mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Compare commits
14 Commits
benchmark-
...
tpu_v1_opt
Author | SHA1 | Date | |
---|---|---|---|
70b4e46e70 | |||
5fb9dbe6f6 | |||
996b92ccb4 | |||
2b0526fa15 | |||
7be649256f | |||
627efde813 | |||
c2867d5bc1 | |||
39c4a4cdb5 | |||
1ccf100c6a | |||
248c5b632d | |||
950f349492 | |||
61bb55f3d5 | |||
0bddb6b9a5 | |||
c715fb19e5 |
@ -1,14 +1,9 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import sys
|
||||
import zipfile
|
||||
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 400 MiB
|
||||
# Note that we have 400 MiB quota, please use it wisely.
|
||||
# See https://github.com/pypi/support/issues/3792 .
|
||||
# Please also sync the value with the one in Dockerfile.
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 400))
|
||||
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 250 MB
|
||||
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 250))
|
||||
|
||||
|
||||
def print_top_10_largest_files(zip_file):
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
|
@ -4,8 +4,8 @@ tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.231
|
||||
value: 0.233
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.22
|
||||
value: 0.236
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
||||
|
@ -1,11 +0,0 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16 -b auto -l 1319 -f 5 -t 1
|
||||
model_name: "nm-testing/Qwen1.5-MoE-A2.7B-Chat-quantized.w4a16"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.30
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.465
|
||||
limit: 1319
|
||||
num_fewshot: 5
|
@ -1,11 +0,0 @@
|
||||
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM -b "auto" -t 2
|
||||
model_name: "nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.6353
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.637
|
||||
limit: null
|
||||
num_fewshot: null
|
@ -4,7 +4,7 @@ Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
|
||||
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
|
||||
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
|
||||
Qwen1.5-MoE-W4A16-compressed-tensors.yaml
|
||||
Minitron-4B-Base-FP8.yaml
|
||||
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
|
||||
Qwen2-1.5B-Instruct-FP8W8.yaml
|
||||
Meta-Llama-3-8B-QQQ.yaml
|
||||
|
@ -1,4 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
LM eval harness on model to compare vs HF baseline computed offline.
|
||||
Configs are found in configs/$MODEL.yaml
|
||||
@ -13,10 +12,9 @@ from pathlib import Path
|
||||
|
||||
import lm_eval
|
||||
import numpy
|
||||
import pytest
|
||||
import yaml
|
||||
|
||||
RTOL = 0.08
|
||||
RTOL = 0.05
|
||||
TEST_DATA_FILE = os.environ.get(
|
||||
"LM_EVAL_TEST_DATA_FILE",
|
||||
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
|
||||
@ -47,10 +45,6 @@ def test_lm_eval_correctness():
|
||||
eval_config = yaml.safe_load(
|
||||
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))
|
||||
|
||||
if eval_config[
|
||||
"model_name"] == "nm-testing/Meta-Llama-3-70B-Instruct-FBGEMM-nonuniform": #noqa: E501
|
||||
pytest.skip("FBGEMM is currently failing on main.")
|
||||
|
||||
# Launch eval requests.
|
||||
results = launch_lm_eval(eval_config)
|
||||
|
||||
|
@ -1,13 +1,15 @@
|
||||
# vLLM benchmark suite
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
This directory contains two sets of benchmark for vllm.
|
||||
|
||||
- Performance benchmark: benchmark vllm's performance under various workload, for **developers** to gain clarity on whether their PR improves/degrades vllm's performance
|
||||
- Nightly benchmark: compare vllm's performance against alternatives (tgi, trt-llm and lmdeploy), for **the public** to know when to choose vllm.
|
||||
|
||||
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
|
||||
See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performance benchmark results and [vLLM GitHub README](https://github.com/vllm-project/vllm/blob/main/README.md) for latest nightly benchmark results.
|
||||
|
||||
|
||||
## Performance benchmark quick overview
|
||||
|
||||
@ -17,14 +19,17 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performanc
|
||||
|
||||
**For benchmarking developers**: please try your best to constraint the duration of benchmarking to about 1 hr so that it won't take forever to run.
|
||||
|
||||
|
||||
## Nightly benchmark quick overview
|
||||
|
||||
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
|
||||
**Benchmarking Coverage**: Fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) on Llama-3 8B, 70B and Mixtral 8x7B.
|
||||
|
||||
**Benchmarking engines**: vllm, TGI, trt-llm and lmdeploy.
|
||||
|
||||
**Benchmarking Duration**: about 3.5hrs.
|
||||
|
||||
|
||||
|
||||
## Trigger the benchmark
|
||||
|
||||
Performance benchmark will be triggered when:
|
||||
@ -34,11 +39,16 @@ Performance benchmark will be triggered when:
|
||||
Nightly benchmark will be triggered when:
|
||||
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
|
||||
|
||||
|
||||
|
||||
|
||||
## Performance benchmark details
|
||||
|
||||
|
||||
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
|
||||
|
||||
### Latency test
|
||||
|
||||
#### Latency test
|
||||
|
||||
Here is an example of one test inside `latency-tests.json`:
|
||||
|
||||
@ -58,25 +68,23 @@ Here is an example of one test inside `latency-tests.json`:
|
||||
```
|
||||
|
||||
In this example:
|
||||
|
||||
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
|
||||
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
|
||||
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
|
||||
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
|
||||
|
||||
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
|
||||
|
||||
WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.
|
||||
|
||||
### Throughput test
|
||||
|
||||
#### Throughput test
|
||||
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
|
||||
|
||||
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
|
||||
|
||||
### Serving test
|
||||
|
||||
#### Serving test
|
||||
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
|
||||
|
||||
```json
|
||||
```
|
||||
[
|
||||
{
|
||||
"test_name": "serving_llama8B_tp1_sharegpt",
|
||||
@ -101,7 +109,6 @@ We test the throughput by using `benchmark_serving.py` with request rate = inf t
|
||||
```
|
||||
|
||||
Inside this example:
|
||||
|
||||
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
|
||||
- The `server-parameters` includes the command line arguments for vLLM server.
|
||||
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
|
||||
@ -111,33 +118,36 @@ The number of this test is less stable compared to the delay and latency benchma
|
||||
|
||||
WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.
|
||||
|
||||
### Visualizing the results
|
||||
|
||||
#### Visualizing the results
|
||||
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
|
||||
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
|
||||
If you do not see the table, please wait till the benchmark finish running.
|
||||
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
|
||||
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
|
||||
|
||||
|
||||
|
||||
## Nightly test details
|
||||
|
||||
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.
|
||||
|
||||
### Workflow
|
||||
|
||||
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
|
||||
#### Workflow
|
||||
|
||||
- The [nightly-pipeline.yaml](nightly-pipeline.yaml) specifies the docker containers for different LLM serving engines.
|
||||
- Inside each container, we run [run-nightly-suite.sh](run-nightly-suite.sh), which will probe the serving engine of the current container.
|
||||
- The `run-nightly-suite.sh` will redirect the request to `tests/run-[llm serving engine name]-nightly.sh`, which parses the workload described in [nightly-tests.json](tests/nightly-tests.json) and performs the benchmark.
|
||||
- At last, we run [scripts/plot-nightly-results.py](scripts/plot-nightly-results.py) to collect and plot the final benchmarking results, and update the results to buildkite.
|
||||
|
||||
### Nightly tests
|
||||
#### Nightly tests
|
||||
|
||||
In [nightly-tests.json](tests/nightly-tests.json), we include the command line arguments for benchmarking commands, together with the benchmarking test cases. The format is highly similar to performance benchmark.
|
||||
|
||||
### Docker containers
|
||||
#### Docker containers
|
||||
|
||||
The docker containers for benchmarking are specified in `nightly-pipeline.yaml`.
|
||||
|
||||
WARNING: the docker versions are HARD-CODED and SHOULD BE ALIGNED WITH `nightly-descriptions.md`. The docker versions need to be hard-coded as there are several version-specific bug fixes inside `tests/run-[llm serving engine name]-nightly.sh`.
|
||||
|
||||
WARNING: populating `trt-llm` to latest version is not easy, as it requires updating several protobuf files in [tensorrt-demo](https://github.com/neuralmagic/tensorrt-demo.git).
|
||||
|
||||
|
@ -10,18 +10,12 @@ steps:
|
||||
- image: badouralix/curl-jq
|
||||
command:
|
||||
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
|
||||
- label: "Cleanup H100"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: ~
|
||||
command: docker system prune -a --volumes --force
|
||||
|
||||
|
||||
- label: "A100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: A100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
@ -56,7 +50,6 @@ steps:
|
||||
agents:
|
||||
queue: H200
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
@ -82,7 +75,6 @@ steps:
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch == "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT
|
||||
@ -98,87 +90,3 @@ steps:
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
# Premerge benchmark
|
||||
- label: "A100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: A100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
priorityClassName: perf-benchmark
|
||||
containers:
|
||||
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 8
|
||||
volumeMounts:
|
||||
- name: devshm
|
||||
mountPath: /dev/shm
|
||||
env:
|
||||
- name: VLLM_USAGE_SOURCE
|
||||
value: ci-test
|
||||
- name: HF_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
nodeSelector:
|
||||
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
|
||||
volumes:
|
||||
- name: devshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
|
||||
- label: "H200"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H200
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: 4,5,6,7
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
||||
#- block: "Run H100 Benchmark"
|
||||
#key: block-h100
|
||||
#depends_on: ~
|
||||
|
||||
- label: "H100"
|
||||
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
|
||||
agents:
|
||||
queue: H100
|
||||
depends_on: wait-for-container-image
|
||||
if: build.branch != "main"
|
||||
plugins:
|
||||
- docker#v5.12.0:
|
||||
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
|
||||
command:
|
||||
- bash
|
||||
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
|
||||
mount-buildkite-agent: true
|
||||
propagate-environment: true
|
||||
ipc: host
|
||||
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
|
||||
volumes:
|
||||
- /data/benchmark-hf-cache:/root/.cache/huggingface
|
||||
environment:
|
||||
- VLLM_USAGE_SOURCE
|
||||
- HF_TOKEN
|
||||
|
@ -9,19 +9,20 @@ This file contains the downloading link for benchmarking results.
|
||||
|
||||
Please download the visualization scripts in the post
|
||||
|
||||
|
||||
## Results reproduction
|
||||
|
||||
- Find the docker we use in `benchmarking pipeline`
|
||||
- Deploy the docker, and inside the docker:
|
||||
- Download `nightly-benchmarks.zip`.
|
||||
- In the same folder, run the following code:
|
||||
|
||||
```console
|
||||
export HF_TOKEN=<your HF token>
|
||||
apt update
|
||||
apt install -y git
|
||||
unzip nightly-benchmarks.zip
|
||||
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
|
||||
```
|
||||
- Download `nightly-benchmarks.zip`.
|
||||
- In the same folder, run the following code
|
||||
```
|
||||
export HF_TOKEN=<your HF token>
|
||||
apt update
|
||||
apt install -y git
|
||||
unzip nightly-benchmarks.zip
|
||||
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
|
||||
```
|
||||
|
||||
And the results will be inside `./benchmarks/results`.
|
||||
|
||||
|
@ -2,7 +2,6 @@
|
||||
# Nightly benchmark
|
||||
|
||||
This benchmark aims to:
|
||||
|
||||
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
|
||||
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.
|
||||
|
||||
@ -10,6 +9,7 @@ Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html)
|
||||
|
||||
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
|
||||
|
||||
|
||||
## Setup
|
||||
|
||||
- Docker images:
|
||||
@ -33,7 +33,7 @@ Latest reproduction guilde: [github issue link](https://github.com/vllm-project/
|
||||
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
|
||||
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).
|
||||
|
||||
## Known issues
|
||||
# Known issues
|
||||
|
||||
- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
|
||||
- TGI does not support `ignore-eos` flag.
|
||||
- TGI does not support `ignore-eos` flag.
|
@ -7,8 +7,10 @@
|
||||
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
||||
- Evaluation metrics: end-to-end latency (mean, median, p99).
|
||||
|
||||
|
||||
{latency_tests_markdown_table}
|
||||
|
||||
|
||||
## Throughput tests
|
||||
|
||||
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
|
||||
@ -17,8 +19,10 @@
|
||||
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
||||
- Evaluation metrics: throughput.
|
||||
|
||||
|
||||
{throughput_tests_markdown_table}
|
||||
|
||||
|
||||
## Serving tests
|
||||
|
||||
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
|
||||
@ -29,11 +33,13 @@
|
||||
- We also added a speculative decoding test for llama-3 70B, under QPS 2
|
||||
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
|
||||
|
||||
|
||||
{serving_tests_markdown_table}
|
||||
|
||||
|
||||
## json version of the benchmarking tables
|
||||
|
||||
This section contains the data of the markdown tables above in JSON format.
|
||||
This section contains the data of the markdown tables above in JSON format.
