 | |||
8ae169286f | |||
8a0af6a561 | |||
cfded80793 | |||
b59dd19b55 | |||
3e051bda82 | |||
8317f72354 | |||
d8bebb008a | |||
35bc22f23c | |||
fa96fb9c70 | |||
e3fdb627d9 | |||
7200a21cd1 | |||
577c72a227 | |||
314285d4f2 | |||
d2a7938582 | |||
89342ce4c0 | |||
f89f599395 | |||
e251e457c5 | |||
afc47e4de7 | |||
e3b90c1ba2 | |||
134f70b3ed | |||
a1b2d658ee | |||
5c7fe25491 | |||
53c9a7cee2 | |||
0d21b9b51e | |||
10214b6935 | |||
4a61950f4d | |||
3263799056 | |||
8e67b2557a | |||
4073c82c4e | |||
767c3ab869 | |||
4f207c7174 | |||
782505ed8e | |||
98f30b8cba | |||
3cd36660f7 | |||
46ad73955a | |||
41f3884438 | |||
60e419c1ee | |||
7ef6052804 | |||
4fca1a1bd2 | |||
a6049be73c | |||
18ed7746ea | |||
8fcaaf6a16 | |||
9bb38130cb | |||
b91d8db873 | |||
045b396d09 | |||
76852017ea | |||
82e64c7a20 | |||
4ca204055e | |||
c5c8f5ea59 | |||
01653a917b | |||
0cd103e7cb | |||
5be7ca1b99 | |||
f0a30a067b | |||
9d6cff3ede | |||
a25f2adee9 | |||
d0bed837ac | |||
f7ee69868a | |||
d2a71530c1 | |||
086609de64 | |||
727144bed1 | |||
55392bc879 | |||
ddaff2938e | |||
27ed39a347 | |||
8f8474fbe3 | |||
be067861c6 | |||
5bc26c438d | |||
eef921f45e | |||
e317414ce1 | |||
949cb0170d | |||
e94cfd51da | |||
7c12763b24 | |||
3b780a4bbb | |||
30f78af147 | |||
19a9b169bf | |||
96ad65b7fe | |||
8d2b8c0ff2 | |||
b2155ed317 | |||
910abdbd08 | |||
cddce79fda | |||
e519281920 | |||
7b03584de8 | |||
ae9d0e7da5 | |||
0e67102d93 | |||
f4ba2061cf | |||
1e6848a65d | |||
67661375fa | |||
213b64452a | |||
784c231151 | |||
606b00e80f | |||
720d3cd0f0 | |||
ab196edefb | |||
3ee202ea1e | |||
ad430a67ca | |||
6f0f570c43 | |||
b545a0b207 | |||
29255cfc3b | |||
da4455609d | |||
aafb99a4d4 | |||
757fa4a4da | |||
c6187f55f7 | |||
8983e0216f | |||
1ee35382cb | |||
6e783bc54b | |||
c9d33c60dc | |||
2e54db4d2b | |||
44f633dba1 | |||
a462331e36 | |||
4069db3f2e | |||
0d37450eb7 | |||
47e66c24e2 | |||
3b736e1c38 | |||
2c1c7dfb35 | |||
e246ad6f0c | |||
5728da11ea | |||
92be3f3517 | |||
d1ddf340c8 | |||
ec10fd0abc | |||
0426e3c5e1 | |||
4bdf7ac593 | |||
dc7976dd9f | |||
e4791438ed | |||
e6e898f95d | |||
ddcbc2f334 | |||
a83ff278d6 | |||
cf4cd6c24f | |||
b960441812 | |||
1317028aa8 | |||
5e49c3e777 | |||
0d7c3cb51d | |||
1b2c440cd6 | |||
0f29dca988 | |||
d24cf322e1 | |||
d17f0fbf30 | |||
43ab8cfaa5 | |||
de253d63b7 | |||
8bd696fa53 | |||
bb6d8c21f9 | |||
ebf6ef1a9b | |||
0c52d6ef81 | |||
467a4f98f1 | |||
e614ab7806 | |||
2a03f93de9 | |||
da364615fc | |||
f08919b7d1 | |||
93f2c0aa08 | |||
4ebc9108a7 | |||
e1ba235668 | |||
b82f4307c9 | |||
76879cc160 | |||
b25d7b5657 | |||
e09d1753ec | |||
4ba8875749 | |||
6273fe8d3d | |||
9fb3ae4e6f | |||
76afe4edf8 | |||
c1b06fc182 | |||
241b4cfe66 | |||
9fc983c707 | |||
2f99f2f506 | |||
338b1bf04f | |||
e39dc46f8f | |||
10c75b5439 | |||
f9582fd8f4 | |||
f377333bd7 | |||
f8607863d8 | |||
335b28f7d1 | |||
5e65d6b2ad | |||
0d4f48fa10 | |||
127c8b782a | |||
cd9890544b | |||
067da2d1df | |||
046118b938 | |||
b32260ab85 | |||
f80e7866c0 | |||
31a4b3e6c4 | |||
caf8b1c084 | |||
1b86bd8e18 | |||
59012df99b | |||
3d1f67616d | |||
6ebaf43ee4 | |||
0c824fc46f | |||
eb577e4655 | |||
8f36850f73 | |||
29fd2662ba | |||
30a3e5af69 | |||
a38c1bfe09 | |||
320feae6f5 | |||
1e4ecca1d0 | |||
c0a7b89d8e | |||
6f59beaf0b | |||
41f1cf38f2 | |||
08d26a1b7e | |||
63773a6200 | |||
883b42896a | |||
e1098ced95 | |||
d100d78eb3 | |||
7e4cd070b0 | |||
46b0779996 | |||
de342585ff | |||
185d8ed44f | |||
d9836d4517 | |||
5f7e8a916a | |||
4dbdf4a294 | |||
c6873c4e6d | |||
2111b4643c | |||
c50901f3b9 | |||
8229280a9c | |||
f77df94647 | |||
f231e5bc21 | |||
2161efe978 | |||
f23b4c04fd | |||
93540958b8 | |||
44b9af5bb2 | |||
7cd95dc8a3 | |||
c02058c222 | |||
b2ea5ba677 | |||
824a3f403f | |||
05f6846ede | |||
20db99cc69 | |||
6431be808f | |||
4727a8afa7 | |||
b8f603cebe | |||
fc679696f8 | |||
ab5e7d93f4 | |||
0340f45553 | |||
19a00eb210 | |||
391612e78b | |||
77c95f72f7 | |||
59f30d0448 | |||
43c146ca42 | |||
7c2ec0fe87 | |||
039b6bade3 | |||
6c04638214 | |||
91ac7f764d | |||
4be7d7c1c9 | |||
59b477645c | |||
778f554157 | |||
d3c84297c3 | |||
f509a20846 | |||
60bc25e74c | |||
b893d661b1 | |||
6b6e98775f | |||
9c3c21c519 | |||
512b8affa4 | |||
1c0c68202c | |||
5f317530ec | |||
557b2e961d | |||
4e256cadc2 | |||
d6953beb91 | |||
17edd8a807 | |||
3303cfb4ac | |||
b7e8e4e6be | |||
432e1cbc23 | |||
201c971e96 | |||
e0986ea07b | |||
a964e5e6c3 | |||
78c1d5bfd2 | |||
59a85c366e | |||
119f00630b | |||
a42d2df75f | |||
5c057e068f | |||
ed3aeb25a4 | |||
86ee949128 | |||
4570535ec4 | |||
2a6dc67eb5 | |||
f05fea1f5e | |||
d0df145c2a | |||
1838cd4860 | |||
7d6b03381e | |||
7c2e91c4e0 | |||
736fbf4c89 | |||
44ea85137a | |||
d3d649efec | |||
ea507c3a93 | |||
9705fba7b7 | |||
2f7dbc9b42 | |||
ea25a76c05 | |||
67bc0c003e | |||
5a05f26603 | |||
7ef40bb983 | |||
767cbb011d | |||
7cfa4b24bf | |||
b71fcd4905 | |||
75003f34e8 | |||
78b8015a4d | |||
831b124151 | |||
c1ffcb55da | |||
0879736aab | |||
a26917332f | |||
cd9e5b8340 | |||
300a59c4c3 | |||
d76541a6c5 | |||
dd96465fd7 | |||
4f8f47e87e | |||
d78fda7cda | |||
73a99cc2a5 | |||
adae0c1f43 | |||
cbf9221992 | |||
5f42fc53b6 | |||
8ee846c27c | |||
812b7f54a8 | |||
5f2cacdb1e | |||
aa5053e3fe | |||
79aa244678 | |||
2ed3f20dba | |||
48f309029a | |||
0e93ac0b3a | |||
5446ad1d24 | |||
f9a8084e48 | |||
3e70e3d4d5 | |||
eb0fa43868 | |||
0ad9951c41 | |||
8c9117181d | |||
c4b48d3c0f | |||
10d765482d | |||
39b643dc1a | |||
711f485643 | |||
9c5ee91b2a | |||
27edd2aeb4 | |||
e5017cd6d6 | |||
6a7796e871 | |||
47b9339546 | |||
5d5146eee3 | |||
2aaa423842 | |||
ad2d788016 | |||
36ce76c632 | |||
f1fc2107a3 | |||
13cdc02173 | |||
502640c3f9 | |||
3d5f1c8640 | |||
1cab2f9cad | |||
1e50f1be70 | |||
ad87ba927a | |||
decf7f794b | |||
d00d652998 | |||
3b279a84be | |||
5e4a8223c6 | |||
e51de388a2 | |||
cc253b73d3 | |||
7d6fb905d9 | |||
418d111f8c | |||
be8921fbba | |||
d4e7a1152d | |||
be22bb6f3d | |||
169313b9f8 | |||
0b018d8baf | |||
c31246800c | |||
4134312b35 | |||
da554f932e | |||
aac622e0cd | |||
1726e93ef1 | |||
ee04c0cd04 | |||
c36f0aa300 | |||
5234dc7451 | |||
3b7c20a6b5 | |||
f9e714813a | |||
2518230d3e | |||
a332b84578 | |||
1405f0c7ba | |||
84d57342b6 | |||
57b46d769e | |||
f48b6a03ba | |||
2a69ab4899 | |||
8d7da92fd7 | |||
e952eee698 | |||
66bca9b8bd | |||
99028fda44 | |||
1244948885 | |||
a73f6491c8 | |||
001e50c92c | |||
96ebcaa3ad | |||
5db1870bb9 | |||
2ce26b9b5d | |||
a388252ac4 | |||
9a9f48dff7 | |||
67f3fb0844 | |||
43b752c325 | |||
cfd302db9b | |||
fb610ae684 | |||
2f652e6cdf | |||
e6a226efba | |||
a2e6fa7e03 | |||
9f1c4ecaf2 | |||
ef283548f7 | |||
f4db5e6de1 | |||
099aaee536 | |||
35fe398c7c | |||
bb6d43047e | |||
bc546f76a1 | |||
80608ba5af | |||
e184c9c510 | |||
d7e34b4210 | |||
ef6e0e7132 | |||
1ad3aca682 | |||
8d0afa9b42 | |||
fa7e254a7f | |||
e23cacda35 | |||
2e1b8bc2b6 | |||
e47433b3c1 | |||
23194d83e8 | |||
61aedb5ffe | |||
d3bd171123 | |||
89e4050af4 | |||
78a47f87ce | |||
6a113d9aed | |||
2e4fe48c37 | |||
8eb0a1d906 | |||
fea3e476aa | |||
61a3431613 | |||
9bedac9623 | |||
c42ff4f4fd | |||
d5ab28511c | |||
e61eb5e09d | |||
0899ba5b42 | |||
145ac73317 | |||
d0d138bc55 | |||
43227236ec | |||
8616300ae2 | |||
edbaadd91f | |||
9360d34fa1 | |||
1b67b04656 | |||
bd51f78e39 | |||
65ecb4f134 | |||
143844fa43 | |||
219cfbe7f6 | |||
9b44a7d926 | |||
a3ae45a38c | |||
0307428d65 | |||
471997adf6 | |||
b1ded114b9 | |||
f4e4088c99 | |||
0efd540dbc | |||
6144754014 | |||
69311446ba | |||
da63274d9f | |||
c216119d64 | |||
5546acb463 | |||
c0ec81836f | |||
b65e56babe | |||
49996cd597 | |||
ecb37e276a | |||
a5354b3ed2 | |||
f9df8b4ad7 | |||
ec152c8748 | |||
7977e5027c | |||
3f5d902d2a | |||
27d7638b94 | |||
176173989a | |||
23b8ee672d | |||
3939152069 | |||
cd87bfbf37 | |||
b3613e3ace | |||
d346ec695e | |||
c242c98031 | |||
f1d53d150c | |||
92da847cf5 | |||
3958b96bf5 | |||
8bf8f45822 | |||
6f5c0931c1 | |||
4e33a7ea85 | |||
dc48ba0c75 | |||
4778b42660 | |||
c70ac4b8ff | |||
cf89202855 | |||
f075693da7 | |||
f708bd4904 | |||
0002b7f0d1 | |||
11aafd9886 | |||
b761df963c | |||
33f6aaf972 | |||
56aafa8c0b | |||
8d52f2b3a7 | |||
984d18498a | |||
d4d9899860 | |||
db1e42f627 | |||
bc9d7b5595 | |||
fe6b19c314 | |||
2827b3f4a3 | |||
2b6b1d7809 | |||
633f943e30 | |||
b03b1b97f6 | |||
dfb9af2014 | |||
19f76ee68e | |||
dd70437a4f | |||
99b3a504c5 | |||
6e30010d2f | |||
52621c8f5c | |||
d48f4d6daf | |||
e84e0735c7 | |||
3edf87d25f | |||
392edee34a | |||
983056e456 | |||
13dd93c667 | |||
53a30845be | |||
8b77328ffe | |||
9fe4c2bdb9 | |||
081b5594a2 | |||
57329a8c01 | |||
8c435c9bce | |||
e71b8e210d | |||
89fa54e6f7 | |||
3d54bdcb73 | |||
6b0fcbbf43 | |||
0fa673af4c | |||
3468f17ebe | |||
71b25b0d48 | |||
0ea80c87d9 | |||
b8d9e4a326 | |||
13cc7f5370 | |||
916bd9204d | |||
e04a1b6b21 | |||
2e5df88c92 | |||
0754ac4c49 | |||
03858e6d1c | |||
532a6cfccb | |||
eb32335e35 | |||
69a8c8e99a | |||
6c340da4df | |||
2f17117606 | |||
1e9a77e037 | |||
d2af67441d | |||
0bcc3a160d | |||
70fbdb26e9 | |||
7f570f1caa | |||
eaeca3cd7f | |||
12c1287d64 | |||
17b4c6685c | |||
3c2b2ccece | |||
7be9ffcd9f | |||
393de22d2e | |||
1260180c67 | |||
af4ee63e0e | |||
bc092ea873 | |||
755ed7b05b | |||
a676e668ee | |||
c85be1f6dd | |||
845adb3ec6 | |||
90b139cfff | |||
4492e3a554 | |||
05c19485a5 | |||
52d0cb8458 | |||
5c1e496a75 | |||
e7f27ea648 | |||
1f29141258 | |||
6160ba4151 | |||
fea8006062 | |||
e6750d0b18 | |||
8c853050e7 | |||
f84a472a03 | |||
54e42b72db | |||
2dda3e35d0 | |||
d83f3f7cb3 | |||
302eb941f3 | |||
487745ff49 | |||
9313be5017 | |||
8938774c79 | |||
e18b714b2e | |||
b1068903fd | |||
164299500b | |||
58c360d9be | |||
42488dae69 | |||
b67dece2d8 | |||
2338daffd3 | |||
2e19a848d4 | |||
77a7fce1bb | |||
6488f3481b | |||
27ec3c78f3 | |||
1cbcfb94de | |||
fed8a9b107 | |||
190c45a6af | |||
5caaeb714c | |||
d747c2ef18 | |||
c30b405b8f | |||
77d906995c | |||
359d293006 | |||
9df8da548e | |||
bf68fd76a9 | |||
de94289a98 | |||
1983609239 | |||
d06b5a95cb | |||
be0bb568c9 | |||
c8bde93367 | |||
88d7bdbd23 | |||
0d235b874a | |||
7ad5e50adf | |||
dc464a3d39 | |||
1210e4d95b | |||
e0b24ea030 | |||
bde2a1a8a4 | |||
5e25b12236 | |||
c85d75cf08 | |||
abad204be6 | |||
7361ab379f | |||
95bc60e4cb | |||
4f2954f724 | |||
eca7be9077 | |||
969b4da3a6 | |||
4f8c4b890a | |||
ae002924e9 | |||
690f948e4a | |||
08275ec0a2 | |||
c828d1bf98 | |||
8b8a8afc89 | |||
8bdd8b5c51 | |||
a8ffc4f0f2 | |||
d5944d5146 | |||
24fab45d96 | |||
63400259d0 | |||
8c1c81a3de | |||
a3a7828010 | |||
5abb117901 | |||
867ecdd1c8 | |||
24e8222745 | |||
100b630a60 | |||
527821d191 | |||
846197f505 | |||
2357480b1a | |||
f11e3c516b | |||
875d6def90 | |||
cc1dc7ed6d | |||
a903669e10 | |||
2c58742dff | |||
4c966e440e | |||
da5e7e4329 | |||
f05a4f0e34 | |||
61d1b35561 | |||
b6a136b58c | |||
0d9fe260dd | |||
273690a50a | |||
231c2c63e4 | |||
4322c553a6 | |||
babad6e5dd | |||
9383cd6f10 | |||
ba8d2165b6 | |||
c98be0a232 | |||
5774b0a1da | |||
e8db44f883 | |||
fafbe11af4 | |||
78237e43bf | |||
eea1783989 | |||
f225ea7dd9 | |||
fc97733da8 | |||
4741239db7 | |||
c625f9043c | |||
6fa78d8f23 | |||
9949aa2ef1 | |||
0b7bed9c38 | |||
ac0048c0ae | |||
090197034f | |||
f31ff87460 | |||
d588cd2406 | |||
45d7d852d3 | |||
8bed179109 | |||
f552d5e578 | |||
8db2939289 | |||
d5e0fca264 | |||
8d0ee5a564 | |||
922979bfcc | |||
239ef0c1ac | |||
1d7f95b85c | |||
cfbee3d0e7 | |||
06a41334c7 | |||
175811e3b5 | |||
c10101a3eb | |||
ac243886b0 | |||
3d2c56b7a9 | |||
64c824cd78 | |||
417a164af6 | |||
b6f01bd9a7 | |||
4cf71cc88a | |||
a66d131381 | |||
21467f9a1c | |||
f92d952632 | |||
6d0b827cbd | |||
0eecb31663 | |||
793be8d057 | |||
7b57a433da | |||
5aeb925452 | |||
04d3752329 | |||
bc6e542d9f | |||
af7dfb0d1a | |||
1c3ffdbecc | |||
c438b2951c | |||
0ff8ebb2d7 | |||
26e673fe93 | |||
65a5910ce3 | |||
9aea7373ff | |||
30d08911f7 | |||
cf56cf78b4 | |||
7ed82d1974 | |||
12dbd834cf | |||
035fd2bd2c | |||
1cd885bd54 | |||
62b38dc832 | |||
c99db8c8dd | |||
72dd1595b4 | |||
572ddf83ce | |||
86647d1cd0 | |||
52c2a8d4ad | |||
367a480bd3 | |||
bef180f009 | |||
d88918e4c2 | |||
3c713a9711 | |||
bf8b26cad1 | |||
032d661d27 | |||
e08a3a3fdb | |||
3d9a1d2de5 | |||
be874c0201 | |||
9607d5eb44 | |||
c60e6137f0 | |||
f91480b2d4 | |||
6c5f82e5aa | |||
b7f186bbb3 | |||
3642909617 | |||
c308501cb6 | |||
535d80056b | |||
a25ade5d47 | |||
8945b001db | |||
b8a287a0a8 | |||
c7e713616a | |||
a36c675817 | |||
3da17c2cc2 | |||
14c1432789 | |||
ee7a66dd9a | |||
431535b522 | |||
711e912946 | |||
e69e0b8b5f | |||
ddc9048394 | |||
b1a63d1b3b | |||
48ecb4438b | |||
e57fc15971 | |||
4bdf400218 | |||
7852b82b93 | |||
a2a5f79e09 | |||
c59a0eca42 | |||
b716ab93a7 | |||
138f0d1e75 | |||
2506ce5189 | |||
47fd08aaf9 | |||
12aed7e453 | |||
d90e212a3a | |||
2821986450 | |||
6c117cff7d | |||
7ac67ea525 | |||
ce75e15373 | |||
aed16879a9 | |||
cf278ff3b2 | |||
838d7116ba | |||
5089fd749c | |||
a3d087adec | |||
058525b997 | |||
1dfea5f4a9 | |||
cea91a32f2 | |||
a684c0124c | |||
f2718d2948 | |||
825fdb11ad | |||
8c1d4acbfe | |||
486c5599e3 | |||
a6149aa587 | |||
6c8a3c099b | |||
31a8a2a7bc | |||
1a0a04dae9 | |||
6d8246aaff | |||
9d1c50a5ac | |||
9a4600e4dc | |||
9fac6aa30b | |||
a53ad626d6 | |||
1c3dad22ff | |||
d2a30a2d93 | |||
75fb112d80 | |||
38db529f66 | |||
064cac7bb7 | |||
e19bce40a1 | |||
505805b645 | |||
bbdc0f2366 | |||
dc34059360 | |||
c4cb0af98a | |||
1c3b1634aa | |||
2ea50e977a | |||
b419937c78 | |||
5f696c33b1 | |||
67244c86f0 | |||
072d7e53e5 | |||
01a583fea4 | |||
bc19d75985 | |||
fbd6523ac0 | |||
470484a4f5 | |||
21da73343a | |||
66072b36db | |||
3ed1ec4af2 | |||
5a33ae9a3f | |||
c9ff9e6f0c | |||
eaffe4486c | |||
8ed039d527 | |||
37970105fe | |||
cc935fdd7e | |||
abdfcd4f3d | |||
4f02b77de4 | |||
29283e8976 | |||
05b044e698 | |||
aa3f105c59 | |||
ef7eefe17a | |||
350c94deb3 | |||
f4cd80f944 | |||
349e0e3462 | |||
81b16a2bc9 | |||
e111d5b0ae | |||
a904ea78ea | |||
b7433ca1a4 | |||
5c65a72bb1 | |||
9d8a2d86d2 | |||
3bc18127ff | |||
bec060fd99 | |||
52bc9d5b3e | |||
dc2979c585 | |||
027d37df38 | |||
b98219670f | |||
32baf1d036 | |||
3127274d02 | |||
4ac510f484 | |||
7fb2a5be28 | |||
6c036615dc | |||
2fc24e94f9 | |||
2c3c1bd07a | |||
5963b98b46 | |||
e6585ddb45 | |||
2a4d6412e6 | |||
e67a79db03 | |||
9f882d8791 | |||
1a456c7c90 | |||
fedb75fa27 | |||
bff2e5f1d6 | |||
3c068c637b | |||
f20c3b0951 | |||
883131544f | |||
ee5fd49150 | |||
7ae9887542 | |||
e3db5ebb66 | |||
9d442b7c48 | |||
eb68c2dcd9 | |||
8b32464ac1 | |||
99cc41ad50 | |||
d6a518fdde | |||
4aa8c7b047 | |||
4b946d693e | |||
087c6ffc92 | |||
4a2d33e371 | |||
8f3616f422 | |||
47f670b03b | |||
dd6a910aac | |||
1b962e2457 | |||
bfe9380161 | |||
9fccd04e30 | |||
252ada5559 | |||
e120533d7a | |||
2b85697031 | |||
544fe76b95 | |||
bb58dc8c20 | |||
0fb2551c23 | |||
6c47f6bfa4 | |||
c15309a730 | |||
4a9375fe9d | |||
03191cd8f0 | |||
b77bf34e53 | |||
dd39baf717 | |||
43a62c51be | |||
ca2d1925ef | |||
0f7acdd73c | |||
5801e49776 | |||
58d4c705a8 | |||
ea3de5ef0d | |||
67532a1a68 | |||
5672ba90bd | |||
dd83a157f1 | |||
5a411ef6c4 | |||
eeb135eb87 | |||
3059b9cc6b | |||
64ad551878 | |||
cef32104b4 | |||
493b10f8bf | |||
d119fc8614 | |||
dbebb7f812 | |||
3053a22b33 | |||
02d4b85454 | |||
86daa875fe | |||
dcf2f3ec06 | |||
218454b9b2 | |||
f4d6eb95cf | |||
cd1f885bcf | |||
d593cf28fa | |||
faa7a5daac | |||
567939953b | |||
08369289af | |||
73cfb3c5ee | |||
4e5affeaa1 | |||
e4f0b4cd96 | |||
de3e53a75b | |||
85e0df1392 | |||
0faf3cc3e8 | |||
7ea5c73ad7 | |||
27fcfe7bcf | |||
68dbde5dbb | |||
04ad0dc275 | |||
238c4c1705 | |||
8c54610265 | |||
17871983a2 | |||
759ef49b15 | |||
5206ab20ba | |||
0af3ce1355 | |||
e1279ef00f | |||
2942970d44 | |||
3c96e7b8a1 | |||
b42566f440 | |||
d96e11167d | |||
2891603efd | |||
de2cc3d867 | |||
e95084308b | |||
7f6f2c1182 | |||
5bcc153d7b | |||
45bfa49cb8 | |||
fd2f10546c | |||
e757a629e7 | |||
aae725af7c | |||
73df49ef3a | |||
25aba2b6a3 | |||
94b03f88dd | |||
49bfc538e4 | |||
a0b26701c9 | |||
c4afdb69cc | |||
b834b4cbf1 | |||
740f0647b1 | |||
01413e0cf5 | |||
0e219cd50b | |||
72c99f2a75 | |||
bf214ca226 | |||
2e41f5abca | |||
bc0f6059a2 | |||
8de261b04a | |||
a0d8b9738d | |||
59e17dd4a0 | |||
4979eb79da | |||
a8c0f59973 | |||
f4a948f33f | |||
3f3313981c | |||
78818dd1b0 | |||
8e5cdcda4e | |||
90f3f7d73e | |||
6dc8da5dc1 | |||
79cbcab871 | |||
ff68035932 | |||
1177dd53e9 | |||
fc2dbcda8b | |||
fec347dee1 | |||
cc3173ae98 | |||
3e903b6cb4 | |||
973c9d01da |
@ -5,11 +5,11 @@ import os
|
||||
import sys
|
||||
import zipfile
|
||||
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 450 MiB
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 500 MiB
|
||||
# Note that we have 800 MiB quota, please use it wisely.
|
||||
# See https://github.com/pypi/support/issues/6326 .
|
||||
# Please also sync the value with the one in Dockerfile.
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 450))
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get("VLLM_MAX_SIZE_MB", 500))
|
||||
|
||||
|
||||
def print_top_10_largest_files(zip_file):
|
||||
|
12
.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-QQQ.yaml
Normal file
12
.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-QQQ.yaml
Normal file
@ -0,0 +1,12 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 1000 -f 5 -t 1
|
||||
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.419
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.416
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
@ -0,0 +1,12 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 100 -t 8
|
||||
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
||||
backend: "vllm-vlm"
|
||||
tasks:
|
||||
- name: "chartqa"
|
||||
metrics:
|
||||
- name: "relaxed_accuracy,none"
|
||||
# TODO(zhewenl): model card is 0.90, but the actual score is 0.80.
|
||||
value: 0.80
|
||||
limit: 100
|
||||
num_fewshot: 0
|
@ -0,0 +1,10 @@
|
||||
# For hf script, without -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-mmlupro-vllm-baseline.sh -m meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 -l 250 -t 8 -f 5
|
||||
model_name: "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
||||
tasks:
|
||||
- name: "mmlu_pro"
|
||||
metrics:
|
||||
- name: "exact_match,custom-extract"
|
||||
value: 0.80
|
||||
limit: 250 # will run on 250 * 14 subjects = 3500 samples
|
||||
num_fewshot: 5
|
@ -1,4 +1,5 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -b auto -l 1319 -f 5 -t 1
|
||||
# For vllm script, with -t option (tensor parallel size)
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic -l 1319 -t 1
|
||||
model_name: "RedHatAI/Qwen2.5-VL-3B-Instruct-FP8-Dynamic"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
|
@ -0,0 +1,12 @@
|
||||
# For vllm script, with -t option (tensor parallel size).
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh -m Qwen/Qwen2.5-VL-7B-Instruct -l 2500 -t 1
|
||||
|
||||
model_name: "Qwen/Qwen2.5-VL-7B-Instruct"
|
||||
backend: "vllm-vlm"
|
||||
tasks:
|
||||
- name: "chartqa"
|
||||
metrics:
|
||||
- name: "relaxed_accuracy,none"
|
||||
value: 0.855
|
||||
limit: 2500
|
||||
num_fewshot: 0
|
1
.buildkite/lm-eval-harness/configs/models-large-h100.txt
Normal file
1
.buildkite/lm-eval-harness/configs/models-large-h100.txt
Normal file
@ -0,0 +1 @@
|
||||
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8.yaml
|
@ -0,0 +1 @@
|
||||
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8-MM.yaml
|
1
.buildkite/lm-eval-harness/configs/models-mm-small.txt
Normal file
1
.buildkite/lm-eval-harness/configs/models-mm-small.txt
Normal file
@ -0,0 +1 @@
|
||||
Qwen2.5-VL-7B-Instruct.yaml
|
44
.buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh
Executable file
44
.buildkite/lm-eval-harness/run-lm-eval-chartqa-vllm-vlm-baseline.sh
Executable file
@ -0,0 +1,44 @@
|
||||
#!/bin/bash
|
||||
# We can use this script to compute baseline accuracy on chartqa for vllm.
|
||||
#
|
||||
# Make sure you have lm-eval-harness installed:
|
||||
# pip install lm-eval==0.4.9
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
echo "Runs lm eval harness on ChartQA using multimodal vllm."
|
||||
echo "This pathway is intended to be used to create baselines for "
|
||||
echo "our correctness tests in vllm's CI."
|
||||
echo
|
||||
echo "usage: ${0} <options>"
|
||||
echo
|
||||
echo " -m - huggingface stub or local directory of the model"
|
||||
echo " -l - limit number of samples to run"
|
||||
echo " -t - tensor parallel size to run at"
|
||||
echo
|
||||
}
|
||||
|
||||
while getopts "m:l:t:" OPT; do
|
||||
case ${OPT} in
|
||||
m )
|
||||
MODEL="$OPTARG"
|
||||
;;
|
||||
l )
|
||||
LIMIT="$OPTARG"
|
||||
;;
|
||||
t )
|
||||
TP_SIZE="$OPTARG"
|
||||
;;
|
||||
\? )
|
||||
usage
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
lm_eval --model vllm-vlm \
|
||||
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE" \
|
||||
--tasks chartqa \
|
||||
--batch_size auto \
|
||||
--apply_chat_template \
|
||||
--limit $LIMIT
|
0
.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Normal file → Executable file
0
.buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Normal file → Executable file
@ -0,0 +1,50 @@
|
||||
#!/bin/bash
|
||||
# We can use this script to compute baseline accuracy on MMLUPRO for vllm.
|
||||
# We use this for fp8, which HF does not support.
|
||||
#
|
||||
# Make sure you have lm-eval-harness installed:
|
||||
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d#egg=lm-eval[api]
|
||||
|
||||
usage() {
|
||||
echo``
|
||||
echo "Runs lm eval harness on MMLU Pro using huggingface transformers."
|
||||
echo "This pathway is intended to be used to create baselines for "
|
||||
echo "our automated nm-test-accuracy workflow"
|
||||
echo
|
||||
echo "usage: ${0} <options>"
|
||||
echo
|
||||
echo " -m - huggingface stub or local directory of the model"
|
||||
echo " -l - limit number of samples to run"
|
||||
echo " -f - number of fewshot samples to use"
|
||||
echo " -t - tensor parallel size to run at"
|
||||
echo
|
||||
}
|
||||
|
||||
while getopts "m:b:l:f:t:" OPT; do
|
||||
case ${OPT} in
|
||||
m )
|
||||
MODEL="$OPTARG"
|
||||
;;
|
||||
b )
|
||||
BATCH_SIZE="$OPTARG"
|
||||
;;
|
||||
l )
|
||||
LIMIT="$OPTARG"
|
||||
;;
|
||||
f )
|
||||
FEWSHOT="$OPTARG"
|
||||
;;
|
||||
t )
|
||||
TP_SIZE="$OPTARG"
|
||||
;;
|
||||
\? )
|
||||
usage
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
lm_eval --model vllm \
|
||||
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,trust_remote_code=true,max_model_len=4096" \
|
||||
--tasks mmlu_pro --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
|
||||
--batch_size auto
|
@ -19,21 +19,27 @@ RTOL = 0.08
|
||||
def launch_lm_eval(eval_config, tp_size):
|
||||
trust_remote_code = eval_config.get("trust_remote_code", False)
|
||||
max_model_len = eval_config.get("max_model_len", 4096)
|
||||
batch_size = eval_config.get("batch_size", "auto")
|
||||
backend = eval_config.get("backend", "vllm")
|
||||
model_args = (
|
||||
f"pretrained={eval_config['model_name']},"
|
||||
f"tensor_parallel_size={tp_size},"
|
||||
f"enforce_eager=true,"
|
||||
f"add_bos_token=true,"
|
||||
f"trust_remote_code={trust_remote_code},"
|
||||
f"max_model_len={max_model_len}"
|
||||
f"max_model_len={max_model_len},"
|
||||
)
|
||||
results = lm_eval.simple_evaluate(
|
||||
model="vllm",
|
||||
model=backend,
|
||||
model_args=model_args,
|
||||
tasks=[task["name"] for task in eval_config["tasks"]],
|
||||
num_fewshot=eval_config["num_fewshot"],
|
||||
limit=eval_config["limit"],
|
||||
batch_size="auto",
|
||||
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
|
||||
# text models. however, this is regressing measured strict-match for
|
||||
# existing text models in CI, so only apply it for mm.
|
||||
apply_chat_template=backend == "vllm-vlm",
|
||||
batch_size=batch_size,
|
||||
)
|
||||
return results
|
||||
|
||||
|
@ -8,7 +8,7 @@ This benchmark aims to:
|
||||
|
||||
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
|
||||
|
||||
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
|
||||
Latest reproduction guide: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
|
||||
|
||||
## Setup
|
||||
|
||||
|
@ -368,7 +368,7 @@ if __name__ == "__main__":
|
||||
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
|
||||
# we want to turn it into "8xGPUTYPE"
|
||||
df["GPU"] = df["GPU"].apply(
|
||||
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}"
|
||||
lambda x: f"{len(x.splitlines())}x{x.splitlines()[0]}"
|
||||
)
|
||||
|
||||
# get markdown tables
|
||||
|
@ -181,18 +181,14 @@ launch_vllm_server() {
|
||||
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
|
||||
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
|
||||
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="vllm serve $model \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
else
|
||||
echo "Key 'fp8' does not exist in common params."
|
||||
server_command="python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="vllm serve $model \
|
||||
-tp $tp \
|
||||
--model $model \
|
||||
--port $port \
|
||||
$server_args"
|
||||
fi
|
||||
|
@ -365,8 +365,7 @@ run_serving_tests() {
|
||||
continue
|
||||
fi
|
||||
|
||||
server_command="$server_envs python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
server_command="$server_envs vllm serve \
|
||||
$server_args"
|
||||
|
||||
# run the server
|
||||
@ -455,11 +454,6 @@ main() {
|
||||
fi
|
||||
check_hf_token
|
||||
|
||||
# Set to v1 to run v1 benchmark
|
||||
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
|
||||
export VLLM_USE_V1=1
|
||||
fi
|
||||
|
||||
# dependencies
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get update && apt-get -y install jq)
|
||||
|
@ -1,46 +0,0 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
@ -1,24 +1,22 @@
|
||||
steps:
|
||||
# aarch64 + CUDA builds. PyTorch 2.8 aarch64 + CUDA wheel is only available on CUDA 12.9
|
||||
- label: "Build arm64 wheel - CUDA 12.9"
|
||||
depends_on: ~
|
||||
id: build-wheel-arm64-cuda-12-9
|
||||
agents:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
# #NOTE: torch_cuda_arch_list is derived from upstream PyTorch build files here:
|
||||
# https://github.com/pytorch/pytorch/blob/main/.ci/aarch64_linux/aarch64_ci_build.sh#L7
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg VLLM_MAIN_CUDA_VERSION=12.9 --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build CUDA 12.8 wheel"
|
||||
key: block-build-cu128-wheel
|
||||
|
||||
- label: "Build wheel - CUDA 12.8"
|
||||
depends_on: block-build-cu128-wheel
|
||||
depends_on: ~
|
||||
id: build-wheel-cuda-12-8
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
@ -30,12 +28,8 @@ steps:
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build CUDA 12.6 wheel"
|
||||
key: block-build-cu126-wheel
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build wheel - CUDA 12.6"
|
||||
depends_on: block-build-cu126-wheel
|
||||
depends_on: ~
|
||||
id: build-wheel-cuda-12-6
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
@ -54,7 +48,7 @@ steps:
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='7.0 7.5 8.0 8.9 9.0+PTX' --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
@ -82,7 +76,7 @@ steps:
|
||||
queue: arm64_cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg torch_cuda_arch_list='8.7 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.9.1 --build-arg FLASHINFER_AOT_COMPILE=true --build-arg torch_cuda_arch_list='8.7 8.9 9.0 10.0+PTX 12.0' --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m) --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-$(uname -m)"
|
||||
|
||||
# Add job to create multi-arch manifest
|
||||
@ -102,8 +96,6 @@ steps:
|
||||
depends_on:
|
||||
- create-multi-arch-manifest
|
||||
- build-wheel-cuda-12-8
|
||||
- build-wheel-cuda-12-6
|
||||
- build-wheel-cuda-12-9
|
||||
id: annotate-release-workflow
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
@ -158,11 +150,16 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
- "docker push vllm/vllm-openai:nightly"
|
||||
- "docker push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64"
|
||||
- "docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-x86_64 vllm/vllm-openai:nightly-x86_64"
|
||||
- "docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT-aarch64 vllm/vllm-openai:nightly-aarch64"
|
||||
- "docker push vllm/vllm-openai:nightly-x86_64"
|
||||
- "docker push vllm/vllm-openai:nightly-aarch64"
|
||||
- "docker manifest create vllm/vllm-openai:nightly vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
||||
- "docker manifest create vllm/vllm-openai:nightly-$BUILDKITE_COMMIT vllm/vllm-openai:nightly-x86_64 vllm/vllm-openai:nightly-aarch64 --amend"
|
||||
- "docker manifest push vllm/vllm-openai:nightly"
|
||||
- "docker manifest push vllm/vllm-openai:nightly-$BUILDKITE_COMMIT"
|
||||
# Clean up old nightly builds (keep only last 14)
|
||||
- "bash .buildkite/scripts/cleanup-nightly-builds.sh"
|
||||
plugins:
|
||||
@ -171,3 +168,4 @@ steps:
|
||||
password-env: DOCKERHUB_TOKEN
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
DOCKERHUB_USERNAME: "vllmbot"
|
||||
|
@ -14,18 +14,33 @@ buildkite-agent annotate --style 'info' --context 'release-workflow' << EOF
|
||||
To download the wheel:
|
||||
\`\`\`
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}/vllm-${RELEASE_VERSION}-cp38-abi3-manylinux2014_aarch64.whl .
|
||||
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu126/vllm-${RELEASE_VERSION}+cu126-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu118/vllm-${RELEASE_VERSION}+cu118-cp38-abi3-manylinux1_x86_64.whl .
|
||||
aws s3 cp s3://vllm-wheels/${RELEASE_VERSION}+cu129/vllm-${RELEASE_VERSION}+cu129-cp38-abi3-manylinux1_x86_64.whl .