|
||||
You can load the benchmarking tables into pandas dataframes as follows:
|
||||
|
||||
```python
|
||||
@ -48,9 +54,9 @@ serving_results = pd.DataFrame.from_dict(benchmarking_results["serving"])
|
||||
```
|
||||
|
||||
The json string for all benchmarking tables:
|
||||
|
||||
```json
|
||||
{benchmarking_results_in_json_string}
|
||||
```
|
||||
|
||||
You can also check the raw experiment data in the Artifact tab of the Buildkite page.
|
||||
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
@ -84,13 +82,8 @@ if __name__ == "__main__":
|
||||
# this result is generated via `benchmark_serving.py`
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
try:
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
@ -104,13 +97,8 @@ if __name__ == "__main__":
|
||||
# this result is generated via `benchmark_latency.py`
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
try:
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
@ -131,13 +119,8 @@ if __name__ == "__main__":
|
||||
# this result is generated via `benchmark_throughput.py`
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
try:
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
with open(test_file.with_suffix(".commands")) as f:
|
||||
command = json.loads(f.read())
|
||||
raw_result.update(command)
|
||||
|
||||
# update the test name of this result
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
api_client = APIClient("http://localhost:8000")
|
||||
|
@ -426,7 +426,7 @@ main() {
|
||||
|
||||
pip install -U transformers
|
||||
|
||||
pip install -r requirements/dev.txt
|
||||
pip install -r requirements-dev.txt
|
||||
which genai-perf
|
||||
|
||||
# check storage
|
||||
|
@ -10,24 +10,15 @@ set -x
|
||||
set -o pipefail
|
||||
|
||||
check_gpus() {
|
||||
if command -v nvidia-smi; then
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
elif command -v amd-smi; then
|
||||
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
|
||||
fi
|
||||
|
||||
# check the number of GPUs and GPU type.
|
||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||
if [[ $gpu_count -gt 0 ]]; then
|
||||
echo "GPU found."
|
||||
else
|
||||
echo "Need at least 1 GPU to run benchmarking."
|
||||
exit 1
|
||||
fi
|
||||
if command -v nvidia-smi; then
|
||||
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
||||
elif command -v amd-smi; then
|
||||
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
|
||||
fi
|
||||
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
||||
echo "GPU type is $gpu_type"
|
||||
}
|
||||
|
||||
@ -99,15 +90,9 @@ kill_gpu_processes() {
|
||||
|
||||
|
||||
# wait until GPU memory usage smaller than 1GB
|
||||
if command -v nvidia-smi; then
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
elif command -v amd-smi; then
|
||||
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
fi
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
done
|
||||
|
||||
# remove vllm config file
|
||||
rm -rf ~/.config/vllm
|
||||
@ -324,14 +309,11 @@ run_serving_tests() {
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
|
||||
# pass the tensor parallel size to the client so that it can be displayed
|
||||
# on the benchmark dashboard
|
||||
client_command="python3 benchmark_serving.py \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
--request-rate $qps \
|
||||
--metadata "tensor_parallel_size=$tp" \
|
||||
$client_args"
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
@ -363,11 +345,6 @@ main() {
|
||||
check_gpus
|
||||
check_hf_token
|
||||
|
||||
# Set to v1 to run v1 benchmark
|
||||
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
|
||||
export VLLM_USE_V1=1
|
||||
fi
|
||||
|
||||
# dependencies
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
(which jq) || (apt-get update && apt-get -y install jq)
|
||||
@ -376,7 +353,7 @@ main() {
|
||||
# get the current IP address, required by benchmark_serving.py
|
||||
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
|
||||
# turn of the reporting of the status of each request, to clean up the terminal output
|
||||
export VLLM_LOGGING_LEVEL="WARNING"
|
||||
export VLLM_LOG_LEVEL="WARNING"
|
||||
|
||||
# prepare for benchmarking
|
||||
cd benchmarks || exit 1
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
|
@ -1,10 +1,6 @@
|
||||
#!/bin/sh
|
||||
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token)
|
||||
if [[ "$BUILDKITE_BRANCH" == "main" ]]; then
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
|
||||
else
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"
|
||||
fi
|
||||
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT"
|
||||
|
||||
TIMEOUT_SECONDS=10
|
||||
|
||||
|
@ -29,4 +29,4 @@
|
||||
"num-iters": 15
|
||||
}
|
||||
}
|
||||
]
|
||||
]
|
@ -63,12 +63,11 @@
|
||||
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
"disable_log_requests": "",
|
||||
"tensor_parallel_size": 4,
|
||||
"swap_space": 16,
|
||||
"speculative_config": {
|
||||
"model": "turboderp/Qwama-0.5B-Instruct",
|
||||
"num_speculative_tokens": 4,
|
||||
"draft_tensor_parallel_size": 1
|
||||
}
|
||||
"swap_space": 16,
|
||||
"speculative_model": "turboderp/Qwama-0.5B-Instruct",
|
||||
"num_speculative_tokens": 4,
|
||||
"speculative_draft_tensor_parallel_size": 1,
|
||||
"use_v2_block_manager": ""
|
||||
},
|
||||
"client_parameters": {
|
||||
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
|
@ -32,4 +32,4 @@
|
||||
"backend": "vllm"
|
||||
}
|
||||
}
|
||||
]
|
||||
]
|
@ -1,23 +1,12 @@
|
||||
steps:
|
||||
- label: "Build wheel - CUDA 12.4"
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- label: "Build wheel - CUDA 12.1"
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -31,10 +20,10 @@ steps:
|
||||
agents:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
|
||||
- "mkdir artifacts"
|
||||
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
|
||||
- "bash .buildkite/scripts/upload-wheels.sh"
|
||||
- "bash .buildkite/upload-wheels.sh"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
@ -48,7 +37,7 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
|
||||
|
||||
- label: "Build and publish TPU release image"
|
||||
@ -57,7 +46,7 @@ steps:
|
||||
agents:
|
||||
queue: tpu_queue_postmerge
|
||||
commands:
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f docker/Dockerfile.tpu ."
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f Dockerfile.tpu ."
|
||||
- "docker push vllm/vllm-tpu:nightly"
|
||||
- "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT"
|
||||
plugins:
|
||||
@ -67,11 +56,6 @@ steps:
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- input: "Provide Release version here"
|
||||
fields:
|
||||
- text: "What is the release version?"
|
||||
key: "release-version"
|
||||
|
||||
- block: "Build CPU release image"
|
||||
key: block-cpu-release-image-build
|
||||
depends_on: ~
|
||||
@ -82,22 +66,7 @@ steps:
|
||||
queue: cpu_queue_postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
||||
- block: "Build Neuron release image"
|
||||
key: block-neuron-release-image-build
|
||||
depends_on: ~
|
||||
|
||||
- label: "Build and publish Neuron release image"
|
||||
depends_on: block-neuron-release-image-build
|
||||
agents:
|
||||
queue: neuron-postmerge
|
||||
commands:
|
||||
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
|
||||
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$RELEASE_VERSION --progress plain -f Dockerfile.cpu ."
|
||||
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$RELEASE_VERSION"
|
||||
env:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
|
@ -77,6 +77,7 @@ echo "Commands:$commands"
|
||||
#ignore certain kernels tests
|
||||
if [[ $commands == *" kernels "* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/test_attention.py \
|
||||
--ignore=kernels/test_attention_selector.py \
|
||||
--ignore=kernels/test_blocksparse_attention.py \
|
||||
--ignore=kernels/test_causal_conv1d.py \
|
||||
@ -91,61 +92,19 @@ if [[ $commands == *" kernels "* ]]; then
|
||||
--ignore=kernels/test_moe.py \
|
||||
--ignore=kernels/test_prefix_prefill.py \
|
||||
--ignore=kernels/test_rand.py \
|
||||
--ignore=kernels/test_sampler.py \
|
||||
--ignore=kernels/test_cascade_flash_attn.py \
|
||||
--ignore=kernels/test_mamba_mixer2.py \
|
||||
--ignore=kernels/test_aqlm.py \
|
||||
--ignore=kernels/test_machete_mm.py \
|
||||
--ignore=kernels/test_mha_attn.py \
|
||||
--ignore=kernels/test_block_fp8.py \
|
||||
--ignore=kernels/test_cutlass_moe.py \
|
||||
--ignore=kernels/test_mamba_ssm_ssd.py \
|
||||
--ignore=kernels/test_attention.py \
|
||||
--ignore=kernels/test_block_int8.py \
|
||||
--ignore=kernels/test_fused_quant_layernorm.py \
|
||||
--ignore=kernels/test_int8_kernel.py \
|
||||
--ignore=kernels/test_triton_moe_ptpc_fp8.py \
|
||||
--ignore=kernels/test_permute_cols.py"
|
||||
--ignore=kernels/test_sampler.py"
|
||||
fi
|
||||
|
||||
#ignore certain Entrypoints/openai tests
|
||||
#ignore certain Entrypoints tests
|
||||
if [[ $commands == *" entrypoints/openai "* ]]; then
|
||||
commands=${commands//" entrypoints/openai "/" entrypoints/openai \
|
||||
--ignore=entrypoints/openai/test_accuracy.py \
|
||||
--ignore=entrypoints/openai/test_audio.py \
|
||||
--ignore=entrypoints/openai/test_shutdown.py \
|
||||
--ignore=entrypoints/openai/test_completion.py \
|
||||
--ignore=entrypoints/openai/test_sleep.py \
|
||||
--ignore=entrypoints/openai/test_models.py \
|
||||
--ignore=entrypoints/openai/test_lora_adapters.py \
|
||||
--ignore=entrypoints/openai/test_return_tokens_as_ids.py \
|
||||
--ignore=entrypoints/openai/test_root_path.py \
|
||||
--ignore=entrypoints/openai/test_tokenization.py \
|
||||
--ignore=entrypoints/openai/test_prompt_validation.py "}
|
||||
--ignore=entrypoints/openai/test_encoder_decoder.py \
|
||||
--ignore=entrypoints/openai/test_embedding.py \
|
||||
--ignore=entrypoints/openai/test_oot_registration.py "}
|
||||
fi
|
||||
|
||||
#ignore certain Entrypoints/llm tests
|
||||
if [[ $commands == *" entrypoints/llm "* ]]; then
|
||||
commands=${commands//" entrypoints/llm "/" entrypoints/llm \
|
||||
--ignore=entrypoints/llm/test_chat.py \
|
||||
--ignore=entrypoints/llm/test_accuracy.py \
|
||||
--ignore=entrypoints/llm/test_init.py \
|
||||
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
|
||||
--ignore=entrypoints/llm/test_prompt_validation.py "}
|
||||
fi
|
||||
|
||||
#Obsolete currently
|
||||
##ignore certain Entrypoints/llm tests
|
||||
#if [[ $commands == *" && pytest -v -s entrypoints/llm/test_guided_generate.py"* ]]; then
|
||||
# commands=${commands//" && pytest -v -s entrypoints/llm/test_guided_generate.py"/" "}
|
||||
#fi
|
||||
|
||||
# --ignore=entrypoints/openai/test_encoder_decoder.py \
|
||||
# --ignore=entrypoints/openai/test_embedding.py \
|
||||
# --ignore=entrypoints/openai/test_oot_registration.py
|
||||
# --ignore=entrypoints/openai/test_accuracy.py \
|
||||
# --ignore=entrypoints/openai/test_models.py <= Fails on MI250 but passes on MI300 as of 2025-03-13
|
||||
|
||||
|
||||
PARALLEL_JOB_COUNT=8
|
||||
# check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs.
|
||||
if [[ $commands == *"--shard-id="* ]]; then
|
||||
@ -155,16 +114,13 @@ if [[ $commands == *"--shard-id="* ]]; then
|
||||
# assign shard-id for each shard
|
||||
commands_gpu=${commands//"--shard-id= "/"--shard-id=${GPU} "}
|
||||
echo "Shard ${GPU} commands:$commands_gpu"
|
||||
echo "Render devices: $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES"
|
||||
docker run \
|
||||
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
|
||||
--network=host \
|
||||
--device /dev/kfd --device /dev/dri \
|
||||
--network host \
|
||||
--shm-size=16gb \
|
||||
--rm \
|
||||
-e HIP_VISIBLE_DEVICES="${GPU}" \
|
||||
-e HF_TOKEN \
|
||||
-e AWS_ACCESS_KEY_ID \
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
--name "${container_name}_${GPU}" \
|
||||
@ -185,16 +141,13 @@ if [[ $commands == *"--shard-id="* ]]; then
|
||||
fi
|
||||
done
|
||||
else
|
||||
echo "Render devices: $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES"
|
||||
docker run \
|
||||
--device /dev/kfd $BUILDKITE_AGENT_META_DATA_RENDER_DEVICES \
|
||||
--network=host \
|
||||
--device /dev/kfd --device /dev/dri \
|
||||
--network host \
|
||||
--shm-size=16gb \
|
||||
--rm \
|
||||
-e HIP_VISIBLE_DEVICES=0 \
|
||||
-e HF_TOKEN \
|
||||
-e AWS_ACCESS_KEY_ID \
|
||||
-e AWS_SECRET_ACCESS_KEY \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
--name "${container_name}" \
|
@ -5,8 +5,8 @@
|
||||
set -ex
|
||||
set -o pipefail
|
||||
|
||||
# cd 2 levels into the working directory
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")/../.."
|
||||
# cd into parent directory of this file
|
||||
cd "$(dirname "${BASH_SOURCE[0]}")/.."
|
||||
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
|
@ -10,4 +10,5 @@ trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t cpu-test -f docker/Dockerfile.s390x .
|
||||
docker build -t cpu-test -f Dockerfile.ppc64le .
|
||||
|
@ -8,40 +8,34 @@ set -ex
|
||||
CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test-"$BUILDKITE_BUILD_NUMBER" -f Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 -f Dockerfile.cpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true;
|
||||
docker image rm cpu-test-"$BUILDKITE_BUILD_NUMBER" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 || true;
|
||||
}
|
||||
remove_docker_container() { set -e; docker rm -f cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$BUILDKITE_BUILD_NUMBER" --target vllm-test -f docker/Dockerfile.cpu .
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"
|
||||
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
|
||||
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
export NUMA_NODE=$2
|
||||
export BUILDKITE_BUILD_NUMBER=$3
|
||||
|
||||
# offline inference
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-avx2-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
python3 examples/offline_inference/basic.py"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test-"$BUILDKITE_BUILD_NUMBER"-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -v -s tests/kernels/test_cache.py -m cpu_model
|
||||
pytest -v -s tests/kernels/test_mla_decode_cpu.py -m cpu_model
|
||||
pip install -r vllm/requirements-test.txt
|
||||
pytest -v -s tests/models/decoder_only/language -m cpu_model
|
||||
pytest -v -s tests/models/embedding/language -m cpu_model
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
|
||||
@ -91,4 +85,4 @@ function cpu_tests() {
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE $BUILDKITE_BUILD_NUMBER"
|
||||
timeout 40m bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
|
@ -9,13 +9,11 @@ python3 use_existing_torch.py
|
||||
|
||||
# Try building the docker image
|
||||
DOCKER_BUILDKIT=1 docker build . \
|
||||
--file docker/Dockerfile \
|
||||
--target vllm-openai \
|
||||
--platform "linux/arm64" \
|
||||
-t gh200-test \
|
||||
--build-arg max_jobs=66 \
|
||||
--build-arg nvcc_threads=2 \
|
||||
--build-arg RUN_WHEEL_CHECK=false \
|
||||
--build-arg torch_cuda_arch_list="9.0+PTX" \
|
||||
--build-arg vllm_fa_cmake_gpu_arches="90-real"
|
||||
|
||||
@ -25,6 +23,6 @@ trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and test offline inference
|
||||
docker run -e HF_TOKEN -e VLLM_WORKER_MULTIPROC_METHOD=spawn -v /root/.cache/huggingface:/root/.cache/huggingface --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
|
||||
python3 examples/offline_inference/basic/generate.py --model meta-llama/Llama-3.2-1B
|
||||
docker run --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c '
|
||||
python3 examples/offline_inference/basic.py
|
||||
'
|
@ -5,7 +5,7 @@
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t hpu-test-env -f docker/Dockerfile.hpu .
|
||||
docker build -t hpu-test-env -f Dockerfile.hpu .
|
||||
|
||||
# Setup cleanup
|
||||
# certain versions of HPU software stack have a bug that can
|
||||
@ -20,5 +20,5 @@ trap remove_docker_container_and_exit EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic.py
|
||||
EXITCODE=$?
|
@ -3,7 +3,7 @@
|
||||
set -euox pipefail
|
||||
|
||||
if [[ $# -lt 4 ]]; then
|
||||
echo "Usage: .buildkite/scripts/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
|
||||
echo "Usage: .buildkite/run-multi-node-test.sh WORKING_DIR NUM_NODES NUM_GPUS DOCKER_IMAGE COMMAND1 COMMAND2 ... COMMANDN"
|
||||
exit 1
|
||||
fi
|
||||
|
@ -29,13 +29,16 @@ if [ -f /tmp/neuron-docker-build-timestamp ]; then
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune -f
|
||||
# Remove huggingface model artifacts and compiler cache
|
||||
rm -rf "${HF_MOUNT:?}/*"
|
||||
rm -rf "${NEURON_COMPILE_CACHE_MOUNT:?}/*"
|
||||
echo "$current_time" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
else
|
||||
date "+%s" > /tmp/neuron-docker-build-timestamp
|
||||
fi
|
||||
|
||||
docker build -t "${image_name}" -f docker/Dockerfile.neuron .
|
||||
docker build -t "${image_name}" -f Dockerfile.neuron .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
@ -44,11 +47,11 @@ remove_docker_container() {
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Run the image
|
||||
docker run --rm -it --device=/dev/neuron0 --network bridge \
|
||||
docker run --rm -it --device=/dev/neuron0 --device=/dev/neuron1 --network host \
|
||||
-v "${HF_CACHE}:${HF_MOUNT}" \
|
||||
-e "HF_HOME=${HF_MOUNT}" \
|
||||
-v "${NEURON_COMPILE_CACHE_URL}:${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
-e "NEURON_COMPILE_CACHE_URL=${NEURON_COMPILE_CACHE_MOUNT}" \
|
||||
--name "${container_name}" \
|
||||
${image_name} \
|
||||
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py && python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys && python3 -m pytest /workspace/vllm/tests/neuron/2_core/ -v --capture=tee-sys"
|
||||
/bin/bash -c "python3 /workspace/vllm/examples/offline_inference/neuron.py"
|
16
.buildkite/run-openvino-test.sh
Executable file
16
.buildkite/run-openvino-test.sh
Executable file
@ -0,0 +1,16 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the OpenVINO docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t openvino-test -f Dockerfile.openvino .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f openvino-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and launch offline inference
|
||||
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference/basic.py
|
26
.buildkite/run-tpu-test.sh
Normal file
26
.buildkite/run-tpu-test.sh
Normal file
@ -0,0 +1,26 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& pytest -v -s /workspace/vllm/tests/entrypoints/openai/test_accuracy.py \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& python3 /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py"
|
19
.buildkite/run-xpu-test.sh
Normal file
19
.buildkite/run-xpu-test.sh
Normal file
@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t xpu-test -f Dockerfile.xpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { docker rm -f xpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Run the image and test offline inference/tensor parallel
|
||||
docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c '
|
||||
python3 examples/offline_inference/basic.py
|
||||
python3 examples/offline_inference/cli.py -tp 2
|
||||
'
|
@ -1,38 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() { podman rm -f cpu-test-ubi9-ppc || true; podman system prune -f; }
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
|
||||
# Try building the docker image
|
||||
podman build -t cpu-test-ubi9-ppc -f docker/Dockerfile.ppc64le .
|
||||
|
||||
# Run the image
|
||||
podman run -itd --entrypoint /bin/bash -v /tmp/:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --name cpu-test-ubi9-ppc cpu-test-ubi9-ppc
|
||||
|
||||
function cpu_tests() {
|
||||
|
||||
# offline inference
|
||||
podman exec cpu-test-ubi9-ppc bash -c "
|
||||
set -e
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m"
|
||||
|
||||
# Run basic model test
|
||||
podman exec cpu-test-ubi9-ppc bash -c "
|
||||
set -e
|
||||
pip install pytest pytest-asyncio einops peft Pillow soundfile transformers_stream_generator matplotlib
|
||||
pip install sentence-transformers datamodel_code_generator
|
||||
pytest -v -s tests/models/embedding/language/test_cls_models.py::test_classification_models[float-jason9693/Qwen2.5-1.5B-apeach]
|
||||
pytest -v -s tests/models/embedding/language/test_embedding.py::test_models[half-BAAI/bge-base-en-v1.5]
|
||||
pytest -v -s tests/models/encoder_decoder/language -m cpu_model"
|
||||
}
|
||||
|
||||
# All of CPU tests are expected to be finished less than 40 mins.
|
||||
export -f cpu_tests
|
||||
timeout 40m bash -c cpu_tests
|
||||
|
@ -1,53 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -xue
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
remove_docker_container() { docker rm -f tpu-test || true; }
|
||||
trap remove_docker_container EXIT
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install lm_eval[api]==0.4.4 \
|
||||
&& export VLLM_USE_V1=1 \
|
||||
&& export VLLM_XLA_CHECK_RECOMPILATION=1 \
|
||||
&& echo HARDWARE \
|
||||
&& tpu-info \
|
||||
&& echo TEST_0 \
|
||||
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_perf.py \
|
||||
&& echo TEST_1 \
|
||||
&& pytest -v -s /workspace/vllm/tests/tpu/test_compilation.py \
|
||||
&& echo TEST_2 \
|
||||
&& pytest -v -s /workspace/vllm/tests/v1/tpu/test_basic.py \
|
||||
&& echo TEST_3 \
|
||||
&& pytest -v -s /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine \
|
||||
&& echo TEST_4 \
|
||||
&& pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py \
|
||||
&& echo TEST_5 \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
|
||||
&& echo TEST_6 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/worker/test_tpu_model_runner.py \
|
||||
&& echo TEST_7 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py \
|
||||
&& echo TEST_8 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_topk_topp_sampler.py \
|
||||
&& echo TEST_9 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py \
|
||||
&& echo TEST_10 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py \
|
||||
&& echo TEST_11 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py" \
|
||||
|
||||
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
# && VLLM_USE_V1=1 pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
@ -1,31 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script build the CPU docker image and run the offline inference inside the container.
|
||||
# It serves a sanity check for compilation and basic model usage.
|
||||
set -ex
|
||||
|
||||
image_name="xpu/vllm-ci:${BUILDKITE_COMMIT}"
|
||||
container_name="xpu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head -c 10; echo)"
|
||||
|
||||
# Try building the docker image
|
||||
docker build -t ${image_name} -f docker/Dockerfile.xpu .
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
docker rm -f "${container_name}" || true;
|
||||
docker image rm -f "${image_name}" || true;
|
||||
docker system prune -f || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Run the image and test offline inference/tensor parallel
|
||||
docker run \
|
||||
--device /dev/dri \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
--entrypoint="" \
|
||||
--name "${container_name}" \
|
||||
"${image_name}" \
|
||||
sh -c '
|
||||
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
|
||||
'
|
@ -2,13 +2,12 @@
|
||||
# adding a new command to an existing step. See different options here for examples.
|
||||
|
||||
# This script will be feed into Jinja template in `test-template-aws.j2` at
|
||||
# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2
|
||||
# https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2
|
||||
# to generate the final pipeline yaml file.
|
||||
|
||||
# Documentation
|
||||
# label(str): the name of the test. emoji allowed.
|
||||
# fast_check(bool): whether to run this on each commit on fastcheck pipeline.
|
||||
# torch_nightly(bool): whether to run this on vllm against torch nightly pipeline.
|
||||
# fast_check_only(bool): run this test on fastcheck pipeline only
|
||||
# optional(bool): never run this test by default (i.e. need to unblock manually) unless it's scheduled nightly run.
|
||||
# command(str): the single command to run for tests. incompatible with commands.
|
||||
@ -16,7 +15,7 @@
|
||||
# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd]
|
||||
# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100
|
||||
# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4.