|
||||
\`\`\`
|
||||
|
||||
To download and upload the image:
|
||||
|
||||
\`\`\`
|
||||
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}
|
||||
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT} vllm/vllm-openai
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:latest
|
||||
docker tag vllm/vllm-openai vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
docker push vllm/vllm-openai:latest
|
||||
docker push vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-x86_64
|
||||
docker pull public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-aarch64
|
||||
|
||||
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-x86_64 vllm/vllm-openai:x86_64
|
||||
docker tag vllm/vllm-openai:x86_64 vllm/vllm-openai:latest-x86_64
|
||||
docker tag vllm/vllm-openai:x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-x86_64
|
||||
docker push vllm/vllm-openai:latest-x86_64
|
||||
docker push vllm/vllm-openai:v${RELEASE_VERSION}-x86_64
|
||||
|
||||
docker tag public.ecr.aws/q9t5s3a7/vllm-release-repo:${BUILDKITE_COMMIT}-aarch64 vllm/vllm-openai:aarch64
|
||||
docker tag vllm/vllm-openai:aarch64 vllm/vllm-openai:latest-aarch64
|
||||
docker tag vllm/vllm-openai:aarch64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
|
||||
docker push vllm/vllm-openai:latest-aarch64
|
||||
docker push vllm/vllm-openai:v${RELEASE_VERSION}-aarch64
|
||||
|
||||
docker manifest create vllm/vllm-openai:latest vllm/vllm-openai:latest-x86_64 vllm/vllm-openai:latest-aarch64 --amend
|
||||
docker manifest create vllm/vllm-openai:v${RELEASE_VERSION} vllm/vllm-openai:v${RELEASE_VERSION}-x86_64 vllm/vllm-openai:v${RELEASE_VERSION}-aarch64 --amend
|
||||
docker manifest push vllm/vllm-openai:latest
|
||||
docker manifest push vllm/vllm-openai:v${RELEASE_VERSION}
|
||||
\`\`\`
|
||||
EOF
|
@ -8,20 +8,41 @@ set -ex
|
||||
# DockerHub API endpoint for vllm/vllm-openai repository
|
||||
REPO_API_URL="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags"
|
||||
|
||||
# Get DockerHub token from environment
|
||||
# Get DockerHub credentials from environment
|
||||
if [ -z "$DOCKERHUB_TOKEN" ]; then
|
||||
echo "Error: DOCKERHUB_TOKEN environment variable is not set"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$DOCKERHUB_USERNAME" ]; then
|
||||
echo "Error: DOCKERHUB_USERNAME environment variable is not set"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Get DockerHub bearer token
|
||||
echo "Getting DockerHub bearer token..."
|
||||
set +x
|
||||
BEARER_TOKEN=$(curl -s -X POST \
|
||||
-H "Content-Type: application/json" \
|
||||
-d "{\"username\": \"$DOCKERHUB_USERNAME\", \"password\": \"$DOCKERHUB_TOKEN\"}" \
|
||||
"https://hub.docker.com/v2/users/login" | jq -r '.token')
|
||||
set -x
|
||||
|
||||
if [ -z "$BEARER_TOKEN" ] || [ "$BEARER_TOKEN" = "null" ]; then
|
||||
echo "Error: Failed to get DockerHub bearer token"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Function to get all tags from DockerHub
|
||||
get_all_tags() {
|
||||
local page=1
|
||||
local all_tags=""
|
||||
|
||||
while true; do
|
||||
local response=$(curl -s -H "Authorization: Bearer $DOCKERHUB_TOKEN" \
|
||||
set +x
|
||||
local response=$(curl -s -H "Authorization: Bearer $BEARER_TOKEN" \
|
||||
"$REPO_API_URL?page=$page&page_size=100")
|
||||
set -x
|
||||
|
||||
# Get both last_updated timestamp and tag name, separated by |
|
||||
local tags=$(echo "$response" | jq -r '.results[] | select(.name | startswith("nightly-")) | "\(.last_updated)|\(.name)"')
|
||||
@ -43,7 +64,9 @@ delete_tag() {
|
||||
echo "Deleting tag: $tag_name"
|
||||
|
||||
local delete_url="https://hub.docker.com/v2/repositories/vllm/vllm-openai/tags/$tag_name"
|
||||
local response=$(curl -s -X DELETE -H "Authorization: Bearer $DOCKERHUB_TOKEN" "$delete_url")
|
||||
set +x
|
||||
local response=$(curl -s -X DELETE -H "Authorization: Bearer $BEARER_TOKEN" "$delete_url")
|
||||
set -x
|
||||
|
||||
if echo "$response" | jq -e '.detail' > /dev/null 2>&1; then
|
||||
echo "Warning: Failed to delete tag $tag_name: $(echo "$response" | jq -r '.detail')"
|
||||
|
@ -86,10 +86,6 @@ if [[ $commands == *"pytest -v -s models/test_registry.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s models/test_registry.py"/"pytest -v -s models/test_registry.py -k 'not BambaForCausalLM and not GritLM and not Mamba2ForCausalLM and not Zamba2ForCausalLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"* ]]; then
|
||||
commands=${commands//"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'"/"VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2 and not BambaForCausalLM and not Gemma2ForCausalLM and not Grok1ModelForCausalLM and not Zamba2ForCausalLM and not Gemma2Model and not GritLM'"}
|
||||
fi
|
||||
|
||||
if [[ $commands == *"pytest -v -s compile/test_basic_correctness.py"* ]]; then
|
||||
commands=${commands//"pytest -v -s compile/test_basic_correctness.py"/"VLLM_USE_TRITON_FLASH_ATTN=0 pytest -v -s compile/test_basic_correctness.py"}
|
||||
fi
|
||||
@ -167,12 +163,6 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
|
||||
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
||||
fi
|
||||
|
||||
#Obsolete currently
|
||||
##ignore certain Entrypoints/llm tests
|
||||
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||
#fi
|
||||
|
||||
# --ignore=entrypoints/openai/test_encoder_decoder.py \
|
||||
# --ignore=entrypoints/openai/test_embedding.py \
|
||||
# --ignore=entrypoints/openai/test_oot_registration.py
|
||||
|
@ -25,25 +25,28 @@ function cpu_tests() {
|
||||
|
||||
# offline inference
|
||||
podman exec -it "$container_id" bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
set -xve
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m" >> $HOME/test_basic.log
|
||||
|
||||
# Run basic model test
|
||||
podman exec -it "$container_id" bash -c "
|
||||
set -e
|
||||
set -evx
|
||||
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
||||
pip install sentence-transformers datamodel_code_generator
|
||||
pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
||||
|
||||
# Note: disable Bart until supports V1
|
||||
# pytest -v -s tests/models/language/generation/test_bart.py -m cpu_model
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-openai-community/gpt2]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-facebook/opt-125m]
|
||||
pytest -v -s tests/models/language/generation/test_common.py::test_models[False-5-32-google/gemma-1.1-2b-it]
|
||||
pytest -v -s tests/models/language/pooling/test_classification.py::test_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model"
|
||||
# TODO: Below test case tests/models/language/pooling/test_embedding.py::test_models[True-ssmits/Qwen2-7B-Instruct-embed-base] fails on ppc64le. Disabling it for time being.
|
||||
# pytest -v -s tests/models/language/pooling/test_embedding.py -m cpu_model" >> $HOME/test_rest.log
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
|
||||
export container_id
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c cpu_tests
|
||||
timeout 120m bash -c cpu_tests
|
||||
|
||||
|
@ -58,15 +58,11 @@ function cpu_tests() {
|
||||
# pytest -x -v -s tests/kernels/attention/test_cache.py -m cpu_model
|
||||
# pytest -x -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
|
||||
|
||||
# Note: disable Bart until supports V1
|
||||
pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model \
|
||||
--ignore=tests/models/language/generation/test_bart.py
|
||||
pytest -x -v -s tests/models/language/generation -m cpu_model
|
||||
VLLM_CPU_SGL_KERNEL=1 pytest -x -v -s tests/models/language/generation -m cpu_model
|
||||
|
||||
pytest -x -v -s tests/models/language/pooling -m cpu_model
|
||||
pytest -x -v -s tests/models/multimodal/generation \
|
||||
--ignore=tests/models/multimodal/generation/test_mllama.py \
|
||||
--ignore=tests/models/multimodal/generation/test_pixtral.py \
|
||||
-m cpu_model"
|
||||
|
||||
@ -74,7 +70,7 @@ function cpu_tests() {
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -x -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs"
|
||||
|
||||
# Note: disable it until supports V1
|
||||
# Run AWQ test
|
||||
|
191
.buildkite/scripts/hardware_ci/run-npu-test.sh
Normal file
191
.buildkite/scripts/hardware_ci/run-npu-test.sh
Normal file
@ -0,0 +1,191 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the Ascend NPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Base ubuntu image with basic ascend development libraries and python installed
|
||||
VLLM_ASCEND_REPO="https://github.com/vllm-project/vllm-ascend.git"
|
||||
CONFIG_FILE_REMOTE_PATH="tests/e2e/vllm_interface/vllm_test.cfg"
|
||||
TEST_RUN_CONFIG_FILE="vllm_test.cfg"
|
||||
VLLM_ASCEND_TMP_DIR=
|
||||
# Get the test run configuration file from the vllm-ascend repository
|
||||
fetch_vllm_test_cfg() {
|
||||
VLLM_ASCEND_TMP_DIR=$(mktemp -d)
|
||||
# Ensure that the temporary directory is cleaned up when an exception occurs during configuration file retrieval
|
||||
cleanup() {
|
||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
GIT_TRACE=1 git clone -v --depth 1 "${VLLM_ASCEND_REPO}" "${VLLM_ASCEND_TMP_DIR}"
|
||||
if [ ! -f "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" ]; then
|
||||
echo "Error: file '${CONFIG_FILE_REMOTE_PATH}' does not exist in the warehouse" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# If the file already exists locally, just overwrite it
|
||||
cp "${VLLM_ASCEND_TMP_DIR}/${CONFIG_FILE_REMOTE_PATH}" "${TEST_RUN_CONFIG_FILE}"
|
||||
echo "Copied ${CONFIG_FILE_REMOTE_PATH} to ${TEST_RUN_CONFIG_FILE}"
|
||||
|
||||
# Since the trap will be overwritten later, and when it is executed here, the task of cleaning up resources
|
||||
# when the trap is abnormal has been completed, so the temporary resources are manually deleted here.
|
||||
rm -rf "${VLLM_ASCEND_TMP_DIR}"
|
||||
trap - EXIT
|
||||
}
|
||||
|
||||
# Downloads test run configuration file from a remote URL.
|
||||
# Loads the configuration into the current script environment.
|
||||
get_config() {
|
||||
if [ ! -f "${TEST_RUN_CONFIG_FILE}" ]; then
|
||||
echo "Error: file '${TEST_RUN_CONFIG_FILE}' does not exist in the warehouse" >&2
|
||||
exit 1
|
||||
fi
|
||||
source "${TEST_RUN_CONFIG_FILE}"
|
||||
echo "Base docker image name that get from configuration: ${BASE_IMAGE_NAME}"
|
||||
return 0
|
||||
}
|
||||
|
||||
# get test running configuration.
|
||||
fetch_vllm_test_cfg
|
||||
get_config
|
||||
# Check if the function call was successful. If not, exit the script.
|
||||
if [ $? -ne 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
image_name="npu/vllm-ci:${BUILDKITE_COMMIT}_${EPOCHSECONDS}"
|
||||
container_name="npu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
# BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards
|
||||
agent_idx=$(echo "${BUILDKITE_AGENT_NAME}" | awk -F'-' '{print $(NF-1)}')
|
||||
echo "agent_idx: ${agent_idx}"
|
||||
builder_name="cachebuilder${agent_idx}"
|
||||
builder_cache_dir="/mnt/docker-cache${agent_idx}"
|
||||
mkdir -p ${builder_cache_dir}
|
||||
|
||||
# Try building the docker image
|
||||
cat <<EOF | DOCKER_BUILDKIT=1 docker build \
|
||||
--add-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_HOST} \
|
||||
--builder ${builder_name} --cache-from type=local,src=${builder_cache_dir} \
|
||||
--cache-to type=local,dest=${builder_cache_dir},mode=max \
|
||||
--progress=plain --load -t ${image_name} -f - .
|
||||
FROM ${BASE_IMAGE_NAME}
|
||||
|
||||
# Define environments
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN pip config set global.index-url http://cache-service-vllm.nginx-pypi-cache.svc.cluster.local:${PYPI_CACHE_PORT}/pypi/simple && \
|
||||
pip config set global.trusted-host cache-service-vllm.nginx-pypi-cache.svc.cluster.local && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y python3-pip git vim wget net-tools gcc g++ cmake libnuma-dev && \
|
||||
rm -rf /var/cache/apt/* && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install for pytest to make the docker build cache layer always valid
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install pytest>=6.0 modelscope
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
# Install vLLM dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
||||
COPY requirements/common.txt /workspace/vllm/requirements/common.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r requirements/common.txt
|
||||
|
||||
COPY . .
|
||||
|
||||
# Install vLLM
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
VLLM_TARGET_DEVICE="empty" python3 -m pip install -v -e /workspace/vllm/ --extra-index https://download.pytorch.org/whl/cpu/ && \
|
||||
python3 -m pip uninstall -y triton
|
||||
|
||||
# Install vllm-ascend
|
||||
WORKDIR /workspace
|
||||
ARG VLLM_ASCEND_REPO=https://github.com/vllm-project/vllm-ascend.git
|
||||
ARG VLLM_ASCEND_TAG=main
|
||||
RUN git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf "https://github.com/" && \
|
||||
git clone --depth 1 \$VLLM_ASCEND_REPO --branch \$VLLM_ASCEND_TAG /workspace/vllm-ascend
|
||||
|
||||
# Install vllm dependencies in advance. Effect: As long as common.txt remains unchanged, the docker cache layer will be valid.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -r /workspace/vllm-ascend/requirements.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
export PIP_EXTRA_INDEX_URL=https://mirrors.huaweicloud.com/ascend/repos/pypi && \
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh && \
|
||||
source /usr/local/Ascend/nnal/atb/set_env.sh && \
|
||||
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/Ascend/ascend-toolkit/latest/`uname -i`-linux/devlib && \
|
||||
python3 -m pip install -v -e /workspace/vllm-ascend/ --extra-index https://download.pytorch.org/whl/cpu/
|
||||
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
ENV VLLM_USE_MODELSCOPE=True
|
||||
|
||||
WORKDIR /workspace/vllm-ascend
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
EOF
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
docker rm -f "${container_name}" || true;
|
||||
docker image rm -f "${image_name}" || true;
|
||||
docker system prune -f || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Generate corresponding --device args based on BUILDKITE_AGENT_NAME
|
||||
# Ascend NPU BUILDKITE_AGENT_NAME format is {hostname}-{agent_idx}-{npu_card_num}cards, and agent_idx starts from 1.
|
||||
# e.g. atlas-a2-001-1-2cards means this is the 1-th agent on atlas-a2-001 host, and it has 2 NPU cards.
|
||||
# returns --device /dev/davinci0 --device /dev/davinci1
|
||||
parse_and_gen_devices() {
|
||||
local input="$1"
|
||||
local index cards_num
|
||||
if [[ "$input" =~ ([0-9]+)-([0-9]+)cards$ ]]; then
|
||||
index="${BASH_REMATCH[1]}"
|
||||
cards_num="${BASH_REMATCH[2]}"
|
||||
else
|
||||
echo "parse error" >&2
|
||||
return 1
|
||||
fi
|
||||
|
||||
local devices=""
|
||||
local i=0
|
||||
while (( i < cards_num )); do
|
||||
local dev_idx=$(((index - 1)*cards_num + i ))
|
||||
devices="$devices --device /dev/davinci${dev_idx}"
|
||||
((i++))
|
||||
done
|
||||
|
||||
# trim leading space
|
||||
devices="${devices#"${devices%%[![:space:]]*}"}"
|
||||
# Output devices: assigned to the caller variable
|
||||
printf '%s' "$devices"
|
||||
}
|
||||
|
||||
devices=$(parse_and_gen_devices "${BUILDKITE_AGENT_NAME}") || exit 1
|
||||
|
||||
# Run the image and execute the Out-Of-Tree (OOT) platform interface test case on Ascend NPU hardware.
|
||||
# This test checks whether the OOT platform interface is functioning properly in conjunction with
|
||||
# the hardware plugin vllm-ascend.
|
||||
model_cache_dir=/mnt/modelscope${agent_idx}
|
||||
mkdir -p ${model_cache_dir}
|
||||
docker run \
|
||||
${devices} \
|
||||
--device /dev/davinci_manager \
|
||||
--device /dev/devmm_svm \
|
||||
--device /dev/hisi_hdc \
|
||||
-v /usr/local/dcmi:/usr/local/dcmi \
|
||||
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
|
||||
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
|
||||
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
|
||||
-v /etc/ascend_install.info:/etc/ascend_install.info \
|
||||
-v ${model_cache_dir}:/root/.cache/modelscope \
|
||||
--entrypoint="" \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
bash -c '
|
||||
set -e
|
||||
pytest -v -s tests/e2e/vllm_interface/
|
||||
'
|
@ -62,12 +62,11 @@ echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
export VLLM_XLA_CACHE_PATH=
|
||||
echo "Using VLLM V1"
|
||||
|
||||
echo "--- Hardware Information ---"
|
||||
# tpu-info
|
||||
|
@ -62,12 +62,11 @@ echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@206b7722158f58c35b7ffcd53b035fdbdda5126d" \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
&& python3 -m pip install --progress-bar off hf-transfer tblib==3.1.0
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
export VLLM_XLA_CACHE_PATH=
|
||||
echo "Using VLLM V1"
|
||||
|
||||
echo "--- Hardware Information ---"
|
||||
# tpu-info
|
||||
|
@ -35,16 +35,14 @@ docker run \
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -O.cudagraph_mode=NONE
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN_VLLM_V1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
cd tests
|
||||
pytest -v -s v1/core
|
||||
pytest -v -s v1/engine
|
||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||
pytest -v -s v1/structured_output
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_tree_attention.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py --ignore=v1/kv_connector/unit/test_shared_storage_connector.py
|
||||
pytest -v -s v1/test_serial_utils.py
|
||||
pytest -v -s v1/test_utils.py
|
||||
pytest -v -s v1/test_metrics_reader.py
|
||||
'
|
||||
|
@ -18,7 +18,7 @@ vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_
|
||||
bench_throughput_exit_code=$?
|
||||
|
||||
# run server-based benchmarks and upload the result to buildkite
|
||||
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
|
||||
vllm serve meta-llama/Llama-2-7b-chat-hf &
|
||||
server_pid=$!
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
|
59
.buildkite/scripts/run-prime-rl-test.sh
Executable file
59
.buildkite/scripts/run-prime-rl-test.sh
Executable file
@ -0,0 +1,59 @@
|
||||
#!/bin/bash
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Setup script for Prime-RL integration tests
|
||||
# This script prepares the environment for running Prime-RL tests with nightly vLLM
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
REPO_ROOT="$(cd "${SCRIPT_DIR}/../.." && pwd)"
|
||||
PRIME_RL_REPO="https://github.com/PrimeIntellect-ai/prime-rl.git"
|
||||
PRIME_RL_DIR="${REPO_ROOT}/prime-rl"
|
||||
|
||||
echo "Setting up Prime-RL integration test environment..."
|
||||
|
||||
# Clean up any existing Prime-RL directory
|
||||
if [ -d "${PRIME_RL_DIR}" ]; then
|
||||
echo "Removing existing Prime-RL directory..."
|
||||
rm -rf "${PRIME_RL_DIR}"
|
||||
fi
|
||||
|
||||
# Install UV if not available
|
||||
if ! command -v uv &> /dev/null; then
|
||||
echo "Installing UV package manager..."
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
source $HOME/.local/bin/env
|
||||
fi
|
||||
|
||||
# Clone Prime-RL repository at specific branch for reproducible tests
|
||||
PRIME_RL_BRANCH="integ-vllm-main"
|
||||
echo "Cloning Prime-RL repository at branch: ${PRIME_RL_BRANCH}..."
|
||||
git clone --branch "${PRIME_RL_BRANCH}" --single-branch "${PRIME_RL_REPO}" "${PRIME_RL_DIR}"
|
||||
cd "${PRIME_RL_DIR}"
|
||||
|
||||
echo "Setting up UV project environment..."
|
||||
export UV_PROJECT_ENVIRONMENT=/usr/local
|
||||
ln -s /usr/bin/python3 /usr/local/bin/python
|
||||
|
||||
# Remove vllm pin from pyproject.toml
|
||||
echo "Removing vllm pin from pyproject.toml..."
|
||||
sed -i '/vllm==/d' pyproject.toml
|
||||
|
||||
# Sync Prime-RL dependencies
|
||||
echo "Installing Prime-RL dependencies..."
|
||||
uv sync --inexact && uv sync --inexact --all-extras
|
||||
|
||||
# Verify installation
|
||||
echo "Verifying installations..."
|
||||
uv run python -c "import vllm; print(f'vLLM version: {vllm.__version__}')"
|
||||
uv run python -c "import prime_rl; print('Prime-RL imported successfully')"
|
||||
|
||||
echo "Prime-RL integration test environment setup complete!"
|
||||
|
||||
echo "Running Prime-RL integration tests..."
|
||||
export WANDB_MODE=offline # this makes this test not require a WANDB_API_KEY
|
||||
uv run pytest -vs tests/integration/test_rl.py -m gpu
|
||||
|
||||
echo "Prime-RL integration tests completed!"
|
@ -9,6 +9,6 @@ MAX_NUM_BATCHED_TOKENS=1024
|
||||
TENSOR_PARALLEL_SIZE=1
|
||||
MAX_MODEL_LEN=2048
|
||||
DOWNLOAD_DIR=/mnt/disks/persist
|
||||
EXPECTED_THROUGHPUT=10.0
|
||||
EXPECTED_THROUGHPUT=8.7
|
||||
INPUT_LEN=1800
|
||||
OUTPUT_LEN=128
|
||||
|
@ -42,7 +42,7 @@ echo "lanching vllm..."
|
||||
echo "logging to $VLLM_LOG"
|
||||
echo
|
||||
|
||||
VLLM_USE_V1=1 vllm serve $MODEL \
|
||||
vllm serve $MODEL \
|
||||
--seed 42 \
|
||||
--max-num-seqs $MAX_NUM_SEQS \
|
||||
--max-num-batched-tokens $MAX_NUM_BATCHED_TOKENS \
|
||||
|
1267
.buildkite/test-amd.yaml
Normal file
1267
.buildkite/test-amd.yaml
Normal file
File diff suppressed because it is too large
Load Diff
@ -6,24 +6,28 @@
|
||||
# to generate the final pipeline yaml file.
|
||||
|
||||
# Documentation
|
||||
# label(str): the name of the test. emoji allowed.
|
||||
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||
# label(str): the name of the test. emojis allowed.
|
||||
# fast_check(bool): whether to run this on each commit on the fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against the torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on the fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's a scheduled nightly run.
|
||||
# soft_fail(bool): allow this step to fail without failing the entire pipeline (useful for flaky or experimental tests).
|
||||
# command(str): the single command to run for tests. incompatible with commands.
|
||||
# commands(list): the list of commands to run for test. incompatbile with command.
|
||||
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
|
||||
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
|
||||
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
|
||||
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
|
||||
# in this case, commands must be specified. the first command runs on first host, the second
|
||||
# commands(list): the list of commands to run for the test. incompatible with command.
|
||||
# mirror_hardwares(list): the list of hardware to run the test on as well. currently only supports [amdexperimental]
|
||||
# gpu(str): override the GPU selection for the test. default is L4 GPUs. supports a100, b200, h200
|
||||
# num_gpus(int): override the number of GPUs for the test. defaults to 1 GPU. currently supports 2,4.
|
||||
# num_nodes(int): whether to simulate multi-node setup by launching multiple containers on one host,
|
||||
# in this case, commands must be specified. the first command runs on the first host, the second
|
||||
# command runs on the second host.
|
||||
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
|
||||
# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run.
|
||||
# timeout_in_minutes(int): sets a timeout for the step in minutes. if not specified, uses the default timeout.
|
||||
# parallelism(int): number of parallel jobs to run for this step. enables test sharding using $$BUILDKITE_PARALLEL_JOB
|
||||
# and $$BUILDKITE_PARALLEL_JOB_COUNT environment variables.
|
||||
# working_dir(str): specify the place where the command should execute, default to /vllm-workspace/tests
|
||||
# source_file_dependencies(list): the list of prefixes to opt-in the test for, if empty, the test will always run.
|
||||
|
||||
# When adding a test
|
||||
# - If the test belong to an existing group, add it there
|
||||
# - If the test belongs to an existing group, add it there
|
||||
# - If the test is short, add to any existing step
|
||||
# - If the test takes more than 10min, then it is okay to create a new step.
|
||||
# Note that all steps execute in parallel.
|
||||
@ -46,25 +50,28 @@ steps:
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/mq_llm_engine
|
||||
- tests/async_engine
|
||||
- tests/multimodal
|
||||
- tests/utils_
|
||||
commands:
|
||||
- pytest -v -s -m 'not cpu_test' multimodal
|
||||
- pytest -v -s utils_
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test (CPU) # 4 mins
|
||||
timeout_in_minutes: 10
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_inputs.py
|
||||
- tests/test_outputs.py
|
||||
- tests/multimodal
|
||||
- tests/utils_
|
||||
- tests/worker
|
||||
- tests/standalone_tests/lazy_imports.py
|
||||
- tests/transformers_utils
|
||||
no_gpu: true
|
||||
commands:
|
||||
- python3 standalone_tests/lazy_imports.py
|
||||
- pytest -v -s mq_llm_engine # MQLLMEngine
|
||||
- pytest -v -s async_engine # AsyncLLMEngine
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s test_outputs.py
|
||||
- pytest -v -s multimodal
|
||||
- pytest -v -s utils_ # Utils
|
||||
- pytest -v -s worker # Worker
|
||||
- pytest -v -s transformers_utils # transformers_utils
|
||||
- pytest -v -s -m 'cpu_test' multimodal
|
||||
- pytest -v -s transformers_utils
|
||||
|
||||
- label: Python-only Installation Test # 10min
|
||||
timeout_in_minutes: 20
|
||||
@ -84,25 +91,12 @@ steps:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_basic_correctness
|
||||
- tests/basic_correctness/test_cpu_offload
|
||||
- tests/basic_correctness/test_preemption
|
||||
- tests/basic_correctness/test_cumem.py
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s basic_correctness/test_cumem.py
|
||||
- pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Core Test # 22min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/core
|
||||
- vllm/distributed
|
||||
- tests/core
|
||||
commands:
|
||||
- pytest -v -s core
|
||||
|
||||
- label: Entrypoints Unit Tests # 5min
|
||||
timeout_in_minutes: 10
|
||||
@ -127,10 +121,9 @@ steps:
|
||||
- tests/entrypoints/offline_mode
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Entrypoints Integration Test (API Server) # 100min
|
||||
timeout_in_minutes: 130
|
||||
@ -168,7 +161,6 @@ steps:
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/
|
||||
- vllm/core/
|
||||
- tests/distributed/test_utils
|
||||
- tests/distributed/test_pynccl
|
||||
- tests/distributed/test_events
|
||||
@ -176,28 +168,34 @@ steps:
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/test_internal_lb_dp.py
|
||||
- tests/v1/test_hybrid_lb_dp.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
- tests/distributed/test_symm_mem_allreduce.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with torchrun tp=2 and external_dp=2
|
||||
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with tp=2 and pp=2
|
||||
# test with torchrun tp=2 and pp=2
|
||||
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with torchrun tp=4 and dp=1
|
||||
- TP_SIZE=4 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with torchrun tp=2, pp=2 and dp=1
|
||||
- PP_SIZE=2 TP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with torchrun tp=1 and dp=4 with ep
|
||||
- DP_SIZE=4 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with torchrun tp=2 and dp=2 with ep
|
||||
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/distributed/test_hybrid_lb_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s distributed/test_events.py
|
||||
- pytest -v -s distributed/test_symm_mem_allreduce.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- pushd ../examples/offline_inference
|
||||
@ -230,16 +228,14 @@ steps:
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/metrics
|
||||
- tests/v1/tracing
|
||||
commands:
|
||||
- pytest -v -s metrics
|
||||
- "pip install \
|
||||
'opentelemetry-sdk>=1.26.0' \
|
||||
'opentelemetry-api>=1.26.0' \
|
||||
'opentelemetry-exporter-otlp>=1.26.0' \
|
||||
'opentelemetry-semantic-conventions-ai>=0.4.1'"
|
||||
- pytest -v -s tracing
|
||||
- pytest -v -s v1/tracing
|
||||
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
@ -300,23 +296,35 @@ steps:
|
||||
- tests/v1
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s -m 'not cpu_test' v1/core
|
||||
- pytest -v -s v1/executor
|
||||
- pytest -v -s v1/kv_offload
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/logits_processors
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/kv_connector/unit
|
||||
- pytest -v -s v1/metrics
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit
|
||||
- pytest -v -s -m 'not cpu_test' v1/metrics
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
- pytest -v -s v1/test_metrics_reader.py
|
||||
- pytest -v -s v1/test_request.py
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: V1 Test others (CPU) # 5 mins
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
no_gpu: true
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s -m 'cpu_test' v1/core
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s -m 'cpu_test' v1/kv_connector/unit
|
||||
- pytest -v -s -m 'cpu_test' v1/metrics
|
||||
|
||||
|
||||
- label: Examples Test # 30min
|
||||
timeout_in_minutes: 45
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -335,12 +343,13 @@ steps:
|
||||
- python3 offline_inference/vision_language.py --seed 0
|
||||
- python3 offline_inference/vision_language_pooling.py --seed 0
|
||||
- python3 offline_inference/vision_language_multi_image.py --seed 0
|
||||
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
|
||||
- python3 offline_inference/basic/classify.py
|
||||
- python3 offline_inference/basic/embed.py
|
||||
- python3 offline_inference/basic/score.py
|
||||
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
|
||||
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
|
||||
|
||||
- label: Platform Tests (CUDA) # 4min
|
||||
timeout_in_minutes: 15
|
||||
@ -389,11 +398,12 @@ steps:
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
- pytest -v -s compile/test_fusion.py
|
||||
- pytest -v -s compile/test_fusion_attn.py
|
||||
- pytest -v -s compile/test_functionalization.py
|
||||
- pytest -v -s compile/test_silu_mul_quant_fusion.py
|
||||
- pytest -v -s compile/test_sequence_parallelism.py
|
||||
- pytest -v -s compile/test_async_tp.py
|
||||
- pytest -v -s compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s compile/test_decorator.py
|
||||
- pytest -v -s compile/test_noop_elimination.py
|
||||
- pytest -v -s compile/test_aot_compile.py
|
||||
|
||||
- label: PyTorch Fullgraph Smoke Test # 15min
|
||||
timeout_in_minutes: 30
|
||||
@ -406,8 +416,8 @@ steps:
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s compile/piecewise/
|
||||
|
||||
- label: PyTorch Fullgraph Test # 20min
|
||||
timeout_in_minutes: 30
|
||||
- label: PyTorch Fullgraph Test # 22min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
@ -415,6 +425,7 @@ steps:
|
||||
- tests/compile
|
||||
commands:
|
||||
- pytest -v -s compile/test_full_graph.py
|
||||
- pytest -v -s compile/test_fusions_e2e.py
|
||||
|
||||
- label: Kernels Core Operation Test # 48min
|
||||
timeout_in_minutes: 75
|
||||
@ -422,8 +433,9 @@ steps:
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- tests/kernels/core
|
||||
- tests/kernels/test_top_k_per_row.py
|
||||
commands:
|
||||
- pytest -v -s kernels/core
|
||||
- pytest -v -s kernels/core kernels/test_top_k_per_row.py
|
||||
|
||||
- label: Kernels Attention Test %N # 23min
|
||||
timeout_in_minutes: 35
|
||||
@ -467,32 +479,22 @@ steps:
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
- vllm/model_executor/layers/mamba/ops
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 14min
|
||||
timeout_in_minutes: 25
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
- tests/tensorizer_loader
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s tensorizer_loader
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Model Executor Test # 7min
|
||||
timeout_in_minutes: 20
|
||||
- label: Model Executor Test # 23min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
- tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
commands:
|
||||
- apt-get update && apt-get install -y curl libsodium23
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s model_executor
|
||||
- pytest -v -s entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
|
||||
- label: Benchmarks # 11min
|
||||
timeout_in_minutes: 20
|
||||
@ -526,8 +528,9 @@ steps:
|
||||
# since torchao nightly is only compatible with torch nightly currently
|
||||
# https://github.com/pytorch/ao/issues/2919, we'll have to skip new torchao tests for now
|
||||
# we can only upgrade after this is resolved
|
||||
- pip install --pre torchao==0.13.0.dev20250814 --index-url https://download.pytorch.org/whl/nightly/cu128
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization
|
||||
# TODO(jerryzh168): resolve the above comment
|
||||
- uv pip install --system torchao==0.13.0
|
||||
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
|
||||
|
||||
- label: LM Eval Small Models # 53min
|
||||
timeout_in_minutes: 75
|
||||
@ -548,15 +551,6 @@ steps:
|
||||
commands: # LMEval+Transcription WER check
|
||||
- pytest -s entrypoints/openai/correctness/
|
||||
|
||||
- label: Encoder Decoder tests # 12min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/encoder_decoder
|
||||
commands:
|
||||
- pytest -v -s encoder_decoder
|
||||
|
||||
- label: OpenAI-Compatible Tool Use # 23 min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -564,10 +558,17 @@ steps:
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
- tests/mistral_tool_use
|
||||
commands:
|
||||
- pytest -v -s tool_use
|
||||
- pytest -v -s mistral_tool_use
|
||||
- pytest -v -s -m 'not cpu_test' tool_use
|
||||
|
||||
- label: OpenAI-Compatible Tool Use (CPU) # 5 mins
|
||||
timeout_in_minutes: 10
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
no_gpu: true
|
||||
commands:
|
||||
- pytest -v -s -m 'cpu_test' tool_use
|
||||
|
||||
##### models test #####
|
||||
|
||||
@ -607,13 +608,19 @@ steps:
|
||||
- vllm/
|
||||
- tests/models/test_transformers.py
|
||||
- tests/models/test_registry.py
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py models/test_registry.py
|
||||
|
||||
- label: Basic Models Test (Other CPU) # 5min
|
||||
timeout_in_minutes: 10
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/models/test_utils.py
|
||||
- tests/models/test_vision.py
|
||||
no_gpu: true
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py \
|
||||
models/test_registry.py \
|
||||
models/test_utils.py \
|
||||
models/test_vision.py
|
||||
- pytest -v -s models/test_utils.py models/test_vision.py
|
||||
|
||||
- label: Language Models Tests (Standard)
|
||||
timeout_in_minutes: 25
|
||||
@ -728,6 +735,16 @@ steps:
|
||||
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
|
||||
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
|
||||
|
||||
- label: Multi-Modal Accuracy Eval (Small Models) # 50min
|
||||
timeout_in_minutes: 70
|
||||
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
|
||||
source_file_dependencies:
|
||||
- vllm/multimodal/
|
||||
- vllm/inputs/
|
||||
- vllm/v1/core/
|
||||
commands:
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 1
|
||||
mirror_hardwares: [amdexperimental]
|
||||
optional: true
|
||||
@ -783,14 +800,16 @@ steps:
|
||||
commands:
|
||||
- pip install --upgrade git+https://github.com/huggingface/transformers
|
||||
- pytest -v -s tests/models/test_initialization.py
|
||||
- pytest -v -s tests/models/test_transformers.py
|
||||
- pytest -v -s tests/models/multimodal/processing/
|
||||
- pytest -v -s tests/models/multimodal/test_mapping.py
|
||||
- python3 examples/offline_inference/basic/chat.py
|
||||
- python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
|
||||
# Whisper needs spawn method to avoid deadlock
|
||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
|
||||
- label: Blackwell Test # 38 min
|
||||
timeout_in_minutes: 60
|
||||
- label: Blackwell Test # 21 min
|
||||
timeout_in_minutes: 30
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
# optional: true
|
||||
@ -803,8 +822,6 @@ steps:
|
||||
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
|
||||
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
- vllm/compilation/fusion.py
|
||||
- vllm/compilation/fusion_attn.py
|
||||
commands:
|
||||
- nvidia-smi
|
||||
- python3 examples/offline_inference/basic/chat.py
|
||||
@ -817,17 +834,77 @@ steps:
|
||||
# Quantization
|
||||
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
|
||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
|
||||
- pytest -v -s tests/kernels/quantization/test_silu_nvfp4_quant_fusion.py
|
||||
- pytest -v -s tests/kernels/quantization/test_silu_mul_nvfp4_quant.py
|
||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
|
||||
- pytest -v -s tests/kernels/quantization/test_nvfp4_qutlass.py
|
||||
- pytest -v -s tests/kernels/quantization/test_mxfp4_qutlass.py
|
||||
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
|
||||
- pytest -v -s tests/kernels/moe/test_mxfp4_moe.py
|
||||
# Fusion
|
||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s tests/compile/test_fusion_attn.py::test_attention_quant_pattern
|
||||
- pytest -v -s tests/kernels/moe/test_ocp_mx_moe.py
|
||||
- pytest -v -s tests/kernels/moe/test_flashinfer.py
|
||||
|
||||
- label: Blackwell Fusion Tests # 30 min
|
||||
timeout_in_minutes: 40
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/fp4/
|
||||
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
- vllm/compilation/
|
||||
# can affect pattern matching
|
||||
- vllm/model_executor/layers/layernorm.py
|
||||
- vllm/model_executor/layers/activation.py
|
||||
- vllm/model_executor/layers/quantization/input_quant_fp8.py
|
||||
commands:
|
||||
- nvidia-smi
|
||||
- pytest -v -s tests/compile/test_fusion_attn.py
|
||||
- pytest -v -s tests/compile/test_silu_mul_quant_fusion.py
|
||||
# this runner has 2 GPUs available even though num_gpus=2 is not set
|
||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s tests/compile/test_fusions_e2e.py
|
||||
|
||||
- label: Blackwell GPT-OSS Eval
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
optional: true # run on nightlies
|
||||
source_file_dependencies:
|
||||
- tests/evals/gpt_oss
|
||||
- vllm/model_executor/models/gpt_oss.py
|
||||
- vllm/model_executor/layers/quantization/mxfp4.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
commands:
|
||||
- uv pip install --system 'gpt-oss[eval]==0.0.5'
|
||||
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
|
||||
|
||||
- label: Blackwell Quantized MoE Test
|
||||
timeout_in_minutes: 60
|
||||
working_dir: "/vllm-workspace/"
|
||||
gpu: b200
|
||||
source_file_dependencies:
|
||||
- tests/quantization/test_blackwell_moe.py
|
||||
- vllm/model_executor/models/deepseek_v2.py
|
||||
- vllm/model_executor/models/gpt_oss.py
|
||||
- vllm/model_executor/models/llama4.py
|
||||
- vllm/model_executor/layers/fused_moe
|
||||
- vllm/model_executor/layers/quantization/compressed_tensors
|
||||
- vllm/model_executor/layers/quantization/modelopt.py
|
||||
- vllm/model_executor/layers/quantization/mxfp4.py
|
||||
- vllm/v1/attention/backends/flashinfer.py
|
||||
commands:
|
||||
- pytest -s -v tests/quantization/test_blackwell_moe.py
|
||||
|
||||
- label: Blackwell LM Eval Small Models
|
||||
timeout_in_minutes: 120
|
||||
gpu: b200
|
||||
optional: true # run on nightlies
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/model_executor/layers/quantization
|
||||
commands:
|
||||
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
|
||||
|
||||
##### 1 GPU test #####
|
||||
##### multi gpus test #####
|
||||
@ -871,47 +948,58 @@ steps:
|
||||
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
|
||||
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
|
||||
|
||||
- label: Distributed Tests (2 GPUs) # 110min
|
||||
timeout_in_minutes: 150
|
||||
- label: Distributed Tests (2 GPUs) # 68min
|
||||
timeout_in_minutes: 90
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/compilation/
|
||||
- vllm/distributed/
|
||||
- vllm/engine/
|
||||
- vllm/executor/
|
||||
- vllm/model_executor/models/
|
||||
- tests/distributed/
|
||||
- vllm/compilation
|
||||
- vllm/worker/worker_base.py
|
||||
- vllm/worker/worker.py
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- vllm/v1/engine/
|
||||
- vllm/v1/worker/
|
||||
- tests/compile/test_basic_correctness.py
|
||||
- tests/compile/test_wrapper.py
|
||||
- tests/distributed/
|
||||
- tests/entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/distributed
|
||||
- tests/v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- tests/v1/shutdown
|
||||
- tests/v1/worker/test_worker_memory_snapshot.py
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_async_llm_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/distributed/test_external_lb_dp.py
|
||||
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- pytest -v -s v1/worker/test_worker_memory_snapshot.py
|
||||
|
||||
- label: Distributed Model Tests (2 GPUs) # 37min
|
||||
timeout_in_minutes: 50
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader/sharded_state_loader.py
|
||||
- vllm/model_executor/models/
|
||||
- tests/basic_correctness/
|
||||
- tests/model_executor/model_loader/test_sharded_state_loader.py
|
||||
- tests/models/
|
||||
commands:
|
||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s model_executor/model_loader/test_sharded_state_loader.py
|
||||
# Avoid importing model tests that cause CUDA reinitialization error
|
||||
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/language -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/multimodal -v -s -m 'distributed(num_gpus=2)' --ignore models/multimodal/generation/test_whisper.py
|
||||
- VLLM_WORKER_MULTIPROC_METHOD=spawn pytest models/multimodal/generation/test_whisper.py -v -s -m 'distributed(num_gpus=2)'
|
||||
# test sequence parallel
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- pytest -v -s models/multimodal/generation/test_maverick.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
timeout_in_minutes: 60
|
||||
@ -954,7 +1042,6 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s distributed/test_pp_cudagraph.py
|
||||
- pytest -v -s distributed/test_pipeline_parallel.py
|
||||
# - pytest -v -s distributed/test_context_parallel.py # TODO: enable it on Hopper runners or add triton MLA support
|
||||
|
||||
- label: LoRA TP Test (Distributed) # 17 min
|
||||
timeout_in_minutes: 30
|
||||
@ -997,6 +1084,17 @@ steps:
|
||||
- tests/weight_loading
|
||||
commands:
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||
|
||||
- label: NixlConnector PD accuracy tests (Distributed) # 30min
|
||||
timeout_in_minutes: 30
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py
|
||||
- tests/v1/kv_connector/nixl_integration/
|
||||
commands:
|
||||
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
|
||||
- bash v1/kv_connector/nixl_integration/tp_config_sweep_accuracy_test.sh
|
||||
|
||||
|
||||
##### multi gpus test #####
|
||||
@ -1028,9 +1126,38 @@ steps:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
|
||||
|
||||
- label: Qwen MoE EP Test # optional
|
||||
##### H200 test #####
|
||||
- label: Distributed Tests (H200) # optional
|
||||
gpu: h200
|
||||
optional: true
|
||||
working_dir: "/vllm-workspace/"
|
||||
num_gpus: 2
|
||||
commands:
|
||||
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 /vllm-workspace/examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
||||
- pytest -v -s tests/compile/test_async_tp.py
|
||||
- pytest -v -s tests/compile/test_sequence_parallelism.py
|
||||
- pytest -v -s tests/compile/test_fusion_all_reduce.py
|
||||
- pytest -v -s tests/compile/test_fusions_e2e.py::test_tp2_attn_quant_allreduce_rmsnorm
|
||||
- pytest -v -s tests/distributed/test_context_parallel.py
|
||||
- CUDA_VISIBLE_DEVICES=1,2 VLLM_ALL2ALL_BACKEND=deepep_high_throughput VLLM_USE_DEEP_GEMM=1 VLLM_LOGGING_LEVEL=DEBUG python3 examples/offline_inference/data_parallel.py --model Qwen/Qwen1.5-MoE-A2.7B --tp-size=1 --dp-size=2 --max-model-len 2048
|
||||
|
||||
##### B200 test #####
|
||||
- label: Distributed Tests (B200) # optional
|
||||
gpu: b200
|
||||
optional: true
|
||||
working_dir: "/vllm-workspace/"
|
||||
num_gpus: 2
|
||||
commands:
|
||||
- pytest -v -s tests/distributed/test_context_parallel.py
|
||||
- pytest -v -s tests/distributed/test_nccl_symm_mem_allreduce.py
|
||||
|
||||
##### RL Integration Tests #####
|
||||
- label: Prime-RL Integration Test # 15min
|
||||
timeout_in_minutes: 30
|
||||
optional: true
|
||||
num_gpus: 2
|
||||
working_dir: "/vllm-workspace"
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- .buildkite/scripts/run-prime-rl-test.sh
|
||||
commands:
|
||||
- bash .buildkite/scripts/run-prime-rl-test.sh
|
||||
|
47
.coveragerc
Normal file
47
.coveragerc
Normal file
@ -0,0 +1,47 @@
|
||||
[run]
|
||||
# Track the installed vllm package (this is what actually gets imported during tests)
|
||||
# Use wildcard pattern to match the installed location
|
||||
source =
|
||||
vllm
|
||||
*/dist-packages/vllm
|
||||
*/site-packages/vllm
|
||||
omit =
|
||||
*/tests/*
|
||||
*/test_*
|
||||
*/__pycache__/*
|
||||
*/build/*
|
||||
*/dist/*
|
||||
*/vllm.egg-info/*
|
||||
*/third_party/*
|
||||
*/examples/*
|
||||
*/benchmarks/*
|
||||
*/docs/*
|
||||
|
||||
[paths]
|
||||
# Map all possible vllm locations to a canonical "vllm" path
|
||||
# This ensures coverage.combine properly merges data from different test runs
|
||||
source =
|
||||
vllm
|
||||
/vllm-workspace/src/vllm
|
||||
/vllm-workspace/vllm
|
||||
*/site-packages/vllm
|
||||
*/dist-packages/vllm
|
||||
|
||||
[report]
|
||||
exclude_lines =
|
||||
pragma: no cover
|
||||
def __repr__
|
||||
if self.debug:
|
||||
if settings.DEBUG
|
||||
raise AssertionError
|
||||
raise NotImplementedError
|
||||
if 0:
|
||||
if __name__ == .__main__.:
|
||||
class .*\bProtocol\):
|
||||
@(abc\.)?abstractmethod
|
||||
|
||||
[html]
|
||||
directory = htmlcov
|
||||
|
||||
[xml]
|
||||
output = coverage.xml
|
4
.git-blame-ignore-revs
Normal file
4
.git-blame-ignore-revs
Normal file
@ -0,0 +1,4 @@
|
||||
# Migrate from `yapf` & `isort` to `ruff`
|
||||
d6953beb91da4e9c99be4c0a1304a2d24189535c
|
||||
# Convert `Optional[x]` to `x | None` and `Union[x, y]` to `x | y`
|
||||
8fcaaf6a165e661f63fc51be906bc05b0767332f
|
62
.github/CODEOWNERS
vendored
62
.github/CODEOWNERS
vendored
@ -2,72 +2,85 @@
|
||||
# for more info about CODEOWNERS file
|
||||
|
||||
# This lists cover the "core" components of vLLM that require careful review
|
||||
/vllm/attention @LucasWilkinson
|
||||
/vllm/attention/backends/abstract.py @WoosukKwon @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/core @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/engine/llm_engine.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/executor/executor_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||
/vllm/worker/worker_base.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @22quinn
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill @NickLucche
|
||||
/vllm/model_executor/layers/fused_moe @mgoin
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth @yewentao256
|
||||
/vllm/model_executor/layers/mamba @tdoublep
|
||||
/vllm/model_executor/model_loader @22quinn
|
||||
/vllm/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||
/vllm/v1/sample @22quinn @houseroad
|
||||
/vllm/vllm_flash_attn @LucasWilkinson
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm @chaunceyjiang
|
||||
/vllm/entrypoints @aarnphm @chaunceyjiang
|
||||
/vllm/compilation @zou3519 @youkaichao @ProExpertProg
|
||||
/vllm/distributed/kv_transfer @NickLucche
|
||||
/vllm/distributed/kv_transfer @NickLucche @ApostaC
|
||||
CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
|
||||
# Any change to the VllmConfig changes can have a large user-facing impact,
|
||||
# so spam a lot of people
|
||||
/vllm/config @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg
|
||||
/vllm/config/cache.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor @yewentao256 @ProExpertProg @heheda12345
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/attention @LucasWilkinson
|
||||
/vllm/v1/attention/backends/flashinfer.py @mgoin
|
||||
/vllm/v1/attention/backends/triton_attn.py @tdoublep
|
||||
/vllm/v1/core @heheda12345
|
||||
/vllm/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
|
||||
/vllm/v1/sample @22quinn @houseroad @njhill
|
||||
/vllm/v1/spec_decode @benchislett @luccafong
|
||||
/vllm/v1/structured_output @mgoin @russellb @aarnphm @benchislett
|
||||
/vllm/v1/kv_cache_interface.py @heheda12345
|
||||
/vllm/v1/offloading @ApostaC
|
||||
|
||||
# Test ownership
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo @aarnphm @NickLucche
|
||||
/tests/kernels @tlrmchlsmth @WoosukKwon @yewentao256
|
||||
/tests/evals @mgoin
|
||||
/tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
/tests/multimodal @DarkLight1337 @ywang96 @NickLucche
|
||||
/tests/prefix_caching @comaniac @KuntaiDu
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat @yewentao256
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
||||
/tests/v1/core @heheda12345
|
||||
/tests/v1/core @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat @heheda12345 @ApostaC
|
||||
/tests/weight_loading @mgoin @youkaichao @yewentao256
|
||||
/tests/lora @jeejeelee
|
||||
/tests/models/language/generation/test_hybrid.py @tdoublep
|
||||
/tests/v1/kv_connector/nixl_integration @NickLucche
|
||||
/tests/v1/kv_connector @ApostaC
|
||||
/tests/v1/offloading @ApostaC
|
||||
|
||||
# Transformers backend
|
||||
/vllm/model_executor/models/transformers @hmellor
|
||||
/tests/models/test_transformers.py @hmellor
|
||||
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
/docs/mkdocs @hmellor
|
||||
/docs/**/*.yml @hmellor
|
||||
/requirements/docs.txt @hmellor
|
||||
.readthedocs.yaml @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
|
||||
# Linting
|
||||
.markdownlint.yaml @hmellor
|
||||
.pre-commit-config.yaml @hmellor
|
||||
/tools/pre_commit @hmellor
|
||||
|
||||
# CPU
|
||||
/vllm/v1/worker/^cpu @bigPYJ1151
|
||||
/vllm/v1/worker/cpu* @bigPYJ1151
|
||||
/csrc/cpu @bigPYJ1151
|
||||
/vllm/platforms/cpu.py @bigPYJ1151
|
||||
/cmake/cpu_extension.cmake @bigPYJ1151
|
||||
/docker/Dockerfile.cpu @bigPYJ1151
|
||||
|
||||
# Intel GPU
|
||||
/vllm/v1/worker/^xpu @jikunshang
|
||||
/vllm/v1/worker/xpu* @jikunshang
|
||||
/vllm/platforms/xpu.py @jikunshang
|
||||
/docker/Dockerfile.xpu @jikunshang
|
||||
|
||||
@ -101,4 +114,15 @@ mkdocs.yaml @hmellor
|
||||
/vllm/v1/worker/tpu* @NickLucche
|
||||
/vllm/platforms/tpu.py @NickLucche
|
||||
/vllm/v1/sample/tpu @NickLucche
|
||||
/vllm/tests/v1/tpu @NickLucche
|
||||
/vllm/tests/v1/tpu @NickLucche
|
||||
|
||||
# KVConnector installation files
|
||||
/requirements/kv_connectors.txt @NickLucche
|
||||
|
||||
# Pooling models
|
||||
/examples/*/pooling/ @noooop
|
||||
/tests/models/*/pooling* @noooop
|
||||
/tests/entrypoints/pooling @noooop
|
||||
/vllm/config/pooler.py @noooop
|
||||
/vllm/pooling_params.py @noooop
|
||||
/vllm/model_executor/layers/pooler.py @noooop
|
||||
|
4
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
4
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
@ -43,10 +43,6 @@ body:
|
||||
Any other things you would like to mention.