|
||||
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
|
||||
# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host,
|
||||
# in this case, commands must be specified. the first command runs on first host, the second
|
||||
# command runs on the second host.
|
||||
# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests
|
||||
@ -25,8 +24,8 @@
|
||||
# When adding a test
|
||||
# - If the test belong to an existing group, add it there
|
||||
# - If the test is short, add to any existing step
|
||||
# - If the test takes more than 10min, then it is okay to create a new step.
|
||||
# Note that all steps execute in parallel.
|
||||
# - If the test takes more than 10min, then it is okay to create a new step.
|
||||
# Note that all steps execute in parallel.
|
||||
|
||||
steps:
|
||||
##### fast check tests #####
|
||||
@ -36,12 +35,13 @@ steps:
|
||||
fast_check: true
|
||||
no_gpu: True
|
||||
commands:
|
||||
- pip install -r ../../requirements/docs.txt
|
||||
- pip install -r requirements-docs.txt
|
||||
- SPHINXOPTS=\"-W\" make html
|
||||
# Check API reference (if it fails, you may have missing mock imports)
|
||||
- grep \"sig sig-object py\" build/html/api/inference_params.html
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/mq_llm_engine
|
||||
@ -50,9 +50,9 @@ steps:
|
||||
- tests/multimodal
|
||||
- tests/test_utils
|
||||
- tests/worker
|
||||
- tests/standalone_tests/lazy_imports.py
|
||||
- tests/standalone_tests/lazy_torch_compile.py
|
||||
commands:
|
||||
- python3 standalone_tests/lazy_imports.py
|
||||
- python3 standalone_tests/lazy_torch_compile.py
|
||||
- pytest -v -s mq_llm_engine # MQLLMEngine
|
||||
- pytest -v -s async_engine # AsyncLLMEngine
|
||||
- NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py
|
||||
@ -71,7 +71,6 @@ steps:
|
||||
- label: Basic Correctness Test # 30min
|
||||
#mirror_hardwares: [amd]
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/basic_correctness/test_basic_correctness
|
||||
@ -79,7 +78,6 @@ steps:
|
||||
- tests/basic_correctness/test_preemption
|
||||
- tests/basic_correctness/test_cumem.py
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s basic_correctness/test_cumem.py
|
||||
- pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
@ -106,73 +104,60 @@ steps:
|
||||
- label: Entrypoints Test # 40min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/entrypoints/llm
|
||||
- tests/entrypoints/openai
|
||||
- tests/entrypoints/test_chat_utils
|
||||
- tests/entrypoints/offline_mode
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
|
||||
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/ --ignore=entrypoints/openai/test_openai_schema.py
|
||||
- pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
- pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Distributed Tests (4 GPUs) # 10min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 4
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/distributed/
|
||||
- vllm/core/
|
||||
- tests/distributed/test_utils
|
||||
- tests/distributed/test_pynccl
|
||||
- tests/distributed
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile/test_basic_correctness
|
||||
- tests/compile
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
- VLLM_USE_V1=0 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
|
||||
# test with internal dp
|
||||
- python3 ../examples/offline_inference/data_parallel.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- pushd ../examples/offline_inference
|
||||
- python3 rlhf.py
|
||||
- RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
|
||||
- popd
|
||||
- python3 ../examples/offline_inference/rlhf.py
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
mirror_hardwares: [amd]
|
||||
num_gpus: 2
|
||||
num_gpus: 2
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/metrics
|
||||
- tests/tracing
|
||||
commands:
|
||||
- pytest -v -s metrics
|
||||
- pytest -v -s metrics
|
||||
- "pip install \
|
||||
'opentelemetry-sdk>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-api>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-exporter-otlp>=1.26.0,<1.27.0' \
|
||||
'opentelemetry-semantic-conventions-ai>=0.4.1,<0.5.0'"
|
||||
- pytest -v -s tracing
|
||||
|
||||
##### fast check tests #####
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_regression
|
||||
@ -187,9 +172,6 @@ steps:
|
||||
- vllm/
|
||||
- tests/engine
|
||||
- tests/tokenization
|
||||
- tests/test_sequence
|
||||
- tests/test_config
|
||||
- tests/test_logger
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py
|
||||
# OOM in the CI unless we run this separately
|
||||
@ -201,24 +183,7 @@ steps:
|
||||
- vllm/
|
||||
- tests/v1
|
||||
commands:
|
||||
# split the test to avoid interference
|
||||
- pytest -v -s v1/core
|
||||
- pytest -v -s v1/engine
|
||||
- pytest -v -s v1/entrypoints
|
||||
- pytest -v -s v1/sample
|
||||
- pytest -v -s v1/worker
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_stats.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
# TODO: accuracy does not match, whether setting
|
||||
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
|
||||
- pytest -v -s v1/e2e
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-neuralmagic/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
- VLLM_USE_V1=1 pytest -v -s v1
|
||||
|
||||
- label: Examples Test # 25min
|
||||
working_dir: "/vllm-workspace/examples"
|
||||
@ -228,22 +193,19 @@ steps:
|
||||
- examples/
|
||||
commands:
|
||||
- pip install tensorizer # for tensorizer test
|
||||
- python3 offline_inference/basic/generate.py --model facebook/opt-125m
|
||||
- python3 offline_inference/basic/generate.py --model meta-llama/Llama-2-13b-chat-hf --cpu-offload-gb 10
|
||||
- python3 offline_inference/basic/chat.py
|
||||
- python3 offline_inference/basic.py
|
||||
- python3 offline_inference/cpu_offload.py
|
||||
- python3 offline_inference/chat.py
|
||||
- python3 offline_inference/prefix_caching.py
|
||||
- python3 offline_inference/llm_engine_example.py
|
||||
- python3 offline_inference/audio_language.py --seed 0
|
||||
- python3 offline_inference/vision_language.py --seed 0
|
||||
- python3 offline_inference/vision_language_embedding.py --seed 0
|
||||
- python3 offline_inference/vision_language_multi_image.py --seed 0
|
||||
- VLLM_USE_V1=0 python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/vision_language.py
|
||||
- python3 offline_inference/vision_language_multi_image.py
|
||||
- python3 other/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 other/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
|
||||
- python3 offline_inference/encoder_decoder.py
|
||||
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
|
||||
- python3 offline_inference/basic/classify.py
|
||||
- python3 offline_inference/basic/embed.py
|
||||
- python3 offline_inference/basic/score.py
|
||||
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
- python3 offline_inference/classification.py
|
||||
- python3 offline_inference/embedding.py
|
||||
- python3 offline_inference/scoring.py
|
||||
- python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
|
||||
|
||||
- label: Prefix Caching Test # 9min
|
||||
mirror_hardwares: [amd]
|
||||
@ -270,7 +232,7 @@ steps:
|
||||
- vllm/model_executor/guided_decoding
|
||||
- tests/test_logits_processor
|
||||
- tests/model_executor/test_guided_processors
|
||||
commands:
|
||||
commands:
|
||||
- pytest -v -s test_logits_processor.py
|
||||
- pytest -v -s model_executor/test_guided_processors.py
|
||||
|
||||
@ -281,26 +243,19 @@ steps:
|
||||
- vllm/model_executor/models/eagle.py
|
||||
commands:
|
||||
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py --ignore=spec_decode/e2e/test_mtp_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
#mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py
|
||||
parallelism: 4
|
||||
|
||||
- label: PyTorch Compilation Unit Tests
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
commands:
|
||||
- pytest -v -s compile/test_pass_manager.py
|
||||
- pytest -v -s compile/test_fusion.py
|
||||
|
||||
- label: PyTorch Fullgraph Smoke Test # 9min
|
||||
- label: "PyTorch Fullgraph Smoke Test" # 9min
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
@ -310,56 +265,25 @@ steps:
|
||||
- pytest -v -s compile/piecewise/test_simple.py
|
||||
- pytest -v -s compile/piecewise/test_toy_llama.py
|
||||
|
||||
- label: PyTorch Fullgraph Test # 18min
|
||||
- label: "PyTorch Fullgraph Test" # 18min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/compile
|
||||
commands:
|
||||
- pytest -v -s compile/test_full_graph.py
|
||||
|
||||
- label: Kernels Core Operation Test
|
||||
- label: Kernels Test %N # 1h each
|
||||
mirror_hardwares: [amd]
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- tests/kernels/core
|
||||
commands:
|
||||
- pytest -v -s kernels/core
|
||||
|
||||
- label: Kernels Attention Test %N
|
||||
source_file_dependencies:
|
||||
- csrc/attention/
|
||||
- vllm/attention
|
||||
- vllm/v1/attention
|
||||
- tests/kernels/attention
|
||||
- tests/kernels
|
||||
commands:
|
||||
- pytest -v -s kernels/attention --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Quantization Test %N
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/kernels/quantization
|
||||
commands:
|
||||
- pytest -v -s kernels/quantization --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels MoE Test
|
||||
source_file_dependencies:
|
||||
- csrc/moe/
|
||||
- tests/kernels/moe
|
||||
- vllm/model_executor/layers/fused_moe/
|
||||
commands:
|
||||
- pytest -v -s kernels/moe
|
||||
|
||||
- label: Kernels Mamba Test
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
commands:
|
||||
- pytest -v -s kernels/mamba
|
||||
- pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
|
||||
parallelism: 4
|
||||
|
||||
- label: Tensorizer Test # 11min
|
||||
# mirror_hardwares: [amd]
|
||||
mirror_hardwares: [amd]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
@ -375,14 +299,7 @@ steps:
|
||||
source_file_dependencies:
|
||||
- benchmarks/
|
||||
commands:
|
||||
- bash scripts/run-benchmarks.sh
|
||||
|
||||
- label: Benchmarks CLI Test # 10min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/benchmarks/
|
||||
commands:
|
||||
- pytest -v -s benchmarks/
|
||||
- bash run-benchmarks.sh
|
||||
|
||||
- label: Quantization Test # 33min
|
||||
source_file_dependencies:
|
||||
@ -400,14 +317,6 @@ steps:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- bash ./run-tests.sh -c configs/models-small.txt -t 1
|
||||
|
||||
- label: OpenAI API correctness
|
||||
source_file_dependencies:
|
||||
- csrc/
|
||||
- vllm/entrypoints/openai/
|
||||
- vllm/model_executor/models/whisper.py
|
||||
commands: # LMEval+Transcription WER check
|
||||
- pytest -s entrypoints/openai/correctness/
|
||||
|
||||
- label: Encoder Decoder tests # 5min
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -417,14 +326,12 @@ steps:
|
||||
|
||||
- label: OpenAI-Compatible Tool Use # 20 min
|
||||
fast_check: false
|
||||
#mirror_hardwares: [ amd ]
|
||||
mirror_hardwares: [ amd ]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/tool_use
|
||||
- tests/mistral_tool_use
|
||||
commands:
|
||||
- pytest -v -s tool_use
|
||||
- pytest -v -s mistral_tool_use
|
||||
|
||||
##### models test #####
|
||||
|
||||
@ -433,12 +340,8 @@ steps:
|
||||
- vllm/
|
||||
- tests/models
|
||||
commands:
|
||||
- pytest -v -s models/test_transformers.py
|
||||
- pytest -v -s models/test_registry.py
|
||||
# V1 Test: https://github.com/vllm-project/vllm/issues/14531
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'not llama4 and not plamo2'
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'llama4'
|
||||
- VLLM_USE_V1=0 pytest -v -s models/test_initialization.py -k 'plamo2'
|
||||
- pytest -v -s models/test_initialization.py
|
||||
|
||||
- label: Language Models Test (Standard) # 32min
|
||||
#mirror_hardwares: [amd]
|
||||
@ -448,8 +351,6 @@ steps:
|
||||
- tests/models/embedding/language
|
||||
- tests/models/encoder_decoder/language
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install causal-conv1d
|
||||
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/language -m core_model
|
||||
|
||||
@ -461,8 +362,6 @@ steps:
|
||||
- tests/models/embedding/language
|
||||
- tests/models/encoder_decoder/language
|
||||
commands:
|
||||
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
|
||||
- pip install causal-conv1d
|
||||
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/language -m 'not core_model'
|
||||
|
||||
@ -479,12 +378,11 @@ steps:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/audio_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m core_model
|
||||
- pytest -v -s models/decoder_only/vision_language/test_interleaved.py
|
||||
|
||||
- label: Multi-Modal Models Test (Extended) 1 # 48m
|
||||
optional: true
|
||||
@ -498,7 +396,10 @@ steps:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
# HACK - run phi3v tests separately to sidestep this transformers bug
|
||||
# https://github.com/huggingface/transformers/issues/34307
|
||||
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
|
||||
@ -514,7 +415,6 @@ steps:
|
||||
|
||||
# This test is used only in PR development phase to test individual models and should never run on main
|
||||
- label: Custom Models Test
|
||||
mirror_hardwares: [amd]
|
||||
optional: true
|
||||
commands:
|
||||
- echo 'Testing custom models...'
|
||||
@ -526,7 +426,6 @@ steps:
|
||||
##### multi gpus test #####
|
||||
|
||||
- label: Distributed Comm Ops Test # 7min
|
||||
mirror_hardwares: [amd]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
source_file_dependencies:
|
||||
@ -569,30 +468,27 @@ steps:
|
||||
- vllm/worker/worker.py
|
||||
- vllm/worker/model_runner.py
|
||||
- entrypoints/llm/test_collective_rpc.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- vllm/v1/engine/
|
||||
commands:
|
||||
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- pytest -v -s entrypoints/llm/test_collective_rpc.py
|
||||
- torchrun --nproc-per-node=2 distributed/test_torchrun_example.py
|
||||
- pytest -v -s ./compile/test_basic_correctness.py
|
||||
- pytest -v -s ./compile/test_wrapper.py
|
||||
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep 'Same node test passed'
|
||||
- TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
|
||||
# Avoid importing model tests that cause CUDA reinitialization error
|
||||
- pytest models/test_transformers.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)'
|
||||
- pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)'
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/disagg_test.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
num_gpus: 2
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/plugins/
|
||||
- tests/plugins/
|
||||
@ -603,7 +499,6 @@ steps:
|
||||
- pip uninstall vllm_add_dummy_platform -y
|
||||
# end platform plugin tests
|
||||
# other tests continue here:
|
||||
- pytest -v -s plugins_tests/test_scheduler_plugins.py
|
||||
- pip install -e ./plugins/vllm_add_dummy_model
|
||||
- pytest -v -s distributed/test_distributed_oot.py
|
||||
- pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process
|
||||
@ -651,10 +546,13 @@ steps:
|
||||
# FIXIT: find out which code initialize cuda before running the test
|
||||
# before the fix, we need to use spawn to test it
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
# There is some Tensor Parallelism related processing logic in LoRA that
|
||||
# This test runs llama 13B, so it is required to run on 4 GPUs.
|
||||
- pytest -v -s -x lora/test_long_context.py
|
||||
# There is some Tensor Parallelism related processing logic in LoRA that
|
||||
# requires multi-GPU testing for validation.
|
||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||
- pytest -v -s -x lora/test_llama_tp.py
|
||||
- pytest -v -s -x lora/test_minicpmv_tp.py
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
@ -675,7 +573,7 @@ steps:
|
||||
- vllm/
|
||||
- tests/weight_loading
|
||||
commands:
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models-large.txt
|
||||
|
||||
|
||||
##### multi gpus test #####
|
||||
@ -687,7 +585,7 @@ steps:
|
||||
num_gpus: 4
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
commands:
|
||||
commands:
|
||||
# NOTE: don't test llama model here, it seems hf implementation is buggy
|
||||
# see https://github.com/vllm-project/vllm/pull/5689 for details
|
||||
- pytest -v -s distributed/test_custom_all_reduce.py
|
||||
|
@ -50,11 +50,8 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu121"* ]]; then
|
||||
# if $normal_wheel matches cu121, do not upload the index.html
|
||||
echo "Skipping index files for cu121 wheels"
|
||||
else
|
||||
# only upload index.html for cu124 wheels (default wheels)
|
||||
# only upload index.html for cu12 wheels (default wheels)
|
||||
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
|
||||
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
|
||||
fi
|
||||
@ -66,11 +63,8 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
|
||||
if [[ $normal_wheel == *"cu118"* ]]; then
|
||||
# if $normal_wheel matches cu118, do not upload the index.html
|
||||
echo "Skipping index files for cu118 wheels"
|
||||
elif [[ $normal_wheel == *"cu121"* ]]; then
|
||||
# if $normal_wheel matches cu121, do not upload the index.html
|
||||
echo "Skipping index files for cu121 wheels"
|
||||
else
|
||||
# only upload index.html for cu124 wheels (default wheels)
|
||||
# only upload index.html for cu12 wheels (default wheels)
|
||||
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
|
||||
fi
|
||||
|
27
.github/CODEOWNERS
vendored
27
.github/CODEOWNERS
vendored
@ -10,32 +10,27 @@
|
||||
/vllm/worker/worker.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/sampler.py @zhuohan123 @youkaichao @alexm-redhat @comaniac @njhill
|
||||
/vllm/model_executor/layers/quantization @mgoin @robertgshaw2-redhat @tlrmchlsmth
|
||||
/vllm/model_executor/guided_decoding @mgoin @russellb
|
||||
/vllm/model_executor/guided_decoding @mgoin
|
||||
/vllm/multimodal @DarkLight1337 @ywang96
|
||||
CMakeLists.txt @tlrmchlsmth
|
||||
|
||||
# vLLM V1
|
||||
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat
|
||||
/vllm/v1/structured_output @mgoin @russellb
|
||||
|
||||
# Test ownership
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
|
||||
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
/tests/multimodal @DarkLight1337 @ywang96
|
||||
/tests/prefix_caching @comaniac @KuntaiDu
|
||||
/tests/spec_decode @njhill @LiuXiaoxuanPKU
|
||||
/tests/kernels @tlrmchlsmth @WoosukKwon
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat
|
||||
/.buildkite/lm-eval-harness @mgoin @simon-mo
|
||||
/tests/distributed/test_multi_node_assignment.py @youkaichao
|
||||
/tests/distributed/test_pipeline_parallel.py @youkaichao
|
||||
/tests/distributed/test_same_node.py @youkaichao
|
||||
/tests/entrypoints @DarkLight1337 @robertgshaw2-redhat @simon-mo
|
||||
/tests/entrypoints/llm/test_guided_generate.py @mgoin @russellb
|
||||
/tests/kernels @tlrmchlsmth @WoosukKwon
|
||||
/tests/model_executor/test_guided_processors.py @mgoin @russellb
|
||||
/tests/models @DarkLight1337 @ywang96
|
||||
/tests/multi_step @alexm-redhat @comaniac
|
||||
/tests/multimodal @DarkLight1337 @ywang96
|
||||
/tests/prefix_caching @comaniac @KuntaiDu
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat
|
||||
/tests/spec_decode @njhill @LiuXiaoxuanPKU
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb
|
||||
/tests/v1/structured_output @mgoin @russellb
|
||||
/tests/weight_loading @mgoin @youkaichao
|
||||
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
|
||||
|
2
.github/ISSUE_TEMPLATE/200-installation.yml
vendored
2
.github/ISSUE_TEMPLATE/200-installation.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
2
.github/ISSUE_TEMPLATE/300-usage.yml
vendored
2
.github/ISSUE_TEMPLATE/300-usage.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
11
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
11
.github/ISSUE_TEMPLATE/400-bug-report.yml
vendored
@ -14,7 +14,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
@ -30,6 +30,15 @@ body:
|
||||
</details>
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Model Input Dumps
|
||||
description: |
|
||||
If you are facing crashing due to illegal memory access or other issues with model execution, vLLM may dump the problematic input of the model. In this case, you will see the message `Error in model execution (input dumped to /tmp/err_xxx.pkl)`. If you see this message, please zip the file (because GitHub doesn't support .pkl file format) and upload it here. This will help us to reproduce the issue and facilitate the debugging process.
|
||||
placeholder: |
|
||||
Upload the dumped input file.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: 🐛 Describe the bug
|
||||
|
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
2
.github/ISSUE_TEMPLATE/600-new-model.yml
vendored
@ -9,7 +9,7 @@ body:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/index.html first to understand how to add a new model.
|
||||
#### We also highly recommend you read https://docs.vllm.ai/en/latest/contributing/model/adding_model.html first to understand how to add a new model.
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: The model to consider.
|
||||
|
@ -35,7 +35,7 @@ body:
|
||||
description: |
|
||||
Please run the following and paste the output below.
|
||||
```sh
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
|
||||
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
|
||||
# For security purposes, please feel free to check the contents of collect_env.py before running it.
|
||||
python collect_env.py
|
||||
```
|
||||
|
28
.github/ISSUE_TEMPLATE/800-misc-discussion.yml
vendored
Normal file
28
.github/ISSUE_TEMPLATE/800-misc-discussion.yml
vendored
Normal file
@ -0,0 +1,28 @@
|
||||
name: 🎲 Misc/random discussions that do not fit into the above categories.
|
||||
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
|
||||
title: "[Misc]: "
|
||||
labels: ["misc"]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Anything you want to discuss about vllm.
|
||||
description: >
|
||||
Anything you want to discuss about vllm.
|
||||
validations:
|
||||
required: true
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
||||
- type: checkboxes
|
||||
id: askllm
|
||||
attributes:
|
||||
label: Before submitting a new issue...
|
||||
options:
|
||||
- label: Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
|
||||
required: true
|
4
.github/ISSUE_TEMPLATE/config.yml
vendored
4
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,5 +1 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: Questions
|
||||
url: https://discuss.vllm.ai
|
||||
about: Ask questions and discuss with other vLLM community members
|
||||
|
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
3
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -2,5 +2,4 @@ FILL IN THE PR DESCRIPTION HERE
|
||||
|
||||
FIX #xxxx (*link existing issues this PR will resolve*)
|
||||
|
||||
<!--- pyml disable-next-line no-emphasis-as-heading -->
|
||||
**BEFORE SUBMITTING, PLEASE READ <https://docs.vllm.ai/en/latest/contributing/overview.html>** (anything written below this line will be removed by GitHub Actions)
|
||||
**BEFORE SUBMITTING, PLEASE READ https://docs.vllm.ai/en/latest/contributing/overview.html **
|
||||
|
2
.github/dependabot.yml
vendored
2
.github/dependabot.yml
vendored
@ -23,7 +23,7 @@ updates:
|
||||
- dependency-name: "lm-format-enforcer"
|
||||
- dependency-name: "gguf"
|
||||
- dependency-name: "compressed-tensors"
|
||||
- dependency-name: "ray[cgraph]" # Ray Compiled Graph
|
||||
- dependency-name: "ray[adag]"
|
||||
- dependency-name: "lm-eval"
|
||||
groups:
|
||||
minor-update:
|
||||
|
93
.github/mergify.yml
vendored
93
.github/mergify.yml
vendored
@ -5,7 +5,6 @@ pull_request_rules:
|
||||
- or:
|
||||
- files~=^[^/]+\.md$
|
||||
- files~=^docs/
|
||||
- files~=^examples/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
@ -19,7 +18,7 @@ pull_request_rules:
|
||||
- files~=\.buildkite/
|
||||
- files~=^cmake/
|
||||
- files=CMakeLists.txt
|
||||
- files~=^docker/Dockerfile
|
||||
- files~=^Dockerfile
|
||||
- files~=^requirements.*\.txt
|
||||
- files=setup.py
|
||||
actions:
|
||||
@ -36,96 +35,6 @@ pull_request_rules:
|
||||
add:
|
||||
- frontend
|
||||
|
||||
- name: label-multi-modality
|
||||
description: Automatically apply multi-modality label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^vllm/multimodal/
|
||||
- files~=^tests/multimodal/
|
||||
- files~=^tests/models/multimodal/
|
||||
- files~=^tests/models/*/audio_language/
|
||||
- files~=^tests/models/*/vision_language/
|
||||
- files=tests/models/test_vision.py
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- multi-modality
|
||||
|
||||
- name: label-structured-output
|
||||
description: Automatically apply structured-output label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^benchmarks/structured_schemas/
|
||||
- files=benchmarks/benchmark_serving_structured_output.py
|
||||
- files=benchmarks/run_structured_output_benchmark.sh
|
||||
- files=docs/source/features/structured_outputs.md
|
||||
- files=examples/offline_inference/structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs.py
|
||||
- files=examples/online_serving/openai_chat_completion_structured_outputs_with_reasoning.py
|
||||
- files~=^vllm/model_executor/guided_decoding/
|
||||
- files=tests/model_executor/test_guided_processors.py
|
||||
- files=tests/entrypoints/llm/test_guided_generate.py
|
||||
- files~=^tests/v1/structured_output/
|
||||
- files=tests/v1/entrypoints/llm/test_guided_generate.py
|
||||
- files~=^vllm/v1/structured_output/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- structured-output
|
||||
|
||||
- name: label-speculative-decoding
|
||||
description: Automatically apply speculative-decoding label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^vllm/spec_decode/
|
||||
- files=vllm/model_executor/layers/spec_decode_base_sampler.py
|
||||
- files~=^tests/spec_decode/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- speculative-decoding
|
||||
|
||||
- name: label-v1
|
||||
description: Automatically apply v1 label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^vllm/v1/
|
||||
- files~=^tests/v1/
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- v1
|
||||
|
||||
- name: label-tpu
|
||||
description: Automatically apply tpu label
|
||||
# Keep this list in sync with `label-tpu-remove` conditions
|
||||
conditions:
|
||||
- or:
|
||||
- files~=tpu.py
|
||||
- files~=_tpu
|
||||
- files~=tpu_
|
||||
- files~=/tpu/
|
||||
- files~=pallas
|
||||
actions:
|
||||
label:
|
||||
add:
|
||||
- tpu
|
||||
|
||||
- name: label-tpu-remove
|
||||
description: Automatically remove tpu label
|
||||
# Keep this list in sync with `label-tpu` conditions
|
||||
conditions:
|
||||
- and:
|
||||
- -files~=tpu.py
|
||||
- -files~=_tpu
|
||||
- -files~=tpu_
|
||||
- -files~=/tpu/
|
||||
- -files~=pallas
|
||||
actions:
|
||||
label:
|
||||
remove:
|
||||
- tpu
|
||||
|
||||
- name: ping author on conflicts and add 'needs-rebase' label
|
||||
conditions:
|
||||
- conflict
|
||||
|
2
.github/workflows/cleanup_pr_body.yml
vendored
2
.github/workflows/cleanup_pr_body.yml
vendored
@ -16,7 +16,7 @@ jobs:
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
|
||||
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
|
10
.github/workflows/lint-and-deploy.yaml
vendored
10
.github/workflows/lint-and-deploy.yaml
vendored
@ -12,17 +12,17 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Helm
|
||||
uses: azure/setup-helm@b9e51907a09c216f16ebe8536097933489208112 # v4.3.0
|
||||
uses: azure/setup-helm@fe7b79cd5ee1e45176fcad797de68ecaf3ca4814 # v4.2.0
|
||||
with:
|
||||
version: v3.14.4
|
||||
|
||||
#Python is required because ct lint runs Yamale and yamllint which require Python.