|
||||
validations:
|
||||
required: false
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
|
||||
- type: checkboxes
|
||||
id: askllm
|
||||
attributes:
|
||||
|
54
.github/mergify.yml
vendored
54
.github/mergify.yml
vendored
@ -2,6 +2,7 @@ pull_request_rules:
|
||||
- name: label-documentation
|
||||
description: Automatically apply documentation label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^[^/]+\.md$
|
||||
- files~=^docs/
|
||||
@ -10,10 +11,13 @@ pull_request_rules:
|
||||
label:
|
||||
add:
|
||||
- documentation
|
||||
comment:
|
||||
message: "Documentation preview: https://vllm--{{number}}.org.readthedocs.build/en/{{number}}/"
|
||||
|
||||
- name: label-ci-build
|
||||
description: Automatically apply ci/build label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^\.github/
|
||||
- files~=\.buildkite/
|
||||
@ -30,6 +34,7 @@ pull_request_rules:
|
||||
- name: label-deepseek
|
||||
description: Automatically apply deepseek label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*deepseek.*\.py
|
||||
- files~=^tests/.*deepseek.*\.py
|
||||
@ -46,6 +51,7 @@ pull_request_rules:
|
||||
- name: label-frontend
|
||||
description: Automatically apply frontend label
|
||||
conditions:
|
||||
- label != stale
|
||||
- files~=^vllm/entrypoints/
|
||||
actions:
|
||||
label:
|
||||
@ -55,6 +61,7 @@ pull_request_rules:
|
||||
- name: label-llama
|
||||
description: Automatically apply llama label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*llama.*\.py
|
||||
- files~=^tests/.*llama.*\.py
|
||||
@ -70,6 +77,7 @@ pull_request_rules:
|
||||
- name: label-multi-modality
|
||||
description: Automatically apply multi-modality label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/multimodal/
|
||||
- files~=^tests/multimodal/
|
||||
@ -83,6 +91,7 @@ pull_request_rules:
|
||||
- name: label-new-model
|
||||
description: Automatically apply new-model label
|
||||
conditions:
|
||||
- label != stale
|
||||
- and:
|
||||
- files~=^vllm/model_executor/models/
|
||||
- files=vllm/model_executor/models/registry.py
|
||||
@ -94,6 +103,7 @@ pull_request_rules:
|
||||
- name: label-performance
|
||||
description: Automatically apply performance label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^benchmarks/
|
||||
- files~=^vllm/benchmarks/
|
||||
@ -107,6 +117,7 @@ pull_request_rules:
|
||||
- name: label-qwen
|
||||
description: Automatically apply qwen label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*qwen.*\.py
|
||||
- files~=^tests/.*qwen.*\.py
|
||||
@ -121,6 +132,7 @@ pull_request_rules:
|
||||
- name: label-gpt-oss
|
||||
description: Automatically apply gpt-oss label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/.*gpt[-_]?oss.*\.py
|
||||
- files~=^tests/.*gpt[-_]?oss.*\.py
|
||||
@ -142,6 +154,7 @@ pull_request_rules:
|
||||
- name: label-rocm
|
||||
description: Automatically apply rocm label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^csrc/rocm/
|
||||
- files~=^docker/Dockerfile.rocm
|
||||
@ -162,6 +175,7 @@ pull_request_rules:
|
||||
- name: label-structured-output
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
@ -171,7 +185,7 @@ pull_request_rules:
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||
- files~=^tests/v1/structured_output/
|
||||
- files=tests/v1/entrypoints/llm/test_guided_generate.py
|
||||
- files=tests/v1/entrypoints/llm/test_struct_output_generate.py
|
||||
- files~=^vllm/v1/structured_output/
|
||||
actions:
|
||||
label:
|
||||
@ -181,6 +195,7 @@ pull_request_rules:
|
||||
- name: label-speculative-decoding
|
||||
description: Automatically apply speculative-decoding label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/v1/spec_decode/
|
||||
- files~=^tests/v1/spec_decode/
|
||||
@ -196,6 +211,7 @@ pull_request_rules:
|
||||
- name: label-v1
|
||||
description: Automatically apply v1 label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/v1/
|
||||
- files~=^tests/v1/
|
||||
@ -208,6 +224,7 @@ pull_request_rules:
|
||||
description: Automatically apply tpu label
|
||||
# Keep this list in sync with `label-tpu-remove` conditions
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=tpu.py
|
||||
- files~=_tpu
|
||||
@ -223,6 +240,7 @@ pull_request_rules:
|
||||
description: Automatically remove tpu label
|
||||
# Keep this list in sync with `label-tpu` conditions
|
||||
conditions:
|
||||
- label != stale
|
||||
- and:
|
||||
- -files~=tpu.py
|
||||
- -files~=_tpu
|
||||
@ -237,9 +255,9 @@ pull_request_rules:
|
||||
- name: label-tool-calling
|
||||
description: Automatically add tool-calling label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^tests/tool_use/
|
||||
- files~=^tests/mistral_tool_use/
|
||||
- files~=^tests/entrypoints/openai/tool_parsers/
|
||||
- files=tests/entrypoints/openai/test_chat_with_tool_reasoning.py
|
||||
- files~=^vllm/entrypoints/openai/tool_parsers/
|
||||
@ -256,8 +274,9 @@ pull_request_rules:
|
||||
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
- -closed
|
||||
- label != stale
|
||||
- conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -271,10 +290,12 @@ pull_request_rules:
|
||||
|
||||
- name: assign reviewer for tensorizer changes
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer.py
|
||||
- files~=^vllm/model_executor/model_loader/tensorizer_loader.py
|
||||
- files~=^tests/entrypoints/openai/test_tensorizer_entrypoint.py
|
||||
- files~=^tests/tensorizer_loader/
|
||||
- files~=^tests/model_executor/model_loader/tensorizer_loader/
|
||||
actions:
|
||||
assign:
|
||||
users:
|
||||
@ -282,6 +303,7 @@ pull_request_rules:
|
||||
|
||||
- name: assign reviewer for modelopt changes
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^vllm/model_executor/layers/quantization/modelopt\.py$
|
||||
- files~=^vllm/model_executor/layers/quantization/__init__\.py$
|
||||
@ -296,9 +318,27 @@ pull_request_rules:
|
||||
|
||||
- name: remove 'needs-rebase' label when conflict is resolved
|
||||
conditions:
|
||||
- -conflict
|
||||
- -closed
|
||||
- -conflict
|
||||
- -closed
|
||||
actions:
|
||||
label:
|
||||
remove:
|
||||
- needs-rebase
|
||||
|
||||
- name: label-kv-connector
|
||||
description: Automatically apply kv-connector label
|
||||
conditions:
|
||||
- label != stale
|
||||
- or:
|
||||
- files~=^examples/online_serving/disaggregated[^/]*/.*
|
||||
- files~=^examples/offline_inference/disaggregated[^/]*/.*
|
||||
- files~=^examples/others/lmcache/
|
||||
- files~=^tests/v1/kv_connector/
|
||||
- files~=^vllm/distributed/kv_transfer/
|
||||
- title~=(?i)\bP/?D\b
|
||||
- title~=(?i)NIXL
|
||||
- title~=(?i)LMCache
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- kv-connector
|
138
.github/workflows/issue_autolabel.yml
vendored
138
.github/workflows/issue_autolabel.yml
vendored
@ -13,6 +13,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Label issues based on keywords
|
||||
id: label-step
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
script: |
|
||||
@ -42,7 +43,6 @@ jobs:
|
||||
searchIn: "body"
|
||||
},
|
||||
],
|
||||
|
||||
// Substring search - matches anywhere in text (partial matches)
|
||||
substrings: [
|
||||
{
|
||||
@ -89,14 +89,12 @@ jobs:
|
||||
term: "hip_",
|
||||
searchIn: "both"
|
||||
},
|
||||
|
||||
// ROCm tools and libraries
|
||||
{
|
||||
term: "hipify",
|
||||
searchIn: "both"
|
||||
},
|
||||
],
|
||||
|
||||
// Regex patterns - for complex pattern matching
|
||||
regexPatterns: [
|
||||
{
|
||||
@ -107,13 +105,17 @@ jobs:
|
||||
}
|
||||
],
|
||||
},
|
||||
// Add more label configurations here as needed
|
||||
// example: {
|
||||
// keywords: [...],
|
||||
// substrings: [...],
|
||||
// regexPatterns: [...]
|
||||
// },
|
||||
};
|
||||
|
||||
// Helper function to create regex based on search type
|
||||
function createSearchRegex(term, type) {
|
||||
// Escape special regex characters in the term
|
||||
const escapedTerm = term.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
||||
|
||||
switch (type) {
|
||||
case 'keyword':
|
||||
// Word boundary search - matches whole words only
|
||||
@ -125,16 +127,13 @@ jobs:
|
||||
throw new Error(`Unknown search type: ${type}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to find matching terms in text with line information
|
||||
function findMatchingTermsWithLines(text, searchTerms = [], searchType = 'keyword', searchLocation = '') {
|
||||
const matches = [];
|
||||
const lines = text.split('\n');
|
||||
|
||||
for (const termConfig of searchTerms) {
|
||||
let regex;
|
||||
let term, searchIn, pattern, description, flags;
|
||||
|
||||
// Handle different input formats (string or object)
|
||||
if (typeof termConfig === 'string') {
|
||||
term = termConfig;
|
||||
@ -146,21 +145,17 @@ jobs:
|
||||
description = termConfig.description;
|
||||
flags = termConfig.flags;
|
||||
}
|
||||
|
||||
// Skip if this term shouldn't be searched in the current location
|
||||
if (searchIn !== 'both' && searchIn !== searchLocation) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create appropriate regex
|
||||
if (searchType === 'regex') {
|
||||
regex = new RegExp(pattern, flags || "gi");
|
||||
} else {
|
||||
regex = createSearchRegex(term, searchType);
|
||||
}
|
||||
|
||||
const termMatches = [];
|
||||
|
||||
// Check each line for matches
|
||||
lines.forEach((line, lineIndex) => {
|
||||
const lineMatches = line.match(regex);
|
||||
@ -175,15 +170,14 @@ jobs:
|
||||
originalTerm: term || pattern,
|
||||
description: description,
|
||||
// Show context around the match in the line
|
||||
context: line.length > 100 ?
|
||||
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
||||
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
||||
context: line.length > 100 ?
|
||||
line.substring(Math.max(0, line.toLowerCase().indexOf(match.toLowerCase()) - 30),
|
||||
line.toLowerCase().indexOf(match.toLowerCase()) + match.length + 30) + '...'
|
||||
: line.trim()
|
||||
});
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
if (termMatches.length > 0) {
|
||||
matches.push({
|
||||
term: term || (description || pattern),
|
||||
@ -196,64 +190,48 @@ jobs:
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return matches;
|
||||
}
|
||||
|
||||
// Helper function to check if label should be added
|
||||
async function processLabel(labelName, config) {
|
||||
const body = context.payload.issue.body || "";
|
||||
const title = context.payload.issue.title || "";
|
||||
|
||||
core.notice(`Processing label: ${labelName}`);
|
||||
core.notice(`Issue Title: "${title}"`);
|
||||
core.notice(`Issue Body length: ${body.length} characters`);
|
||||
|
||||
let shouldAddLabel = false;
|
||||
let allMatches = [];
|
||||
let reason = '';
|
||||
|
||||
const keywords = config.keywords || [];
|
||||
const substrings = config.substrings || [];
|
||||
const regexPatterns = config.regexPatterns || [];
|
||||
|
||||
core.notice(`Searching with ${keywords.length} keywords, ${substrings.length} substrings, and ${regexPatterns.length} regex patterns`);
|
||||
|
||||
// Search in title
|
||||
if (title.trim()) {
|
||||
core.notice(`Searching in title: "${title}"`);
|
||||
|
||||
const titleKeywordMatches = findMatchingTermsWithLines(title, keywords, 'keyword', 'title');
|
||||
const titleSubstringMatches = findMatchingTermsWithLines(title, substrings, 'substring', 'title');
|
||||
const titleRegexMatches = findMatchingTermsWithLines(title, regexPatterns, 'regex', 'title');
|
||||
|
||||
allMatches.push(...titleKeywordMatches, ...titleSubstringMatches, ...titleRegexMatches);
|
||||
}
|
||||
|
||||
// Search in body
|
||||
if (body.trim()) {
|
||||
core.notice(`Searching in body (${body.length} characters)`);
|
||||
|
||||
const bodyKeywordMatches = findMatchingTermsWithLines(body, keywords, 'keyword', 'body');
|
||||
const bodySubstringMatches = findMatchingTermsWithLines(body, substrings, 'substring', 'body');
|
||||
const bodyRegexMatches = findMatchingTermsWithLines(body, regexPatterns, 'regex', 'body');
|
||||
|
||||
allMatches.push(...bodyKeywordMatches, ...bodySubstringMatches, ...bodyRegexMatches);
|
||||
}
|
||||
|
||||
if (allMatches.length > 0) {
|
||||
core.notice(`Found ${allMatches.length} matching term(s):`);
|
||||
|
||||
for (const termMatch of allMatches) {
|
||||
const locationText = termMatch.searchLocation === 'title' ? 'title' : 'body';
|
||||
const searchInText = termMatch.searchIn === 'both' ? 'both' : termMatch.searchIn;
|
||||
|
||||
if (termMatch.searchType === 'regex') {
|
||||
core.notice(` 📍 Regex: "${termMatch.term}" (pattern: ${termMatch.pattern}) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||
} else {
|
||||
core.notice(` 📍 Term: "${termMatch.term}" (${termMatch.searchType} search) found ${termMatch.count} time(s) in ${locationText} (configured to search in: ${searchInText}):`);
|
||||
}
|
||||
|
||||
// Show details for each match
|
||||
termMatch.matches.forEach((match, index) => {
|
||||
core.notice(` ${index + 1}. Line ${match.lineNumber} in ${match.searchLocation}: "${match.match}" [${match.searchType}]`);
|
||||
@ -266,7 +244,6 @@ jobs:
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
shouldAddLabel = true;
|
||||
const totalMatches = allMatches.reduce((sum, t) => sum + t.count, 0);
|
||||
const titleMatches = allMatches.filter(t => t.searchLocation === 'title').reduce((sum, t) => sum + t.count, 0);
|
||||
@ -274,13 +251,10 @@ jobs:
|
||||
const keywordMatches = allMatches.filter(t => t.searchType === 'keyword').reduce((sum, t) => sum + t.count, 0);
|
||||
const substringMatches = allMatches.filter(t => t.searchType === 'substring').reduce((sum, t) => sum + t.count, 0);
|
||||
const regexMatches = allMatches.filter(t => t.searchType === 'regex').reduce((sum, t) => sum + t.count, 0);
|
||||
|
||||
reason = `Found ${totalMatches} total matches (${titleMatches} in title, ${bodyMatches} in body) - ${keywordMatches} keyword matches, ${substringMatches} substring matches, ${regexMatches} regex matches`;
|
||||
}
|
||||
|
||||
core.notice(`Final decision: ${shouldAddLabel ? 'ADD LABEL' : 'DO NOT ADD LABEL'}`);
|
||||
core.notice(`Reason: ${reason || 'No matching terms found'}`);
|
||||
|
||||
if (shouldAddLabel) {
|
||||
const existingLabels = context.payload.issue.labels.map(l => l.name);
|
||||
if (!existingLabels.includes(labelName)) {
|
||||
@ -296,14 +270,92 @@ jobs:
|
||||
core.notice(`Label "${labelName}" already present.`);
|
||||
return false;
|
||||
}
|
||||
|
||||
core.notice(`No matching terms found for label "${labelName}".`);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Process all configured labels
|
||||
const processLabels = Object.entries(labelConfig)
|
||||
.map(([labelName, config]) => processLabel(labelName, config));
|
||||
const labelsAdded = await Promise.all(processLabels);
|
||||
const numLabelsAdded = labelsAdded.reduce((x, y) => x + y, 0);
|
||||
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
||||
const labelsAddedResults = await Promise.all(
|
||||
Object.entries(labelConfig).map(([labelName, config]) =>
|
||||
processLabel(labelName, config).then(added => ({ labelName, added }))
|
||||
)
|
||||
);
|
||||
|
||||
const numLabelsAdded = labelsAddedResults.filter(r => r.added).length;
|
||||
core.notice(`Processing complete. ${numLabelsAdded} label(s) added.`);
|
||||
|
||||
// Return which labels were added for the next step
|
||||
const addedLabels = labelsAddedResults.filter(r => r.added).map(r => r.labelName);
|
||||
core.setOutput('labels_added', JSON.stringify(addedLabels));
|
||||
return addedLabels;
|
||||
|
||||
- name: CC users for labeled issues
|
||||
if: steps.label-step.outputs.labels_added != '[]'
|
||||
uses: actions/github-script@ed597411d8f924073f98dfc5c65a23a2325f34cd # v8.0.0
|
||||
with:
|
||||
script: |
|
||||
// Configuration: Map labels to GitHub users to CC
|
||||
// You can add multiple users per label, and multiple label configurations
|
||||
const ccConfig = {
|
||||
rocm: {
|
||||
users: ['hongxiayang', 'tjtanaa', 'vllmellm'], // Add more users as needed: ['user1', 'user2', 'user3']
|
||||
message: 'CC {users} for ROCm-related issue' // {users} will be replaced with @mentions
|
||||
},
|
||||
// Add more label -> user mappings here
|
||||
// Example:
|
||||
// cuda: {
|
||||
// users: ['user1', 'user2'],
|
||||
// message: 'CC {users} for CUDA-related issue'
|
||||
// },
|
||||
// performance: {
|
||||
// users: ['perfexpert'],
|
||||
// message: 'CC {users} for performance issue'
|
||||
// },
|
||||
};
|
||||
|
||||
const labelsAdded = JSON.parse('${{ steps.label-step.outputs.labels_added }}');
|
||||
core.notice(`Labels added: ${labelsAdded.join(', ')}`);
|
||||
|
||||
// Get existing comments to check for already mentioned users
|
||||
const comments = await github.rest.issues.listComments({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
});
|
||||
|
||||
const issueBody = context.payload.issue.body || '';
|
||||
const allExistingText = issueBody + '\n' + comments.data.map(c => c.body).join('\n');
|
||||
|
||||
// Process each label that was added
|
||||
for (const label of labelsAdded) {
|
||||
if (ccConfig[label]) {
|
||||
const config = ccConfig[label];
|
||||
const usersToMention = [];
|
||||
|
||||
// Check which users haven't been mentioned yet
|
||||
for (const user of config.users) {
|
||||
const mentionPattern = new RegExp(`@${user}\\b`, 'i');
|
||||
if (!mentionPattern.test(allExistingText)) {
|
||||
usersToMention.push(user);
|
||||
} else {
|
||||
core.notice(`@${user} already mentioned for label "${label}", skipping`);
|
||||
}
|
||||
}
|
||||
|
||||
// Post comment if there are users to mention
|
||||
if (usersToMention.length > 0) {
|
||||
const mentions = usersToMention.map(u => `@${u}`).join(' ');
|
||||
const message = config.message.replace('{users}', mentions);
|
||||
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
body: message
|
||||
});
|
||||
|
||||
core.notice(`CC comment added for label "${label}": ${mentions}`);
|
||||
} else {
|
||||
core.notice(`All users for label "${label}" already mentioned, skipping comment`);
|
||||
}
|
||||
}
|
||||
}
|
2
.github/workflows/stale.yml
vendored
2
.github/workflows/stale.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
||||
actions: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@3a9db7e6a41a89f618792c92c0e97cc736e1b13f # v10.0.0
|
||||
- uses: actions/stale@5f858e3efba33a5ca4407a664cc011ad407f2008 # v10.1.0
|
||||
with:
|
||||
# Increasing this value ensures that changes to this workflow
|
||||
# propagate to all issues and PRs in days rather than months
|
||||
|
@ -4,7 +4,6 @@ MD013: false
|
||||
MD024:
|
||||
siblings_only: true
|
||||
MD033: false
|
||||
MD042: false
|
||||
MD045: false
|
||||
MD046: false
|
||||
MD051: false
|
||||
|
@ -6,30 +6,19 @@ default_stages:
|
||||
- manual # Run in CI
|
||||
exclude: 'vllm/third_party/.*'
|
||||
repos:
|
||||
- repo: https://github.com/google/yapf
|
||||
rev: v0.43.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
# Keep the same list from yapfignore here to avoid yapf failing without any inputs
|
||||
exclude: '(.buildkite|benchmarks|build|examples)/.*'
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.7
|
||||
rev: v0.14.0
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-check
|
||||
args: [--output-format, github, --fix]
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.35.5
|
||||
rev: v1.38.1
|
||||
hooks:
|
||||
- id: typos
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 6.0.1
|
||||
hooks:
|
||||
- id: isort
|
||||
args: [--force-exclude]
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v20.1.3
|
||||
rev: v21.1.2
|
||||
hooks:
|
||||
- id: clang-format
|
||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
||||
@ -46,10 +35,10 @@ repos:
|
||||
hooks:
|
||||
- id: actionlint
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
rev: 0.6.17
|
||||
rev: 0.9.1
|
||||
hooks:
|
||||
- id: pip-compile
|
||||
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128]
|
||||
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match, --torch-backend, cu128, --python-platform, x86_64-manylinux_2_28]
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- repo: local
|
||||
hooks:
|
||||
@ -60,38 +49,32 @@ repos:
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- id: mypy-local
|
||||
name: Run mypy for local Python installation
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests, pydantic]
|
||||
entry: python tools/pre_commit/mypy.py 0 "local"
|
||||
stages: [pre-commit] # Don't run in CI
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
entry: tools/mypy.sh 1 "3.9"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
stages: [manual] # Only run in CI
|
||||
<<: &mypy_common
|
||||
language: python
|
||||
types_or: [python, pyi]
|
||||
require_serial: true
|
||||
additional_dependencies: [mypy==1.11.1, regex, types-cachetools, types-setuptools, types-PyYAML, types-requests, types-torch, pydantic]
|
||||
- id: mypy-3.10 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.10
|
||||
entry: tools/mypy.sh 1 "3.10"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.10"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.11 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.11
|
||||
entry: tools/mypy.sh 1 "3.11"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.11"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.12 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.12
|
||||
entry: tools/mypy.sh 1 "3.12"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: *mypy_deps
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.12"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: mypy-3.13 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.13
|
||||
entry: python tools/pre_commit/mypy.py 1 "3.13"
|
||||
<<: *mypy_common
|
||||
stages: [manual] # Only run in CI
|
||||
- id: shellcheck
|
||||
name: Lint shell scripts
|
||||
@ -155,18 +138,15 @@ repos:
|
||||
additional_dependencies: [regex]
|
||||
- id: check-pickle-imports
|
||||
name: Prevent new pickle/cloudpickle imports
|
||||
entry: python tools/check_pickle_imports.py
|
||||
entry: python tools/pre_commit/check_pickle_imports.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: false
|
||||
additional_dependencies: [pathspec, regex]
|
||||
additional_dependencies: [regex]
|
||||
- id: validate-config
|
||||
name: Validate configuration has default values and that each field has a docstring
|
||||
entry: python tools/validate_config.py
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: true
|
||||
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
|
||||
additional_dependencies: [regex]
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
|
@ -13,6 +13,7 @@ build:
|
||||
|
||||
mkdocs:
|
||||
configuration: mkdocs.yaml
|
||||
fail_on_warning: true
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
|
136
CMakeLists.txt
136
CMakeLists.txt
@ -13,6 +13,10 @@ cmake_minimum_required(VERSION 3.26)
|
||||
# cmake --install . --component _C
|
||||
project(vllm_extensions LANGUAGES CXX)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
|
||||
|
||||
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
|
||||
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
|
||||
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
|
||||
@ -30,10 +34,10 @@ install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
#
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12" "3.13")
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.10" "3.11" "3.12" "3.13")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201;gfx1150;gfx1151")
|
||||
|
||||
#
|
||||
# Supported/expected torch versions for CUDA/ROCm.
|
||||
@ -82,6 +86,9 @@ find_package(Torch REQUIRED)
|
||||
# Supported NVIDIA architectures.
|
||||
# This check must happen after find_package(Torch) because that's when CMAKE_CUDA_COMPILER_VERSION gets defined
|
||||
if(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.5;8.0;8.6;8.7;8.9;9.0;10.0;11.0;12.0")
|
||||
elseif(DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
else()
|
||||
@ -171,6 +178,25 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set compression mode for CUDA >=13.x.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA" AND
|
||||
DEFINED CMAKE_CUDA_COMPILER_VERSION AND
|
||||
CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 13.0)
|
||||
list(APPEND VLLM_GPU_FLAGS "--compress-mode=size")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set CUDA include flags for CXX compiler.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -I${CUDA_TOOLKIT_ROOT_DIR}/include")
|
||||
if(CUDA_VERSION VERSION_GREATER_EQUAL 13.0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -I${CUDA_TOOLKIT_ROOT_DIR}/include/cccl")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
|
||||
# setup.py will override FETCHCONTENT_BASE_DIR to play nicely with sccache.
|
||||
@ -243,8 +269,8 @@ set(VLLM_EXT_SRC
|
||||
"csrc/sampler.cu"
|
||||
"csrc/cuda_view.cu"
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||
"csrc/quantization/fp8/common.cu"
|
||||
"csrc/quantization/w8a8/int8/scaled_quant.cu"
|
||||
"csrc/quantization/w8a8/fp8/common.cu"
|
||||
"csrc/quantization/fused_kernels/fused_layernorm_dynamic_per_token_quant.cu"
|
||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||
"csrc/quantization/activation_kernels.cu"
|
||||
@ -256,7 +282,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
||||
|
||||
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
|
||||
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
|
||||
set(CUTLASS_REVISION "v4.2.1" CACHE STRING "CUTLASS revision to use")
|
||||
|
||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
@ -288,14 +314,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_EXT_SRC
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/permute_cols.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/w8a8/cutlass/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp"
|
||||
"csrc/attention/mla/cutlass_mla_entry.cu"
|
||||
"csrc/quantization/fp8/per_token_group_quant.cu")
|
||||
"csrc/quantization/w8a8/fp8/per_token_group_quant.cu"
|
||||
"csrc/quantization/w8a8/int8/per_token_group_quant.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_EXT_SRC}"
|
||||
@ -399,11 +424,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm90.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_fp8.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm90_int8.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_azp_sm90_int8.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
@ -427,12 +452,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm120_fp8.cu"
|
||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm120.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm120_fp8.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm120_fp8.cu"
|
||||
)
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
@ -457,12 +486,16 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
|
||||
# require CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm100_fp8.cu"
|
||||
"csrc/quantization/w8a8/cutlass/scaled_mm_c3x_sm100.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_sm100_fp8.cu"
|
||||
"csrc/quantization/w8a8/cutlass/c3x/scaled_mm_blockwise_sm100_fp8.cu"
|
||||
)
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
@ -493,7 +526,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# subtract out the archs that are already built for 3x
|
||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||
if (SCALED_MM_2X_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu")
|
||||
set(SRCS "csrc/quantization/w8a8/cutlass/scaled_mm_c2x.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_2X_ARCHS}")
|
||||
@ -537,7 +570,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
|
||||
# The nvfp4_scaled_mm_sm120 kernels for Geforce Blackwell SM120 require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "12.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
@ -556,7 +593,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# FP4 Archs and flags
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a;10.1a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
@ -578,10 +619,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# CUTLASS MLA Archs and flags
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/attention/mla/cutlass_mla_kernels.cu"
|
||||
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
@ -605,7 +649,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# if it's possible to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
|
||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm90.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
@ -623,9 +667,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
|
||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/grouped_mm_c3x_sm100.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
@ -644,9 +692,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
# moe_data.cu is used by all CUTLASS MoE kernels.
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/moe_data.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
|
||||
@ -663,9 +715,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f;12.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;10.3a;12.0a;12.1a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
|
||||
set(SRCS "csrc/quantization/w8a8/cutlass/moe/blockwise_scaled_group_mm_sm100.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
@ -779,6 +835,17 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Hadacore kernels
|
||||
cuda_archs_loose_intersection(HADACORE_ARCHS "8.0;8.9;9.0" "${CUDA_ARCHS}")
|
||||
if(HADACORE_ARCHS)
|
||||
set(SRCS "csrc/quantization/hadamard/hadacore/hadamard_transform_cuda.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${HADACORE_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
message(STATUS "Building hadacore")
|
||||
endif()
|
||||
|
||||
# if CUDA endif
|
||||
endif()
|
||||
|
||||
@ -940,6 +1007,7 @@ endif()
|
||||
# For CUDA we also build and ship some external projects.
|
||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
include(cmake/external_projects/flashmla.cmake)
|
||||
include(cmake/external_projects/qutlass.cmake)
|
||||
|
||||
# vllm-flash-attn should be last as it overwrites some CMake functions
|
||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||
|
@ -21,6 +21,7 @@ Join us at the [PyTorch Conference, October 22-23](https://events.linuxfoundatio
|
||||
|
||||
*Latest News* 🔥
|
||||
|
||||
- [2025/09] We hosted [vLLM Toronto Meetup](https://luma.com/e80e0ymm) focused on tackling inference at scale and speculative decoding with speakers from NVIDIA and Red Hat! Please find the meetup slides [here](https://docs.google.com/presentation/d/1IYJYmJcu9fLpID5N5RbW_vO0XLo0CGOR14IXOjB61V8/edit?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shenzhen Meetup](https://mp.weixin.qq.com/s/k8ZBO1u2_2odgiKWH_GVTQ) focusing on the ecosystem around vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1Ua2SVKVSu-wp5vou_6ElraDt2bnKhiEA).
|
||||
- [2025/08] We hosted [vLLM Singapore Meetup](https://www.sginnovate.com/event/vllm-sg-meet). We shared V1 updates, disaggregated serving and MLLM speedups with speakers from Embedded LLM, AMD, WekaIO, and A*STAR. Please find the meetup slides [here](https://drive.google.com/drive/folders/1ncf3GyqLdqFaB6IeB834E5TZJPLAOiXZ?usp=sharing).
|
||||
- [2025/08] We hosted [vLLM Shanghai Meetup](https://mp.weixin.qq.com/s/pDmAXHcN7Iqc8sUKgJgGtg) focusing on building, developing, and integrating with vLLM! Please find the meetup slides [here](https://drive.google.com/drive/folders/1OvLx39wnCGy_WKq8SiVKf7YcxxYI3WCH).