|
||||
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
|
||||
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: '3.13'
|
||||
|
||||
- name: Set up chart-testing
|
||||
uses: helm/chart-testing-action@0d28d3144d3a25ea2cc349d6e59901c4ff469b3b # v2.7.0
|
||||
uses: helm/chart-testing-action@e6669bcd63d7cb57cb4380c33043eebe5d111992 # v2.6.1
|
||||
with:
|
||||
version: v3.10.1
|
||||
|
||||
@ -47,10 +47,10 @@ jobs:
|
||||
aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive
|
||||
|
||||
- name: Create kind cluster
|
||||
uses: helm/kind-action@a1b0e391336a6ee6713a0583f8c6240d70863de3 # v1.12.0
|
||||
uses: helm/kind-action@0025e74a8c7512023d06dc019c617aa3cf561fde # v1.10.0
|
||||
|
||||
- name: Build the Docker image vllm cpu
|
||||
run: docker buildx build -f docker/Dockerfile.cpu -t vllm-cpu-env .
|
||||
run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env .
|
||||
|
||||
- name: Configuration of docker images, network and namespace for the kind cluster
|
||||
run: |
|
||||
|
3
.github/workflows/pre-commit.yml
vendored
3
.github/workflows/pre-commit.yml
vendored
@ -10,11 +10,10 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
- uses: actions/setup-python@42375524e23c412d93fb67b49958b491fce71c38 # v5.4.0
|
||||
- uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
|
||||
with:
|
||||
python-version: "3.12"
|
||||
- run: echo "::add-matcher::.github/workflows/matchers/actionlint.json"
|
||||
- run: echo "::add-matcher::.github/workflows/matchers/mypy.json"
|
||||
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
|
||||
with:
|
||||
extra_args: --all-files --hook-stage manual
|
||||
|
4
.github/workflows/publish.yml
vendored
4
.github/workflows/publish.yml
vendored
@ -39,7 +39,7 @@ jobs:
|
||||
const script = require('.github/workflows/scripts/create_release.js')
|
||||
await script(github, context, core)
|
||||
|
||||
# NOTE(simon): No longer build wheel using GitHub Actions. See buildkite's release workflow.
|
||||
# NOTE(simon): No longer build wheel using Github Actions. See buildkite's release workflow.
|
||||
# wheel:
|
||||
# name: Build Wheel
|
||||
# runs-on: ${{ matrix.os }}
|
||||
@ -50,7 +50,7 @@ jobs:
|
||||
# matrix:
|
||||
# os: ['ubuntu-20.04']
|
||||
# python-version: ['3.9', '3.10', '3.11', '3.12']
|
||||
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements/cuda.txt.
|
||||
# pytorch-version: ['2.4.0'] # Must be the most recent version that meets requirements-cuda.txt.
|
||||
# cuda-version: ['11.8', '12.1']
|
||||
|
||||
# steps:
|
||||
|
8
.github/workflows/reminder_comment.yml
vendored
8
.github/workflows/reminder_comment.yml
vendored
@ -2,6 +2,7 @@ name: PR Reminder Comment Bot
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened]
|
||||
|
||||
jobs:
|
||||
pr_reminder:
|
||||
runs-on: ubuntu-latest
|
||||
@ -14,12 +15,7 @@ jobs:
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: context.issue.number,
|
||||
body: '👋 Hi! Thank you for contributing to the vLLM project.\n\n' +
|
||||
'💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.\n\n' +
|
||||
'Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org.\n\n' +
|
||||
'Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n' +
|
||||
'To run CI, PR reviewers can either: Add `ready` label to the PR or enable auto-merge.\n\n' +
|
||||
'🚀'
|
||||
body: '👋 Hi! Thank you for contributing to the vLLM project.\n Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run `fastcheck` CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your `fastcheck` build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping `simon-mo` or `khluu` to add you in our Buildkite org. \n\nOnce the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.\n\n To run CI, PR reviewers can do one of these:\n- Add `ready` label to the PR\n- Enable auto-merge.\n\n🚀'
|
||||
})
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
2
.github/workflows/scripts/build.sh
vendored
2
.github/workflows/scripts/build.sh
vendored
@ -9,7 +9,7 @@ PATH=${cuda_home}/bin:$PATH
|
||||
LD_LIBRARY_PATH=${cuda_home}/lib64:$LD_LIBRARY_PATH
|
||||
|
||||
# Install requirements
|
||||
$python_executable -m pip install -r requirements/build.txt -r requirements/cuda.txt
|
||||
$python_executable -m pip install -r requirements-build.txt -r requirements-cuda.txt
|
||||
|
||||
# Limit the number of parallel jobs to avoid OOM
|
||||
export MAX_JOBS=1
|
||||
|
2
.github/workflows/scripts/create_release.js
vendored
2
.github/workflows/scripts/create_release.js
vendored
@ -1,4 +1,4 @@
|
||||
// Uses GitHub's API to create the release and wait for result.
|
||||
// Uses Github's API to create the release and wait for result.
|
||||
// We use a JS script since github CLI doesn't provide a way to wait for the release's creation and returns immediately.
|
||||
|
||||
module.exports = async (github, context, core) => {
|
||||
|
2
.github/workflows/stale.yml
vendored
2
.github/workflows/stale.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
||||
actions: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@5bef64f19d7facfb25b37b414482c7164d639639 # v9.1.0
|
||||
- uses: actions/stale@28ca1036281a5e5922ead5184a1bbf96e5fc984e # v9.0.0
|
||||
with:
|
||||
# Increasing this value ensures that changes to this workflow
|
||||
# propagate to all issues and PRs in days rather than months
|
||||
|
8
.gitignore
vendored
8
.gitignore
vendored
@ -2,8 +2,7 @@
|
||||
/vllm/_version.py
|
||||
|
||||
# vllm-flash-attn built from source
|
||||
vllm/vllm_flash_attn/*
|
||||
!vllm/vllm_flash_attn/fa_utils.py
|
||||
vllm/vllm_flash_attn/
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
@ -198,11 +197,8 @@ _build/
|
||||
hip_compat.h
|
||||
|
||||
# Benchmark dataset
|
||||
benchmarks/**/*.json
|
||||
benchmarks/*.json
|
||||
|
||||
# Linting
|
||||
actionlint
|
||||
shellcheck*/
|
||||
|
||||
# Ingore moe/marlin_moe gen code
|
||||
csrc/moe/marlin_moe_wna16/kernel_*
|
||||
|
@ -1,53 +1,43 @@
|
||||
default_install_hook_types:
|
||||
- pre-commit
|
||||
- commit-msg
|
||||
default_stages:
|
||||
- pre-commit # Run locally
|
||||
- manual # Run in CI
|
||||
exclude: 'vllm/third_party/.*'
|
||||
repos:
|
||||
- repo: https://github.com/google/yapf
|
||||
rev: v0.43.0
|
||||
rev: v0.32.0
|
||||
hooks:
|
||||
- id: yapf
|
||||
args: [--in-place, --verbose]
|
||||
additional_dependencies: [toml] # TODO: Remove when yapf is upgraded
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.9.3
|
||||
rev: v0.6.5
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--output-format, github, --fix]
|
||||
args: [--output-format, github]
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.4.0
|
||||
rev: v2.3.0
|
||||
hooks:
|
||||
- id: codespell
|
||||
additional_dependencies: ['tomli']
|
||||
args: ['--toml', 'pyproject.toml']
|
||||
exclude: 'benchmarks/sonnet.txt|(build|tests/(lora/data|models/fixtures|prompts))/.*'
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 0a0b7a830386ba6a31c2ec8316849ae4d1b8240d # 6.0.0
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v19.1.7
|
||||
rev: v18.1.5
|
||||
hooks:
|
||||
- id: clang-format
|
||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))|vllm/third_party/.*'
|
||||
exclude: 'csrc/(moe/topk_softmax_kernels.cu|quantization/gguf/(ggml-common.h|dequantize.cuh|vecdotq.cuh|mmq.cuh|mmvq.cuh))'
|
||||
types_or: [c++, cuda]
|
||||
args: [--style=file, --verbose]
|
||||
- repo: https://github.com/jackdewinter/pymarkdown
|
||||
rev: v0.9.27
|
||||
hooks:
|
||||
- id: pymarkdown
|
||||
args: [fix]
|
||||
files: docs/.*
|
||||
- repo: https://github.com/rhysd/actionlint
|
||||
rev: v1.7.7
|
||||
rev: v1.7.6
|
||||
hooks:
|
||||
- id: actionlint
|
||||
- repo: https://github.com/astral-sh/uv-pre-commit
|
||||
rev: 0.6.2
|
||||
hooks:
|
||||
- id: pip-compile
|
||||
args: [requirements/test.in, -o, requirements/test.txt]
|
||||
files: ^requirements/test\.(in|txt)$
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: mypy-local
|
||||
@ -55,7 +45,7 @@ repos:
|
||||
entry: tools/mypy.sh 0 "local"
|
||||
language: python
|
||||
types: [python]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-cachetools, types-setuptools, types-PyYAML, types-requests]
|
||||
additional_dependencies: &mypy_deps [mypy==1.11.1, types-setuptools, types-PyYAML, types-requests]
|
||||
stages: [pre-commit] # Don't run in CI
|
||||
- id: mypy-3.9 # TODO: Use https://github.com/pre-commit/mirrors-mypy when mypy setup is less awkward
|
||||
name: Run mypy for Python 3.9
|
||||
@ -95,43 +85,8 @@ repos:
|
||||
entry: tools/png-lint.sh
|
||||
language: script
|
||||
types: [png]
|
||||
- id: signoff-commit
|
||||
name: Sign-off Commit
|
||||
entry: bash
|
||||
args:
|
||||
- -c
|
||||
- |
|
||||
if ! grep -q "^Signed-off-by: $(git config user.name) <$(git config user.email)>" .git/COMMIT_EDITMSG; then
|
||||
printf "\nSigned-off-by: $(git config user.name) <$(git config user.email)>\n" >> .git/COMMIT_EDITMSG
|
||||
fi
|
||||
language: system
|
||||
verbose: true
|
||||
stages: [commit-msg]
|
||||
- id: check-spdx-header
|
||||
name: Check SPDX headers
|
||||
entry: python tools/check_spdx_header.py
|
||||
language: python
|
||||
types: [python]
|
||||
- id: check-filenames
|
||||
name: Check for spaces in all filenames
|
||||
entry: bash
|
||||
args:
|
||||
- -c
|
||||
- 'git ls-files | grep " " && echo "Filenames should not contain spaces!" && exit 1 || exit 0'
|
||||
language: system
|
||||
always_run: true
|
||||
pass_filenames: false
|
||||
- id: update-dockerfile-graph
|
||||
name: Update Dockerfile dependency graph
|
||||
entry: tools/update-dockerfile-graph.sh
|
||||
language: script
|
||||
files: ^docker/Dockerfile$
|
||||
pass_filenames: false
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
entry: bash -c 'echo "To bypass pre-commit hooks, add --no-verify to git commit."'
|
||||
language: system
|
||||
verbose: true
|
||||
pass_filenames: false
|
||||
# Insert new entries above the `suggestion` entry
|
||||
verbose: true
|
@ -18,4 +18,4 @@ formats: []
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
install:
|
||||
- requirements: requirements/docs.txt
|
||||
- requirements: docs/requirements-docs.txt
|
||||
|
328
CMakeLists.txt
328
CMakeLists.txt
@ -31,10 +31,10 @@ set(ignoreMe "${VLLM_PYTHON_PATH}")
|
||||
set(PYTHON_SUPPORTED_VERSIONS "3.9" "3.10" "3.11" "3.12")
|
||||
|
||||
# Supported NVIDIA architectures.
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0")
|
||||
set(CUDA_SUPPORTED_ARCHS "7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0")
|
||||
|
||||
# Supported AMD GPU architectures.
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1200;gfx1201")
|
||||
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101")
|
||||
|
||||
#
|
||||
# Supported/expected torch versions for CUDA/ROCm.
|
||||
@ -44,10 +44,10 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
|
||||
#
|
||||
# Note: the CUDA torch version is derived from pyproject.toml and various
|
||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||
# versions are derived from docker/Dockerfile.rocm
|
||||
# versions are derived from Dockerfile.rocm
|
||||
#
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.5.1")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.1")
|
||||
|
||||
#
|
||||
# Try to find python package with an executable that exactly matches
|
||||
@ -174,25 +174,6 @@ include(FetchContent)
|
||||
file(MAKE_DIRECTORY ${FETCHCONTENT_BASE_DIR}) # Ensure the directory exists
|
||||
message(STATUS "FetchContent base directory: ${FETCHCONTENT_BASE_DIR}")
|
||||
|
||||
#
|
||||
# Set rocm version dev int.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
# Overriding the default -O set up by cmake, adding ggdb3 for the most verbose devug info
|
||||
#
|
||||
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
|
||||
|
||||
|
||||
#
|
||||
# Certain HIP functions are marked as [[nodiscard]], yet vllm ignores the result which generates
|
||||
# a lot of warnings that always mask real issues. Suppressing until this is properly addressed.
|
||||
#
|
||||
set(CMAKE_${VLLM_GPU_LANG}_FLAGS "${CMAKE_${VLLM_GPU_LANG}_FLAGS} -Wno-unused-result")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-unused-result")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Define other extension targets
|
||||
#
|
||||
@ -211,7 +192,7 @@ set_gencode_flags_for_srcs(
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
message(STATUS "Enabling cumem allocator extension.")
|
||||
# link against cuda driver library
|
||||
list(APPEND CUMEM_LIBS CUDA::cuda_driver)
|
||||
list(APPEND CUMEM_LIBS cuda)
|
||||
define_gpu_extension_target(
|
||||
cumem_allocator
|
||||
DESTINATION vllm
|
||||
@ -230,12 +211,10 @@ set(VLLM_EXT_SRC
|
||||
"csrc/cache_kernels.cu"
|
||||
"csrc/attention/paged_attention_v1.cu"
|
||||
"csrc/attention/paged_attention_v2.cu"
|
||||
"csrc/attention/merge_attn_states.cu"
|
||||
"csrc/pos_encoding_kernels.cu"
|
||||
"csrc/activation_kernels.cu"
|
||||
"csrc/layernorm_kernels.cu"
|
||||
"csrc/layernorm_quant_kernels.cu"
|
||||
"csrc/cuda_view.cu"
|
||||
"csrc/quantization/gptq/q_gemm.cu"
|
||||
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
|
||||
"csrc/quantization/fp8/common.cu"
|
||||
@ -243,15 +222,13 @@ set(VLLM_EXT_SRC
|
||||
"csrc/quantization/gguf/gguf_kernel.cu"
|
||||
"csrc/cuda_utils_kernels.cu"
|
||||
"csrc/prepare_inputs/advance_step.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/torch_bindings.cpp")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
|
||||
|
||||
# Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case.
|
||||
# Please keep this in sync with FetchContent_Declare line below.
|
||||
set(CUTLASS_REVISION "v3.8.0" CACHE STRING "CUTLASS revision to use")
|
||||
set(CUTLASS_REVISION "v3.6.0" CACHE STRING "CUTLASS revision to use")
|
||||
|
||||
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
|
||||
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
|
||||
@ -268,8 +245,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
FetchContent_Declare(
|
||||
cutlass
|
||||
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
|
||||
# Please keep this in sync with CUTLASS_REVISION line above.
|
||||
GIT_TAG v3.8.0
|
||||
GIT_TAG v3.6.0
|
||||
GIT_PROGRESS TRUE
|
||||
|
||||
# Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history.
|
||||
@ -285,11 +261,11 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
|
||||
"csrc/quantization/aqlm/gemm_kernels.cu"
|
||||
"csrc/quantization/awq/gemm_kernels.cu"
|
||||
"csrc/custom_all_reduce.cu"
|
||||
"csrc/permute_cols.cu"
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_quant_entry.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_entry.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/sparse/cutlass/sparse_compressor_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
@ -299,7 +275,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# Only build Marlin kernels if we are building for at least some compatible archs.
|
||||
# Keep building Marlin for 9.0 as there are some group sizes and shapes that
|
||||
# are not supported by Machete yet.
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_ARCHS "8.0;8.6;8.7;8.9;9.0" ${CUDA_ARCHS})
|
||||
if (MARLIN_ARCHS)
|
||||
set(MARLIN_SRCS
|
||||
"csrc/quantization/fp8/fp8_marlin.cu"
|
||||
@ -319,87 +295,38 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
" in CUDA target architectures")
|
||||
endif()
|
||||
|
||||
# Only build AllSpark kernels if we are building for at least some compatible archs.
|
||||
cuda_archs_loose_intersection(ALLSPARK_ARCHS "8.0;8.6;8.7;8.9" "${CUDA_ARCHS}")
|
||||
if (ALLSPARK_ARCHS)
|
||||
set(ALLSPARK_SRCS
|
||||
"csrc/quantization/gptq_allspark/allspark_repack.cu"
|
||||
"csrc/quantization/gptq_allspark/allspark_qgemm_w8a16.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${ALLSPARK_SRCS}"
|
||||
CUDA_ARCHS "${ALLSPARK_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${ALLSPARK_SRCS}")
|
||||
message(STATUS "Building AllSpark kernels for archs: ${ALLSPARK_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building AllSpark kernels as no compatible archs found"
|
||||
" in CUDA target architectures")
|
||||
endif()
|
||||
|
||||
|
||||
set(SCALED_MM_3X_ARCHS)
|
||||
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
|
||||
# CUDA 12.0 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_int8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_azp_sm90_int8.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_blockwise_sm90_fp8.cu")
|
||||
# CUDA 12.0 or later (and only work on Hopper, 9.0/9.0a for now).
|
||||
cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0;9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_SM90=1")
|
||||
# Let scaled_mm_c2x know it doesn't need to build these arches
|
||||
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
|
||||
message(STATUS "Building scaled_mm_c3x_sm90 for archs: ${SCALED_MM_ARCHS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_C3X=1")
|
||||
message(STATUS "Building scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
|
||||
message(STATUS "Not building scaled_mm_c3x_sm90 as CUDA Compiler version is "
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS)
|
||||
message(STATUS "Not building scaled_mm_c3x as CUDA Compiler version is "
|
||||
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
|
||||
"later if you intend on running FP8 quantized models on "
|
||||
"Hopper.")
|
||||
else()
|
||||
message(STATUS "Not building scaled_mm_c3x_sm90 as no compatible archs found "
|
||||
message(STATUS "Not building scaled_mm_c3x as no compatible archs found "
|
||||
"in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# The cutlass_scaled_mm kernels for Blackwell (c3x, i.e. CUTLASS 3.x) require
|
||||
# CUDA 12.8 or later
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a;12.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
|
||||
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
|
||||
)
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_SM100=1")
|
||||
# Let scaled_mm_c2x know it doesn't need to build these arches
|
||||
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
|
||||
message(STATUS "Building scaled_mm_c3x_sm100 for archs: ${SCALED_MM_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
|
||||
message(STATUS "Not building scaled_mm_c3x_sm100 as CUDA Compiler version is "
|
||||
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
|
||||
"later if you intend on running FP8 quantized models on "
|
||||
"Blackwell.")
|
||||
else()
|
||||
message(STATUS "Not building scaled_mm_c3x_100 as no compatible archs found "
|
||||
"in CUDA target architectures")
|
||||
endif()
|
||||
# clear SCALED_MM_3X_ARCHS so the scaled_mm_c2x kernels know we didn't
|
||||
# build any 3x kernels
|
||||
set(SCALED_MM_3X_ARCHS)
|
||||
endif()
|
||||
|
||||
#
|
||||
# For the cutlass_scaled_mm kernels we want to build the c2x (CUTLASS 2.x)
|
||||
# kernels for the remaining archs that are not already built for 3x.
|
||||
cuda_archs_loose_intersection(SCALED_MM_2X_ARCHS
|
||||
"7.5;8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
"7.5;8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}")
|
||||
# subtract out the archs that are already built for 3x
|
||||
list(REMOVE_ITEM SCALED_MM_2X_ARCHS ${SCALED_MM_3X_ARCHS})
|
||||
if (SCALED_MM_2X_ARCHS)
|
||||
@ -424,18 +351,18 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# 2:4 Sparse Kernels
|
||||
|
||||
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
|
||||
# require CUDA 12.2 or later (and only work on Hopper).
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
|
||||
# require CUDA 12.2 or later (and only work on Hopper, 9.0/9.0a for now).
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
|
||||
set(SRCS "csrc/sparse/cutlass/sparse_compressor_c3x.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
CUDA_ARCHS "${SCALED_MM_3X_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SPARSE_SCALED_MM_C3X=1")
|
||||
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_ARCHS}")
|
||||
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_3X_ARCHS)
|
||||
message(STATUS "Not building sparse_scaled_mm_c3x kernels as CUDA Compiler version is "
|
||||
"not >= 12.2, we recommend upgrading to CUDA 12.2 or later "
|
||||
"if you intend on running FP8 sparse quantized models on Hopper.")
|
||||
@ -445,50 +372,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# FP4 Archs and flags
|
||||
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
|
||||
"csrc/quantization/fp4/nvfp4_scaled_mm_kernels.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${FP4_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
|
||||
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building NVFP4 as no compatible archs were found.")
|
||||
# clear FP4_ARCHS
|
||||
set(FP4_ARCHS)
|
||||
endif()
|
||||
|
||||
#
|
||||
# CUTLASS MoE kernels
|
||||
|
||||
# The MoE kernel cutlass_moe_mm requires CUDA 12.3 or later (and only works
|
||||
# on Hopper). get_cutlass_moe_mm_data should only be compiled if it's possible
|
||||
# to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
|
||||
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM90=1")
|
||||
message(STATUS "Building grouped_mm_c3x for archs: ${SCALED_MM_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
message(STATUS "Not building grouped_mm_c3x kernels as CUDA Compiler version is "
|
||||
"not >= 12.3, we recommend upgrading to CUDA 12.3 or later "
|
||||
"if you intend on running FP8 quantized MoE models on Hopper.")
|
||||
else()
|
||||
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
|
||||
"in CUDA target architectures")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# Machete kernels
|
||||
@ -570,8 +453,7 @@ define_gpu_extension_target(
|
||||
SOURCES ${VLLM_EXT_SRC}
|
||||
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
|
||||
ARCHITECTURES ${VLLM_GPU_ARCHES}
|
||||
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
|
||||
INCLUDE_DIRECTORIES ${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
|
||||
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR};${CUTLASS_TOOLS_UTIL_INCLUDE_DIR}
|
||||
USE_SABI 3
|
||||
WITH_SOABI)
|
||||
|
||||
@ -590,70 +472,28 @@ set(VLLM_MOE_EXT_SRC
|
||||
"csrc/moe/moe_align_sum_kernels.cu"
|
||||
"csrc/moe/topk_softmax_kernels.cu")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
|
||||
endif()
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_MOE_EXT_SRC}"
|
||||
CUDA_ARCHS "${CUDA_ARCHS}")
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(VLLM_MOE_WNA16_SRC
|
||||
"csrc/moe/moe_wna16.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_MOE_WNA16_SRC}"
|
||||
CUDA_ARCHS "${CUDA_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${VLLM_MOE_WNA16_SRC}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0;10.0;10.1;12.0" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(MARLIN_MOE_ARCHS "8.0;8.6;8.7;8.9;9.0" "${CUDA_ARCHS}")
|
||||
if (MARLIN_MOE_ARCHS)
|
||||
set(MARLIN_MOE_SRC
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.h"
|
||||
"csrc/moe/marlin_kernels/marlin_moe_kernel_ku4.cu"
|
||||
"csrc/moe/marlin_moe_ops.cu")
|
||||
|
||||
#
|
||||
# For the Marlin MOE kernels we automatically generate sources for various
|
||||
# preselected input type pairs and schedules.
|
||||
# Generate sources:
|
||||
set(MOE_MARLIN_GEN_SCRIPT
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/csrc/moe/marlin_moe_wna16/generate_kernels.py)
|
||||
file(MD5 ${MOE_MARLIN_GEN_SCRIPT} MOE_MARLIN_GEN_SCRIPT_HASH)
|
||||
|
||||
message(STATUS "Marlin MOE generation script hash: ${MOE_MARLIN_GEN_SCRIPT_HASH}")
|
||||
message(STATUS "Last run Marlin MOE generate script hash: $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}")
|
||||
|
||||
if (NOT DEFINED CACHE{MOE_MARLIN_GEN_SCRIPT_HASH}
|
||||
OR NOT $CACHE{MOE_MARLIN_GEN_SCRIPT_HASH} STREQUAL ${MOE_MARLIN_GEN_SCRIPT_HASH})
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_COMMAND} -E env
|
||||
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
|
||||
${Python_EXECUTABLE} ${MOE_MARLIN_GEN_SCRIPT}
|
||||
RESULT_VARIABLE moe_marlin_generation_result
|
||||
OUTPUT_VARIABLE moe_marlin_generation_output
|
||||
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
|
||||
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log
|
||||
)
|
||||
|
||||
if (NOT moe_marlin_generation_result EQUAL 0)
|
||||
message(FATAL_ERROR "Marlin MOE generation failed."
|
||||
" Result: \"${moe_marlin_generation_result}\""
|
||||
"\nCheck the log for details: "
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/moe_marlin_generation.log")
|
||||
else()
|
||||
set(MOE_MARLIN_GEN_SCRIPT_HASH ${MOE_MARLIN_GEN_SCRIPT_HASH}
|
||||
CACHE STRING "Last run Marlin MOE generate script hash" FORCE)
|
||||
message(STATUS "Marlin MOE generation completed successfully.")