|
||||
@ -148,6 +149,7 @@ Compute Resources:
|
||||
- Trainy
|
||||
- UC Berkeley
|
||||
- UC San Diego
|
||||
- Volcengine
|
||||
|
||||
Slack Sponsor: Anyscale
|
||||
|
||||
|
@ -1,874 +1,20 @@
|
||||
# Benchmarking vLLM
|
||||
# Benchmarks
|
||||
|
||||
This README guides you through running benchmark tests with the extensive
|
||||
datasets supported on vLLM. It’s a living document, updated as new features and datasets
|
||||
become available.
|
||||
This directory used to contain vLLM's benchmark scripts and utilities for performance testing and evaluation.
|
||||
|
||||
## Dataset Overview
|
||||
## Contents
|
||||
|
||||
<table style="width:100%; border-collapse: collapse;">
|
||||
<thead>
|
||||
<tr>
|
||||
<th style="width:15%; text-align: left;">Dataset</th>
|
||||
<th style="width:10%; text-align: center;">Online</th>
|
||||
<th style="width:10%; text-align: center;">Offline</th>
|
||||
<th style="width:65%; text-align: left;">Data Path</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td><strong>ShareGPT</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>ShareGPT4V (Image)</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>
|
||||
<code>wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json</code>
|
||||
<br>
|
||||
<div>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:</div>
|
||||
<code>wget http://images.cocodataset.org/zips/train2017.zip</code>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>ShareGPT4Video (Video)</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>
|
||||
<code>git clone https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video</code>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>BurstGPT</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Sonnet (deprecated)</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Random</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>synthetic</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>RandomMultiModal (Image/Video)</strong></td>
|
||||
<td style="text-align: center;">🟡</td>
|
||||
<td style="text-align: center;">🚧</td>
|
||||
<td><code>synthetic</code> </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Prefix Repetition</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>synthetic</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-VisionArena</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmarena-ai/VisionArena-Chat</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-InstructCoder</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>likaixin/InstructCoder</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-AIMO</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-Other</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-MTBench</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>philschmid/mt-bench</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-Blazedit</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>vdaita/edit_5k_char</code>, <code>vdaita/edit_10k_char</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Spec Bench</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Custom</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>Local file: <code>data.jsonl</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
- **Serving benchmarks**: Scripts for testing online inference performance (latency, throughput)
|
||||
- **Throughput benchmarks**: Scripts for testing offline batch inference performance
|
||||
- **Specialized benchmarks**: Tools for testing specific features like structured output, prefix caching, long document QA, request prioritization, and multi-modal inference
|
||||
- **Dataset utilities**: Framework for loading and sampling from various benchmark datasets (ShareGPT, HuggingFace datasets, synthetic data, etc.)
|
||||
|
||||
✅: supported
|
||||
## Usage
|
||||
|
||||
🟡: Partial support
|
||||
For detailed usage instructions, examples, and dataset information, see the [Benchmark CLI documentation](https://docs.vllm.ai/en/latest/contributing/benchmarks.html#benchmark-cli).
|
||||
|
||||
🚧: to be supported
|
||||
For full CLI reference see:
|
||||
|
||||
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`.
|
||||
For local `dataset-path`, please set `hf-name` to its Hugging Face ID like
|
||||
|
||||
```bash
|
||||
--dataset-path /datasets/VisionArena-Chat/ --hf-name lmarena-ai/VisionArena-Chat
|
||||
```
|
||||
|
||||
## 🚀 Example - Online Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
First start serving your model
|
||||
|
||||
```bash
|
||||
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
|
||||
```
|
||||
|
||||
Then run the benchmarking script
|
||||
|
||||
```bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
If successful, you will see the following output
|
||||
|
||||
```text
|
||||
============ Serving Benchmark Result ============
|
||||
Successful requests: 10
|
||||
Benchmark duration (s): 5.78
|
||||
Total input tokens: 1369
|
||||
Total generated tokens: 2212
|
||||
Request throughput (req/s): 1.73
|
||||
Output token throughput (tok/s): 382.89
|
||||
Total Token throughput (tok/s): 619.85
|
||||
---------------Time to First Token----------------
|
||||
Mean TTFT (ms): 71.54
|
||||
Median TTFT (ms): 73.88
|
||||
P99 TTFT (ms): 79.49
|
||||
-----Time per Output Token (excl. 1st token)------
|
||||
Mean TPOT (ms): 7.91
|
||||
Median TPOT (ms): 7.96
|
||||
P99 TPOT (ms): 8.03
|
||||
---------------Inter-token Latency----------------
|
||||
Mean ITL (ms): 7.74
|
||||
Median ITL (ms): 7.70
|
||||
P99 ITL (ms): 8.39
|
||||
==================================================
|
||||
```
|
||||
|
||||
### Custom Dataset
|
||||
|
||||
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
|
||||
|
||||
```json
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
|
||||
```bash
|
||||
# start server
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct
|
||||
```
|
||||
|
||||
```bash
|
||||
# run benchmarking script
|
||||
vllm bench serve --port 9001 --save-result --save-detailed \
|
||||
--backend vllm \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name custom \
|
||||
--dataset-path <path-to-your-data-jsonl> \
|
||||
--custom-skip-chat-template \
|
||||
--num-prompts 80 \
|
||||
--max-concurrency 1 \
|
||||
--temperature=0.3 \
|
||||
--top-p=0.75 \
|
||||
--result-dir "./log/"
|
||||
```
|
||||
|
||||
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
```bash
|
||||
# need a model with vision capability here
|
||||
vllm serve Qwen/Qwen2-VL-7B-Instruct
|
||||
```
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--endpoint-type openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||||
--hf-split train \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
```
|
||||
|
||||
``` bash
|
||||
vllm bench serve \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--dataset-name hf \
|
||||
--dataset-path likaixin/InstructCoder \
|
||||
--num-prompts 2048
|
||||
```
|
||||
|
||||
### Spec Bench Benchmark with Speculative Decoding
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
```
|
||||
|
||||
[SpecBench dataset](https://github.com/hemingkx/Spec-Bench)
|
||||
|
||||
Run all categories:
|
||||
|
||||
``` bash
|
||||
# Download the dataset using:
|
||||
# wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl
|
||||
|
||||
vllm bench serve \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--dataset-name spec_bench \
|
||||
--dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
|
||||
--num-prompts -1
|
||||
```
|
||||
|
||||
Available categories include `[writing, roleplay, reasoning, math, coding, extraction, stem, humanities, translation, summarization, qa, math_reasoning, rag]`.
|
||||
|
||||
Run only a specific category like "summarization":
|
||||
|
||||
``` bash
|
||||
vllm bench serve \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--dataset-name spec_bench \
|
||||
--dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
|
||||
--num-prompts -1
|
||||
--spec-bench-category "summarization"
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
|
||||
```bash
|
||||
vllm serve Qwen/Qwen2-VL-7B-Instruct
|
||||
```
|
||||
|
||||
`lmms-lab/LLaVA-OneVision-Data`:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--endpoint-type openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||||
--hf-split train \
|
||||
--hf-subset "chart2text(cauldron)" \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
`Aeala/ShareGPT_Vicuna_unfiltered`:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--endpoint-type openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
`AI-MO/aimo-validation-aime`:
|
||||
|
||||
``` bash
|
||||
vllm bench serve \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--num-prompts 10 \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
`philschmid/mt-bench`:
|
||||
|
||||
``` bash
|
||||
vllm bench serve \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path philschmid/mt-bench \
|
||||
--num-prompts 80
|
||||
```
|
||||
|
||||
`vdaita/edit_5k_char` or `vdaita/edit_10k_char`:
|
||||
|
||||
``` bash
|
||||
vllm bench serve \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path vdaita/edit_5k_char \
|
||||
--num-prompts 90 \
|
||||
--blazedit-min-distance 0.01 \
|
||||
--blazedit-max-distance 0.99
|
||||
```
|
||||
|
||||
### Running With Sampling Parameters
|
||||
|
||||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
parameters can be specified. Example client command:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--top-k 10 \
|
||||
--top-p 0.9 \
|
||||
--temperature 0.5 \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
### Running With Ramp-Up Request Rate
|
||||
|
||||
The benchmark tool also supports ramping up the request rate over the
|
||||
duration of the benchmark run. This can be useful for stress testing the
|
||||
server or finding the maximum throughput that it can handle, given some latency budget.
|
||||
|
||||
Two ramp-up strategies are supported:
|
||||
|
||||
- `linear`: Increases the request rate linearly from a start value to an end value.
|
||||
- `exponential`: Increases the request rate exponentially.
|
||||
|
||||
The following arguments can be used to control the ramp-up:
|
||||
|
||||
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
|
||||
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
|
||||
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
|
||||
|
||||
</details>
|
||||
|
||||
## 📈 Example - Offline Throughput Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
```bash
|
||||
vllm bench throughput \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path vllm/benchmarks/sonnet.txt \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
If successful, you will see the following output
|
||||
|
||||
```text
|
||||
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
|
||||
Total num prompt tokens: 5014
|
||||
Total num output tokens: 1500
|
||||
```
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
```bash
|
||||
vllm bench throughput \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||||
--num-prompts 1000 \
|
||||
--hf-split train
|
||||
```
|
||||
|
||||
The `num prompt tokens` now includes image token counts
|
||||
|
||||
```text
|
||||
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
|
||||
Total num prompt tokens: 14527
|
||||
Total num output tokens: 1280
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
|
||||
``` bash
|
||||
VLLM_WORKER_MULTIPROC_METHOD=spawn \
|
||||
VLLM_USE_V1=1 \
|
||||
vllm bench throughput \
|
||||
--dataset-name=hf \
|
||||
--dataset-path=likaixin/InstructCoder \
|
||||
--model=meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--input-len=1000 \
|
||||
--output-len=100 \
|
||||
--num-prompts=2048 \
|
||||
--async-engine \
|
||||
--speculative-config $'{"method": "ngram",
|
||||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||||
"prompt_lookup_min": 2}'
|
||||
```
|
||||
|
||||
```text
|
||||
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
|
||||
Total num prompt tokens: 261136
|
||||
Total num output tokens: 204800
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
|
||||
`lmms-lab/LLaVA-OneVision-Data`:
|
||||
|
||||
```bash
|
||||
vllm bench throughput \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||||
--hf-split train \
|
||||
--hf-subset "chart2text(cauldron)" \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
`Aeala/ShareGPT_Vicuna_unfiltered`:
|
||||
|
||||
```bash
|
||||
vllm bench throughput \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
`AI-MO/aimo-validation-aime`:
|
||||
|
||||
```bash
|
||||
vllm bench throughput \
|
||||
--model Qwen/QwQ-32B \
|
||||
--backend vllm \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
Benchmark with LoRA adapters:
|
||||
|
||||
``` bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
vllm bench throughput \
|
||||
--model meta-llama/Llama-2-7b-hf \
|
||||
--backend vllm \
|
||||
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--dataset_name sharegpt \
|
||||
--num-prompts 10 \
|
||||
--max-loras 2 \
|
||||
--max-lora-rank 8 \
|
||||
--enable-lora \
|
||||
--lora-path yard1/llama-2-7b-sql-lora-test
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 🛠️ Example - Structured Output Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of structured output generation (JSON, grammar, regex).
|
||||
|
||||
### Server Setup
|
||||
|
||||
```bash
|
||||
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
|
||||
```
|
||||
|
||||
### JSON Schema Benchmark
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### Grammar-based Generation Benchmark
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset grammar \
|
||||
--structure-type grammar \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### Regex-based Generation Benchmark
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset regex \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### Choice-based Generation Benchmark
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset choice \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### XGrammar Benchmark Dataset
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset xgrammar_bench \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 📚 Example - Long Document QA Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of long document question-answering with prefix caching.
|
||||
|
||||
### Basic Long Document QA Test
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 16 \
|
||||
--document-length 2000 \
|
||||
--output-len 50 \
|
||||
--repeat-count 5
|
||||
```
|
||||
|
||||
### Different Repeat Modes
|
||||
|
||||
```bash
|
||||
# Random mode (default) - shuffle prompts randomly
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 8 \
|
||||
--document-length 3000 \
|
||||
--repeat-count 3 \
|
||||
--repeat-mode random
|
||||
|
||||
# Tile mode - repeat entire prompt list in sequence
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 8 \
|
||||
--document-length 3000 \
|
||||
--repeat-count 3 \
|
||||
--repeat-mode tile
|
||||
|
||||
# Interleave mode - repeat each prompt consecutively
|
||||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-documents 8 \
|
||||
--document-length 3000 \
|
||||
--repeat-count 3 \
|
||||
--repeat-mode interleave
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 🗂️ Example - Prefix Caching Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the efficiency of automatic prefix caching.
|
||||
|
||||
### Fixed Prompt with Prefix Caching
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_prefix_caching.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--enable-prefix-caching \
|
||||
--num-prompts 1 \
|
||||
--repeat-count 100 \
|
||||
--input-length-range 128:256
|
||||
```
|
||||
|
||||
### ShareGPT Dataset with Prefix Caching
|
||||
|
||||
```bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
python3 benchmarks/benchmark_prefix_caching.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--enable-prefix-caching \
|
||||
--num-prompts 20 \
|
||||
--repeat-count 5 \
|
||||
--input-length-range 128:256
|
||||
```
|
||||
|
||||
### Prefix Repetition Dataset
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--dataset-name prefix_repetition \
|
||||
--num-prompts 100 \
|
||||
--prefix-repetition-prefix-len 512 \
|
||||
--prefix-repetition-suffix-len 128 \
|
||||
--prefix-repetition-num-prefixes 5 \
|
||||
--prefix-repetition-output-len 128
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## ⚡ Example - Request Prioritization Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of request prioritization in vLLM.
|
||||
|
||||
### Basic Prioritization Test
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_prioritization.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--input-len 128 \
|
||||
--output-len 64 \
|
||||
--num-prompts 100 \
|
||||
--scheduling-policy priority
|
||||
```
|
||||
|
||||
### Multiple Sequences per Prompt
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_prioritization.py \
|
||||
--model meta-llama/Llama-2-7b-chat-hf \
|
||||
--input-len 128 \
|
||||
--output-len 64 \
|
||||
--num-prompts 100 \
|
||||
--scheduling-policy priority \
|
||||
--n 2
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 👁️ Example - Multi-Modal Benchmark
|
||||
|
||||
<details>
|
||||
<summary>Show more</summary>
|
||||
|
||||
<br/>
|
||||
|
||||
Benchmark the performance of multi-modal requests in vLLM.
|
||||
|
||||
### Images (ShareGPT4V)
|
||||
|
||||
Start vLLM:
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--limit-mm-per-prompt '{"image": 1}' \
|
||||
--allowed-local-media-path /path/to/sharegpt4v/images
|
||||
```
|
||||
|
||||
Send requests with images:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path /path/to/ShareGPT4V/sharegpt4v_instruct_gpt4-vision_cap100k.json \
|
||||
--num-prompts 100 \
|
||||
--save-result \
|
||||
--result-dir ~/vllm_benchmark_results \
|
||||
--save-detailed \
|
||||
--endpoint /v1/chat/completion
|
||||
```
|
||||
|
||||
### Videos (ShareGPT4Video)
|
||||
|
||||
Start vLLM:
|
||||
|
||||
```bash
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--limit-mm-per-prompt '{"video": 1}' \
|
||||
--allowed-local-media-path /path/to/sharegpt4video/videos
|
||||
```
|
||||
|
||||
Send requests with videos:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path /path/to/ShareGPT4Video/llava_v1_5_mix665k_with_video_chatgpt72k_share4video28k.json \
|
||||
--num-prompts 100 \
|
||||
--save-result \
|
||||
--result-dir ~/vllm_benchmark_results \
|
||||
--save-detailed \
|
||||
--endpoint /v1/chat/completion
|
||||
```
|
||||
|
||||
### Synthetic Random Images (random-mm)
|
||||
|
||||
Generate synthetic image inputs alongside random text prompts to stress-test vision models without external datasets.
|
||||
|
||||
Notes:
|
||||
|
||||
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
|
||||
- Video sampling is not yet implemented.
|
||||
|
||||
Start the server (example):
|
||||
|
||||
```bash
|
||||
vllm serve Qwen/Qwen2.5-VL-3B-Instruct \
|
||||
--dtype bfloat16 \
|
||||
--max-model-len 16384 \
|
||||
--limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||||
--mm-processor-kwargs max_pixels=1003520
|
||||
```
|
||||
|
||||
Benchmark. It is recommended to use the flag `--ignore-eos` to simulate real responses. You can set the size of the output via the arg `random-output-len`.
|
||||
|
||||
Ex.1: Fixed number of items and a single image resolution, enforcing generation of approx 40 tokens:
|
||||
|
||||
```bash
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2.5-VL-3B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name random-mm \
|
||||
--num-prompts 100 \
|
||||
--max-concurrency 10 \
|
||||
--random-prefix-len 25 \
|
||||
--random-input-len 300 \
|
||||
--random-output-len 40 \
|
||||
--random-range-ratio 0.2 \
|
||||
--random-mm-base-items-per-request 2 \
|
||||
--random-mm-limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||||
--random-mm-bucket-config '{(224, 224, 1): 1.0}' \
|
||||
--request-rate inf \
|
||||
--ignore-eos \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
The number of items per request can be controlled by passing multiple image buckets:
|
||||
|
||||
```bash
|
||||
--random-mm-base-items-per-request 2 \
|
||||
--random-mm-num-mm-items-range-ratio 0.5 \
|
||||
--random-mm-limit-mm-per-prompt '{"image": 4, "video": 0}' \
|
||||
--random-mm-bucket-config '{(256, 256, 1): 0.7, (720, 1280, 1): 0.3}' \
|
||||
```
|
||||
|
||||
Flags specific to `random-mm`:
|
||||
|
||||
- `--random-mm-base-items-per-request`: base number of multimodal items per request.
|
||||
- `--random-mm-num-mm-items-range-ratio`: vary item count uniformly in the closed integer range [floor(n·(1−r)), ceil(n·(1+r))]. Set r=0 to keep it fixed; r=1 allows 0 items.
|
||||
- `--random-mm-limit-mm-per-prompt`: per-modality hard caps, e.g. '{"image": 3, "video": 0}'.
|
||||
- `--random-mm-bucket-config`: dict mapping (H, W, T) → probability. Entries with probability 0 are removed; remaining probabilities are renormalized to sum to 1. Use T=1 for images. Set any T>1 for videos (video sampling not yet supported).
|
||||
|
||||
Behavioral notes:
|
||||
|
||||
- If the requested base item count cannot be satisfied under the provided per-prompt limits, the tool raises an error rather than silently clamping.
|
||||
|
||||
How sampling works:
|
||||
|
||||
- Determine per-request item count k by sampling uniformly from the integer range defined by `--random-mm-base-items-per-request` and `--random-mm-num-mm-items-range-ratio`, then clamp k to at most the sum of per-modality limits.
|
||||
- For each of the k items, sample a bucket (H, W, T) according to the normalized probabilities in `--random-mm-bucket-config`, while tracking how many items of each modality have been added.
|
||||
- If a modality (e.g., image) reaches its limit from `--random-mm-limit-mm-per-prompt`, all buckets of that modality are excluded and the remaining bucket probabilities are renormalized before continuing.
|
||||
This should be seen as an edge case, and if this behavior can be avoided by setting `--random-mm-limit-mm-per-prompt` to a large number. Note that this might result in errors due to engine config `--limit-mm-per-prompt`.
|
||||
- The resulting request contains synthetic image data in `multi_modal_data` (OpenAI Chat format). When `random-mm` is used with the OpenAI Chat backend, prompts remain text and MM content is attached via `multi_modal_data`.
|
||||
|
||||
</details>
|
||||
- <https://docs.vllm.ai/en/latest/cli/bench/latency.html>
|
||||
- <https://docs.vllm.ai/en/latest/cli/bench/serve.html>
|
||||
- <https://docs.vllm.ai/en/latest/cli/bench/throughput.html>
|
||||
|
@ -149,3 +149,70 @@ The script follows a systematic process to find the optimal parameters:
|
||||
4. **Track Best Result**: Throughout the process, the script tracks the parameter combination that has yielded the highest valid throughput so far.
|
||||
|
||||
5. **Profile Collection**: For the best-performing run, the script saves the vLLM profiler output, which can be used for deep-dive performance analysis with tools like TensorBoard.
|
||||
|
||||
## Batched `auto_tune`
|
||||
|
||||
The `batch_auto_tune.sh` script allows you to run multiple `auto_tune.sh` experiments sequentially from a single configuration file. It iterates through a list of parameter sets, executes `auto_tune.sh` for each, and records the results back into the input file.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- **jq**: This script requires `jq` to parse the JSON configuration file.
|
||||
- **gcloud**: If you plan to upload results to Google Cloud Storage, the `gcloud` CLI must be installed and authenticated.
|
||||
|
||||
### How to Run
|
||||
|
||||
1. **Create a JSON configuration file**: Create a file (e.g., `runs_config.json`) containing an array of JSON objects. Each object defines the parameters for a single `auto_tune.sh` run.
|
||||
|
||||
2. **Execute the script**:
|
||||
|
||||
```bash
|
||||
bash batch_auto_tune.sh <path_to_json_file> [gcs_upload_path]
|
||||
```
|
||||
|
||||
- `<path_to_json_file>`: **Required.** Path to your JSON configuration file.
|
||||
- `[gcs_upload_path]`: **Optional.** A GCS path (e.g., `gs://my-bucket/benchmark-results`) where the detailed results and profiles for each run will be uploaded. If this is empty, the results will be available on the local filesystem (see the log for `RESULT_FILE=/path/to/results/file.txt`).
|
||||
|
||||
### Configuration File
|
||||
|
||||
The JSON configuration file should contain an array of objects. Each object's keys correspond to the configuration variables for `auto_tune.sh` (see the [Configuration table above](#configuration)). These keys will be converted to uppercase environment variables for each run.
|
||||
|
||||
Here is an example `runs_config.json` with two benchmark configurations:
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"base": "/home/user",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"system": "TPU", # OR GPU
|
||||
"tp": 8,
|
||||
"input_len": 128,
|
||||
"output_len": 2048,
|
||||
"max_model_len": 2300,
|
||||
"num_seqs_list": "128 256",
|
||||
"num_batched_tokens_list": "8192 16384"
|
||||
},
|
||||
{
|
||||
"base": "/home/user",
|
||||
"model": "meta-llama/Llama-3.1-70B-Instruct",
|
||||
"system": "TPU", # OR GPU
|
||||
"tp": 8,
|
||||
"input_len": 4000,
|
||||
"output_len": 16,
|
||||
"max_model_len": 4096,
|
||||
"num_seqs_list": "64 128",
|
||||
"num_batched_tokens_list": "4096 8192",
|
||||
"max_latency_allowed_ms": 500
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
### Output
|
||||
|
||||
The script modifies the input JSON file in place, adding the results of each run to the corresponding object. The following fields are added:
|
||||
|
||||
- `run_id`: A unique identifier for the run, derived from the timestamp.
|
||||
- `status`: The outcome of the run (`SUCCESS`, `FAILURE`, or `WARNING_NO_RESULT_FILE`).
|
||||
- `results`: The content of the `result.txt` file from the `auto_tune.sh` run.
|
||||
- `gcs_results`: The GCS URL where the run's artifacts are stored (if a GCS path was provided).
|
||||
|
||||
A summary of successful and failed runs is also printed to the console upon completion.
|
||||
|
@ -74,7 +74,7 @@ start_server() {
|
||||
local vllm_log=$4
|
||||
local profile_dir=$5
|
||||
|
||||
pkill -if vllm
|
||||
pkill -if "vllm serve" || true
|
||||
|
||||
# Define the common arguments as a bash array.
|
||||
# Each argument and its value are separate elements.
|
||||
@ -96,17 +96,22 @@ start_server() {
|
||||
# This correctly passes each element as a separate argument.
|
||||
if [[ -n "$profile_dir" ]]; then
|
||||
# Start server with profiling enabled
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
|
||||
VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir \
|
||||
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
||||
else
|
||||
# Start server without profiling
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 \
|
||||
VLLM_SERVER_DEV_MODE=1 \
|
||||
vllm serve "${common_args_array[@]}" > "$vllm_log" 2>&1 &
|
||||
fi
|
||||
local server_pid=$!
|
||||
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
# This line checks whether the server is still alive or not,
|
||||
# since that we should always have permission to send signal to the server process.
|
||||
kill -0 $server_pid 2> /dev/null || break
|
||||
|
||||
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
||||
@ -118,7 +123,7 @@ start_server() {
|
||||
done
|
||||
|
||||
if (( ! server_started )); then
|
||||
echo "server did not start within 10 minutes. Please check server log at $vllm_log".
|
||||
echo "server did not start within 10 minutes or crashed. Please check server log at $vllm_log".
|
||||
return 1
|
||||
else
|
||||
return 0
|
||||
@ -134,7 +139,7 @@ run_benchmark() {
|
||||
echo "vllm_log: $vllm_log"
|
||||
echo
|
||||
rm -f $vllm_log
|
||||
pkill -if vllm
|
||||
pkill -if "vllm serve" || true
|
||||
|
||||
echo "starting server..."
|
||||
# Call start_server without a profile_dir to avoid profiling overhead
|
||||
@ -227,7 +232,7 @@ run_benchmark() {
|
||||
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
|
||||
|
||||
pkill -if vllm
|
||||
pkill -if "vllm serve" || true
|
||||
sleep 10
|
||||
echo "===================="
|
||||
return 0
|
||||
@ -303,6 +308,6 @@ if (( $(echo "$best_throughput > 0" | bc -l) )); then
|
||||
else
|
||||
echo "No configuration met the latency requirements. Skipping final profiling run."
|
||||
fi
|
||||
pkill -if vllm
|
||||
pkill -if "vllm serve" || true
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
|
||||
|
128
benchmarks/auto_tune/batch_auto_tune.sh
Executable file
128
benchmarks/auto_tune/batch_auto_tune.sh
Executable file
@ -0,0 +1,128 @@
|
||||
#!/bin/bash
|
||||
|
||||
INPUT_JSON="$1"
|
||||
GCS_PATH="$2" # Optional GCS path for uploading results for each run
|
||||
|
||||
SCRIPT_DIR=$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")" &>/dev/null && pwd)
|
||||
AUTOTUNE_SCRIPT="$SCRIPT_DIR/auto_tune.sh"
|
||||
|
||||
if [[ -z "$INPUT_JSON" ]]; then
|
||||
echo "Error: Input JSON file not provided."
|
||||
echo "Usage: $0 <path_to_json_file> [gcs_upload_path]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [[ ! -f "$INPUT_JSON" ]]; then
|
||||
echo "Error: File not found at '$INPUT_JSON'"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v jq &> /dev/null; then
|
||||
echo "Error: 'jq' command not found. Please install jq to process the JSON input."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [[ -n "$GCS_PATH" ]] && ! command -v gcloud &> /dev/null; then
|
||||
echo "Error: 'gcloud' command not found, but a GCS_PATH was provided."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
SUCCESS_COUNT=0
|
||||
FAILURE_COUNT=0
|
||||
FAILED_RUNS=()
|
||||
SCRIPT_START_TIME=$(date +%s)
|
||||
|
||||
json_content=$(cat "$INPUT_JSON")
|
||||
if ! num_runs=$(echo "$json_content" | jq 'length'); then
|
||||
echo "Error: Invalid JSON in $INPUT_JSON. 'jq' failed to get array length." >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Found $num_runs benchmark configurations in $INPUT_JSON."
|
||||
echo "Starting benchmark runs..."
|
||||
echo "--------------------------------------------------"
|
||||
|
||||
for i in $(seq 0 $(($num_runs - 1))); do
|
||||
run_object=$(echo "$json_content" | jq ".[$i]")
|
||||
|
||||
RUN_START_TIME=$(date +%s)
|
||||
ENV_VARS_ARRAY=()
|
||||
# Dynamically create env vars from the JSON object's keys
|
||||
for key in $(echo "$run_object" | jq -r 'keys_unsorted[]'); do
|
||||
value=$(echo "$run_object" | jq -r ".$key")
|
||||
var_name=$(echo "$key" | tr '[:lower:]' '[:upper:]' | tr -cd 'A-Z0-9_')
|
||||
ENV_VARS_ARRAY+=("${var_name}=${value}")
|
||||
done
|
||||
|
||||
echo "Executing run #$((i+1))/$num_runs with parameters: ${ENV_VARS_ARRAY[*]}"
|
||||
|
||||
# Execute auto_tune.sh and capture output
|
||||
RUN_OUTPUT_FILE=$(mktemp)
|
||||
if env "${ENV_VARS_ARRAY[@]}" bash "$AUTOTUNE_SCRIPT" > >(tee -a "$RUN_OUTPUT_FILE") 2>&1; then
|
||||
STATUS="SUCCESS"
|
||||
((SUCCESS_COUNT++))
|
||||
else
|
||||
STATUS="FAILURE"
|
||||
((FAILURE_COUNT++))
|
||||
FAILED_RUNS+=("Run #$((i+1)): $(echo $run_object | jq -c .)")
|
||||
fi
|
||||
|
||||
RUN_OUTPUT=$(<"$RUN_OUTPUT_FILE")
|
||||
rm "$RUN_OUTPUT_FILE"
|
||||
|
||||
# Parse results and optionally upload them to GCS
|
||||
RUN_ID=""
|
||||
RESULTS=""
|
||||
GCS_RESULTS_URL=""
|
||||
if [[ "$STATUS" == "SUCCESS" ]]; then
|
||||
RESULT_FILE_PATH=$(echo "$RUN_OUTPUT" | grep 'RESULT_FILE=' | tail -n 1 | cut -d'=' -f2 | tr -s '/' || true)
|
||||
|
||||
if [[ -n "$RESULT_FILE_PATH" && -f "$RESULT_FILE_PATH" ]]; then
|
||||
RUN_ID=$(basename "$(dirname "$RESULT_FILE_PATH")")
|
||||
RESULT_DIR=$(dirname "$RESULT_FILE_PATH")
|
||||
RESULTS=$(cat "$RESULT_FILE_PATH")
|
||||
|
||||
if [[ -n "$GCS_PATH" ]]; then
|
||||
GCS_RESULTS_URL="${GCS_PATH}/${RUN_ID}"
|
||||
echo "Uploading results to GCS..."
|
||||
if gcloud storage rsync --recursive "$RESULT_DIR/" "$GCS_RESULTS_URL"; then
|
||||
echo "GCS upload successful."
|
||||
else
|
||||
echo "Warning: GCS upload failed for RUN_ID $RUN_ID."
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "Warning: Could not find result file for a successful run."
|
||||
STATUS="WARNING_NO_RESULT_FILE"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Add the results back into the JSON object for this run
|
||||
json_content=$(echo "$json_content" | jq --argjson i "$i" --arg run_id "$RUN_ID" --arg status "$STATUS" --arg results "$RESULTS" --arg gcs_results "$GCS_RESULTS_URL" \
|
||||
'.[$i] += {run_id: $run_id, status: $status, results: $results, gcs_results: $gcs_results}')
|
||||
|
||||
RUN_END_TIME=$(date +%s)
|
||||
echo "Run finished in $((RUN_END_TIME - RUN_START_TIME)) seconds. Status: $STATUS"
|
||||
echo "--------------------------------------------------"
|
||||
|
||||
# Save intermediate progress back to the file
|
||||
echo "$json_content" > "$INPUT_JSON.tmp" && mv "$INPUT_JSON.tmp" "$INPUT_JSON"
|
||||
|
||||
done
|
||||
|
||||
SCRIPT_END_TIME=$(date +%s)
|
||||
echo "All benchmark runs completed in $((SCRIPT_END_TIME - SCRIPT_START_TIME)) seconds."
|
||||
echo
|
||||
echo "====================== SUMMARY ======================"
|
||||
echo "Successful runs: $SUCCESS_COUNT"
|
||||
echo "Failed runs: $FAILURE_COUNT"
|
||||
echo "==================================================="
|
||||
|
||||
if [[ $FAILURE_COUNT -gt 0 ]]; then
|
||||
echo "Details of failed runs (see JSON file for full parameters):"
|
||||
for failed in "${FAILED_RUNS[@]}"; do
|
||||
echo " - $failed"
|
||||
done
|
||||
fi
|
||||
|
||||
echo "Updated results have been saved to '$INPUT_JSON'."
|
@ -8,7 +8,6 @@ import sys
|
||||
import time
|
||||
import traceback
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional, Union
|
||||
|
||||
import aiohttp
|
||||
import huggingface_hub.constants
|
||||
@ -28,13 +27,13 @@ class RequestFuncInput:
|
||||
prompt_len: int
|
||||
output_len: int
|
||||
model: str
|
||||
model_name: Optional[str] = None
|
||||
logprobs: Optional[int] = None
|
||||
extra_body: Optional[dict] = None
|
||||
multi_modal_content: Optional[dict | list[dict]] = None
|
||||
model_name: str | None = None
|
||||
logprobs: int | None = None
|
||||
extra_body: dict | None = None
|
||||
multi_modal_content: dict | list[dict] | None = None
|
||||
ignore_eos: bool = False
|
||||
language: Optional[str] = None
|
||||
request_id: Optional[str] = None
|
||||
language: str | None = None
|
||||
request_id: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -52,7 +51,7 @@ class RequestFuncOutput:
|
||||
|
||||
async def async_request_tgi(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
pbar: tqdm | None = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
@ -133,7 +132,7 @@ async def async_request_tgi(
|
||||
|
||||
async def async_request_trt_llm(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
pbar: tqdm | None = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
@ -204,7 +203,7 @@ async def async_request_trt_llm(
|
||||
|
||||
async def async_request_deepspeed_mii(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
pbar: tqdm | None = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("completions", "profile")), (
|
||||
@ -267,7 +266,7 @@ async def async_request_deepspeed_mii(
|
||||
|
||||
async def async_request_openai_completions(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
pbar: tqdm | None = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("completions", "profile")), (
|
||||
@ -367,7 +366,7 @@ async def async_request_openai_completions(
|
||||
|
||||
async def async_request_openai_chat_completions(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
pbar: tqdm | None = None,
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(("chat/completions", "profile")), (
|
||||
@ -476,7 +475,7 @@ async def async_request_openai_chat_completions(
|
||||
|
||||
async def async_request_openai_audio(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
pbar: tqdm | None = None,
|
||||
) -> RequestFuncOutput:
|
||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||
import soundfile
|
||||
@ -610,7 +609,7 @@ def get_tokenizer(
|
||||
tokenizer_mode: str = "auto",
|
||||
trust_remote_code: bool = False,
|
||||
**kwargs,
|
||||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||
) -> PreTrainedTokenizer | PreTrainedTokenizerFast:
|
||||
if pretrained_model_name_or_path is not None and not os.path.exists(
|
||||
pretrained_model_name_or_path
|
||||
):
|
||||
|
@ -2,9 +2,9 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import gc
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from tabulate import tabulate
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.v1.core.block_pool import BlockPool
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,17 +1,31 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import gc
|
||||
import time
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
from benchmark_utils import TimeCollector
|
||||
from tabulate import tabulate
|
||||
|
||||
from benchmark_utils import TimeCollector
|
||||
from vllm.config import ModelConfig, SpeculativeConfig, VllmConfig
|
||||
from vllm.config import (
|
||||
CacheConfig,
|
||||
DeviceConfig,
|
||||
LoadConfig,
|
||||
ModelConfig,
|
||||
ParallelConfig,
|
||||
SchedulerConfig,
|
||||
SpeculativeConfig,
|
||||
VllmConfig,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.v1.spec_decode.ngram_proposer import NgramProposer
|
||||
from vllm.v1.worker.gpu_input_batch import InputBatch
|
||||
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
||||
|
||||
|
||||
def main(args):
|
||||
def benchmark_propose(args):
|
||||
rows = []
|
||||
for max_ngram in args.max_ngram:
|
||||
collector = TimeCollector(TimeCollector.US)
|
||||
@ -69,10 +83,88 @@ def main(args):
|
||||
)
|
||||
|
||||
|
||||
def benchmark_batched_propose(args):
|
||||
NUM_SPECULATIVE_TOKENS_NGRAM = 10
|
||||
PROMPT_LOOKUP_MIN = 5
|
||||
PROMPT_LOOKUP_MAX = 15
|
||||
MAX_MODEL_LEN = int(1e7)
|
||||
DEVICE = current_platform.device_type
|
||||
|
||||
model_config = ModelConfig(model="facebook/opt-125m", runner="generate")
|
||||
|
||||
speculative_config = SpeculativeConfig(
|
||||
target_model_config=model_config,
|
||||
target_parallel_config=ParallelConfig(),
|
||||
method="ngram",
|
||||
num_speculative_tokens=NUM_SPECULATIVE_TOKENS_NGRAM,
|
||||
prompt_lookup_max=PROMPT_LOOKUP_MAX,
|
||||
prompt_lookup_min=PROMPT_LOOKUP_MIN,
|
||||
)
|
||||
|
||||
vllm_config = VllmConfig(
|
||||
model_config=model_config,
|
||||
cache_config=CacheConfig(),
|
||||
speculative_config=speculative_config,
|
||||
device_config=DeviceConfig(device=current_platform.device_type),
|
||||
parallel_config=ParallelConfig(),
|
||||
load_config=LoadConfig(),
|
||||
scheduler_config=SchedulerConfig(),
|
||||
)
|
||||
|
||||
# monkey patch vllm.v1.worker.gpu_model_runner.get_pp_group
|
||||
mock_pp_group = mock.MagicMock()
|
||||
mock_pp_group.world_size = 1
|
||||
with mock.patch(
|
||||
"vllm.v1.worker.gpu_model_runner.get_pp_group", return_value=mock_pp_group
|
||||
):
|
||||
runner = GPUModelRunner(vllm_config, DEVICE)
|
||||
|
||||
# hack max model len
|
||||
runner.max_model_len = MAX_MODEL_LEN
|
||||
runner.drafter.max_model_len = MAX_MODEL_LEN
|
||||
|
||||
dummy_input_batch = InputBatch(
|
||||
max_num_reqs=args.num_req,
|
||||
max_model_len=MAX_MODEL_LEN,
|
||||
max_num_batched_tokens=args.num_req * args.num_token,
|
||||
device=DEVICE,
|
||||
pin_memory=False,
|
||||
vocab_size=256000,
|
||||
block_sizes=[16],
|
||||
)
|
||||
dummy_input_batch._req_ids = list(str(id) for id in range(args.num_req))
|
||||
dummy_input_batch.spec_decode_unsupported_reqs = ()
|
||||
dummy_input_batch.num_tokens_no_spec = [args.num_token] * args.num_req
|
||||
dummy_input_batch.token_ids_cpu = np.random.randint(
|
||||
0, 20, (args.num_req, args.num_token)
|
||||
)
|
||||
|
||||
runner.input_batch = dummy_input_batch
|
||||
|
||||
sampled_token_ids = [[0]] * args.num_req
|
||||
|
||||
print("Starting benchmark")
|
||||
# first run is warmup so ignore it
|
||||
for _ in range(args.num_iteration):
|
||||
start = time.time()
|
||||
runner.drafter.propose(
|
||||
sampled_token_ids,
|
||||
dummy_input_batch.req_ids,
|
||||
dummy_input_batch.num_tokens_no_spec,
|
||||
dummy_input_batch.token_ids_cpu,
|
||||
dummy_input_batch.spec_decode_unsupported_reqs,
|
||||
)
|
||||
end = time.time()
|
||||
print(f"Iteration time (s): {end - start}")
|
||||
|
||||
|
||||
def invoke_main() -> None:
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the performance of N-gram speculative decode drafting"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batched", action="store_true", help="consider time to prepare batch"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-iteration",
|
||||
type=int,
|
||||
@ -105,8 +197,17 @@ def invoke_main() -> None:
|
||||
help="Number of speculative tokens to generate",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
if not args.batched:
|
||||
benchmark_propose(args)
|
||||
else:
|
||||
benchmark_batched_propose(args)
|
||||
|
||||
|
||||
"""
|
||||
# Example command lines:
|
||||
# time python3 benchmarks/benchmark_ngram_proposer.py
|
||||
# time python3 benchmarks/benchmark_ngram_proposer.py --batched --num-iteration 4 --num-token 1000000 --num-req 128
|
||||
""" # noqa: E501
|
||||
if __name__ == "__main__":
|
||||
invoke_main() # pragma: no cover
|
||||
|
@ -32,7 +32,6 @@ import dataclasses
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
@ -80,7 +79,7 @@ def sample_requests_from_dataset(
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_length_range: tuple[int, int],
|
||||
fixed_output_len: Optional[int],
|
||||
fixed_output_len: int | None,
|
||||
) -> list[Request]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
@ -128,7 +127,7 @@ def sample_requests_from_random(
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_length_range: tuple[int, int],
|
||||
fixed_output_len: Optional[int],
|
||||
fixed_output_len: int | None,
|
||||
prefix_len: int,
|
||||
) -> list[Request]:
|
||||
requests = []
|
||||
|
@ -7,7 +7,6 @@ import dataclasses
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
@ -24,7 +23,7 @@ def sample_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
fixed_output_len: Optional[int],
|
||||
fixed_output_len: int | None,
|
||||
) -> list[tuple[str, int, int, int]]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
@ -31,20 +31,19 @@ import time
|
||||
import uuid
|
||||
import warnings
|
||||
from collections.abc import AsyncGenerator
|
||||
from contextlib import nullcontext
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
from backend_request_func import (
|
||||
ASYNC_REQUEST_FUNCS,
|
||||
RequestFuncInput,
|
||||
RequestFuncOutput,
|
||||
)
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
try:
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
@ -317,7 +316,7 @@ def calculate_metrics(
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[float],
|
||||
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||
goodput_config_dict: dict[str, float] | None = None,
|
||||
) -> tuple[BenchmarkMetrics, list[int]]:
|
||||
actual_output_lens: list[int] = []
|
||||
total_input = 0
|
||||
@ -437,9 +436,9 @@ async def benchmark(
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[str],
|
||||
ignore_eos: bool,
|
||||
max_concurrency: Optional[int],
|
||||
max_concurrency: int | None,
|
||||
structured_output_ratio: float,
|
||||
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||
goodput_config_dict: dict[str, float] | None = None,
|
||||
):
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||
@ -449,7 +448,8 @@ async def benchmark(
|
||||
def prepare_extra_body(request) -> dict:
|
||||
extra_body = {}
|
||||
# Add the schema to the extra_body
|
||||
extra_body[request.structure_type] = request.schema
|
||||
extra_body["structured_outputs"] = {}
|
||||
extra_body["structured_outputs"][request.structure_type] = request.schema
|
||||
return extra_body
|
||||
|
||||
print("Starting initial single prompt test run...")
|
||||
@ -502,15 +502,9 @@ async def benchmark(
|
||||
|
||||
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
|
||||
|
||||
# This can be used once the minimum Python version is 3.10 or higher,
|
||||
# and it will simplify the code in limited_request_func.
|
||||
# semaphore = (asyncio.Semaphore(max_concurrency)
|
||||
# if max_concurrency else contextlib.nullcontext())
|
||||
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None
|
||||
semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else nullcontext()
|
||||
|
||||
async def limited_request_func(request_func_input, pbar):
|
||||
if semaphore is None:
|
||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
async with semaphore:
|
||||
return await request_func(request_func_input=request_func_input, pbar=pbar)
|
||||
|
||||
@ -696,11 +690,11 @@ def evaluate(ret, args):
|
||||
return re.match(args.regex, actual) is not None
|
||||
|
||||
def _eval_correctness(expected, actual):
|
||||
if args.structure_type == "guided_json":
|
||||
if args.structure_type == "json":
|
||||
return _eval_correctness_json(expected, actual)
|
||||
elif args.structure_type == "guided_regex":
|
||||
elif args.structure_type == "regex":
|
||||
return _eval_correctness_regex(expected, actual)
|
||||
elif args.structure_type == "guided_choice":
|
||||
elif args.structure_type == "choice":
|
||||
return _eval_correctness_choice(expected, actual)
|
||||
else:
|
||||
return None
|
||||
@ -780,18 +774,18 @@ def main(args: argparse.Namespace):
|
||||
)
|
||||
|
||||
if args.dataset == "grammar":
|
||||
args.structure_type = "guided_grammar"
|
||||
args.structure_type = "grammar"
|
||||
elif args.dataset == "regex":
|
||||
args.structure_type = "guided_regex"
|
||||
args.structure_type = "regex"
|
||||
elif args.dataset == "choice":
|
||||
args.structure_type = "guided_choice"
|
||||
args.structure_type = "choice"
|
||||
else:
|
||||
args.structure_type = "guided_json"
|
||||
args.structure_type = "json"
|
||||
|
||||
if args.no_structured_output:
|
||||
args.structured_output_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f"{args.structured_output_ratio}guided"
|
||||
result_file_name = f"{args.structured_output_ratio}so"
|
||||
result_file_name += f"_{backend}"
|
||||
result_file_name += f"_{args.request_rate}qps"
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
@ -909,13 +903,13 @@ def create_argument_parser():
|
||||
parser.add_argument(
|
||||
"--tokenizer",
|
||||
type=str,
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer-mode",
|
||||
type=str,
|
||||
default="auto",
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
help="Name or path of the tokenizer, if not using the default tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
|
@ -6,7 +6,7 @@ import math
|
||||
import os
|
||||
import time
|
||||
from types import TracebackType
|
||||
from typing import Any, Optional, Union
|
||||
from typing import Any
|
||||
|
||||
|
||||
def convert_to_pytorch_benchmark_format(
|
||||
@ -92,7 +92,7 @@ class TimeCollector:
|
||||
def __init__(self, scale: int) -> None:
|
||||
self.cnt: int = 0
|
||||
self._sum: int = 0
|
||||
self._max: Optional[int] = None
|
||||
self._max: int | None = None
|
||||
self.scale = scale
|
||||
self.start_time: int = time.monotonic_ns()
|
||||
|
||||
@ -104,13 +104,13 @@ class TimeCollector:
|
||||
else:
|
||||
self._max = max(self._max, v)
|
||||
|
||||
def avg(self) -> Union[float, str]:
|
||||
def avg(self) -> float | str:
|
||||
return self._sum * 1.0 / self.cnt / self.scale if self.cnt > 0 else "N/A"
|
||||
|
||||
def max(self) -> Union[float, str]:
|
||||
def max(self) -> float | str:
|
||||
return self._max / self.scale if self._max else "N/A"
|
||||
|
||||
def dump_avg_max(self) -> list[Union[float, str]]:
|
||||
def dump_avg_max(self) -> list[float | str]:
|
||||
return [self.avg(), self.max()]
|
||||
|
||||
def __enter__(self) -> None:
|
||||
@ -118,8 +118,8 @@ class TimeCollector:
|
||||
|
||||
def __exit__(
|
||||
self,
|
||||
exc_type: Optional[type[BaseException]],
|
||||
exc_value: Optional[BaseException],
|
||||
exc_traceback: Optional[TracebackType],
|
||||
exc_type: type[BaseException] | None,
|
||||
exc_value: BaseException | None,
|
||||
exc_traceback: TracebackType | None,
|
||||
) -> None:
|
||||
self.collect(time.monotonic_ns() - self.start_time)
|
||||
|
@ -6,8 +6,7 @@ import copy
|
||||
import itertools
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable
|
||||
from collections.abc import Callable, Iterable
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
|
@ -6,8 +6,7 @@ import copy
|
||||
import itertools
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, Optional
|
||||
from collections.abc import Callable, Iterable
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
@ -17,7 +16,7 @@ from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul,
|
||||
w8a8_triton_block_scaled_mm,
|
||||
)
|
||||
from vllm.utils import FlexibleArgumentParser, cdiv
|
||||
|
||||
@ -53,7 +52,7 @@ def bench_int8(
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
bench_kernels: list[str] | None = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
"""Benchmark INT8-based kernels."""
|
||||
assert dtype == torch.int8
|
||||
@ -108,7 +107,7 @@ def bench_fp8(
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
bench_kernels: list[str] | None = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
"""Benchmark FP8-based kernels."""
|
||||
assert dtype == torch.float8_e4m3fn
|
||||
@ -158,7 +157,7 @@ def bench_fp8(
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias": lambda: ops.cutlass_scaled_mm(
|
||||
a, b, scale_a, scale_b, torch.float16, bias.to(dtype=torch.float16)
|
||||
),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_block_fp8_matmul(
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise": lambda: w8a8_triton_block_scaled_mm(
|
||||
a_cont, b.t(), block_scale_a, block_scale_b.t(), (128, 128)
|
||||
),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise": lambda: ops.cutlass_scaled_mm(
|
||||
@ -183,7 +182,7 @@ def bench(
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
bench_kernels: list[str] | None = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
if dtype == torch.int8:
|
||||
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||
@ -201,7 +200,7 @@ def print_timers(timers: Iterable[TMeasurement]):
|
||||
def run(
|
||||
dtype: torch.dtype,
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
bench_kernels: Optional[list[str]] = None,
|
||||
bench_kernels: list[str] | None = None,
|
||||
) -> Iterable[TMeasurement]:
|
||||
results = []
|
||||
for m, k, n in MKNs:
|
||||
|
@ -55,9 +55,7 @@ benchmark() {
|
||||
output_len=$2
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
@ -65,9 +63,7 @@ benchmark() {
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
|
@ -38,16 +38,12 @@ wait_for_server() {
|
||||
launch_chunked_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
--gpu-memory-utilization 0.6 &
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--enable-chunked-prefill \
|
||||
@ -62,18 +58,14 @@ launch_chunked_prefill() {
|
||||
launch_disagg_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=0 vllm serve $model \
|
||||
--port 8100 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
--model $model \
|
||||
CUDA_VISIBLE_DEVICES=1 vllm serve $model \
|
||||
--port 8200 \
|
||||
--max-model-len 10000 \
|
||||
--gpu-memory-utilization 0.6 \
|
||||
|
@ -3,10 +3,9 @@
|
||||
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from collections.abc import Callable, Iterable
|
||||
from dataclasses import dataclass
|
||||
from itertools import product
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
@ -51,7 +50,7 @@ def get_bench_params() -> list[bench_params_t]:
|
||||
def unfused_int8_impl(
|
||||
rms_norm_layer: RMSNorm,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
residual: torch.Tensor | None,
|
||||
quant_dtype: torch.dtype,
|
||||
):
|
||||
# Norm
|
||||
@ -68,7 +67,7 @@ def unfused_int8_impl(
|
||||
def unfused_fp8_impl(
|
||||
rms_norm_layer: RMSNorm,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
residual: torch.Tensor | None,
|
||||
quant_dtype: torch.dtype,
|
||||
):
|
||||
# Norm
|
||||
@ -85,7 +84,7 @@ def unfused_fp8_impl(
|
||||
def fused_impl(
|
||||
rms_norm_layer: RMSNorm, # this stores the weights
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
residual: torch.Tensor | None,
|
||||
quant_dtype: torch.dtype,
|
||||
):
|
||||
out, _ = ops.rms_norm_dynamic_per_token_quant(
|
||||
|
191
benchmarks/kernels/bench_mxfp4_qutlass.py
Normal file
191
benchmarks/kernels/bench_mxfp4_qutlass.py
Normal file
@ -0,0 +1,191 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
#
|
||||
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
|
||||
# All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm._custom_ops import fusedQuantizeMx, matmul_mxf4_bf16_tn
|
||||
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
PROVIDER_CFGS = {
|
||||
"torch-bf16": dict(enabled=True),
|
||||
"mxfp4": dict(no_a_quant=False, enabled=True),
|
||||
"mxfp4-noquant": dict(no_a_quant=True, enabled=True),
|
||||
}
|
||||
|
||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
||||
|
||||
|
||||
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
|
||||
return (
|
||||
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
|
||||
* group_size**-0.5
|
||||
)
|
||||
|
||||
|
||||
def _quant_weight_mxfp4(
|
||||
b: torch.Tensor, forward_hadamard_matrix: torch.Tensor, device: str
|
||||
):
|
||||
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeMx(
|
||||
b, forward_hadamard_matrix, method="abs_max"
|
||||
)
|
||||
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton")
|
||||
return weight_hf_e2m1, weight_hf_scale_block
|
||||
|
||||
|
||||
def build_mxfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device):
|
||||
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_mxfp4(
|
||||
b, forward_hadamard_matrix, device
|
||||
)
|
||||
alpha = torch.tensor([1.0], device="cuda")
|
||||
|
||||
if cfg["no_a_quant"]:
|
||||
# Pre-quantize activation
|
||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
|
||||
a, forward_hadamard_matrix, method="abs_max"
|
||||
)
|
||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
|
||||
|
||||
def run():
|
||||
return matmul_mxf4_bf16_tn(
|
||||
input_hf_e2m1,
|
||||
weight_hf_e2m1,
|
||||
input_hf_scale_block,
|
||||
weight_hf_scale_block,
|
||||
alpha,
|
||||
)
|
||||
|
||||
return run
|
||||
|
||||
# Quantize activation on-the-fly
|
||||
def run():
|
||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeMx(
|
||||
a, forward_hadamard_matrix, method="abs_max"
|
||||
)
|
||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton")
|
||||
return matmul_mxf4_bf16_tn(
|
||||
input_hf_e2m1,
|
||||
weight_hf_e2m1,
|
||||
input_hf_scale_block,
|
||||
weight_hf_scale_block,
|
||||
alpha,
|
||||
)
|
||||
|
||||
return run
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size"],
|
||||
x_vals=[
|
||||
1,
|
||||
4,
|
||||
8,
|
||||
16,
|
||||
32,
|
||||
64,
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
1024,
|
||||
2048,
|
||||
4096,
|
||||
8192,
|
||||
16384,
|
||||
24576,
|
||||
32768,
|
||||
],
|
||||
x_log=False,
|
||||
line_arg="provider",
|
||||
line_vals=_enabled,
|
||||
line_names=_enabled,
|
||||
ylabel="TFLOP/s (larger is better)",
|
||||
plot_name="BF16 vs MXFP4 GEMMs",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark(batch_size, provider, N, K, had_size):
|
||||
M = batch_size
|
||||
device = "cuda"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
||||
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "torch-bf16":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
|
||||
)
|
||||
else:
|
||||
cfg = PROVIDER_CFGS[provider]
|
||||
run_quant = build_mxfp4_runner(
|
||||
cfg, a, b, forward_hadamard_matrix, dtype, device
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: run_quant(), rep=200, quantiles=quantiles
|
||||
)
|
||||
|
||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
||||
|
||||
|
||||
def prepare_shapes(args):
|
||||
out = []
|
||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
||||
KN[tp_dim] //= tp_size
|
||||
KN.append(model)
|
||||
out.append(KN)
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=["meta-llama/Llama-3.3-70B-Instruct"],
|
||||
choices=list(WEIGHT_SHAPES.keys()),
|
||||
)
|
||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
|
||||
args = parser.parse_args()
|
||||
|
||||
for K, N, model in prepare_shapes(args):
|
||||
for had_size in [32, 64, 128]:
|
||||
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs MXFP4 GEMMs TFLOP/s:")
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_mxfp4_res_n{N}_k{K}",
|
||||
N=N,
|
||||
K=K,
|
||||
had_size=had_size,
|
||||
)
|
||||
|
||||
print("Benchmark finished!")
|
@ -3,6 +3,7 @@
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
import os
|
||||
|
||||
import torch
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
@ -23,21 +24,45 @@ PROVIDER_CFGS = {
|
||||
"torch-bf16": dict(enabled=True),
|
||||
"nvfp4": dict(no_a_quant=False, enabled=True),
|
||||
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
||||
"fbgemm-nvfp4": dict(fbgemm=True, no_a_quant=False, enabled=True),
|
||||
"fbgemm-nvfp4-noquant": dict(fbgemm=True, no_a_quant=True, enabled=True),
|
||||
}
|
||||
|
||||
_needs_fbgemm = any(
|
||||
v.get("fbgemm", False) for v in PROVIDER_CFGS.values() if v.get("enabled", False)
|
||||
)
|
||||
if _needs_fbgemm:
|
||||
try:
|
||||
from fbgemm_gpu.experimental.gemm.triton_gemm.fp4_quantize import (
|
||||
triton_scale_nvfp4_quant,
|
||||
)
|
||||
except ImportError:
|
||||
print(
|
||||
"WARNING: FBGEMM providers are enabled but fbgemm_gpu is not installed. "
|
||||
"These providers will be skipped. Please install fbgemm_gpu with: "
|
||||
"'pip install fbgemm-gpu-genai' to run them."
|
||||
)
|
||||
# Disable FBGEMM providers so the benchmark can run.
|
||||
for cfg in PROVIDER_CFGS.values():
|
||||
if cfg.get("fbgemm"):
|
||||
cfg["enabled"] = False
|
||||
|
||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
||||
|
||||
|
||||
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
|
||||
def _quant_weight_nvfp4(b: torch.Tensor, device: str, cfg):
|
||||
# Compute global scale for weight
|
||||
b_amax = torch.abs(b).max().to(torch.float32)
|
||||
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
|
||||
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
||||
b_fp4, scale_b_fp4 = triton_scale_nvfp4_quant(b, b_global_scale)
|
||||
else:
|
||||
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
|
||||
return b_fp4, scale_b_fp4, b_global_scale
|
||||
|
||||
|
||||
def build_nvfp4_runner(cfg, a, b, dtype, device):
|
||||
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
|
||||
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device, cfg)
|
||||
|
||||
# Compute global scale for activation
|
||||
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
|
||||
@ -46,6 +71,35 @@ def build_nvfp4_runner(cfg, a, b, dtype, device):
|
||||
|
||||
# Alpha for the GEMM operation
|
||||
alpha = 1.0 / (a_global_scale * b_global_scale)
|
||||
if "fbgemm" in cfg and cfg["fbgemm"]:
|
||||
if cfg["no_a_quant"]:
|
||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
||||
|
||||
def run():
|
||||
return torch.ops.fbgemm.f4f4bf16(
|
||||
a_fp4,
|
||||
b_fp4,
|
||||
scale_a_fp4,
|
||||
scale_b_fp4,
|
||||
global_scale=alpha,
|
||||
use_mx=False,
|
||||
)
|
||||
|
||||
return run
|
||||
else:
|
||||
|
||||
def run():
|
||||
a_fp4, scale_a_fp4 = triton_scale_nvfp4_quant(a, a_global_scale)
|
||||
return torch.ops.fbgemm.f4f4bf16(
|
||||
a_fp4,
|
||||
b_fp4,
|
||||
scale_a_fp4,
|
||||
scale_b_fp4,
|
||||
global_scale=alpha,
|
||||
use_mx=False,
|
||||
)
|
||||
|
||||
return run
|
||||
|
||||
if cfg["no_a_quant"]:
|
||||
# Pre-quantize activation
|
||||
@ -130,10 +184,13 @@ if __name__ == "__main__":
|
||||
|
||||
for K, N, model in prepare_shapes(args):
|
||||
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
||||
save_dir = f"bench_nvfp4_res_n{N}_k{K}"
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_nvfp4_res_n{N}_k{K}",
|
||||
save_path=save_dir,
|
||||
N=N,
|
||||
K=K,
|
||||
)
|
||||
|
207
benchmarks/kernels/bench_nvfp4_qutlass.py
Normal file
207
benchmarks/kernels/bench_nvfp4_qutlass.py
Normal file
@ -0,0 +1,207 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
#
|
||||
# Copyright (C) 2025 Roberto L. Castro (Roberto.LopezCastro@ist.ac.at).
|
||||
# All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
|
||||
import torch
|
||||
from compressed_tensors.transform.utils.hadamard import deterministic_hadamard_matrix
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops # use existing nvfp4 gemm in vllm
|
||||
from vllm._custom_ops import fusedQuantizeNv
|
||||
from vllm.model_executor.layers.quantization.qutlass_utils import to_blocked
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
PROVIDER_CFGS = {
|
||||
"torch-bf16": dict(enabled=True),
|
||||
"nvfp4": dict(no_a_quant=False, enabled=True),
|
||||
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
|
||||
}
|
||||
|
||||
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
|
||||
|
||||
|
||||
def get_hadamard_matrix(group_size: int, dtype: torch.dtype, device: torch.device):
|
||||
return (
|
||||
deterministic_hadamard_matrix(group_size, dtype=dtype, device=device)
|
||||
* group_size**-0.5
|
||||
)
|
||||
|
||||
|
||||
def _quant_weight_nvfp4(
|
||||
b: torch.Tensor,
|
||||
forward_hadamard_matrix: torch.Tensor,
|
||||
global_scale: torch.Tensor,
|
||||
device: str,
|
||||
M: int,
|
||||
N: int,
|
||||
K: int,
|
||||
):
|
||||
weight_hf_e2m1, weight_hf_e8m0 = fusedQuantizeNv(
|
||||
b, forward_hadamard_matrix, global_scale
|
||||
)
|
||||
weight_hf_scale_block = to_blocked(weight_hf_e8m0, backend="triton").view(
|
||||
-1, K // 16
|
||||
)
|
||||
return weight_hf_e2m1, weight_hf_scale_block
|
||||
|
||||
|
||||
def build_nvfp4_runner(cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K):
|
||||
alpha = torch.tensor([1.0], device="cuda")
|
||||
global_scale = torch.tensor([1.0], device="cuda")
|
||||
weight_hf_e2m1, weight_hf_scale_block = _quant_weight_nvfp4(
|
||||
b, forward_hadamard_matrix, global_scale, device, M, N, K
|
||||
)
|
||||
|
||||
if cfg["no_a_quant"]:
|
||||
# Pre-quantize activation
|
||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
|
||||
a, forward_hadamard_matrix, global_scale
|
||||
)
|
||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
|
||||
-1, K // 16
|
||||
)
|
||||
|
||||
def run():
|
||||
return ops.cutlass_scaled_fp4_mm(
|
||||
input_hf_e2m1,
|
||||
weight_hf_e2m1,
|
||||
input_hf_scale_block,
|
||||
weight_hf_scale_block,
|
||||
alpha,
|
||||
torch.bfloat16,
|
||||
)
|
||||
|
||||
return run
|
||||
|
||||
# Quantize activation on-the-fly
|
||||
def run():
|
||||
input_hf_e2m1, input_hf_e8m0 = fusedQuantizeNv(
|
||||
a, forward_hadamard_matrix, global_scale
|
||||
)
|
||||
input_hf_scale_block = to_blocked(input_hf_e8m0, backend="triton").view(
|
||||
-1, K // 16
|
||||
)
|
||||
return ops.cutlass_scaled_fp4_mm(
|
||||
input_hf_e2m1,
|
||||
weight_hf_e2m1,
|
||||
input_hf_scale_block,
|
||||
weight_hf_scale_block,
|
||||
alpha,
|
||||
torch.bfloat16,
|
||||
)
|
||||
|
||||
return run
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size"],
|
||||
x_vals=[
|
||||
1,
|
||||
4,
|
||||
8,
|
||||
16,
|
||||
32,
|
||||
64,
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
1024,
|
||||
2048,
|
||||
4096,
|
||||
8192,
|
||||
16384,
|
||||
24576,
|
||||
32768,
|
||||
],
|
||||
x_log=False,
|
||||
line_arg="provider",
|
||||
line_vals=_enabled,
|
||||
line_names=_enabled,
|
||||
ylabel="TFLOP/s (larger is better)",
|
||||
plot_name="BF16 vs NVFP4 GEMMs",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark(batch_size, provider, N, K, had_size):
|
||||
M = batch_size
|
||||
device = "cuda"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
a = torch.randn((M, K), device=device, dtype=dtype)
|
||||
b = torch.randn((N, K), device=device, dtype=dtype)
|
||||
forward_hadamard_matrix = get_hadamard_matrix(had_size, dtype, device)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "torch-bf16":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: torch.nn.functional.linear(a, b), rep=200, quantiles=quantiles
|
||||
)
|
||||
else:
|
||||
cfg = PROVIDER_CFGS[provider]
|
||||
run_quant = build_nvfp4_runner(
|
||||
cfg, a, b, forward_hadamard_matrix, dtype, device, M, N, K
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
|
||||
lambda: run_quant(), rep=200, quantiles=quantiles
|
||||
)
|
||||
|
||||
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
|
||||
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
|
||||
|
||||
|
||||
def prepare_shapes(args):
|
||||
out = []
|
||||
for model, tp_size in itertools.product(args.models, args.tp_sizes):
|
||||
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
|
||||
KN[tp_dim] //= tp_size
|
||||
KN.append(model)
|
||||
out.append(KN)
|
||||
return out
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=["meta-llama/Llama-3.3-70B-Instruct"],
|
||||
choices=list(WEIGHT_SHAPES.keys()),
|
||||
)
|
||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
|
||||
args = parser.parse_args()
|
||||
|
||||
for K, N, model in prepare_shapes(args):
|
||||
for had_size in [16, 32, 64, 128]:
|
||||
print(f"{model}, N={N} K={K}, HAD={had_size}, BF16 vs NVFP4 GEMMs TFLOP/s:")
|
||||
benchmark.run(
|
||||
print_data=True,
|
||||
show_plots=True,
|
||||
save_path=f"bench_nvfp4_res_n{N}_k{K}",
|
||||
N=N,
|
||||
K=K,
|
||||
had_size=had_size,
|
||||
)
|
||||
|
||||
print("Benchmark finished!")
|
@ -1,15 +1,26 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import itertools
|
||||
from typing import Callable
|
||||
from collections.abc import Callable
|
||||
from unittest.mock import patch
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import CompilationConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
|
||||
|
||||
|
||||
def with_triton_mode(fn):
|
||||
"""Temporarily force the Triton fallback path"""
|
||||
|
||||
def wrapped(*args, **kwargs):
|
||||
with patch("vllm.platforms.current_platform.is_cuda", return_value=False):
|
||||
return fn(*args, **kwargs)
|
||||
|
||||
return wrapped
|
||||
|
||||
|
||||
# TODO(luka): use standalone_compile utility
|
||||
@ -21,78 +32,238 @@ def with_dyn_arg(fn: Callable, arg_index: int, dim_index: int):
|
||||
return inner
|
||||
|
||||
|
||||
torch._dynamo.config.recompile_limit = 8888
|
||||
compilation_config = CompilationConfig(custom_ops=["none"])
|
||||
with set_current_vllm_config(VllmConfig(compilation_config=compilation_config)):
|
||||
torch_per_token_quant_fp8 = torch.compile(
|
||||
QuantFP8(False, GroupShape.PER_TOKEN),
|
||||
fullgraph=True,
|
||||
dynamic=False, # recompile for different shapes
|
||||
)
|
||||
def bench_compile(fn: Callable):
|
||||
# recompile for different shapes
|
||||
fwd = torch.compile(fn, fullgraph=True, dynamic=False)
|
||||
|
||||
# First dim is explicitly dynamic to simulate vLLM usage
|
||||
torch_per_token_quant_fp8 = with_dyn_arg(torch_per_token_quant_fp8, 0, 0)
|
||||
return with_dyn_arg(fwd, 0, 0)
|
||||
|
||||
|
||||
def cuda_per_token_quant_fp8(
|
||||
input: torch.Tensor,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
return ops.scaled_fp8_quant(input)
|
||||
torch._dynamo.config.recompile_limit = 8888
|
||||
|
||||
|
||||
def calculate_diff(batch_size: int, seq_len: int):
|
||||
"""Calculate difference between Triton and CUDA implementations."""
|
||||
def calculate_diff(
|
||||
batch_size: int,
|
||||
hidden_size: int,
|
||||
group_shape: GroupShape,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Calculate the difference between Inductor and CUDA implementations."""
|
||||
device = torch.device("cuda")
|
||||
x = torch.rand((batch_size * seq_len, 4096), dtype=torch.float16, device=device)
|
||||
x = torch.randn((batch_size, hidden_size), dtype=dtype, device=device)
|
||||
|
||||
torch_out, torch_scale = torch_per_token_quant_fp8(x)
|
||||
cuda_out, cuda_scale = cuda_per_token_quant_fp8(x)
|
||||
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=False)
|
||||
|
||||
if torch.allclose(
|
||||
cuda_out.to(torch.float32), torch_out.to(torch.float32), rtol=1e-3, atol=1e-5
|
||||
) and torch.allclose(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5):
|
||||
torch_out, torch_scale = bench_compile(quant_fp8.forward_native)(x)
|
||||
torch_eager_out, torch_eager_scale = quant_fp8.forward_native(x)
|
||||
cuda_out, cuda_scale = quant_fp8.forward_cuda(x)
|
||||
|
||||
try:
|
||||
torch.testing.assert_close(
|
||||
cuda_out.to(torch.float32),
|
||||
torch_out.to(torch.float32),
|
||||
rtol=1e-3,
|
||||
atol=1e-5,
|
||||
)
|
||||
torch.testing.assert_close(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5)
|
||||
torch.testing.assert_close(
|
||||
cuda_out.to(torch.float32),
|
||||
torch_eager_out.to(torch.float32),
|
||||
rtol=1e-3,
|
||||
atol=1e-5,
|
||||
)
|
||||
torch.testing.assert_close(cuda_scale, torch_eager_scale, rtol=1e-3, atol=1e-5)
|
||||
print("✅ All implementations match")
|
||||
else:
|
||||
except AssertionError as e:
|
||||
print("❌ Implementations differ")
|
||||
print(e)
|
||||
|
||||
|
||||
batch_size_range = [1, 16, 32, 64, 128]
|
||||
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
||||
|
||||
configs = list(itertools.product(batch_size_range, seq_len_range))
|
||||
configs = []
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size", "seq_len"],
|
||||
x_vals=configs,
|
||||
line_arg="provider",
|
||||
line_vals=["torch", "cuda"],
|
||||
line_names=["Torch", "CUDA"],
|
||||
styles=[("blue", "-"), ("green", "-")],
|
||||
ylabel="us",
|
||||
plot_name="per-token-dynamic-quant-fp8-performance",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark_quantization(batch_size, seq_len, provider):
|
||||
dtype = torch.float16
|
||||
def benchmark_quantization(
|
||||
batch_size,
|
||||
hidden_size,
|
||||
provider,
|
||||
group_shape: GroupShape,
|
||||
col_major: bool,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
device = torch.device("cuda")
|
||||
|
||||
x = torch.randn(batch_size * seq_len, 4096, device=device, dtype=dtype)
|
||||
x = torch.randn(batch_size, hidden_size, device=device, dtype=dtype)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
quant_fp8 = QuantFP8(False, group_shape, column_major_scales=col_major)
|
||||
|
||||
if provider == "torch":
|
||||
fn = lambda: torch_per_token_quant_fp8(x.clone())
|
||||
fn = lambda: bench_compile(quant_fp8.forward_native)(x.clone())
|
||||
elif provider == "cuda":
|
||||
fn = lambda: cuda_per_token_quant_fp8(x.clone())
|
||||
fn = lambda: quant_fp8.forward_cuda(x.clone())
|
||||
elif provider == "triton":
|
||||
if not group_shape.is_per_group():
|
||||
# Triton only supported for per-group
|
||||
return 0, 0, 0
|
||||
|
||||
fn = lambda: with_triton_mode(quant_fp8.forward_cuda)(x.clone())
|
||||
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(fn, quantiles=quantiles)
|
||||
|
||||
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
|
||||
|
||||
|
||||
# TODO(luka) extract to utils
|
||||
def compute_geomean_speedups(
|
||||
df: pd.DataFrame,
|
||||
baseline_col: str,
|
||||
speedup_cols: list[str],
|
||||
groupby_cols: list[str] | None = None,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Compute geometric mean speedups over a baseline column.
|
||||
|
||||
Args:
|
||||
df: Input dataframe
|
||||
baseline_col: Column to use as baseline
|
||||
speedup_cols: Columns to compute speedups for
|
||||
groupby_cols: Columns to group by. If None, compute over entire df.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame with geometric mean speedups
|
||||
"""
|
||||
from scipy.stats import gmean
|
||||
|
||||
def geo_speedup(group: pd.DataFrame) -> pd.Series:
|
||||
ratios = {
|
||||
col: (group[baseline_col] / group[col]).values for col in speedup_cols
|
||||
}
|
||||
return pd.Series({col: gmean(vals) for col, vals in ratios.items()})
|
||||
|
||||
if groupby_cols is None:
|
||||
result = geo_speedup(df).to_frame().T
|
||||
else:
|
||||
result = (
|
||||
df.groupby(groupby_cols)
|
||||
.apply(geo_speedup, include_groups=False)
|
||||
.reset_index()
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
calculate_diff(batch_size=4, seq_len=4096)
|
||||
benchmark_quantization.run(print_data=True)
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the various implementations of QuantFP8 (dynamic-only)"
|
||||
)
|
||||
parser.add_argument("-c", "--check", action="store_true")
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, choices=["half", "bfloat16", "float"], default="bfloat16"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden-sizes",
|
||||
type=int,
|
||||
nargs="+",
|
||||
default=[896, 1024, 2048, 4096, 7168],
|
||||
help="Hidden sizes to benchmark",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-sizes",
|
||||
type=int,
|
||||
nargs="+",
|
||||
default=[1, 16, 128, 512, 1024],
|
||||
help="Batch sizes to benchmark",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--group-sizes",
|
||||
type=int,
|
||||
nargs="+",
|
||||
default=None,
|
||||
help="Group sizes for GroupShape(1,N) to benchmark. "
|
||||
"Use 0 for PER_TENSOR, -1 for PER_TOKEN (default: 0,-1,64,128)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-column-major",
|
||||
action="store_true",
|
||||
help="Disable column-major scales testing",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
assert args
|
||||
|
||||
dtype = STR_DTYPE_TO_TORCH_DTYPE[args.dtype]
|
||||
|
||||
hidden_sizes = args.hidden_sizes
|
||||
batch_sizes = args.batch_sizes
|
||||
|
||||
if args.group_sizes is not None:
|
||||
group_shapes = []
|
||||
for size in args.group_sizes:
|
||||
if size == 0:
|
||||
group_shapes.append(GroupShape.PER_TENSOR)
|
||||
elif size == -1:
|
||||
group_shapes.append(GroupShape.PER_TOKEN)
|
||||
else:
|
||||
group_shapes.append(GroupShape(1, size))
|
||||
else:
|
||||
group_shapes = [
|
||||
GroupShape.PER_TENSOR,
|
||||
GroupShape.PER_TOKEN,
|
||||
GroupShape(1, 64),
|
||||
GroupShape(1, 128),
|
||||
]
|
||||
|
||||
column_major_scales = [False] if args.no_column_major else [True, False]
|
||||
|
||||
config_gen = itertools.product(
|
||||
group_shapes,
|
||||
column_major_scales,
|
||||
batch_sizes,
|
||||
hidden_sizes,
|
||||
)
|
||||
|
||||
# filter out column-major scales for non-group, reverse order
|
||||
configs.extend(c[::-1] for c in config_gen if (c[0].is_per_group() or not c[1]))
|
||||
|
||||
print(f"Running {len(configs)} configurations:")
|
||||
print(f" Hidden sizes: {hidden_sizes}")
|
||||
print(f" Batch sizes: {batch_sizes}")
|
||||
print(f" Group shapes: {[str(g) for g in group_shapes]}")
|
||||
print(f" Column major scales: {column_major_scales}")
|
||||
print()
|
||||
|
||||
if args.check:
|
||||
for group_shape in group_shapes:
|
||||
group_size = group_shape[1]
|
||||
print(f"{group_size=}")
|
||||
calculate_diff(
|
||||
batch_size=4, hidden_size=4096, group_shape=group_shape, dtype=dtype
|
||||
)
|
||||
|
||||
benchmark = triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["hidden_size", "batch_size", "col_major", "group_shape"],
|
||||
x_vals=configs,
|
||||
line_arg="provider",
|
||||
line_vals=["torch", "cuda", "triton"],
|
||||
line_names=["Torch (Compiled)", "CUDA", "Triton"],
|
||||
styles=[("blue", "-"), ("green", "-"), ("black", "-")],
|
||||
ylabel="us",
|
||||
plot_name="QuantFP8 performance",
|
||||
args={},
|
||||
)
|
||||
)(benchmark_quantization)
|
||||
|
||||
df = benchmark.run(print_data=True, dtype=dtype, return_df=True)
|
||||
|
||||
# Print geomean speedups
|
||||
geo_table_grouped = compute_geomean_speedups(
|
||||
df,
|
||||
baseline_col="Torch (Compiled)",
|
||||
speedup_cols=["CUDA", "Triton"],
|
||||
groupby_cols=["col_major", "group_shape"],
|
||||
)
|
||||
|
||||
print("Speedup over Torch (Compiled)")
|
||||
print(geo_table_grouped.to_string(index=False))
|
||||
|
@ -13,6 +13,10 @@ import torch.utils.benchmark as benchmark
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.config import (
|
||||
fp8_w8a8_moe_quant_config,
|
||||
nvfp4_moe_quant_config,
|
||||
)
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
|
||||
from vllm.scalar_type import scalar_types
|
||||
@ -140,6 +144,12 @@ def bench_run(
|
||||
a_fp8_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_fp8_scale,
|
||||
)
|
||||
|
||||
for _ in range(num_repeats):
|
||||
fused_experts(
|
||||
a,
|
||||
@ -147,10 +157,7 @@ def bench_run(
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_fp8_scale,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_cutlass_moe_fp4(
|
||||
@ -172,25 +179,27 @@ def bench_run(
|
||||
device: torch.device,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = nvfp4_moe_quant_config(
|
||||
a1_gscale=a1_gs,
|
||||
a2_gscale=a2_gs,
|
||||
w1_scale=w1_blockscale,
|
||||
w2_scale=w2_blockscale,
|
||||
g1_alphas=w1_gs,
|
||||
g2_alphas=w2_gs,
|
||||
)
|
||||
for _ in range(num_repeats):
|
||||
with nvtx.annotate("cutlass_moe_fp4", color="green"):
|
||||
cutlass_moe_fp4(
|
||||
a=a,
|
||||
a1_gscale=a1_gs,
|
||||
a2_gscale=a2_gs,
|
||||
w1_fp4=w1_fp4,
|
||||
w1_blockscale=w1_blockscale,
|
||||
w1_alphas=w1_gs,
|
||||
w2_fp4=w2_fp4,
|
||||
w2_blockscale=w2_blockscale,
|
||||
w2_alphas=w2_gs,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
m=m,
|
||||
n=n,
|
||||
k=k,
|
||||
e=num_experts,
|
||||
device=device,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_cutlass_from_graph(
|
||||
@ -211,26 +220,29 @@ def bench_run(
|
||||
e: int,
|
||||
device: torch.device,
|
||||
):
|
||||
quant_config = nvfp4_moe_quant_config(
|
||||
a1_gscale=a1_gs,
|
||||
a2_gscale=a2_gs,
|
||||
w1_scale=w1_blockscale,
|
||||
w2_scale=w2_blockscale,
|
||||
g1_alphas=w1_gs,
|
||||
g2_alphas=w2_gs,
|
||||
)
|
||||
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
return cutlass_moe_fp4(
|
||||
a=a,
|
||||
a1_gscale=a1_gs,
|
||||
w1_fp4=w1_fp4,
|
||||
w1_blockscale=w1_blockscale,
|
||||
w1_alphas=w1_alphas,
|
||||
a2_gscale=a2_gs,
|
||||
w2_fp4=w2_fp4,
|
||||
w2_blockscale=w2_blockscale,
|
||||
w2_alphas=w2_alphas,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
m=m,
|
||||
n=n,
|
||||
k=k,
|
||||
e=num_experts,
|
||||
device=device,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_triton_from_graph(
|
||||
@ -246,16 +258,18 @@ def bench_run(
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_fp8_scale,
|
||||
)
|
||||
return fused_experts(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_fp8_scale,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def replay_graph(graph, num_repeats):
|
||||
|
406
benchmarks/kernels/benchmark_cutlass_moe_fp8.py
Normal file
406
benchmarks/kernels/benchmark_cutlass_moe_fp8.py
Normal file
@ -0,0 +1,406 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Benchmark the performance of the cutlass_moe_fp8 kernel vs the triton_moe
|
||||
kernel. Both kernels take in fp8 quantized weights and 16-bit activations,
|
||||
but use different quantization strategies and backends.
|
||||
"""
|
||||
|
||||
import nvtx
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.fused_moe.config import fp8_w8a8_moe_quant_config
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
# Weight shapes for different models: [num_experts, topk, hidden_size,
|
||||
# intermediate_size]
|
||||
WEIGHT_SHAPES_MOE = {
|
||||
"mixtral-8x7b": [
|
||||
[8, 2, 4096, 14336],
|
||||
],
|
||||
"deepseek-v2": [
|
||||
[160, 6, 5120, 12288],
|
||||
],
|
||||
"custom-small": [
|
||||
[8, 2, 2048, 7168],
|
||||
],
|
||||
"glm45-fp8": [
|
||||
[128, 8, 4096, 1408],
|
||||
],
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": [
|
||||
[128, 1, 5120, 8192],
|
||||
],
|
||||
}
|
||||
|
||||
DEFAULT_MODELS = [
|
||||
"mixtral-8x7b",
|
||||
]
|
||||
|
||||
DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
|
||||
DEFAULT_TP_SIZES = [1]
|
||||
|
||||
PER_ACT_TOKEN_OPTS = [False, True]
|
||||
PER_OUT_CH_OPTS = [False, True]
|
||||
|
||||
FP8_DTYPE = current_platform.fp8_dtype()
|
||||
|
||||
|
||||
def bench_run(
|
||||
results: list,
|
||||
model: str,
|
||||
num_experts: int,
|
||||
topk: int,
|
||||
per_act_token: bool,
|
||||
per_out_ch: bool,
|
||||
mkn: tuple[int, int, int],
|
||||
):
|
||||
(m, k, n) = mkn
|
||||
|
||||
dtype = torch.half
|
||||
device = "cuda"
|
||||
|
||||
# Create input activations
|
||||
a = torch.randn((m, k), device=device, dtype=dtype) / 10
|
||||
|
||||
# Create weights
|
||||
w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
|
||||
w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10
|
||||
|
||||
# Create FP8 quantized weights and scales for both kernels
|
||||
w1_fp8q = torch.empty((num_experts, 2 * n, k), device=device, dtype=FP8_DTYPE)
|
||||
w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=FP8_DTYPE)
|
||||
|
||||
# Create scales based on quantization strategy
|
||||
if per_out_ch:
|
||||
# Per-channel quantization
|
||||
w1_scale = torch.empty(
|
||||
(num_experts, 2 * n, 1), device=device, dtype=torch.float32
|
||||
)
|
||||
w2_scale = torch.empty((num_experts, k, 1), device=device, dtype=torch.float32)
|
||||
else:
|
||||
# Per-tensor quantization
|
||||
w1_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
||||
w2_scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
|
||||
|
||||
# Quantize weights
|
||||
for expert in range(num_experts):
|
||||
if per_out_ch:
|
||||
# Per-channel quantization - not yet implemented properly
|
||||
# For now, fall back to per-tensor quantization
|
||||
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
|
||||
# Expand scalar scales to the expected per-channel shape
|
||||
w1_scale[expert] = w1_scale_temp.expand(2 * n, 1)
|
||||
w2_scale[expert] = w2_scale_temp.expand(k, 1)
|
||||
else:
|
||||
# Per-tensor quantization
|
||||
w1_fp8q[expert], w1_scale_temp = ops.scaled_fp8_quant(w1[expert])
|
||||
w2_fp8q[expert], w2_scale_temp = ops.scaled_fp8_quant(w2[expert])
|
||||
# Store scalar scales in [1, 1] tensors
|
||||
w1_scale[expert, 0, 0] = w1_scale_temp
|
||||
w2_scale[expert, 0, 0] = w2_scale_temp
|
||||
|
||||
# Prepare weights for CUTLASS (no transpose needed)
|
||||
w1_fp8q_cutlass = w1_fp8q # Keep original [E, 2N, K]
|
||||
w2_fp8q_cutlass = w2_fp8q # Keep original [E, K, N]
|
||||
|
||||
# Create router scores and get topk
|
||||
score = torch.randn((m, num_experts), device=device, dtype=dtype)
|
||||
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
|
||||
|
||||
# WORKAROUND: CUTLASS MoE FP8 has issues with per-token quantization
|
||||
# Force per-tensor quantization for all cases to match working e2e setup
|
||||
a1_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
|
||||
a2_scale = torch.full((), 1e-2, device=device, dtype=torch.float32)
|
||||
|
||||
# Force per-tensor quantization for all cases
|
||||
per_act_token = False
|
||||
|
||||
# Create stride tensors for CUTLASS
|
||||
ab_strides1 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
|
||||
ab_strides2 = torch.full((num_experts,), n, dtype=torch.int64, device=device)
|
||||
c_strides1 = torch.full((num_experts,), 2 * n, dtype=torch.int64, device=device)
|
||||
c_strides2 = torch.full((num_experts,), k, dtype=torch.int64, device=device)
|
||||
|
||||
def run_triton_moe(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a1_scale: torch.Tensor,
|
||||
a2_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
per_out_ch_quant=per_out_ch,
|
||||
)
|
||||
|
||||
for _ in range(num_repeats):
|
||||
fused_experts(
|
||||
a,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_cutlass_moe_fp8(
|
||||
a: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
ab_strides1: torch.Tensor,
|
||||
ab_strides2: torch.Tensor,
|
||||
c_strides1: torch.Tensor,
|
||||
c_strides2: torch.Tensor,
|
||||
w1_scale: torch.Tensor,
|
||||
w2_scale: torch.Tensor,
|
||||
a1_scale: torch.Tensor,
|
||||
a2_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
per_out_ch_quant=per_out_ch,
|
||||
)
|
||||
|
||||
for _ in range(num_repeats):
|
||||
with nvtx.annotate("cutlass_moe_fp8", color="blue"):
|
||||
cutlass_moe_fp8(
|
||||
a=a,
|
||||
w1_q=w1,
|
||||
w2_q=w2,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
ab_strides1=ab_strides1,
|
||||
ab_strides2=ab_strides2,
|
||||
c_strides1=c_strides1,
|
||||
c_strides2=c_strides2,
|
||||
quant_config=quant_config,
|
||||
activation="silu",
|
||||
global_num_experts=num_experts,
|
||||
)
|
||||
|
||||
# Pre-create quantization config to avoid creating it inside CUDA graph
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
per_out_ch_quant=per_out_ch,
|
||||
)
|
||||
|
||||
# Create CUDA graphs for CUTLASS (match benchmark_moe.py pattern exactly)
|
||||
cutlass_stream = torch.cuda.Stream()
|
||||
cutlass_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
|
||||
# Capture 10 invocations like benchmark_moe.py
|
||||
for _ in range(10):
|
||||
cutlass_moe_fp8(
|
||||
a=a,
|
||||
w1_q=w1_fp8q_cutlass,
|
||||
w2_q=w2_fp8q_cutlass,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
ab_strides1=ab_strides1,
|
||||
ab_strides2=ab_strides2,
|
||||
c_strides1=c_strides1,
|
||||
c_strides2=c_strides2,
|
||||
quant_config=quant_config,
|
||||
activation="silu",
|
||||
global_num_experts=num_experts,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
# Create CUDA graphs for Triton (match benchmark_moe.py pattern exactly)
|
||||
triton_stream = torch.cuda.Stream()
|
||||
triton_graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(triton_graph, stream=triton_stream):
|
||||
# Capture 10 invocations like benchmark_moe.py
|
||||
for _ in range(10):
|
||||
fused_experts(
|
||||
a,
|
||||
w1_fp8q,
|
||||
w2_fp8q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def bench_cuda_graph(graph, num_warmup=5, num_iters=100):
|
||||
"""Benchmark CUDA graph using events like benchmark_moe.py"""
|
||||
# Warmup
|
||||
for _ in range(num_warmup):
|
||||
graph.replay()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
# Timing
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
latencies = []
|
||||
for _ in range(num_iters):
|
||||
torch.cuda.synchronize()
|
||||
start_event.record()
|
||||
graph.replay()
|
||||
end_event.record()
|
||||
end_event.synchronize()
|
||||
latencies.append(start_event.elapsed_time(end_event))
|
||||
|
||||
# Divide by 10 since graph contains 10 calls
|
||||
return sum(latencies) / (num_iters * 10)
|
||||
|
||||
# Benchmark parameters
|
||||
num_warmup = 5
|
||||
num_iters = 100
|
||||
|
||||
# Benchmark only CUDA graphs (more reliable and faster)
|
||||
# Benchmark Triton MoE with CUDA graphs
|
||||
triton_graph_time = bench_cuda_graph(
|
||||
triton_graph, num_warmup=num_warmup, num_iters=num_iters
|
||||
)
|
||||
|
||||
# Benchmark CUTLASS MoE with CUDA graphs
|
||||
cutlass_graph_time = bench_cuda_graph(
|
||||
cutlass_graph, num_warmup=num_warmup, num_iters=num_iters
|
||||
)
|
||||
|
||||
# Convert ms to us and return results
|
||||
triton_time_us = triton_graph_time * 1000
|
||||
cutlass_time_us = cutlass_graph_time * 1000
|
||||
|
||||
return {
|
||||
"batch_size": m,
|
||||
"triton_time_us": triton_time_us,
|
||||
"cutlass_time_us": cutlass_time_us,
|
||||
}
|
||||
|
||||
|
||||
def main(args):
|
||||
print("Benchmarking models:")
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
all_results = []
|
||||
|
||||
for model in args.models:
|
||||
for tp in args.tp_sizes:
|
||||
for layer in WEIGHT_SHAPES_MOE[model]:
|
||||
num_experts = layer[0]
|
||||
topk = layer[1]
|
||||
size_k = layer[2]
|
||||
size_n = layer[3] // tp
|
||||
|
||||
if len(args.limit_k) > 0 and size_k not in args.limit_k:
|
||||
continue
|
||||
|
||||
if len(args.limit_n) > 0 and size_n not in args.limit_n:
|
||||
continue
|
||||
|
||||
for per_act_token in args.per_act_token_opts:
|
||||
for per_out_ch in args.per_out_ch_opts:
|
||||
print(
|
||||
f"\n=== {model}, experts={num_experts}, topk={topk},"
|
||||
f"per_act={per_act_token}, per_out_ch={per_out_ch} ==="
|
||||
)
|
||||
|
||||
config_results = []
|
||||
for size_m in args.batch_sizes:
|
||||
mkn = (size_m, size_k, size_n)
|
||||
result = bench_run(
|
||||
[], # Not used anymore
|
||||
model,
|
||||
num_experts,
|
||||
topk,
|
||||
per_act_token,
|
||||
per_out_ch,
|
||||
mkn,
|
||||
)
|
||||
if result:
|
||||
config_results.append(result)
|
||||
|
||||
# Print results table for this configuration
|
||||
if config_results:
|
||||
print(
|
||||
f"\n{'Batch Size':<12}"
|
||||
f"{'Triton (us)':<15}"
|
||||
f"{'CUTLASS (us)':<15}"
|
||||
)
|
||||
print("-" * 45)
|
||||
for result in config_results:
|
||||
print(
|
||||
f"{result['batch_size']:<12}"
|
||||
f"{result['triton_time_us']:<15.2f}"
|
||||
f"{result['cutlass_time_us']:<15.2f}"
|
||||
)
|
||||
|
||||
all_results.extend(config_results)
|
||||
|
||||
print(f"\nTotal benchmarks completed: {len(all_results)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description="""Benchmark CUTLASS FP8 MOE vs Triton FP8 FUSED MOE
|
||||
across specified models/shapes/batches
|
||||
|
||||
Example usage:
|
||||
python benchmark_cutlass_moe_fp8.py \
|
||||
--model "Llama-4-Maverick-17B-128E-Instruct-FP8" \
|
||||
--tp-sizes 8 \
|
||||
--batch-size 2 4 8 \
|
||||
--per-act-token-opts false \
|
||||
--per-out-ch-opts false
|
||||
|
||||
"""
|
||||
)
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=DEFAULT_MODELS,
|
||||
choices=WEIGHT_SHAPES_MOE.keys(),
|
||||
)
|
||||
parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
|
||||
parser.add_argument(
|
||||
"--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
|
||||
)
|
||||
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
|
||||
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
|
||||
parser.add_argument(
|
||||
"--per-act-token-opts",
|
||||
nargs="+",
|
||||
type=lambda x: x.lower() == "true",
|
||||
default=[False, True],
|
||||
help="Per-activation token quantization options (true/false)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per-out-ch-opts",
|
||||
nargs="+",
|
||||
type=lambda x: x.lower() == "true",
|
||||
default=[False, True],
|
||||
help="Per-output channel quantization options (true/false)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
@ -7,6 +7,10 @@ Benchmark script for device communicators:
|
||||
CustomAllreduce (oneshot, twoshot), PyNcclCommunicator,
|
||||
and SymmMemCommunicator (multimem, two-shot).
|
||||
|
||||
for NCCL symmetric memory you need to set the environment variables
|
||||
NCCL_NVLS_ENABLE=1 NCCL_CUMEM_ENABLE=1 VLLM_USE_NCCL_SYMM_MEM=1, otherwise NCCL does
|
||||
not use fast NVLS implementation for all reduce.
|
||||
|
||||
Usage:
|
||||
torchrun --nproc_per_node=<N> benchmark_device_communicators.py [options]
|
||||
|
||||
@ -18,15 +22,21 @@ Example:
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from collections.abc import Callable
|
||||
from contextlib import nullcontext
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
from vllm.distributed.device_communicators.custom_all_reduce import CustomAllreduce
|
||||
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
|
||||
from vllm.distributed.device_communicators.pynccl import (
|
||||
PyNcclCommunicator,
|
||||
register_nccl_symmetric_ops,
|
||||
)
|
||||
from vllm.distributed.device_communicators.pynccl_allocator import (
|
||||
set_graph_pool_id,
|
||||
)
|
||||
from vllm.distributed.device_communicators.symm_mem import SymmMemCommunicator
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
@ -98,6 +108,7 @@ class CommunicatorBenchmark:
|
||||
)
|
||||
if not self.pynccl_comm.disabled:
|
||||
logger.info("Rank %s: PyNcclCommunicator initialized", self.rank)
|
||||
register_nccl_symmetric_ops(self.pynccl_comm)
|
||||
else:
|
||||
logger.info("Rank %s: PyNcclCommunicator disabled", self.rank)
|
||||
self.pynccl_comm = None
|
||||
@ -194,6 +205,15 @@ class CommunicatorBenchmark:
|
||||
None, # no env variable needed
|
||||
)
|
||||
)
|
||||
communicators.append(
|
||||
(
|
||||
"pynccl-symm",
|
||||
lambda t: torch.ops.vllm.all_reduce_symmetric_with_copy(t),
|
||||
lambda t: True, # Always available if initialized
|
||||
nullcontext(),
|
||||
None, # no env variable needed
|
||||
)
|
||||
)
|
||||
|
||||
if self.symm_mem_comm_multimem is not None:
|
||||
comm = self.symm_mem_comm_multimem
|
||||
@ -244,12 +264,12 @@ class CommunicatorBenchmark:
|
||||
def benchmark_allreduce_single(
|
||||
self,
|
||||
sequence_length: int,
|
||||
allreduce_fn: Callable[[torch.Tensor], Optional[torch.Tensor]],
|
||||
allreduce_fn: Callable[[torch.Tensor], torch.Tensor | None],
|
||||
should_use_fn: Callable[[torch.Tensor], bool],
|
||||
context,
|
||||
num_warmup: int,
|
||||
num_trials: int,
|
||||
) -> Optional[float]:
|
||||
) -> float | None:
|
||||
"""Benchmark method with CUDA graph optimization."""
|
||||
try:
|
||||
# Create test tensor (2D: sequence_length x hidden_size)
|
||||
@ -271,7 +291,9 @@ class CommunicatorBenchmark:
|
||||
# Capture the graph using context manager
|
||||
with context:
|
||||
graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(graph):
|
||||
graph_pool = torch.cuda.graph_pool_handle()
|
||||
set_graph_pool_id(graph_pool)
|
||||
with torch.cuda.graph(graph, pool=graph_pool):
|
||||
for _ in range(CUDA_GRAPH_CAPTURE_CYCLES):
|
||||
allreduce_fn(graph_input)
|
||||
|
||||
|
@ -7,6 +7,7 @@ from benchmark_shapes import WEIGHT_SHAPES_MOE
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.fused_moe.config import fp8_w8a8_moe_quant_config
|
||||
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
fused_experts,
|
||||
@ -96,6 +97,11 @@ def bench_run(
|
||||
a_scale: torch.Tensor,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
for _ in range(num_repeats):
|
||||
fused_experts(
|
||||
a,
|
||||
@ -103,10 +109,7 @@ def bench_run(
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_cutlass_moe(
|
||||
@ -125,6 +128,12 @@ def bench_run(
|
||||
per_act_token: bool,
|
||||
num_repeats: int,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
)
|
||||
|
||||
for _ in range(num_repeats):
|
||||
cutlass_moe_fp8(
|
||||
a,
|
||||
@ -132,14 +141,11 @@ def bench_run(
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
ab_strides1,
|
||||
ab_strides2,
|
||||
c_strides1,
|
||||
c_strides2,
|
||||
per_act_token,
|
||||
a1_scale=None,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_cutlass_from_graph(
|
||||
@ -156,6 +162,12 @@ def bench_run(
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
per_act_token_quant=per_act_token,
|
||||
)
|
||||
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
@ -165,14 +177,11 @@ def bench_run(
|
||||
w2_q,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
w1_scale,
|
||||
w2_scale,
|
||||
ab_strides1,
|
||||
ab_strides2,
|
||||
c_strides1,
|
||||
c_strides2,
|
||||
per_act_token,
|
||||
a1_scale=None,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def run_triton_from_graph(
|
||||
@ -185,6 +194,11 @@ def bench_run(
|
||||
w2_scale: torch.Tensor,
|
||||
a_scale: torch.Tensor,
|
||||
):
|
||||
quant_config = fp8_w8a8_moe_quant_config(
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale,
|
||||
)
|
||||
with set_current_vllm_config(
|
||||
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
|
||||
):
|
||||
@ -194,10 +208,7 @@ def bench_run(
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a_scale,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def replay_graph(graph, num_repeats):
|
||||
|
@ -6,11 +6,12 @@ import copy
|
||||
import json
|
||||
import pickle
|
||||
import time
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum, auto
|
||||
from itertools import product
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Optional
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
@ -79,9 +80,9 @@ def make_rand_lora_weight_tensor(
|
||||
|
||||
|
||||
def make_rand_tensors(
|
||||
a_shape: tuple[int],
|
||||
b_shape: tuple[int],
|
||||
c_shape: tuple[int],
|
||||
a_shape: tuple[int, ...],
|
||||
b_shape: tuple[int, ...],
|
||||
c_shape: tuple[int, ...],
|
||||
a_dtype: torch.dtype,
|
||||
b_dtype: torch.dtype,
|
||||
c_dtype: torch.dtype,
|
||||
@ -158,7 +159,7 @@ def ref_group_gemm(
|
||||
seq_lens_cpu: torch.Tensor,
|
||||
prompt_lora_mapping_cpu: torch.Tensor,
|
||||
scaling: float,
|
||||
add_inputs: Optional[bool],
|
||||
add_inputs: bool | None,
|
||||
):
|
||||
"""
|
||||
Torch group gemm reference implementation to test correctness of
|
||||
@ -243,7 +244,7 @@ class OpType(Enum):
|
||||
lora_rank: int,
|
||||
num_loras: int,
|
||||
num_slices: int,
|
||||
) -> tuple[tuple[int], tuple[int], tuple[int]]:
|
||||
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
|
||||
"""
|
||||
Given num_slices, return the shapes of the A, B, and C matrices
|
||||
in A x B = C, for the op_type
|
||||
@ -316,8 +317,8 @@ class BenchmarkContext:
|
||||
lora_rank: int
|
||||
sort_by_lora_id: bool
|
||||
dtype: torch.dtype
|
||||
seq_length: Optional[int] = None
|
||||
num_slices: Optional[int] = None # num_slices for slice based ops
|
||||
seq_length: int | None = None
|
||||
num_slices: int | None = None # num_slices for slice based ops
|
||||
|
||||
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
|
||||
ctx = copy.copy(self)
|
||||
@ -464,7 +465,11 @@ class BenchmarkTensors:
|
||||
for field_name in LoRAKernelMeta.__dataclass_fields__:
|
||||
field = getattr(self.lora_kernel_meta, field_name)
|
||||
assert isinstance(field, torch.Tensor)
|
||||
setattr(self.lora_kernel_meta, field_name, to_device(field))
|
||||
setattr(
|
||||
self.lora_kernel_meta,
|
||||
field_name,
|
||||
to_device(field) if field_name != "no_lora_flag_cpu" else field,
|
||||
)
|
||||
|
||||
def metadata(self) -> tuple[int, int, int]:
|
||||
"""
|
||||
@ -512,6 +517,7 @@ class BenchmarkTensors:
|
||||
"lora_token_start_loc": self.lora_kernel_meta.lora_token_start_loc,
|
||||
"lora_ids": self.lora_kernel_meta.active_lora_ids,
|
||||
"scaling": 1.0,
|
||||
"no_lora_flag_cpu": self.lora_kernel_meta.no_lora_flag_cpu,
|
||||
}
|
||||
|
||||
def as_lora_expand_kwargs(self, add_inputs: bool) -> dict[str, Any]:
|
||||
@ -552,10 +558,11 @@ class BenchmarkTensors:
|
||||
"lora_ids": self.lora_kernel_meta.active_lora_ids,
|
||||
"offset_start": 0,
|
||||
"add_inputs": add_inputs,
|
||||
"no_lora_flag_cpu": self.lora_kernel_meta.no_lora_flag_cpu,
|
||||
}
|
||||
|
||||
def bench_fn_kwargs(
|
||||
self, op_type: OpType, add_inputs: Optional[bool] = None
|
||||
self, op_type: OpType, add_inputs: bool | None = None
|
||||
) -> dict[str, Any]:
|
||||
if op_type.is_shrink_fn():
|
||||
assert add_inputs is None
|
||||
@ -569,7 +576,7 @@ class BenchmarkTensors:
|
||||
raise ValueError(f"Unrecognized optype {self}")
|
||||
|
||||
def test_correctness(
|
||||
self, op_type: OpType, expand_fn_add_inputs: Optional[bool]
|
||||
self, op_type: OpType, expand_fn_add_inputs: bool | None
|
||||
) -> bool:
|
||||
"""
|
||||
Test correctness of op_type implementation against a grouped gemm
|
||||
@ -605,8 +612,8 @@ def bench_optype(
|
||||
ctx: BenchmarkContext,
|
||||
arg_pool_size: int,
|
||||
op_type: OpType,
|
||||
cuda_graph_nops: Optional[int] = None,
|
||||
expand_fn_add_inputs: Optional[bool] = None,
|
||||
cuda_graph_nops: int | None = None,
|
||||
expand_fn_add_inputs: bool | None = None,
|
||||
test_correctness: bool = False,
|
||||
) -> TMeasurement:
|
||||
assert arg_pool_size >= 1
|
||||
@ -673,7 +680,7 @@ def bench_torch_mm(
|
||||
ctx: BenchmarkContext,
|
||||
arg_pool_size: int,
|
||||
op_type: OpType,
|
||||
cuda_graph_nops: Optional[int] = None,
|
||||
cuda_graph_nops: int | None = None,
|
||||
) -> TMeasurement:
|
||||
"""
|
||||
Benchmark basic torch.mm as a roofline.
|
||||
@ -738,7 +745,7 @@ def use_cuda_graph_recommendation() -> str:
|
||||
"""
|
||||
|
||||
|
||||
def print_timers(timers: list[TMeasurement], args: Optional[argparse.Namespace] = None):
|
||||
def print_timers(timers: list[TMeasurement], args: argparse.Namespace | None = None):
|
||||
compare = TBenchmark.Compare(timers)
|
||||
compare.print()
|
||||
|
||||
|
@ -8,10 +8,9 @@ import math
|
||||
import os
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from collections.abc import Callable, Iterable
|
||||
from dataclasses import dataclass
|
||||
from itertools import product
|
||||
from typing import Callable, Optional
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
@ -63,23 +62,23 @@ class BenchmarkTensors:
|
||||
a: torch.Tensor
|
||||
|
||||
w_q: torch.Tensor
|
||||
group_size: Optional[int]
|
||||
group_size: int | None
|
||||
wtype: ScalarType
|
||||
w_g_s: torch.Tensor
|
||||
w_g_zp: Optional[torch.Tensor]
|
||||
w_ch_s: Optional[torch.Tensor]
|
||||
w_tok_s: Optional[torch.Tensor]
|
||||
w_g_zp: torch.Tensor | None
|
||||
w_ch_s: torch.Tensor | None
|
||||
w_tok_s: torch.Tensor | None
|
||||
|
||||
|
||||
@dataclass
|
||||
class TypeConfig:
|
||||
act_type: torch.dtype
|
||||
weight_type: ScalarType
|
||||
output_type: Optional[torch.dtype]
|
||||
group_scale_type: Optional[torch.dtype]
|
||||
group_zero_type: Optional[torch.dtype]
|
||||
channel_scale_type: Optional[torch.dtype]
|
||||
token_scale_type: Optional[torch.dtype]
|
||||
output_type: torch.dtype | None
|
||||
group_scale_type: torch.dtype | None
|
||||
group_zero_type: torch.dtype | None
|
||||
channel_scale_type: torch.dtype | None
|
||||
token_scale_type: torch.dtype | None
|
||||
|
||||
|
||||
def rand_data(shape, dtype=torch.float16, scale=1):
|
||||
@ -93,8 +92,8 @@ def quantize_and_pack(
|
||||
atype: torch.dtype,
|
||||
w: torch.Tensor,
|
||||
wtype: ScalarType,
|
||||
stype: Optional[torch.dtype],
|
||||
group_size: Optional[int],
|
||||
stype: torch.dtype | None,
|
||||
group_size: int | None,
|
||||
zero_points: bool = False,
|
||||
):
|
||||
assert wtype.is_integer(), "TODO: support floating point weights"
|
||||
@ -113,7 +112,7 @@ def quantize_and_pack(
|
||||
|
||||
|
||||
def create_bench_tensors(
|
||||
shape: tuple[int, int, int], types: TypeConfig, group_size: Optional[int]
|
||||
shape: tuple[int, int, int], types: TypeConfig, group_size: int | None
|
||||
) -> list[BenchmarkTensors]:
|
||||
m, n, k = shape
|
||||
|
||||
@ -331,8 +330,8 @@ def bench_fns(label: str, sub_label: str, description: str, fns: list[Callable])
|
||||
return res
|
||||
|
||||
|
||||
_SWEEP_SCHEDULES_RESULTS: Optional[pd.DataFrame] = None
|
||||
_SWEEP_SCHEDULES_RESULTS_CSV: Optional[str] = None
|
||||
_SWEEP_SCHEDULES_RESULTS: pd.DataFrame | None = None
|
||||
_SWEEP_SCHEDULES_RESULTS_CSV: str | None = None
|
||||
|
||||
|
||||
def bench(
|
||||
|
@ -14,6 +14,10 @@ import ray
|
||||
import torch
|
||||
from ray.experimental.tqdm_ray import tqdm
|
||||
|
||||
from vllm.model_executor.layers.fused_moe.config import (
|
||||
FusedMoEQuantConfig,
|
||||
_get_config_dtype_str,
|
||||
)
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import *
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.transformers_utils.config import get_config
|
||||
@ -134,43 +138,36 @@ def benchmark_config(
|
||||
def run():
|
||||
from vllm.model_executor.layers.fused_moe import override_config
|
||||
|
||||
if use_fp8_w8a8:
|
||||
quant_dtype = torch.float8_e4m3fn
|
||||
elif use_int8_w8a16:
|
||||
quant_dtype = torch.int8
|
||||
else:
|
||||
quant_dtype = None
|
||||
|
||||
quant_config = FusedMoEQuantConfig.make(
|
||||
quant_dtype=quant_dtype,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
block_shape=block_quant_shape,
|
||||
)
|
||||
|
||||
with override_config(config):
|
||||
if use_deep_gemm:
|
||||
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
||||
x, input_gating, topk, False
|
||||
)
|
||||
return fused_experts(
|
||||
x,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=True,
|
||||
use_fp8_w8a8=use_fp8_w8a8,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
block_shape=block_quant_shape,
|
||||
allow_deep_gemm=True,
|
||||
)
|
||||
else:
|
||||
fused_moe(
|
||||
x,
|
||||
w1,
|
||||
w2,
|
||||
input_gating,
|
||||
topk,
|
||||
renormalize=True,
|
||||
inplace=True,
|
||||
use_fp8_w8a8=use_fp8_w8a8,
|
||||
use_int8_w8a16=use_int8_w8a16,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
block_shape=block_quant_shape,
|
||||
)
|
||||
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
||||
x, input_gating, topk, renormalize=not use_deep_gemm
|
||||
)
|
||||
return fused_experts(
|
||||
x,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=True,
|
||||
quant_config=quant_config,
|
||||
allow_deep_gemm=use_deep_gemm,
|
||||
)
|
||||
|
||||
# JIT compilation & warmup
|
||||
run()
|
||||
@ -414,7 +411,7 @@ class BenchmarkWorker:
|
||||
use_deep_gemm: bool = False,
|
||||
) -> tuple[dict[str, int], float]:
|
||||
current_platform.seed_everything(self.seed)
|
||||
dtype_str = get_config_dtype_str(
|
||||
dtype_str = _get_config_dtype_str(
|
||||
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
|
||||
)
|
||||
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
|
||||
@ -547,7 +544,7 @@ def save_configs(
|
||||
block_quant_shape: list[int],
|
||||
save_dir: str,
|
||||
) -> None:
|
||||
dtype_str = get_config_dtype_str(
|
||||
dtype_str = _get_config_dtype_str(
|
||||
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
|
||||
)
|
||||
|
||||
@ -560,7 +557,7 @@ def save_configs(
|
||||
filename = os.path.join(save_dir, filename)
|
||||
print(f"Writing best config to {filename}...")
|
||||
with open(filename, "w") as f:
|
||||
json.dump(configs, f, indent=4)
|
||||
json.dump({"triton_version": triton.__version__, **configs}, f, indent=4)
|
||||
f.write("\n")
|
||||
|
||||
|
||||
@ -582,18 +579,22 @@ def main(args: argparse.Namespace):
|
||||
E = config.ffn_config.moe_num_experts
|
||||
topk = config.ffn_config.moe_top_k
|
||||
intermediate_size = config.ffn_config.ffn_hidden_size
|
||||
hidden_size = config.hidden_size
|
||||
elif config.architectures[0] == "JambaForCausalLM":
|
||||
E = config.num_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.intermediate_size
|
||||
hidden_size = config.hidden_size
|
||||
elif config.architectures[0] in (
|
||||
"DeepseekV3ForCausalLM",
|
||||
"DeepseekV2ForCausalLM",
|
||||
"DeepseekV3ForCausalLM",
|
||||
"DeepseekV32ForCausalLM",
|
||||
"Glm4MoeForCausalLM",
|
||||
):
|
||||
E = config.n_routed_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
hidden_size = config.hidden_size
|
||||
elif config.architectures[0] in (
|
||||
"Qwen2MoeForCausalLM",
|
||||
"Qwen3MoeForCausalLM",
|
||||
@ -602,10 +603,18 @@ def main(args: argparse.Namespace):
|
||||
E = config.num_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
hidden_size = config.hidden_size
|
||||
elif config.architectures[0] == "Qwen3VLMoeForConditionalGeneration":
|
||||
text_config = config.get_text_config()
|
||||
E = text_config.num_experts
|
||||
topk = text_config.num_experts_per_tok
|
||||
intermediate_size = text_config.moe_intermediate_size
|
||||
hidden_size = text_config.hidden_size
|
||||
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
|
||||
E = config.num_experts
|
||||
topk = config.moe_topk[0]
|
||||
intermediate_size = config.moe_intermediate_size[0]
|
||||
hidden_size = config.hidden_size
|
||||
else:
|
||||
# Support for llama4
|
||||
config = config.get_text_config()
|
||||
@ -613,6 +622,7 @@ def main(args: argparse.Namespace):
|
||||
E = config.num_local_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.intermediate_size
|
||||
hidden_size = config.hidden_size
|
||||
enable_ep = bool(args.enable_expert_parallel)
|
||||
if enable_ep:
|
||||
ensure_divisibility(E, args.tp_size, "Number of experts")
|
||||
@ -621,8 +631,7 @@ def main(args: argparse.Namespace):
|
||||
else:
|
||||
ensure_divisibility(intermediate_size, args.tp_size, "intermediate_size")
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
hidden_size = config.hidden_size
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
|
||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||
block_quant_shape = get_weight_block_size_safety(config)
|
||||
|
@ -344,7 +344,7 @@ def main(args: argparse.Namespace):
|
||||
topk = config.num_experts_per_tok
|
||||
|
||||
hidden_size = config.hidden_size
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
|
||||
dtype = torch.float16 if current_platform.is_rocm() else config.dtype
|
||||
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
|
||||
use_int8_w8a16 = args.dtype == "int8_w8a16"
|
||||
use_customized_permute = args.use_customized_permute
|
||||
|
@ -3,7 +3,6 @@
|
||||
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
@ -37,7 +36,7 @@ def main(
|
||||
seed: int,
|
||||
do_profile: bool,
|
||||
device: str = "cuda",
|
||||
kv_cache_dtype: Optional[str] = None,
|
||||
kv_cache_dtype: str | None = None,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
|
||||
|
@ -3,8 +3,8 @@
|
||||
|
||||
import argparse
|
||||
import math
|
||||
from collections.abc import Callable
|
||||
from contextlib import contextmanager
|
||||
from typing import Callable
|
||||
from unittest.mock import patch
|
||||
|
||||
import torch
|
||||
|
172
benchmarks/kernels/benchmark_reshape_and_cache.py
Normal file
172
benchmarks/kernels/benchmark_reshape_and_cache.py
Normal file
@ -0,0 +1,172 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import random
|
||||
import time
|
||||
|
||||
import torch
|
||||
from tabulate import tabulate
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import (
|
||||
STR_DTYPE_TO_TORCH_DTYPE,
|
||||
FlexibleArgumentParser,
|
||||
create_kv_caches_with_random,
|
||||
)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def run_benchmark(
|
||||
num_tokens: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
block_size: int,
|
||||
num_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
kv_cache_dtype: str,
|
||||
num_iters: int,
|
||||
benchmark_mode: str,
|
||||
device: str = "cuda",
|
||||
) -> float:
|
||||
"""Return latency (seconds) for given num_tokens."""
|
||||
|
||||
if kv_cache_dtype == "fp8" and head_size % 16:
|
||||
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
||||
|
||||
current_platform.seed_everything(42)
|
||||
torch.set_default_device(device)
|
||||
|
||||
# create random key / value tensors [T, H, D].
|
||||
key = torch.randn(num_tokens, num_heads, head_size, dtype=dtype, device=device)
|
||||
value = torch.randn_like(key)
|
||||
|
||||
# prepare the slot mapping.
|
||||
# each token is assigned a unique slot in the KV-cache.
|
||||
num_slots = block_size * num_blocks
|
||||
if num_tokens > num_slots:
|
||||
raise ValueError("num_tokens cannot exceed the total number of cache slots")
|
||||
slot_mapping_lst = random.sample(range(num_slots), num_tokens)
|
||||
slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)
|
||||
|
||||
key_caches, value_caches = create_kv_caches_with_random(
|
||||
num_blocks,
|
||||
block_size,
|
||||
1, # num_layers
|
||||
num_heads,
|
||||
head_size,
|
||||
kv_cache_dtype,
|
||||
dtype,
|
||||
device=device,
|
||||
)
|
||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
||||
# to free unused memory
|
||||
del key_caches, value_caches
|
||||
|
||||
# compute per-kernel scaling factors for fp8 conversion (if used).
|
||||
k_scale = (key.amax() / 64.0).to(torch.float32)
|
||||
v_scale = (value.amax() / 64.0).to(torch.float32)
|
||||
|
||||
function_under_test = lambda: ops.reshape_and_cache(
|
||||
key, # noqa: F821
|
||||
value, # noqa: F821
|
||||
key_cache, # noqa: F821
|
||||
value_cache, # noqa: F821
|
||||
slot_mapping, # noqa: F821
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
|
||||
if benchmark_mode == "cudagraph":
|
||||
g = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(g):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
function_under_test = lambda: g.replay()
|
||||
|
||||
def run_cuda_benchmark(n_iters: int) -> float:
|
||||
nonlocal key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.synchronize()
|
||||
start = time.perf_counter()
|
||||
for _ in range(n_iters):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
end = time.perf_counter()
|
||||
return (end - start) / n_iters
|
||||
|
||||
# warm-up
|
||||
run_cuda_benchmark(3)
|
||||
|
||||
lat = run_cuda_benchmark(num_iters)
|
||||
|
||||
# free tensors to mitigate OOM when sweeping
|
||||
del key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return lat
|
||||
|
||||
|
||||
def main(args):
|
||||
rows = []
|
||||
for exp in range(1, 17):
|
||||
n_tok = 2**exp
|
||||
lat = run_benchmark(
|
||||
num_tokens=n_tok,
|
||||
num_heads=args.num_heads,
|
||||
head_size=args.head_size,
|
||||
block_size=args.block_size,
|
||||
num_blocks=args.num_blocks,
|
||||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
||||
kv_cache_dtype=args.kv_cache_dtype,
|
||||
num_iters=args.iters,
|
||||
benchmark_mode=args.mode,
|
||||
device="cuda",
|
||||
)
|
||||
rows.append([n_tok, lat * 1e6]) # convert to microseconds
|
||||
|
||||
print(f"Benchmark results for implementation cuda (measuring with {args.mode}):")
|
||||
print(tabulate(rows, headers=["num_tokens", "latency (µs)"], floatfmt=".3f"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser()
|
||||
|
||||
parser.add_argument("--num-heads", type=int, default=128)
|
||||
parser.add_argument(
|
||||
"--head-size",
|
||||
type=int,
|
||||
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
||||
default=128,
|
||||
)
|
||||
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
|
||||
parser.add_argument("--num-blocks", type=int, default=128 * 128)
|
||||
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
type=str,
|
||||
choices=["half", "bfloat16", "float"],
|
||||
default="bfloat16",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--kv-cache-dtype",
|
||||
type=str,
|
||||
choices=["auto", "fp8"],
|
||||
default="auto",
|
||||
)
|
||||
|
||||
parser.add_argument("--iters", type=int, default=200)
|
||||
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
choices=["cudagraph", "no_graph"],
|
||||
default="cudagraph",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
@ -1,7 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
import time
|
||||
|
||||
@ -9,6 +7,9 @@ import torch
|
||||
from tabulate import tabulate
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.attention.ops.triton_reshape_and_cache_flash import (
|
||||
triton_reshape_and_cache_flash,
|
||||
)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import (
|
||||
@ -31,6 +32,8 @@ def run_benchmark(
|
||||
kv_cache_dtype: str,
|
||||
kv_cache_layout: str,
|
||||
num_iters: int,
|
||||
implementation: str,
|
||||
benchmark_mode: str,
|
||||
device: str = "cuda",
|
||||
) -> float:
|
||||
"""Return latency (seconds) for given num_tokens."""
|
||||
@ -38,6 +41,14 @@ def run_benchmark(
|
||||
if kv_cache_dtype == "fp8" and head_size % 16:
|
||||
raise ValueError("fp8 kv-cache requires head_size to be a multiple of 16.")
|
||||
|
||||
if implementation not in ("cuda", "triton"):
|
||||
raise ValueError(
|
||||
f"Unsupported implementation: {implementation}. "
|
||||
"Only 'cuda' and 'triton' are supported."
|
||||
)
|
||||
if implementation == "triton" and kv_cache_layout == "HND":
|
||||
return float("nan") # Triton does not support HND layout yet.
|
||||
|
||||
current_platform.seed_everything(42)
|
||||
torch.set_default_device(device)
|
||||
|
||||
@ -65,27 +76,49 @@ def run_benchmark(
|
||||
cache_layout=kv_cache_layout,
|
||||
)
|
||||
key_cache, value_cache = key_caches[0], value_caches[0]
|
||||
# to free unused memory
|
||||
del key_caches, value_caches
|
||||
|
||||
# compute per-kernel scaling factors for fp8 conversion (if used).
|
||||
k_scale = (key.amax() / 64.0).to(torch.float32)
|
||||
v_scale = (value.amax() / 64.0).to(torch.float32)
|
||||
|
||||
if implementation == "cuda":
|
||||
function_under_test = lambda: ops.reshape_and_cache_flash(
|
||||
key, # noqa: F821
|
||||
value, # noqa: F821
|
||||
key_cache, # noqa: F821
|
||||
value_cache, # noqa: F821
|
||||
slot_mapping, # noqa: F821
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
else:
|
||||
function_under_test = lambda: triton_reshape_and_cache_flash(
|
||||
key, # noqa: F821
|
||||
value, # noqa: F821
|
||||
key_cache, # noqa: F821
|
||||
value_cache, # noqa: F821
|
||||
slot_mapping, # noqa: F821
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
if benchmark_mode == "cudagraph":
|
||||
g = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(g):
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
function_under_test = lambda: g.replay()
|
||||
|
||||
def run_cuda_benchmark(n_iters: int) -> float:
|
||||
nonlocal key, value, key_cache, value_cache, slot_mapping
|
||||
torch.cuda.synchronize()
|
||||
start = time.perf_counter()
|
||||
for _ in range(n_iters):
|
||||
ops.reshape_and_cache_flash(
|
||||
key,
|
||||
value,
|
||||
key_cache,
|
||||
value_cache,
|
||||
slot_mapping,
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
function_under_test()
|
||||
torch.cuda.synchronize()
|
||||
end = time.perf_counter()
|
||||
return (end - start) / n_iters
|
||||
|
||||
@ -116,10 +149,16 @@ def main(args):
|
||||
kv_cache_dtype=args.kv_cache_dtype,
|
||||
kv_cache_layout=layout,
|
||||
num_iters=args.iters,
|
||||
implementation=args.implementation,
|
||||
benchmark_mode=args.mode,
|
||||
device="cuda",
|
||||
)
|
||||
rows.append([n_tok, layout, f"{lat * 1e6:.3f}"])
|
||||
|
||||
print(
|
||||
f"Benchmark results for implementation {args.implementation}"
|
||||
f" (measuring with {args.mode}):"
|
||||
)
|
||||
print(tabulate(rows, headers=["num_tokens", "layout", "latency (µs)"]))
|
||||
|
||||
|
||||
@ -151,6 +190,21 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
parser.add_argument("--iters", type=int, default=100)
|
||||
|
||||
parser.add_argument(
|
||||
"--implementation",
|
||||
type=str,
|
||||
choices=["cuda", "triton"],
|
||||
default="cuda",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
choices=["cudagraph", "no_graph"],
|
||||
default="cudagraph",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
|
@ -2,7 +2,6 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import itertools
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
|
||||
@ -21,8 +20,8 @@ class HuggingFaceRMSNorm(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
||||
residual: torch.Tensor | None = None,
|
||||
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
||||
orig_dtype = x.dtype
|
||||
x = x.to(torch.float32)
|
||||
if residual is not None:
|
||||
@ -41,7 +40,7 @@ class HuggingFaceRMSNorm(nn.Module):
|
||||
def rmsnorm_naive(
|
||||
x: torch.Tensor,
|
||||
weight: torch.Tensor,
|
||||
residual: Optional[torch.Tensor] = None,
|
||||
residual: torch.Tensor | None = None,
|
||||
eps: float = 1e-6,
|
||||
):
|
||||
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
|
||||
@ -65,7 +64,7 @@ def rmsnorm_naive(
|
||||
def rmsnorm_flashinfer(
|
||||
x: torch.Tensor,
|
||||
weight: torch.Tensor,
|
||||
residual: Optional[torch.Tensor] = None,
|
||||
residual: torch.Tensor | None = None,
|
||||
eps: float = 1e-6,
|
||||
):
|
||||
orig_shape = x.shape
|
||||
@ -89,7 +88,7 @@ def rmsnorm_flashinfer(
|
||||
def rmsnorm_vllm(
|
||||
x: torch.Tensor,
|
||||
weight: torch.Tensor,
|
||||
residual: Optional[torch.Tensor] = None,
|
||||
residual: torch.Tensor | None = None,
|
||||
eps: float = 1e-6,
|
||||
):
|
||||
orig_shape = x.shape
|
||||
|
@ -2,7 +2,6 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from itertools import accumulate
|
||||
from typing import Optional
|
||||
|
||||
import nvtx
|
||||
import torch
|
||||
@ -18,7 +17,7 @@ def benchmark_rope_kernels_multi_lora(
|
||||
seq_len: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
rotary_dim: Optional[int],
|
||||
rotary_dim: int | None,
|
||||
dtype: torch.dtype,
|
||||
seed: int,
|
||||
device: str,
|
||||
|
@ -1,5 +1,19 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
"""
|
||||
Comprehensive 3-way SiLU Benchmark Suite
|
||||
|
||||
This benchmark compares three SiLU implementations:
|
||||
1. SiLU V2 (CUDA) - Optimized CUDA kernel implementation
|
||||
2. Triton Kernel - Triton-based implementation
|
||||
|
||||
The suite generates detailed performance comparisons including:
|
||||
- Memory bandwidth utilization
|
||||
- Speedup ratios (baseline vs optimized implementations)
|
||||
- Performance across different expert configurations and token distributions
|
||||
"""
|
||||
|
||||
from collections.abc import Callable
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
@ -7,7 +21,7 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
|
||||
silu_mul_fp8_quant_deep_gemm_cuda,
|
||||
persistent_masked_m_silu_mul_quant,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.triton_utils import tl, triton
|
||||
@ -94,6 +108,7 @@ def silu_mul_fp8_quant_deep_gemm_triton(
|
||||
num_parallel_tokens,
|
||||
group_size: int = 128,
|
||||
eps: float = 1e-10,
|
||||
expert_offsets: torch.Tensor = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales
|
||||
|
||||
@ -174,7 +189,7 @@ def silu_mul_fp8_quant_deep_gemm_triton(
|
||||
|
||||
|
||||
# Parse generation strategies
|
||||
strategies = ["uniform", "max_t", "first_t"]
|
||||
strategies = ["random_imbalanced", "uniform", "max_t"]
|
||||
|
||||
|
||||
def benchmark(
|
||||
@ -195,15 +210,27 @@ def benchmark(
|
||||
current_platform.seed_everything(42 + seed_offset)
|
||||
y = torch.rand((E, T, 2 * H), dtype=torch.bfloat16, device="cuda").contiguous()
|
||||
|
||||
if gen_strategy == "uniform":
|
||||
r = torch.rand(size=(E,), device="cuda")
|
||||
if gen_strategy == "random_imbalanced":
|
||||
|
||||
def generate_expert_loads(n_e, total_tokens, ratio, device="cuda"):
|
||||
mean = total_tokens // n_e
|
||||
min_max = mean // ratio
|
||||
e = torch.ones(size=(E,), dtype=torch.int64, device=device) * mean
|
||||
e[0] = min_max
|
||||
r = torch.rand(size=(E - 1,))
|
||||
r /= r.sum()
|
||||
r *= total_tokens - min_max
|
||||
r = r.round().long()
|
||||
e[1:] = r.to(device=device)
|
||||
return e
|
||||
|
||||
tokens_per_expert = generate_expert_loads(E, total_tokens, 0.7, "cuda")
|
||||
elif gen_strategy == "uniform":
|
||||
r = torch.rand(size=(E,))
|
||||
r /= r.sum()
|
||||
r *= total_tokens
|
||||
tokens_per_expert = r.int()
|
||||
tokens_per_expert = torch.minimum(
|
||||
tokens_per_expert,
|
||||
torch.ones((E,), device=r.device, dtype=torch.int) * T,
|
||||
)
|
||||
r = r.round().long()
|
||||
tokens_per_expert = r
|
||||
elif gen_strategy == "max_t":
|
||||
tokens_per_expert = torch.empty(size=(E,), dtype=torch.int32, device="cuda")
|
||||
tokens_per_expert.fill_(total_tokens / E)
|
||||
@ -281,40 +308,34 @@ def benchmark(
|
||||
|
||||
|
||||
def create_comparison_plot(
|
||||
ratio, cuda_times, baseline_times, config_labels, strategy_name, id
|
||||
ratios, silu_v2_times, triton_times, config_labels, strategy_name, id
|
||||
):
|
||||
"""Create a comparison plot for a specific generation strategy"""
|
||||
fig, ax = plt.subplots(1, 1, figsize=(16, 6))
|
||||
fig, ax = plt.subplots(1, 1, figsize=(18, 6))
|
||||
|
||||
# Configure x-axis positions
|
||||
x = np.arange(len(config_labels))
|
||||
width = 0.35
|
||||
width = 0.25
|
||||
|
||||
# Execution Time plot (lower is better)
|
||||
ax.bar(x, silu_v2_times, width, label="SiLU V2 (CUDA)", alpha=0.8, color="blue")
|
||||
ax.bar(
|
||||
x - width / 2, cuda_times, width, label="CUDA Kernel", alpha=0.8, color="blue"
|
||||
)
|
||||
ax.bar(
|
||||
x + width / 2,
|
||||
baseline_times,
|
||||
width,
|
||||
label="Baseline",
|
||||
alpha=0.8,
|
||||
color="orange",
|
||||
x + width, triton_times, width, label="Triton Kernel", alpha=0.8, color="green"
|
||||
)
|
||||
|
||||
# Add speedup labels over each bar pair
|
||||
# Add speedup labels over each bar trio
|
||||
for i in range(len(x)):
|
||||
speedup = ratio[i]
|
||||
max_height = max(cuda_times[i], baseline_times[i])
|
||||
triton_v2_speedup = ratios[i][1] # triton/v2
|
||||
max_height = max(silu_v2_times[i], triton_times[i])
|
||||
|
||||
# Triton/V2 speedup
|
||||
ax.text(
|
||||
x[i],
|
||||
x[i] + width / 2,
|
||||
max_height + max_height * 0.02,
|
||||
f"{speedup:.2f}x",
|
||||
f"{triton_v2_speedup:.2f}x",
|
||||
ha="center",
|
||||
va="bottom",
|
||||
fontweight="bold",
|
||||
fontsize=9,
|
||||
fontsize=8,
|
||||
)
|
||||
|
||||
ax.set_xlabel("Configuration")
|
||||
@ -332,56 +353,75 @@ def create_comparison_plot(
|
||||
|
||||
|
||||
def create_combined_plot(all_results):
|
||||
"""Create a combined plot with all strategies in one PNG"""
|
||||
num_strategies = len(all_results)
|
||||
fig, axes = plt.subplots(num_strategies, 1, figsize=(20, 6 * num_strategies))
|
||||
fig, axes = plt.subplots(num_strategies, 1, figsize=(22, 7 * num_strategies))
|
||||
|
||||
if num_strategies == 1:
|
||||
axes = [axes]
|
||||
|
||||
for idx, (
|
||||
strategy_name,
|
||||
ratio,
|
||||
cuda_times,
|
||||
baseline_times,
|
||||
all_ratios,
|
||||
all_silu_v2_results,
|
||||
all_triton_results,
|
||||
config_labels,
|
||||
config_x_axis,
|
||||
) in enumerate(all_results):
|
||||
ax = axes[idx]
|
||||
|
||||
# Flatten the nested results to get bandwidth percentages for plotting
|
||||
silu_v2_bandwidths = []
|
||||
triton_bandwidths = []
|
||||
flat_ratios = []
|
||||
|
||||
for config_results in all_silu_v2_results:
|
||||
for result in config_results:
|
||||
silu_v2_bandwidths.append(result[3]) # bandwidth percentage
|
||||
|
||||
for config_results in all_triton_results:
|
||||
for result in config_results:
|
||||
triton_bandwidths.append(result[3]) # bandwidth percentage
|
||||
|
||||
for config_ratios in all_ratios:
|
||||
for ratio in config_ratios:
|
||||
flat_ratios.append(ratio)
|
||||
|
||||
# Configure x-axis positions
|
||||
x = np.arange(len(config_labels))
|
||||
width = 0.35
|
||||
width = 0.25
|
||||
|
||||
# Execution Time plot (lower is better)
|
||||
# Bandwidth utilization plot (higher is better)
|
||||
ax.bar(
|
||||
x - width / 2,
|
||||
cuda_times,
|
||||
x,
|
||||
silu_v2_bandwidths,
|
||||
width,
|
||||
label="CUDA Kernel",
|
||||
label="SiLU V2 (CUDA)",
|
||||
alpha=0.8,
|
||||
color="blue",
|
||||
)
|
||||
ax.bar(
|
||||
x + width / 2,
|
||||
baseline_times,
|
||||
x + width,
|
||||
triton_bandwidths,
|
||||
width,
|
||||
label="Baseline",
|
||||
label="Triton Kernel",
|
||||
alpha=0.8,
|
||||
color="orange",
|
||||
color="green",
|
||||
)
|
||||
|
||||
# Add speedup labels over each bar pair
|
||||
# Add speedup labels over each bar trio
|
||||
for i in range(len(x)):
|
||||
speedup = ratio[i]
|
||||
max_height = max(cuda_times[i], baseline_times[i])
|
||||
triton_v2_speedup = flat_ratios[i] # triton/v2
|
||||
max_height = max(silu_v2_bandwidths[i], triton_bandwidths[i])
|
||||
|
||||
# Triton/V2 speedup
|
||||
ax.text(
|
||||
x[i],
|
||||
x[i] + width / 2,
|
||||
max_height + max_height * 0.02,
|
||||
f"{speedup:.2f}x",
|
||||
f"{triton_v2_speedup:.2f}x",
|
||||
ha="center",
|
||||
va="bottom",
|
||||
fontweight="bold",
|
||||
fontsize=9,
|
||||
fontsize=8,
|
||||
)
|
||||
|
||||
ax.set_xlabel("Configuration")
|
||||
@ -395,7 +435,7 @@ def create_combined_plot(all_results):
|
||||
ax.grid(True, alpha=0.3)
|
||||
|
||||
plt.tight_layout()
|
||||
filename = "../../silu_bench/silu_benchmark_combined.png"
|
||||
filename = "silu_benchmark_combined_3way.png"
|
||||
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
||||
plt.show()
|
||||
|
||||
@ -405,7 +445,9 @@ def create_combined_plot(all_results):
|
||||
outer_dim = 7168
|
||||
configs = [
|
||||
# DeepSeekV3 Configs
|
||||
# (1, 56, 7168),
|
||||
(8, 1024, 7168),
|
||||
# (32, 56, 7168),
|
||||
# DeepSeekV3 Configs
|
||||
(32, 1024, 7168),
|
||||
# DeepSeekV3 Configs
|
||||
@ -417,6 +459,7 @@ num_warmups = 20
|
||||
|
||||
strategy_descriptions = {
|
||||
"uniform": "Uniform Random",
|
||||
"random_imbalanced": "Imbalanced Random",
|
||||
"max_t": "Even Assignment",
|
||||
"first_t": "experts[0] = T, experts[1:] = 0",
|
||||
}
|
||||
@ -433,28 +476,31 @@ for id, strategy in enumerate(strategies):
|
||||
print(f"Testing strategy: {strategy_descriptions[strategy]}")
|
||||
print(f"{'=' * 60}")
|
||||
|
||||
# Collect benchmark data for both algorithms
|
||||
# Collect benchmark data for all three algorithms
|
||||
config_labels = []
|
||||
config_x_axis = []
|
||||
all_cuda_results = []
|
||||
all_baseline_results = []
|
||||
all_silu_v2_results = []
|
||||
all_triton_results = []
|
||||
all_ratios = []
|
||||
|
||||
for E, T, H in configs:
|
||||
total_tokens_config = [8 * E, 16 * E, 32 * E, 64 * E, 128 * E, 256 * E]
|
||||
total_tokens_config = []
|
||||
for i in [8, 16, 32, 64, 128, 256, 512]:
|
||||
if i <= T:
|
||||
total_tokens_config.append(i * E)
|
||||
config_x_axis.append(total_tokens_config)
|
||||
|
||||
cuda_results = []
|
||||
baseline_results = []
|
||||
silu_v2_results = []
|
||||
triton_results = []
|
||||
ratios = []
|
||||
|
||||
for total_tokens in total_tokens_config:
|
||||
config_label = f"E={E},T={T},H={H},TT={total_tokens}"
|
||||
config_labels.append(config_label)
|
||||
|
||||
# CUDA kernel results
|
||||
time_ms_cuda, gflops, gbps, perc = benchmark(
|
||||
silu_mul_fp8_quant_deep_gemm_cuda,
|
||||
# SiLU V2 (CUDA kernel) results
|
||||
time_ms_silu_v2, gflops, gbps, perc = benchmark(
|
||||
persistent_masked_m_silu_mul_quant,
|
||||
E,
|
||||
T,
|
||||
H,
|
||||
@ -463,9 +509,9 @@ for id, strategy in enumerate(strategies):
|
||||
num_warmups=num_warmups,
|
||||
gen_strategy=strategy,
|
||||
)
|
||||
cuda_results.append((time_ms_cuda, gflops, gbps, perc))
|
||||
silu_v2_results.append((time_ms_silu_v2, gflops, gbps, perc))
|
||||
|
||||
# Baseline results
|
||||
# Triton kernel results
|
||||
time_ms_triton, gflops, gbps, perc = benchmark(
|
||||
silu_mul_fp8_quant_deep_gemm_triton,
|
||||
E,
|
||||
@ -476,12 +522,20 @@ for id, strategy in enumerate(strategies):
|
||||
num_warmups=num_warmups,
|
||||
gen_strategy=strategy,
|
||||
)
|
||||
baseline_results.append((time_ms_triton, gflops, gbps, perc))
|
||||
ratios.append(time_ms_triton / time_ms_cuda)
|
||||
triton_results.append((time_ms_triton, gflops, gbps, perc))
|
||||
|
||||
print(f"Completed: {config_label}")
|
||||
all_cuda_results.append(cuda_results)
|
||||
all_baseline_results.append(baseline_results)
|
||||
# Calculate speedup ratios (triton baseline / implementation)
|
||||
triton_v2_ratio = time_ms_triton / time_ms_silu_v2
|
||||
ratios.append(triton_v2_ratio)
|
||||
|
||||
print(
|
||||
f"Completed: {config_label}:"
|
||||
f" V2: {time_ms_silu_v2:.3f}ms,"
|
||||
f" Triton: {time_ms_triton:.3f}ms"
|
||||
)
|
||||
|
||||
all_silu_v2_results.append(silu_v2_results)
|
||||
all_triton_results.append(triton_results)
|
||||
all_ratios.append(ratios)
|
||||
|
||||
# Store results for combined plotting
|
||||
@ -489,8 +543,8 @@ for id, strategy in enumerate(strategies):
|
||||
(
|
||||
strategy_descriptions[strategy],
|
||||
all_ratios,
|
||||
all_cuda_results,
|
||||
all_baseline_results,
|
||||
all_silu_v2_results,
|
||||
all_triton_results,
|
||||
config_labels,
|
||||
config_x_axis,
|
||||
)
|
||||
@ -498,15 +552,18 @@ for id, strategy in enumerate(strategies):
|
||||
|
||||
# Print summary table for this strategy
|
||||
print(f"\nSummary Table - {strategy_descriptions[strategy]}:")
|
||||
print(f"{'Config':<20} {'CUDA Time(ms)':<12} {'Base Time(ms)':<12} {'Speedup':<8}")
|
||||
print("-" * 60)
|
||||
print(f" {'V2 Time(ms)':<12} {'Triton Time(ms)':<14} {'Triton/V2':<10}")
|
||||
print("-" * 90)
|
||||
|
||||
for i, (E, T, H) in enumerate(configs):
|
||||
speedup = baseline_results[i][0] / cuda_results[i][0]
|
||||
# Get the first result for each config (simplifying for summary)
|
||||
v2_time = silu_v2_results[i][0]
|
||||
triton_time = triton_results[i][0]
|
||||
triton_v2_speedup = triton_time / v2_time
|
||||
config_label = f"E={E:3d},T={T:4d},H={H:4d}"
|
||||
print(
|
||||
f"{config_label:<20} {cuda_results[i][0]:8.5f} "
|
||||
f"{baseline_results[i][0]:8.5f} {speedup:6.2f}x"
|
||||
f"{config_label:<20} {v2_time:8.5f} {triton_time:10.5f} "
|
||||
f"{triton_v2_speedup:8.2f}x"
|
||||
)
|
||||
|
||||
|
||||
@ -514,15 +571,14 @@ def create_total_tokens_plot(all_results):
|
||||
num_strategies = len(all_results)
|
||||
num_configs = len(configs)
|
||||
|
||||
# Create side-by-side subplots: 2 columns for speedup and bandwidth percentage
|
||||
fig, axs = plt.subplots(
|
||||
num_strategies, num_configs * 2, figsize=(28, 6 * num_strategies)
|
||||
num_strategies, num_configs * 2, figsize=(32, 8 * num_strategies)
|
||||
)
|
||||
|
||||
# Add main title to the entire figure
|
||||
fig.suptitle(
|
||||
"Performance Analysis: Speedup vs Bandwidth Utilization (Triton & CUDA)",
|
||||
fontsize=16,
|
||||
"Performance Analysis: Speedup vs Bandwidth Utilization (SiLU V2, and Triton)",
|
||||
fontsize=18,
|
||||
fontweight="bold",
|
||||
y=0.98,
|
||||
)
|
||||
@ -539,8 +595,8 @@ def create_total_tokens_plot(all_results):
|
||||
(
|
||||
strategy_name,
|
||||
all_ratios,
|
||||
all_cuda_results,
|
||||
all_baseline_results,
|
||||
all_silu_v2_results,
|
||||
all_triton_results,
|
||||
config_labels,
|
||||
config_x_axis,
|
||||
) = result
|
||||
@ -555,42 +611,54 @@ def create_total_tokens_plot(all_results):
|
||||
ratios = all_ratios[config_idx]
|
||||
total_tokens_values = config_x_axis[config_idx]
|
||||
|
||||
# Extract CUDA and Triton bandwidth percentages
|
||||
cuda_bandwidth_percentages = [
|
||||
result[3] for result in all_cuda_results[config_idx]
|
||||
# Extract speedup ratios
|
||||
triton_v2_ratios = [ratio for ratio in ratios]
|
||||
|
||||
# Extract bandwidth percentages for all implementations
|
||||
v2_bandwidth_percentages = [
|
||||
result[3] for result in all_silu_v2_results[config_idx]
|
||||
]
|
||||
triton_bandwidth_percentages = [
|
||||
result[3] for result in all_baseline_results[config_idx]
|
||||
result[3] for result in all_triton_results[config_idx]
|
||||
]
|
||||
|
||||
# Plot speedup ratios vs total tokens (left plot)
|
||||
ax_speedup.plot(
|
||||
total_tokens_values, ratios, "bo-", linewidth=3, markersize=8
|
||||
total_tokens_values,
|
||||
triton_v2_ratios,
|
||||
"go-",
|
||||
linewidth=3,
|
||||
markersize=8,
|
||||
label="Triton/V2 Speedup",
|
||||
)
|
||||
ax_speedup.set_title(
|
||||
f"{strategy_name}\nSpeedup (CUDA/Triton)\nE={E}, T={T}, H={H}",
|
||||
f"{strategy_name}\nSpeedup vs Baseline (Triton)\nE={E}, T={T}, H={H}",
|
||||
fontsize=12,
|
||||
fontweight="bold",
|
||||
)
|
||||
ax_speedup.set_xlabel("Total Tokens", fontweight="bold", fontsize=11)
|
||||
ax_speedup.set_ylabel("Speedup Ratio", fontweight="bold", fontsize=11)
|
||||
ax_speedup.legend(prop={"weight": "bold"})
|
||||
ax_speedup.grid(True, alpha=0.3)
|
||||
|
||||
# Plot bandwidth utilization (right plot)
|
||||
ax_bandwidth.plot(
|
||||
total_tokens_values,
|
||||
cuda_bandwidth_percentages,
|
||||
"ro-",
|
||||
v2_bandwidth_percentages,
|
||||
"o-",
|
||||
linewidth=3,
|
||||
markersize=8,
|
||||
label="CUDA",
|
||||
label="SiLU V2",
|
||||
color="blue",
|
||||
)
|
||||
ax_bandwidth.plot(
|
||||
total_tokens_values,
|
||||
triton_bandwidth_percentages,
|
||||
"go-",
|
||||
"o-",
|
||||
linewidth=3,
|
||||
markersize=8,
|
||||
label="Triton",
|
||||
color="green",
|
||||
)
|
||||
ax_bandwidth.set_title(
|
||||
f"{strategy_name}\nBandwidth Utilization (Hopper)\nE={E}, T={T}, H={H}",
|
||||
@ -618,38 +686,12 @@ def create_total_tokens_plot(all_results):
|
||||
for label in ax.get_xticklabels() + ax.get_yticklabels():
|
||||
label.set_fontweight("bold")
|
||||
|
||||
# Add value labels on speedup points
|
||||
for x, y in zip(total_tokens_values, ratios):
|
||||
# Add value labels on Triton/V2 speedup points
|
||||
for x, y in zip(total_tokens_values, triton_v2_ratios):
|
||||
ax_speedup.annotate(
|
||||
f"{y:.2f}x",
|
||||
(x, y),
|
||||
textcoords="offset points",
|
||||
xytext=(0, 12),
|
||||
ha="center",
|
||||
fontsize=10,
|
||||
fontweight="bold",
|
||||
bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.7),
|
||||
)
|
||||
|
||||
# Add value labels on CUDA bandwidth points
|
||||
for x, y in zip(total_tokens_values, cuda_bandwidth_percentages):
|
||||
ax_bandwidth.annotate(
|
||||
f"{y:.1f}%",
|
||||
(x, y),
|
||||
textcoords="offset points",
|
||||
xytext=(0, 12),
|
||||
ha="center",
|
||||
fontsize=9,
|
||||
fontweight="bold",
|
||||
bbox=dict(boxstyle="round,pad=0.2", facecolor="red", alpha=0.3),
|
||||
)
|
||||
|
||||
# Add value labels on Triton bandwidth points
|
||||
for x, y in zip(total_tokens_values, triton_bandwidth_percentages):
|
||||
ax_bandwidth.annotate(
|
||||
f"{y:.1f}%",
|
||||
(x, y),
|
||||
textcoords="offset points",
|
||||
xytext=(0, -15),
|
||||
ha="center",
|
||||
fontsize=9,
|
||||
@ -659,17 +701,20 @@ def create_total_tokens_plot(all_results):
|
||||
|
||||
plt.tight_layout()
|
||||
plt.subplots_adjust(top=0.93) # Make room for main title
|
||||
filename = "silu_benchmark_total_tokens.png"
|
||||
filename = "silu_benchmark_total_tokens_3way.png"
|
||||
plt.savefig(filename, dpi=300, bbox_inches="tight")
|
||||
plt.show()
|
||||
|
||||
return filename
|
||||
|
||||
|
||||
# Create combined plot with all strategies
|
||||
combined_plot_filename = create_total_tokens_plot(all_results)
|
||||
# Create comprehensive 3-way comparison plots
|
||||
combined_plot_filename = create_combined_plot(all_results)
|
||||
total_tokens_plot_filename = create_total_tokens_plot(all_results)
|
||||
|
||||
print(f"\n{'=' * 60}")
|
||||
print("Benchmark Complete!")
|
||||
print(f"Generated combined plot: {combined_plot_filename}")
|
||||
print(f"{'=' * 60}")
|
||||
print(f"\n{'=' * 80}")
|
||||
print("3-Way Benchmark Suite Complete!")
|
||||
print(f"Generated combined comparison plot: {combined_plot_filename}")
|
||||
print(f"Generated total tokens analysis plot: {total_tokens_plot_filename}")
|
||||
print("Compared: SiLU V2 (CUDA), and Triton implementations")
|
||||
print(f"{'=' * 80}")
|
||||
|
@ -4,7 +4,6 @@
|
||||
import csv
|
||||
import os
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import flashinfer
|
||||
import torch
|
||||
@ -28,9 +27,7 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
@torch.no_grad()
|
||||
def benchmark_decode(
|
||||
dtype: torch.dtype,
|
||||
quant_dtypes: tuple[
|
||||
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||
],
|
||||
quant_dtypes: tuple[torch.dtype | None, torch.dtype | None, torch.dtype | None],
|
||||
batch_size: int,
|
||||
max_seq_len: int,
|
||||
num_heads: tuple[int, int] = (64, 8),
|
||||
|
@ -4,7 +4,6 @@
|
||||
import csv
|
||||
import os
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import flashinfer
|
||||
import torch
|
||||
@ -28,9 +27,7 @@ def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
@torch.no_grad()
|
||||
def benchmark_prefill(
|
||||
dtype: torch.dtype,
|
||||
quant_dtypes: tuple[
|
||||
Optional[torch.dtype], Optional[torch.dtype], Optional[torch.dtype]
|
||||
],
|
||||
quant_dtypes: tuple[torch.dtype | None, torch.dtype | None, torch.dtype | None],
|
||||
batch_size: int,
|
||||
max_seq_len: int,
|
||||
num_heads: tuple[int, int] = (64, 8),
|
||||
|
@ -11,13 +11,13 @@ from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import triton
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
_w8a8_block_fp8_matmul,
|
||||
_w8a8_triton_block_scaled_mm,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
mp.set_start_method("spawn", force=True)
|
||||
@ -83,7 +83,7 @@ def w8a8_block_matmul(
|
||||
)
|
||||
|
||||
if A.dtype == torch.float8_e4m3fn:
|
||||
kernel = _w8a8_block_fp8_matmul
|
||||
kernel = _w8a8_triton_block_scaled_mm
|
||||
else:
|
||||
raise RuntimeError("Currently, only support tune w8a8 block fp8 kernel.")
|
||||
|
||||
|
@ -1,6 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# fmt: off
|
||||
# ruff: noqa: E501
|
||||
import time
|
||||
|
||||
@ -8,27 +7,33 @@ import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
get_col_major_tma_aligned_tensor,
|
||||
per_token_group_quant_fp8,
|
||||
w8a8_block_fp8_matmul,
|
||||
w8a8_triton_block_scaled_mm,
|
||||
)
|
||||
from vllm.triton_utils import triton
|
||||
from vllm.utils.deep_gemm import calc_diff, fp8_gemm_nt, per_block_cast_to_fp8
|
||||
from vllm.utils.deep_gemm import (
|
||||
calc_diff,
|
||||
fp8_gemm_nt,
|
||||
get_col_major_tma_aligned_tensor,
|
||||
per_block_cast_to_fp8,
|
||||
)
|
||||
|
||||
|
||||
def benchmark_shape(m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
warmup: int = 100,
|
||||
repeat: int = 10000,
|
||||
verbose: bool = False) -> dict:
|
||||
def benchmark_shape(
|
||||
m: int,
|
||||
n: int,
|
||||
k: int,
|
||||
warmup: int = 100,
|
||||
repeat: int = 10000,
|
||||
verbose: bool = False,
|
||||
) -> dict:
|
||||
"""Benchmark all implementations for a specific (m, n, k) shape."""
|
||||
if verbose:
|
||||
print(f"\n=== Benchmarking shape: m={m}, n={n}, k={k} ===")
|
||||
|
||||
# Create test tensors
|
||||
A = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
|
||||
B = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
|
||||
A = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
|
||||
B = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
# Reference result in BF16
|
||||
torch.cuda.synchronize()
|
||||
@ -45,34 +50,39 @@ def benchmark_shape(m: int,
|
||||
# Pre-quantize A for all implementations
|
||||
A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(A, block_size[1])
|
||||
A_scale_deepgemm = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
|
||||
C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
|
||||
C_deepgemm = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)
|
||||
A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
|
||||
A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
|
||||
A, block_size[1], column_major_scales=True)
|
||||
A, block_size[1], column_major_scales=True
|
||||
)
|
||||
|
||||
# === DeepGEMM Implementation ===
|
||||
def deepgemm_gemm():
|
||||
fp8_gemm_nt((A_deepgemm, A_scale_deepgemm),
|
||||
(B_deepgemm, B_scale_deepgemm),
|
||||
C_deepgemm)
|
||||
fp8_gemm_nt(
|
||||
(A_deepgemm, A_scale_deepgemm), (B_deepgemm, B_scale_deepgemm), C_deepgemm
|
||||
)
|
||||
return C_deepgemm
|
||||
|
||||
# === vLLM Triton Implementation ===
|
||||
def vllm_triton_gemm():
|
||||
return w8a8_block_fp8_matmul(A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
B_scale_vllm,
|
||||
block_size,
|
||||
output_dtype=torch.bfloat16)
|
||||
return w8a8_triton_block_scaled_mm(
|
||||
A_vllm,
|
||||
B_vllm,
|
||||
A_scale_vllm,
|
||||
B_scale_vllm,
|
||||
block_size,
|
||||
output_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# === vLLM CUTLASS Implementation ===
|
||||
def vllm_cutlass_gemm():
|
||||
return ops.cutlass_scaled_mm(A_vllm_cutlass,
|
||||
B_vllm.T,
|
||||
scale_a=A_scale_vllm_cutlass,
|
||||
scale_b=B_scale_vllm.T,
|
||||
out_dtype=torch.bfloat16)
|
||||
return ops.cutlass_scaled_mm(
|
||||
A_vllm_cutlass,
|
||||
B_vllm.T,
|
||||
scale_a=A_scale_vllm_cutlass,
|
||||
scale_b=B_scale_vllm.T,
|
||||
out_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# Run correctness check first
|
||||
if verbose:
|
||||
@ -89,26 +99,23 @@ def benchmark_shape(m: int,
|
||||
print(f"DeepGEMM vs Reference difference: {deepgemm_diff:.6f}")
|
||||
print(f"vLLM Triton vs Reference difference: {vllm_triton_diff:.6f}")
|
||||
print(f"vLLM CUTLASS vs Reference difference: {vllm_cutlass_diff:.6f}")
|
||||
print("vLLM Triton vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}")
|
||||
print("vLLM CUTLASS vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}")
|
||||
print(
|
||||
"vLLM Triton vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_triton, C_deepgemm):.6f}"
|
||||
)
|
||||
print(
|
||||
"vLLM CUTLASS vs DeepGEMM difference: "
|
||||
f"{calc_diff(C_vllm_cutlass, C_deepgemm):.6f}"
|
||||
)
|
||||
|
||||
# Benchmark implementations
|
||||
implementations = {
|
||||
"DeepGEMM": deepgemm_gemm,
|
||||
"vLLM Triton": vllm_triton_gemm,
|
||||
"vLLM CUTLASS": vllm_cutlass_gemm
|
||||
"vLLM CUTLASS": vllm_cutlass_gemm,
|
||||
}
|
||||
|
||||
benchmark_results = {
|
||||
"shape": {
|
||||
"m": m,
|
||||
"n": n,
|
||||
"k": k
|
||||
},
|
||||
"implementations": {}
|
||||
}
|
||||
benchmark_results = {"shape": {"m": m, "n": n, "k": k}, "implementations": {}}
|
||||
|
||||
for name, func in implementations.items():
|
||||
# Warmup
|
||||
@ -136,38 +143,36 @@ def benchmark_shape(m: int,
|
||||
"tflops": tflops,
|
||||
"gb_s": gb_s,
|
||||
"diff": {
|
||||
"DeepGEMM":
|
||||
0.0 if name == "DeepGEMM" else calc_diff(func(), C_deepgemm),
|
||||
"Reference":
|
||||
deepgemm_diff if name == "DeepGEMM" else
|
||||
(vllm_triton_diff
|
||||
if name == "vLLM Triton" else vllm_cutlass_diff)
|
||||
}
|
||||
"DeepGEMM": 0.0
|
||||
if name == "DeepGEMM"
|
||||
else calc_diff(func(), C_deepgemm),
|
||||
"Reference": deepgemm_diff
|
||||
if name == "DeepGEMM"
|
||||
else (vllm_triton_diff if name == "vLLM Triton" else vllm_cutlass_diff),
|
||||
},
|
||||
}
|
||||
|
||||
if verbose:
|
||||
print(
|
||||
f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s"
|
||||
)
|
||||
print(f"{name}: {avg_time_ms:.3f} ms, {tflops:.2f} TFLOPS, {gb_s:.2f} GB/s")
|
||||
|
||||
# Calculate speedups
|
||||
baseline = benchmark_results["implementations"]["DeepGEMM"]["time_ms"]
|
||||
for name, data in benchmark_results["implementations"].items():
|
||||
if name != "DeepGEMM":
|
||||
speedup = baseline / data["time_ms"]
|
||||
benchmark_results["implementations"][name][
|
||||
"speedup_vs_deepgemm"] = speedup
|
||||
benchmark_results["implementations"][name]["speedup_vs_deepgemm"] = speedup
|
||||
if verbose:
|
||||
print(f"DeepGEMM is {1/speedup:.2f}x "
|
||||
f"{'faster' if 1/speedup > 1 else 'slower'} than {name}")
|
||||
print(
|
||||
f"DeepGEMM is {1 / speedup:.2f}x "
|
||||
f"{'faster' if 1 / speedup > 1 else 'slower'} than {name}"
|
||||
)
|
||||
|
||||
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"][
|
||||
"time_ms"]
|
||||
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||
"time_ms"]
|
||||
vllm_triton_time = benchmark_results["implementations"]["vLLM Triton"]["time_ms"]
|
||||
vllm_cutlass_time = benchmark_results["implementations"]["vLLM CUTLASS"]["time_ms"]
|
||||
cutlass_vs_triton = vllm_triton_time / vllm_cutlass_time
|
||||
benchmark_results["implementations"]["vLLM CUTLASS"][
|
||||
"speedup_vs_triton"] = cutlass_vs_triton
|
||||
benchmark_results["implementations"]["vLLM CUTLASS"]["speedup_vs_triton"] = (
|
||||
cutlass_vs_triton
|
||||
)
|
||||
if verbose:
|
||||
print(
|
||||
f"vLLM CUTLASS is {cutlass_vs_triton:.2f}x "
|
||||
@ -179,8 +184,7 @@ def benchmark_shape(m: int,
|
||||
|
||||
def format_table_row(values, widths):
|
||||
"""Format a row with specified column widths."""
|
||||
return "| " + " | ".join(f"{val:{w}}"
|
||||
for val, w in zip(values, widths)) + " |"
|
||||
return "| " + " | ".join(f"{val:{w}}" for val, w in zip(values, widths)) + " |"
|
||||
|
||||
|
||||
def print_table(headers, rows, title=None):
|
||||
@ -288,38 +292,50 @@ def run_benchmarks(verbose: bool = False):
|
||||
for result in all_results:
|
||||
shape = result["shape"]
|
||||
impl_data = result["implementations"]["DeepGEMM"]
|
||||
deepgemm_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}"
|
||||
])
|
||||
deepgemm_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
]
|
||||
)
|
||||
|
||||
print_table(deepgemm_headers,
|
||||
deepgemm_rows,
|
||||
title="DeepGEMM Implementation:")
|
||||
print_table(deepgemm_headers, deepgemm_rows, title="DeepGEMM Implementation:")
|
||||
|
||||
# Print vLLM Triton table
|
||||
triton_headers = [
|
||||
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"
|
||||
]
|
||||
triton_headers = ["m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM"]
|
||||
triton_rows = []
|
||||
for result in all_results:
|
||||
shape = result["shape"]
|
||||
impl_data = result["implementations"]["vLLM Triton"]
|
||||
speedup = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||
triton_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(speedup)
|
||||
])
|
||||
triton_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(speedup),
|
||||
]
|
||||
)
|
||||
|
||||
print_table(triton_headers,
|
||||
triton_rows,
|
||||
title="vLLM Triton Implementation:")
|
||||
print_table(triton_headers, triton_rows, title="vLLM Triton Implementation:")
|
||||
|
||||
# Print vLLM CUTLASS table
|
||||
cutlass_headers = [
|
||||
"m", "n", "k", "Time (μs)", "TFLOPS", "GB/s", "vs DeepGEMM",
|
||||
"vs Triton"
|
||||
"m",
|
||||
"n",
|
||||
"k",
|
||||
"Time (μs)",
|
||||
"TFLOPS",
|
||||
"GB/s",
|
||||
"vs DeepGEMM",
|
||||
"vs Triton",
|
||||
]
|
||||
cutlass_rows = []
|
||||
for result in all_results:
|
||||
@ -327,28 +343,27 @@ def run_benchmarks(verbose: bool = False):
|
||||
impl_data = result["implementations"]["vLLM CUTLASS"]
|
||||
vs_deepgemm = impl_data.get("speedup_vs_deepgemm", 1.0)
|
||||
vs_triton = impl_data.get("speedup_vs_triton", 1.0)
|
||||
cutlass_rows.append([
|
||||
shape["m"], shape["n"], shape["k"], f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}", f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(vs_deepgemm),
|
||||
format_speedup(vs_triton)
|
||||
])
|
||||
cutlass_rows.append(
|
||||
[
|
||||
shape["m"],
|
||||
shape["n"],
|
||||
shape["k"],
|
||||
f"{impl_data['time_us']:.1f}",
|
||||
f"{impl_data['tflops']:.1f}",
|
||||
f"{impl_data['gb_s']:.1f}",
|
||||
format_speedup(vs_deepgemm),
|
||||
format_speedup(vs_triton),
|
||||
]
|
||||
)
|
||||
|
||||
print_table(cutlass_headers,
|
||||
cutlass_rows,
|
||||
title="vLLM CUTLASS Implementation:")
|
||||
print_table(cutlass_headers, cutlass_rows, title="vLLM CUTLASS Implementation:")
|
||||
|
||||
# Calculate and print averages
|
||||
print("\n===== AVERAGE PERFORMANCE =====")
|
||||
|
||||
implementations = ["DeepGEMM", "vLLM Triton", "vLLM CUTLASS"]
|
||||
avg_metrics = {
|
||||
impl: {
|
||||
"tflops": 0,
|
||||
"gb_s": 0,
|
||||
"time_ms": 0
|
||||
}
|
||||
for impl in implementations
|
||||
impl: {"tflops": 0, "gb_s": 0, "time_ms": 0} for impl in implementations
|
||||
}
|
||||
|
||||
for result in all_results:
|
||||
@ -366,9 +381,9 @@ def run_benchmarks(verbose: bool = False):
|
||||
avg_tflops = avg_metrics[impl]["tflops"] / num_shapes
|
||||
avg_mem_bw = avg_metrics[impl]["gb_s"] / num_shapes
|
||||
avg_time = avg_metrics[impl]["time_ms"] / num_shapes
|
||||
avg_rows.append([
|
||||
impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"
|
||||
])
|
||||
avg_rows.append(
|
||||
[impl, f"{avg_tflops:.2f}", f"{avg_mem_bw:.2f}", f"{avg_time:.2f}"]
|
||||
)
|
||||
|
||||
print_table(avg_headers, avg_rows)
|
||||
|
||||
@ -376,21 +391,19 @@ def run_benchmarks(verbose: bool = False):
|
||||
avg_speedups = {
|
||||
"DeepGEMM vs vLLM Triton": 0,
|
||||
"DeepGEMM vs vLLM CUTLASS": 0,
|
||||
"vLLM CUTLASS vs vLLM Triton": 0
|
||||
"vLLM CUTLASS vs vLLM Triton": 0,
|
||||
}
|
||||
|
||||
for result in all_results:
|
||||
deepgemm_time = result["implementations"]["DeepGEMM"]["time_ms"]
|
||||
vllm_triton_time = result["implementations"]["vLLM Triton"]["time_ms"]
|
||||
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"][
|
||||
"time_ms"]
|
||||
vllm_cutlass_time = result["implementations"]["vLLM CUTLASS"]["time_ms"]
|
||||
|
||||
avg_speedups[
|
||||
"DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
||||
avg_speedups[
|
||||
"DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
||||
avg_speedups[
|
||||
"vLLM CUTLASS vs vLLM Triton"] += vllm_triton_time / vllm_cutlass_time
|
||||
avg_speedups["DeepGEMM vs vLLM Triton"] += vllm_triton_time / deepgemm_time
|
||||
avg_speedups["DeepGEMM vs vLLM CUTLASS"] += vllm_cutlass_time / deepgemm_time
|
||||
avg_speedups["vLLM CUTLASS vs vLLM Triton"] += (
|
||||
vllm_triton_time / vllm_cutlass_time
|
||||
)
|
||||
|
||||
print("\n===== AVERAGE SPEEDUPS =====")
|
||||
speedup_headers = ["Comparison", "Speedup"]
|
||||
@ -408,8 +421,7 @@ def run_benchmarks(verbose: bool = False):
|
||||
|
||||
for result in all_results:
|
||||
for impl in implementations:
|
||||
avg_diff[impl] += result["implementations"][impl]["diff"][
|
||||
"Reference"]
|
||||
avg_diff[impl] += result["implementations"][impl]["diff"]["Reference"]
|
||||
|
||||
diff_headers = ["Implementation", "Avg Diff vs Reference"]
|
||||
diff_rows = []
|
||||
|
@ -2,8 +2,8 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import dataclasses
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Callable, Optional
|
||||
from collections.abc import Callable, Iterable
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
@ -55,7 +55,7 @@ class Bench:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cuda_graph_params: Optional[CudaGraphBenchParams],
|
||||
cuda_graph_params: CudaGraphBenchParams | None,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
description: str,
|
||||
|
@ -55,6 +55,107 @@ output_num_chunks 166.0 99.01 11.80 79.00 90.00 98.00 108.75
|
||||
----------------------------------------------------------------------------------------------------
|
||||
```
|
||||
|
||||
### JSON configuration file for synthetic conversations generation
|
||||
|
||||
The input flag `--input-file` is used to determine the input conversations for the benchmark.<br/>
|
||||
When the input is a JSON file with the field `"filetype": "generate_conversations"` the tool will generate synthetic multi-turn (questions and answers) conversations.
|
||||
|
||||
The file `generate_multi_turn.json` is an example file.
|
||||
|
||||
The file must contain the sections `prompt_input` and `prompt_output`.
|
||||
|
||||
The `prompt_input` section must contain `num_turns`, `prefix_num_tokens` and `num_tokens`:
|
||||
|
||||
* `num_turns` - Number of total turns in the conversation (both user & assistant).<br/>
|
||||
The final value will always be rounded to an even number so each user turn has a reply.
|
||||
* `prefix_num_tokens` - Tokens added at the start of only the **first user turn** in a conversation (unique per conversation).
|
||||
* `num_tokens` - Total token length of each **user** message (one turn).
|
||||
|
||||
The `prompt_output` section must contain `num_tokens`:
|
||||
|
||||
* `num_tokens` - Total token length of each **assistant** message (one turn).
|
||||
|
||||
### Random distributions for synthetic conversations generation
|
||||
|
||||
When creating an input JSON file (such as `generate_multi_turn.json`),<br/>
|
||||
every numeric field (such as `num_turns` or `num_tokens`) requires a distribution.<br/>
|
||||
The distribution determines how to randomly sample values for the field.
|
||||
|
||||
The available distributions are listed below.
|
||||
|
||||
**Note:** The optional `max` field (for lognormal, zipf, and poisson) can be used to cap sampled values at an upper bound.</br>
|
||||
Can be used to make sure that the total number of tokens in every request does not exceed `--max-model-len`.
|
||||
|
||||
#### constant
|
||||
|
||||
```json
|
||||
{
|
||||
"distribution": "constant",
|
||||
"value": 500
|
||||
}
|
||||
```
|
||||
|
||||
* `value` - the fixed integer value (always returns the same number).
|
||||
|
||||
#### uniform
|
||||
|
||||
```json
|
||||
{
|
||||
"distribution": "uniform",
|
||||
"min": 12,
|
||||
"max": 18
|
||||
}
|
||||
```
|
||||
|
||||
* `min` - minimum value (inclusive).
|
||||
* `max` - maximum value (inclusive), should be equal or larger than min.
|
||||
|
||||
#### lognormal
|
||||
|
||||
```json
|
||||
{
|
||||
"distribution": "lognormal",
|
||||
"average": 1000,
|
||||
"max": 5000
|
||||
}
|
||||
```
|
||||
|
||||
You can parameterize the lognormal distribution in one of two ways:
|
||||
|
||||
Using the average and optional median ratio:
|
||||
|
||||
* `average` - target average value of the distribution.
|
||||
* `median_ratio` - the ratio of the median to the average; controls the skewness. Must be in the range (0, 1).
|
||||
|
||||
Using the parameters of the underlying normal distribution:
|
||||
|
||||
* `mean` - mean of the underlying normal distribution.
|
||||
* `sigma` - standard deviation of the underlying normal distribution.
|
||||
|
||||
#### zipf
|
||||
|
||||
```json
|
||||
{
|
||||
"distribution": "zipf",
|
||||
"alpha": 1.2,
|
||||
"max": 100
|
||||
}
|
||||
```
|
||||
|
||||
* `alpha` - skew parameter (> 1). Larger values produce stronger skew toward smaller integers.
|
||||
|
||||
#### poisson
|
||||
|
||||
```json
|
||||
{
|
||||
"distribution": "poisson",
|
||||
"alpha": 10,
|
||||
"max": 50
|
||||
}
|
||||
```
|
||||
|
||||
* `alpha` - expected value (λ). Also the variance of the distribution.
|
||||
|
||||
## ShareGPT Conversations
|
||||
|
||||
To run with the ShareGPT data, download the following ShareGPT dataset:
|
||||
|
@ -2,7 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
from abc import ABC, abstractmethod
|
||||
from statistics import mean
|
||||
from typing import Any, NamedTuple, Optional, Union
|
||||
from typing import Any, NamedTuple
|
||||
|
||||
import numpy as np # type: ignore
|
||||
import pandas as pd # type: ignore
|
||||
@ -35,8 +35,8 @@ class Distribution(ABC):
|
||||
class UniformDistribution(Distribution):
|
||||
def __init__(
|
||||
self,
|
||||
min_val: Union[int, float],
|
||||
max_val: Union[int, float],
|
||||
min_val: int | float,
|
||||
max_val: int | float,
|
||||
is_integer: bool = True,
|
||||
) -> None:
|
||||
self.min_val = min_val
|
||||
@ -56,7 +56,7 @@ class UniformDistribution(Distribution):
|
||||
|
||||
|
||||
class ConstantDistribution(Distribution):
|
||||
def __init__(self, value: Union[int, float]) -> None:
|
||||
def __init__(self, value: int | float) -> None:
|
||||
self.value = value
|
||||
self.max_val = value
|
||||
|
||||
@ -68,7 +68,7 @@ class ConstantDistribution(Distribution):
|
||||
|
||||
|
||||
class ZipfDistribution(Distribution):
|
||||
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
|
||||
def __init__(self, alpha: float, max_val: int | None = None) -> None:
|
||||
self.alpha = alpha
|
||||
self.max_val = max_val
|
||||
|
||||
@ -83,7 +83,7 @@ class ZipfDistribution(Distribution):
|
||||
|
||||
|
||||
class PoissonDistribution(Distribution):
|
||||
def __init__(self, alpha: float, max_val: Optional[int] = None) -> None:
|
||||
def __init__(self, alpha: float, max_val: int | None = None) -> None:
|
||||
self.alpha = alpha
|
||||
self.max_val = max_val
|
||||
|
||||
@ -99,21 +99,105 @@ class PoissonDistribution(Distribution):
|
||||
|
||||
class LognormalDistribution(Distribution):
|
||||
def __init__(
|
||||
self, mean: float, sigma: float, max_val: Optional[int] = None
|
||||
self,
|
||||
mean: float | None = None,
|
||||
sigma: float | None = None,
|
||||
average: int | None = None,
|
||||
median_ratio: float | None = None,
|
||||
max_val: int | None = None,
|
||||
) -> None:
|
||||
self.average = average
|
||||
self.median_ratio = median_ratio
|
||||
self.max_val = max_val
|
||||
|
||||
if average is not None:
|
||||
if average < 1:
|
||||
raise ValueError("Lognormal average must be positive")
|
||||
|
||||
if mean or sigma:
|
||||
raise ValueError(
|
||||
"When using lognormal average, you can't provide mean/sigma"
|
||||
)
|
||||
|
||||
if self.median_ratio is None:
|
||||
# Default value that provides relatively wide range of values
|
||||
self.median_ratio = 0.85
|
||||
|
||||
# Calculate mean/sigma of np.random.lognormal based on the average
|
||||
mean, sigma = self._generate_lognormal_by_median(
|
||||
target_average=self.average, median_ratio=self.median_ratio
|
||||
)
|
||||
else:
|
||||
if mean is None or sigma is None:
|
||||
raise ValueError(
|
||||
"Must provide both mean and sigma if average is not used"
|
||||
)
|
||||
|
||||
if mean <= 0 or sigma < 0:
|
||||
raise ValueError(
|
||||
"Lognormal mean must be positive and sigma must be non-negative"
|
||||
)
|
||||
|
||||
# Mean and standard deviation of the underlying normal distribution
|
||||
# Based on numpy.random.lognormal
|
||||
self.mean = mean
|
||||
self.sigma = sigma
|
||||
self.max_val = max_val
|
||||
|
||||
@staticmethod
|
||||
def _generate_lognormal_by_median(
|
||||
target_average: int, median_ratio: float
|
||||
) -> tuple[float, float]:
|
||||
"""
|
||||
Compute (mu, sigma) for a lognormal distribution given:
|
||||
- a target average (mean of the distribution)
|
||||
- a ratio of median / mean (controls skewness), assume mean > median
|
||||
|
||||
Background:
|
||||
If Z ~ Normal(mu, sigma^2), then X = exp(Z) ~ LogNormal(mu, sigma).
|
||||
* mean(X) = exp(mu + sigma^2 / 2)
|
||||
* median(X) = exp(mu)
|
||||
|
||||
So:
|
||||
median / mean = exp(mu) / exp(mu + sigma^2 / 2)
|
||||
= exp(-sigma^2 / 2)
|
||||
|
||||
Rearranging:
|
||||
sigma^2 = 2 * ln(mean / median)
|
||||
mu = ln(median)
|
||||
|
||||
This gives a unique (mu, sigma) for any valid mean and median.
|
||||
"""
|
||||
# Check input validity: median must be smaller than mean
|
||||
if median_ratio <= 0 or median_ratio >= 1:
|
||||
raise ValueError("median_ratio must be in range (0, 1)")
|
||||
|
||||
target_median = target_average * median_ratio
|
||||
|
||||
# Solve sigma^2 = 2 * ln(mean / median)
|
||||
sigma = np.sqrt(2 * np.log(target_average / target_median))
|
||||
mu = np.log(target_median)
|
||||
|
||||
return mu, sigma
|
||||
|
||||
def sample(self, size: int = 1) -> np.ndarray:
|
||||
samples = np.random.lognormal(mean=self.mean, sigma=self.sigma, size=size)
|
||||
|
||||
if self.average is not None:
|
||||
# Scale to average
|
||||
samples *= self.average / samples.mean()
|
||||
|
||||
if self.max_val:
|
||||
samples = np.minimum(samples, self.max_val)
|
||||
|
||||
return np.round(samples).astype(int)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"LognormalDistribution[{self.mean}, {self.sigma}]"
|
||||
if self.average:
|
||||
return (
|
||||
f"LognormalDistribution[{self.average}, "
|
||||
f"{self.median_ratio}, {self.max_val}]"
|
||||
)
|
||||
return f"LognormalDistribution[{self.mean}, {self.sigma}, {self.max_val}]"
|
||||
|
||||
|
||||
class GenConvArgs(NamedTuple):
|
||||
@ -173,10 +257,21 @@ def get_random_distribution(
|
||||
return PoissonDistribution(conf["alpha"], max_val=max_val)
|
||||
|
||||
elif distribution == "lognormal":
|
||||
max_val = conf.get("max", None)
|
||||
|
||||
if "average" in conf:
|
||||
# Infer lognormal mean/sigma (numpy) from input average
|
||||
median_ratio = conf.get("median_ratio", None)
|
||||
return LognormalDistribution(
|
||||
average=conf["average"], median_ratio=median_ratio, max_val=max_val
|
||||
)
|
||||
|
||||
# Use mean/sigma directly (for full control over the distribution)
|
||||
verify_field_exists(conf, "mean", section, subsection)
|
||||
verify_field_exists(conf, "sigma", section, subsection)
|
||||
max_val = conf.get("max", None)
|
||||
return LognormalDistribution(conf["mean"], conf["sigma"], max_val=max_val)
|
||||
return LognormalDistribution(
|
||||
mean=conf["mean"], sigma=conf["sigma"], max_val=max_val
|
||||
)
|
||||
|
||||
elif distribution == "uniform":
|
||||
verify_field_exists(conf, "min", section, subsection)
|
||||
|
@ -13,7 +13,7 @@ from datetime import datetime
|
||||
from enum import Enum
|
||||
from http import HTTPStatus
|
||||
from statistics import mean
|
||||
from typing import NamedTuple, Optional, Union
|
||||
from typing import NamedTuple
|
||||
|
||||
import aiohttp # type: ignore
|
||||
import numpy as np # type: ignore
|
||||
@ -46,9 +46,9 @@ class ConversationSampling(str, Enum):
|
||||
|
||||
class ClientArgs(NamedTuple):
|
||||
seed: int
|
||||
max_num_requests: Optional[int]
|
||||
max_num_requests: int | None
|
||||
skip_first_turn: bool
|
||||
max_turns: Optional[int]
|
||||
max_turns: int | None
|
||||
max_active_conversations: int
|
||||
verbose: bool
|
||||
print_content: bool
|
||||
@ -109,9 +109,9 @@ class RequestStats(NamedTuple):
|
||||
|
||||
class MetricStats:
|
||||
def __init__(self) -> None:
|
||||
self.min: Optional[float] = None
|
||||
self.max: Optional[float] = None
|
||||
self.avg: Optional[float] = None
|
||||
self.min: float | None = None
|
||||
self.max: float | None = None
|
||||
self.avg: float | None = None
|
||||
self.sum = 0.0
|
||||
self.count = 0
|
||||
|
||||
@ -143,7 +143,7 @@ class MovingAverage:
|
||||
self.index = 0
|
||||
self.sum = 0.0
|
||||
self.count = 0
|
||||
self.avg: Optional[float] = None
|
||||
self.avg: float | None = None
|
||||
|
||||
def update(self, new_value: float) -> None:
|
||||
if self.count < self.window_size:
|
||||
@ -169,7 +169,7 @@ class MovingAverage:
|
||||
class DebugStats:
|
||||
def __init__(self, logger: logging.Logger, window_size: int) -> None:
|
||||
self.logger = logger
|
||||
self.metrics: dict[str, Union[MovingAverage, MetricStats]] = {
|
||||
self.metrics: dict[str, MovingAverage | MetricStats] = {
|
||||
"moving_avg_ttft_ms": MovingAverage(window_size),
|
||||
"moving_avg_tpot_ms": MovingAverage(window_size),
|
||||
"ttft_ms": MetricStats(),
|
||||
@ -198,14 +198,6 @@ class DebugStats:
|
||||
self.logger.info("-" * 50)
|
||||
|
||||
|
||||
# Must support Python 3.8, we can't use str.removeprefix(prefix)
|
||||
# introduced in Python 3.9
|
||||
def remove_prefix(text: str, prefix: str) -> str:
|
||||
if text.startswith(prefix):
|
||||
return text[len(prefix) :]
|
||||
return text
|
||||
|
||||
|
||||
def nanosec_to_millisec(value: float) -> float:
|
||||
return value / 1000000.0
|
||||
|
||||
@ -220,8 +212,8 @@ async def send_request(
|
||||
chat_url: str,
|
||||
model: str,
|
||||
stream: bool = True,
|
||||
min_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
min_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
) -> ServerResponse:
|
||||
payload = {
|
||||
"model": model,
|
||||
@ -250,9 +242,9 @@ async def send_request(
|
||||
timeout = aiohttp.ClientTimeout(total=timeout_sec)
|
||||
|
||||
valid_response = True
|
||||
ttft: Optional[float] = None
|
||||
ttft: float | None = None
|
||||
chunk_delay: list[int] = []
|
||||
latency: Optional[float] = None
|
||||
latency: float | None = None
|
||||
first_chunk = ""
|
||||
generated_text = ""
|
||||
|
||||
@ -269,7 +261,7 @@ async def send_request(
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
|
||||
if chunk == "[DONE]":
|
||||
# End of stream
|
||||
latency = time.perf_counter_ns() - start_time
|
||||
@ -364,7 +356,7 @@ async def send_turn(
|
||||
req_args: RequestArgs,
|
||||
verbose: bool,
|
||||
verify_output: bool,
|
||||
) -> Optional[RequestStats]:
|
||||
) -> RequestStats | None:
|
||||
assert messages_to_use > 0
|
||||
assert messages_to_use <= len(conversation_messages)
|
||||
|
||||
@ -644,7 +636,7 @@ async def client_main(
|
||||
|
||||
if args.verbose:
|
||||
curr_time_sec: float = time.perf_counter()
|
||||
time_since_last_turn: Union[str, float] = "N/A"
|
||||
time_since_last_turn: str | float = "N/A"
|
||||
if conv_id in time_of_last_turn:
|
||||
time_since_last_turn = round(
|
||||
curr_time_sec - time_of_last_turn[conv_id], 3
|
||||
@ -769,7 +761,7 @@ def get_client_config(
|
||||
"Number of conversations must be equal or larger than the number of clients"
|
||||
)
|
||||
|
||||
max_req_per_client: Optional[int] = None
|
||||
max_req_per_client: int | None = None
|
||||
if args.max_num_requests is not None:
|
||||
# Max number of requests per client
|
||||
req_per_client = args.max_num_requests // args.num_clients
|
||||
@ -936,13 +928,13 @@ async def main_mp(
|
||||
f"{num_clients_finished} out of {bench_args.num_clients} clients finished, collected {len(client_metrics)} measurements, runtime {runtime_sec:.3f} sec{Color.RESET}" # noqa: E501
|
||||
)
|
||||
|
||||
rps: Union[str, float] = round(len(client_metrics) / runtime_sec, 3)
|
||||
rps: str | float = round(len(client_metrics) / runtime_sec, 3)
|
||||
if len(client_metrics) < (5 * bench_args.num_clients):
|
||||
# Do not estimate the RPS if the number of samples is very low
|
||||
# (threshold can be tuned if needed)
|
||||
rps = "N/A"
|
||||
|
||||
runtime_left_sec: Union[str, float] = round(
|
||||
runtime_left_sec: str | float = round(
|
||||
(runtime_sec / finished_convs) * (total_convs - finished_convs), 3
|
||||
)
|
||||
if percent < 0.05:
|
||||
@ -1032,7 +1024,7 @@ def process_statistics(
|
||||
warmup_percentages: list[float],
|
||||
test_params: dict,
|
||||
verbose: bool,
|
||||
gen_conv_args: Optional[GenConvArgs] = None,
|
||||
gen_conv_args: GenConvArgs | None = None,
|
||||
excel_output: bool = False,
|
||||
) -> None:
|
||||
if len(client_metrics) == 0:
|
||||
@ -1259,7 +1251,7 @@ async def main() -> None:
|
||||
default=None,
|
||||
help="The model name used in the API. "
|
||||
"If not specified, the model name will be the "
|
||||
"same as the ``--model`` argument. ",
|
||||
"same as the `--model` argument. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
|
@ -13,7 +13,7 @@ import argparse
|
||||
import json
|
||||
import random
|
||||
from statistics import mean
|
||||
from typing import Any, Optional
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd # type: ignore
|
||||
import tqdm # type: ignore
|
||||
@ -25,7 +25,7 @@ def has_non_english_chars(text: str) -> bool:
|
||||
|
||||
|
||||
def content_is_valid(
|
||||
content: str, min_content_len: Optional[int], max_content_len: Optional[int]
|
||||
content: str, min_content_len: int | None, max_content_len: int | None
|
||||
) -> bool:
|
||||
if min_content_len and len(content) < min_content_len:
|
||||
return False
|
||||
@ -37,7 +37,7 @@ def content_is_valid(
|
||||
|
||||
|
||||
def print_stats(
|
||||
conversations: "list[dict[Any, Any]]", tokenizer: Optional[AutoTokenizer] = None
|
||||
conversations: "list[dict[Any, Any]]", tokenizer: AutoTokenizer | None = None
|
||||
) -> None:
|
||||
# Collect statistics
|
||||
stats = []
|
||||
@ -109,12 +109,12 @@ def convert_sharegpt_to_openai(
|
||||
seed: int,
|
||||
input_file: str,
|
||||
output_file: str,
|
||||
max_items: Optional[int],
|
||||
min_content_len: Optional[int] = None,
|
||||
max_content_len: Optional[int] = None,
|
||||
min_turns: Optional[int] = None,
|
||||
max_turns: Optional[int] = None,
|
||||
model: Optional[str] = None,
|
||||
max_items: int | None,
|
||||
min_content_len: int | None = None,
|
||||
max_content_len: int | None = None,
|
||||
min_turns: int | None = None,
|
||||
max_turns: int | None = None,
|
||||
model: str | None = None,
|
||||
) -> None:
|
||||
if min_turns and max_turns:
|
||||
assert min_turns <= max_turns
|
||||
|
@ -15,9 +15,8 @@
|
||||
},
|
||||
"prefix_num_tokens": {
|
||||
"distribution": "lognormal",
|
||||
"mean": 6,
|
||||
"sigma": 4,
|
||||
"max": 1500
|
||||
"average": 1000,
|
||||
"max": 5000
|
||||
},
|
||||
"num_tokens": {
|
||||
"distribution": "uniform",
|
||||
|
@ -1,49 +0,0 @@
|
||||
# This local pyproject file is part of the migration from yapf to ruff format.
|
||||
# It uses the same core rules as the main pyproject.toml file, but with the
|
||||
# following differences:
|
||||
# - ruff line length is overridden to 88
|
||||
# - deprecated typing ignores (UP006, UP035) have been removed
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 88
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"vllm/third_party/**" = ["ALL"]
|
||||
"vllm/version.py" = ["F401"]
|
||||
"vllm/_version.py" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = [
|
||||
# pycodestyle
|
||||
"E",
|
||||
# Pyflakes
|
||||
"F",
|
||||
# pyupgrade
|
||||
"UP",
|
||||
# flake8-bugbear
|
||||
"B",
|
||||
# flake8-simplify
|
||||
"SIM",
|
||||
# isort
|
||||
"I",
|
||||
# flake8-logging-format
|
||||
"G",
|
||||
]
|
||||
ignore = [
|
||||
# star imports
|
||||
"F405", "F403",
|
||||
# lambda expression assignment
|
||||
"E731",
|
||||
# Loop control variable not used within loop body
|
||||
"B007",
|
||||
# f-string format
|
||||
"UP032",
|
||||
# Can remove once 3.10+ is the minimum Python version
|
||||
"UP007",
|
||||
]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
known-first-party = ["vllm"]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
@ -101,6 +101,7 @@ else()
|
||||
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
|
||||
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
|
||||
find_isa(${CPUINFO} "S390" S390_FOUND)
|
||||
find_isa(${CPUINFO} "v" RVV_FOUND) # Check for RISC-V RVV support
|
||||
endif()
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
@ -177,8 +178,14 @@ elseif (S390_FOUND)
|
||||
"-mzvector"
|
||||
"-march=native"
|
||||
"-mtune=native")
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "riscv64")
|
||||
if(RVV_FOUND)
|
||||
message(FAIL_ERROR "Can't support rvv now.")
|
||||
else()
|
||||
list(APPEND CXX_COMPILE_FLAGS "-march=rv64gc")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
|
||||
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or RISC-V support.")
|
||||
endif()
|
||||
|
||||
#
|
||||
@ -191,13 +198,24 @@ else()
|
||||
endif()
|
||||
|
||||
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON_FOUND) OR POWER9_FOUND OR POWER10_FOUND OR POWER11_FOUND)
|
||||
FetchContent_Declare(
|
||||
oneDNN
|
||||
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
||||
GIT_TAG v3.9
|
||||
GIT_PROGRESS TRUE
|
||||
GIT_SHALLOW TRUE
|
||||
)
|
||||
set(FETCHCONTENT_SOURCE_DIR_ONEDNN "$ENV{FETCHCONTENT_SOURCE_DIR_ONEDNN}" CACHE PATH "Path to a local oneDNN source directory.")
|
||||
|
||||
if(FETCHCONTENT_SOURCE_DIR_ONEDNN)
|
||||
message(STATUS "Using oneDNN from specified source directory: ${FETCHCONTENT_SOURCE_DIR_ONEDNN}")
|
||||
FetchContent_Declare(
|
||||
oneDNN
|
||||
SOURCE_DIR ${FETCHCONTENT_SOURCE_DIR_ONEDNN}
|
||||
)
|
||||
else()
|
||||
message(STATUS "Downloading oneDNN from GitHub")
|
||||
FetchContent_Declare(
|
||||
oneDNN
|
||||
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
|
||||
GIT_TAG v3.9
|
||||
GIT_PROGRESS TRUE
|
||||
GIT_SHALLOW TRUE
|
||||
)
|
||||
endif()
|
||||
|
||||
if(USE_ACL)
|
||||
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
|
||||
@ -206,6 +224,7 @@ if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR (ASIMD_FOUND AND NOT APPLE_SILICON
|
||||
endif()
|
||||
set(ONEDNN_AARCH64_USE_ACL "ON")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
|
||||
add_compile_definitions(VLLM_USE_ACL)
|
||||
endif()
|
||||
|
||||
set(ONEDNN_LIBRARY_TYPE "STATIC")
|
||||
@ -258,7 +277,8 @@ set(VLLM_EXT_SRC
|
||||
"csrc/cpu/layernorm.cpp"
|
||||
"csrc/cpu/mla_decode.cpp"
|
||||
"csrc/cpu/pos_encoding.cpp"
|
||||
"csrc/cpu/torch_bindings.cpp")
|
||||
"csrc/cpu/torch_bindings.cpp"
|
||||
"csrc/moe/dynamic_4bit_int_moe_cpu.cpp")
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
set(VLLM_EXT_SRC
|
||||
@ -300,4 +320,4 @@ define_gpu_extension_target(
|
||||
WITH_SOABI
|
||||
)
|
||||
|
||||
message(STATUS "Enabling C extension.")
|
||||
message(STATUS "Enabling C extension.")
|
@ -18,8 +18,8 @@ if(FLASH_MLA_SRC_DIR)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
flashmla
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA.git
|
||||
GIT_TAG a757314c04eedd166e329e846c820eb1bdd702de
|
||||
GIT_REPOSITORY https://github.com/vllm-project/FlashMLA
|
||||
GIT_TAG 5f65b85703c7ed75fda01e06495077caad207c3f
|
||||
GIT_PROGRESS TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
@ -33,23 +33,64 @@ message(STATUS "FlashMLA is available at ${flashmla_SOURCE_DIR}")
|
||||
# The FlashMLA kernels only work on hopper and require CUDA 12.3 or later.
|
||||
# Only build FlashMLA kernels if we are building for something compatible with
|
||||
# sm90a
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
|
||||
set(SUPPORT_ARCHS)
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3)
|
||||
list(APPEND SUPPORT_ARCHS 9.0a)
|
||||
endif()
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8)
|
||||
list(APPEND SUPPORT_ARCHS 10.0a)
|
||||
endif()
|
||||
|
||||
|
||||
cuda_archs_loose_intersection(FLASH_MLA_ARCHS "${SUPPORT_ARCHS}" "${CUDA_ARCHS}")
|
||||
if(FLASH_MLA_ARCHS)
|
||||
set(VLLM_FLASHMLA_GPU_FLAGS ${VLLM_GPU_FLAGS})
|
||||
list(APPEND VLLM_FLASHMLA_GPU_FLAGS "--expt-relaxed-constexpr" "--expt-extended-lambda" "--use_fast_math")
|
||||
|
||||
set(FlashMLA_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/flash_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/kernels_fp8/flash_fwd_mla_fp8_sm90.cu)
|
||||
${flashmla_SOURCE_DIR}/csrc/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/get_mla_metadata.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/smxx/mla_combine.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/dense/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90/prefill/sparse/fwd.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/decode/sparse_fp8/splitkv_mla.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_fwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/dense/fmha_cutlass_bwd_sm100.cu
|
||||
${flashmla_SOURCE_DIR}/csrc/sm100/prefill/sparse/fwd.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_SOURCES
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/torch_api.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/pybind.cpp
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/flash_fwd_mla_fp8_sm90.cu
|
||||
)
|
||||
|
||||
set(FlashMLA_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc)
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set(FlashMLA_Extension_INCLUDES
|
||||
${flashmla_SOURCE_DIR}/csrc
|
||||
${flashmla_SOURCE_DIR}/csrc/sm90
|
||||
${flashmla_SOURCE_DIR}/csrc/extension/sm90/dense_fp8/
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/include
|
||||
${flashmla_SOURCE_DIR}/csrc/cutlass/tools/util/include
|
||||
)
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${FlashMLA_Extension_SOURCES}"
|
||||
CUDA_ARCHS "${FLASH_MLA_ARCHS}")
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_C
|
||||
DESTINATION vllm
|
||||
@ -60,8 +101,32 @@ if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.3 AND FLASH_MLA_ARCHS)
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
|
||||
define_gpu_extension_target(
|
||||
_flashmla_extension_C
|
||||
DESTINATION vllm
|
||||
LANGUAGE ${VLLM_GPU_LANG}
|
||||
SOURCES ${FlashMLA_Extension_SOURCES}
|
||||
COMPILE_FLAGS ${VLLM_FLASHMLA_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
INCLUDE_DIRECTORIES ${FlashMLA_Extension_INCLUDES}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
# Keep Stable ABI for the module, but *not* for CUDA/C++ files.
|
||||
# This prevents Py_LIMITED_API from affecting nvcc and C++ compiles.
|
||||
target_compile_options(_flashmla_extension_C PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:-UPy_LIMITED_API>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:-UPy_LIMITED_API>)
|
||||
else()
|
||||
# Create an empty target for setup.py when not targeting sm90a systems
|
||||
# Create empty targets for setup.py when not targeting sm90a systems
|
||||
add_custom_target(_flashmla_C)
|
||||
add_custom_target(_flashmla_extension_C)
|
||||
endif()
|
||||
|
||||
|
97
cmake/external_projects/qutlass.cmake
Normal file
97
cmake/external_projects/qutlass.cmake
Normal file
@ -0,0 +1,97 @@
|
||||
include(FetchContent)
|
||||
|
||||
set(CUTLASS_INCLUDE_DIR "${CUTLASS_INCLUDE_DIR}" CACHE PATH "Path to CUTLASS include/ directory")
|
||||
|
||||
if(DEFINED ENV{QUTLASS_SRC_DIR})
|
||||
set(QUTLASS_SRC_DIR $ENV{QUTLASS_SRC_DIR})
|
||||
endif()
|
||||
|
||||
if(QUTLASS_SRC_DIR)
|
||||
FetchContent_Declare(
|
||||
qutlass
|
||||
SOURCE_DIR ${QUTLASS_SRC_DIR}
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
qutlass
|
||||
GIT_REPOSITORY https://github.com/IST-DASLab/qutlass.git
|
||||
GIT_TAG 830d2c4537c7396e14a02a46fbddd18b5d107c65
|
||||
GIT_PROGRESS TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
)
|
||||
endif()
|
||||
|
||||
FetchContent_Populate(qutlass)
|
||||
|
||||
if(NOT qutlass_SOURCE_DIR)
|
||||
message(FATAL_ERROR "[QUTLASS] source directory could not be resolved.")
|
||||
endif()
|
||||
message(STATUS "[QUTLASS] QuTLASS is available at ${qutlass_SOURCE_DIR}")
|
||||
|
||||
cuda_archs_loose_intersection(QUTLASS_ARCHS "12.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND QUTLASS_ARCHS)
|
||||
|
||||
if(QUTLASS_ARCHS MATCHES "10\\.0a")
|
||||
set(QUTLASS_TARGET_CC 100)
|
||||
elseif(QUTLASS_ARCHS MATCHES "12\\.0a")
|
||||
set(QUTLASS_TARGET_CC 120)
|
||||
else()
|
||||
message(FATAL_ERROR "[QUTLASS] internal error parsing CUDA_ARCHS='${QUTLASS_ARCHS}'.")
|
||||
endif()
|
||||
|
||||
set(QUTLASS_SOURCES
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/bindings.cpp
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm.cu
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/gemm_ada.cu
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx.cu
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv.cu
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_mx_sm100.cu
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/fused_quantize_nv_sm100.cu
|
||||
)
|
||||
|
||||
set(QUTLASS_INCLUDES
|
||||
${qutlass_SOURCE_DIR}
|
||||
${qutlass_SOURCE_DIR}/qutlass
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/include
|
||||
${qutlass_SOURCE_DIR}/qutlass/csrc/include/cutlass_extensions
|
||||
)
|
||||
|
||||
if(CUTLASS_INCLUDE_DIR AND EXISTS "${CUTLASS_INCLUDE_DIR}/cutlass/cutlass.h")
|
||||
list(APPEND QUTLASS_INCLUDES "${CUTLASS_INCLUDE_DIR}")
|
||||
elseif(EXISTS "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include/cutlass/cutlass.h")
|
||||
list(APPEND QUTLASS_INCLUDES "${qutlass_SOURCE_DIR}/qutlass/third_party/cutlass/include")
|
||||
message(STATUS "[QUTLASS] Using QuTLASS vendored CUTLASS headers (no vLLM CUTLASS detected).")
|
||||
else()
|
||||
message(FATAL_ERROR "[QUTLASS] CUTLASS headers not found. "
|
||||
"Set -DCUTLASS_INCLUDE_DIR=/path/to/cutlass/include")
|
||||
endif()
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${QUTLASS_SOURCES}"
|
||||
CUDA_ARCHS "${QUTLASS_ARCHS}"
|
||||
)
|
||||
|
||||
target_sources(_C PRIVATE ${QUTLASS_SOURCES})
|
||||
target_include_directories(_C PRIVATE ${QUTLASS_INCLUDES})
|
||||
target_compile_definitions(_C PRIVATE
|
||||
QUTLASS_DISABLE_PYBIND=1
|
||||
TARGET_CUDA_ARCH=${QUTLASS_TARGET_CC}
|
||||
)
|
||||
|
||||
set_property(SOURCE ${QUTLASS_SOURCES} APPEND PROPERTY COMPILE_OPTIONS
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr --use_fast_math -O3>
|
||||
)
|
||||
|
||||
else()
|
||||
if("${CMAKE_CUDA_COMPILER_VERSION}" VERSION_LESS "12.8")
|
||||
message(STATUS
|
||||
"[QUTLASS] Skipping build: CUDA 12.8 or newer is required (found ${CMAKE_CUDA_COMPILER_VERSION}).")
|
||||
else()
|
||||
message(STATUS
|
||||
"[QUTLASS] Skipping build: no supported arch (12.0a / 10.0a) found in "
|
||||
"CUDA_ARCHS='${CUDA_ARCHS}'.")
|
||||
endif()
|
||||
endif()
|
@ -38,7 +38,7 @@ else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG ee4d25bd84e0cbc7e0b9b9685085fd5db2dcb62a
|
||||
GIT_TAG 8f468e7da54a8e2f98abfa7c38636aac91c0cba1
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
|
@ -16,7 +16,7 @@ import shutil
|
||||
|
||||
from torch.utils.hipify.hipify_python import hipify
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Project directory where all the source + include files live.
|
||||
@ -34,15 +34,14 @@ if __name__ == '__main__':
|
||||
)
|
||||
|
||||
# Source files to convert.
|
||||
parser.add_argument("sources",
|
||||
help="Source files to hipify.",
|
||||
nargs="*",
|
||||
default=[])
|
||||
parser.add_argument(
|
||||
"sources", help="Source files to hipify.", nargs="*", default=[]
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Limit include scope to project_dir only
|
||||
includes = [os.path.join(args.project_dir, '*')]
|
||||
includes = [os.path.join(args.project_dir, "*")]
|
||||
|
||||
# Get absolute path for all source files.
|
||||
extra_files = [os.path.abspath(s) for s in args.sources]
|
||||
@ -51,25 +50,31 @@ if __name__ == '__main__':
|
||||
# The directory might already exist to hold object files so we ignore that.
|
||||
shutil.copytree(args.project_dir, args.output_dir, dirs_exist_ok=True)
|
||||
|
||||
hipify_result = hipify(project_directory=args.project_dir,
|
||||
output_directory=args.output_dir,
|
||||
header_include_dirs=[],
|
||||
includes=includes,
|
||||
extra_files=extra_files,
|
||||
show_detailed=True,
|
||||
is_pytorch_extension=True,
|
||||
hipify_extra_files_only=True)
|
||||
hipify_result = hipify(
|
||||
project_directory=args.project_dir,
|
||||
output_directory=args.output_dir,
|
||||
header_include_dirs=[],
|
||||
includes=includes,
|
||||
extra_files=extra_files,
|
||||
show_detailed=True,
|
||||
is_pytorch_extension=True,
|
||||
hipify_extra_files_only=True,
|
||||
)
|
||||
|
||||
hipified_sources = []
|
||||
for source in args.sources:
|
||||
s_abs = os.path.abspath(source)
|
||||
hipified_s_abs = (hipify_result[s_abs].hipified_path if
|
||||
(s_abs in hipify_result
|
||||
and hipify_result[s_abs].hipified_path is not None)
|
||||
else s_abs)
|
||||
hipified_s_abs = (
|
||||
hipify_result[s_abs].hipified_path
|
||||
if (
|
||||
s_abs in hipify_result
|
||||
and hipify_result[s_abs].hipified_path is not None
|
||||
)
|
||||
else s_abs
|
||||
)
|
||||
hipified_sources.append(hipified_s_abs)
|
||||
|
||||
assert (len(hipified_sources) == len(args.sources))
|
||||
assert len(hipified_sources) == len(args.sources)
|
||||
|
||||
# Print hipified source files.
|
||||
print("\n".join(hipified_sources))
|
||||
|
@ -310,13 +310,13 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
|
||||
list(REMOVE_DUPLICATES _PTX_ARCHS)
|
||||
list(REMOVE_DUPLICATES _SRC_CUDA_ARCHS)
|
||||
|
||||
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
|
||||
# If x.0a or x.0f is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
|
||||
# remove x.0a or x.0f from SRC_CUDA_ARCHS and add x.0a or x.0f to _CUDA_ARCHS
|
||||
set(_CUDA_ARCHS)
|
||||
foreach(_arch ${_SRC_CUDA_ARCHS})
|
||||
if(_arch MATCHES "\\a$")
|
||||
if(_arch MATCHES "[af]$")
|
||||
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
|
||||
string(REPLACE "a" "" _base "${_arch}")
|
||||
string(REGEX REPLACE "[af]$" "" _base "${_arch}")
|
||||
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
|
||||
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
|
||||
list(APPEND _CUDA_ARCHS "${_arch}")
|
||||
@ -480,7 +480,6 @@ function (define_gpu_extension_target GPU_MOD_NAME)
|
||||
${GPU_LANGUAGE}_ARCHITECTURES "${GPU_ARCHITECTURES}")
|
||||
endif()
|
||||
|
||||
set_property(TARGET ${GPU_MOD_NAME} PROPERTY CXX_STANDARD 17)
|
||||
|
||||
target_compile_options(${GPU_MOD_NAME} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:${GPU_LANGUAGE}>:${GPU_COMPILE_FLAGS}>)
|
||||
|
12
codecov.yml
Normal file
12
codecov.yml
Normal file
@ -0,0 +1,12 @@
|
||||
codecov:
|
||||
require_ci_to_pass: false
|
||||
|
||||
fixes:
|
||||
# Map source code paths to repository root paths
|
||||
# Wildcards match any Python version (python3.*)
|
||||
- "/vllm-workspace/src/vllm/::vllm/"
|
||||
- "/vllm-workspace/vllm/::vllm/"
|
||||
- "/usr/local/lib/python3.*/dist-packages/vllm/::vllm/"
|
||||
- "/usr/local/lib/python3.*/site-packages/vllm/::vllm/"
|
||||
- "/usr/lib/python3.*/dist-packages/vllm/::vllm/"
|
||||
- "/usr/lib/python3.*/site-packages/vllm/::vllm/"
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user