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Marlin MOE generation script has not changed, skipping generation.")
|
||||
endif()
|
||||
|
||||
file(GLOB MOE_WNAA16_MARLIN_SRC "csrc/moe/marlin_moe_wna16/*.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MOE_WNAA16_MARLIN_SRC}"
|
||||
SRCS "${MARLIN_MOE_SRC}"
|
||||
CUDA_ARCHS "${MARLIN_MOE_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC ${MOE_WNAA16_MARLIN_SRC})
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${MARLIN_MOE_SRC}")
|
||||
message(STATUS "Building Marlin MOE kernels for archs: ${MARLIN_MOE_ARCHS}")
|
||||
else()
|
||||
message(STATUS "Not building Marlin MOE kernels as no compatible archs found"
|
||||
@ -678,7 +518,6 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
#
|
||||
set(VLLM_ROCM_EXT_SRC
|
||||
"csrc/rocm/torch_bindings.cpp"
|
||||
"csrc/rocm/skinny_gemms.cu"
|
||||
"csrc/rocm/attention.cu")
|
||||
|
||||
define_gpu_extension_target(
|
||||
@ -692,8 +531,77 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
WITH_SOABI)
|
||||
endif()
|
||||
|
||||
# For CUDA we also build and ship some external projects.
|
||||
if (VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
include(cmake/external_projects/flashmla.cmake)
|
||||
include(cmake/external_projects/vllm_flash_attn.cmake)
|
||||
# vllm-flash-attn currently only supported on CUDA
|
||||
if (NOT VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
return()
|
||||
endif ()
|
||||
|
||||
# vLLM flash attention requires VLLM_GPU_ARCHES to contain the set of target
|
||||
# arches in the CMake syntax (75-real, 89-virtual, etc), since we clear the
|
||||
# arches in the CUDA case (and instead set the gencodes on a per file basis)
|
||||
# we need to manually set VLLM_GPU_ARCHES here.
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
foreach(_ARCH ${CUDA_ARCHS})
|
||||
string(REPLACE "." "" _ARCH "${_ARCH}")
|
||||
list(APPEND VLLM_GPU_ARCHES "${_ARCH}-real")
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
#
|
||||
# Build vLLM flash attention from source
|
||||
#
|
||||
# IMPORTANT: This has to be the last thing we do, because vllm-flash-attn uses the same macros/functions as vLLM.
|
||||
# Because functions all belong to the global scope, vllm-flash-attn's functions overwrite vLLMs.
|
||||
# They should be identical but if they aren't, this is a massive footgun.
|
||||
#
|
||||
# The vllm-flash-attn install rules are nested under vllm to make sure the library gets installed in the correct place.
|
||||
# To only install vllm-flash-attn, use --component _vllm_fa2_C (for FA2) or --component _vllm_fa3_C (for FA3).
|
||||
# If no component is specified, vllm-flash-attn is still installed.
|
||||
|
||||
# If VLLM_FLASH_ATTN_SRC_DIR is set, vllm-flash-attn is installed from that directory instead of downloading.
|
||||
# This is to enable local development of vllm-flash-attn within vLLM.
|
||||
# It can be set as an environment variable or passed as a cmake argument.
|
||||
# The environment variable takes precedence.
|
||||
if (DEFINED ENV{VLLM_FLASH_ATTN_SRC_DIR})
|
||||
set(VLLM_FLASH_ATTN_SRC_DIR $ENV{VLLM_FLASH_ATTN_SRC_DIR})
|
||||
endif()
|
||||
|
||||
if(VLLM_FLASH_ATTN_SRC_DIR)
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn SOURCE_DIR
|
||||
${VLLM_FLASH_ATTN_SRC_DIR}
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 90eacc1af2a7c3de62ea249e929ed5faccf38954
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
# Fetch the vllm-flash-attn library
|
||||
FetchContent_MakeAvailable(vllm-flash-attn)
|
||||
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
|
||||
|
||||
# Copy over the vllm-flash-attn python files (duplicated for fa2 and fa3, in
|
||||
# case only one is built, in the case both are built redundant work is done)
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
COMPONENT _vllm_fa2_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
COMPONENT _vllm_fa3_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
# Nothing after vllm-flash-attn, see comment about macros above
|
||||
|
@ -61,7 +61,7 @@ representative at an online or offline/IRL event.
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported to the community leaders responsible for enforcement in the #code-of-conduct
|
||||
channel in the [vLLM Slack](https://slack.vllm.ai).
|
||||
channel in the [vLLM Discord](https://discord.com/invite/jz7wjKhh6g).
|
||||
All complaints will be reviewed and investigated promptly and fairly.
|
||||
|
||||
All community leaders are obligated to respect the privacy and security of the
|
||||
@ -125,3 +125,4 @@ Community Impact Guidelines were inspired by
|
||||
For answers to common questions about this code of conduct, see the
|
||||
[Contributor Covenant FAQ](https://www.contributor-covenant.org/faq). Translations are available at
|
||||
[Contributor Covenant translations](https://www.contributor-covenant.org/translations).
|
||||
|
||||
|
@ -27,13 +27,6 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
||||
# as it was causing spam when compiling the CUTLASS kernels
|
||||
@ -57,16 +50,15 @@ WORKDIR /workspace
|
||||
# we need to install torch and torchvision from the nightly builds first,
|
||||
# pytorch will not appear as a vLLM dependency in all of the following steps
|
||||
# after this step
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 "torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 --pre pytorch_triton==3.3.0+gitab727c40; \
|
||||
python3 -m pip install --index-url https://download.pytorch.org/whl/nightly/cu126 "torch==2.7.0.dev20250121+cu126" "torchvision==0.22.0.dev20250121"; \
|
||||
fi
|
||||
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY requirements/cuda.txt requirements/cuda.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/cuda.txt
|
||||
COPY requirements-common.txt requirements-common.txt
|
||||
COPY requirements-cuda.txt requirements-cuda.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-cuda.txt
|
||||
|
||||
# cuda arch list used by torch
|
||||
# can be useful for both `dev` and `test`
|
||||
@ -84,19 +76,15 @@ FROM base AS build
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
# install build dependencies
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
COPY requirements-build.txt requirements-build.txt
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-build.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != "0" ]; then bash tools/check_repo.sh ; fi
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# max jobs used by Ninja to build extensions
|
||||
ARG max_jobs=2
|
||||
@ -110,7 +98,7 @@ ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
||||
ARG SCCACHE_REGION_NAME=us-west-2
|
||||
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
# if USE_SCCACHE is set, use sccache to speed up compilation
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" = "1" ]; then \
|
||||
echo "Installing sccache..." \
|
||||
@ -130,19 +118,16 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" != "1" ]; then \
|
||||
# Clean any existing CMake artifacts
|
||||
rm -rf .deps && \
|
||||
mkdir -p .deps && \
|
||||
python3 setup.py bdist_wheel --dist-dir=dist --py-limited-api=cp38; \
|
||||
fi
|
||||
|
||||
# Check the size of the wheel if RUN_WHEEL_CHECK is true
|
||||
COPY .buildkite/check-wheel-size.py check-wheel-size.py
|
||||
# sync the default value with .buildkite/check-wheel-size.py
|
||||
ARG VLLM_MAX_SIZE_MB=400
|
||||
# Default max size of the wheel is 250MB
|
||||
ARG VLLM_MAX_SIZE_MB=250
|
||||
ENV VLLM_MAX_SIZE_MB=$VLLM_MAX_SIZE_MB
|
||||
ARG RUN_WHEEL_CHECK=true
|
||||
RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
|
||||
@ -155,21 +140,16 @@ RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
|
||||
#################### DEV IMAGE ####################
|
||||
FROM base as dev
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
COPY requirements/lint.txt requirements/lint.txt
|
||||
COPY requirements/test.txt requirements/test.txt
|
||||
COPY requirements/dev.txt requirements/dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/dev.txt
|
||||
COPY requirements-lint.txt requirements-lint.txt
|
||||
COPY requirements-test.txt requirements-test.txt
|
||||
COPY requirements-dev.txt requirements-dev.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-dev.txt
|
||||
#################### DEV IMAGE ####################
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
# image with vLLM installed
|
||||
# TODO: Restore to base image after FlashInfer AOT wheel fixed
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS vllm-base
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
WORKDIR /vllm-workspace
|
||||
@ -193,13 +173,6 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
# Install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
@ -211,46 +184,22 @@ RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
# we need to install torch and torchvision from the nightly builds first,
|
||||
# pytorch will not appear as a vLLM dependency in all of the following steps
|
||||
# after this step
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 "torch==2.8.0.dev20250318+cu128" "torchvision==0.22.0.dev20250319"; \
|
||||
uv pip install --system --index-url https://download.pytorch.org/whl/nightly/cu128 --pre pytorch_triton==3.3.0+gitab727c40; \
|
||||
python3 -m pip install --index-url https://download.pytorch.org/whl/nightly/cu124 "torch==2.6.0.dev20241210+cu124" "torchvision==0.22.0.dev20241215"; \
|
||||
fi
|
||||
|
||||
# Install vllm wheel first, so that torch etc will be installed.
|
||||
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system dist/*.whl --verbose
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install dist/*.whl --verbose
|
||||
|
||||
# If we need to build FlashInfer wheel before its release:
|
||||
# $ export FLASHINFER_ENABLE_AOT=1
|
||||
# $ # Note we remove 7.0 from the arch list compared to the list below, since FlashInfer only supports sm75+
|
||||
# $ export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.6 8.9 9.0+PTX'
|
||||
# $ git clone https://github.com/flashinfer-ai/flashinfer.git --recursive
|
||||
# $ cd flashinfer
|
||||
# $ git checkout 524304395bd1d8cd7d07db083859523fcaa246a4
|
||||
# $ rm -rf build
|
||||
# $ python3 setup.py bdist_wheel --dist-dir=dist --verbose
|
||||
# $ ls dist
|
||||
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/524304395bd1d8cd7d07db083859523fcaa246a4/flashinfer_python-0.2.1.post1+cu124torch2.5-cp38-abi3-linux_x86_64.whl
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
. /etc/environment && \
|
||||
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
|
||||
uv pip install --system https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post2/flashinfer_python-0.2.1.post2+cu124torch2.6-cp38-abi3-linux_x86_64.whl ; \
|
||||
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl; \
|
||||
fi
|
||||
COPY examples examples
|
||||
COPY benchmarks benchmarks
|
||||
COPY ./vllm/collect_env.py .
|
||||
|
||||
# Although we build Flashinfer with AOT mode, there's still
|
||||
# some issues w.r.t. JIT compilation. Therefore we need to
|
||||
# install build dependencies for JIT compilation.
|
||||
# TODO: Remove this once FlashInfer AOT wheel is fixed
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt
|
||||
|
||||
#################### vLLM installation IMAGE ####################
|
||||
|
||||
#################### TEST IMAGE ####################
|
||||
@ -260,21 +209,17 @@ FROM vllm-base AS test
|
||||
|
||||
ADD . /vllm-workspace/
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -r requirements-dev.txt
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/dev.txt
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -e tests/vllm_test_utils
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
# enable fast downloads from hf (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system hf_transfer
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install hf_transfer
|
||||
ENV HF_HUB_ENABLE_HF_TRANSFER 1
|
||||
|
||||
# Copy in the v1 package for testing (it isn't distributed yet)
|
||||
@ -292,16 +237,12 @@ RUN mv vllm test_docs/
|
||||
# base openai image with additional requirements, for any subsequent openai-style images
|
||||
FROM vllm-base AS vllm-openai-base
|
||||
|
||||
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
|
||||
# install additional dependencies for openai api server
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
else \
|
||||
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.3' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
fi
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
@ -26,18 +26,18 @@ WORKDIR /workspace
|
||||
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements/build.txt,target=requirements/build.txt \
|
||||
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
|
||||
pip install --upgrade pip && \
|
||||
pip install -r requirements/build.txt
|
||||
pip install -r requirements-build.txt
|
||||
|
||||
FROM cpu-test-arm AS build
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements/common.txt,target=requirements/common.txt \
|
||||
--mount=type=bind,src=requirements/cpu.txt,target=requirements/cpu.txt \
|
||||
pip install -v -r requirements/cpu.txt
|
||||
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
|
||||
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
|
||||
pip install -v -r requirements-cpu.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
69
Dockerfile.cpu
Normal file
69
Dockerfile.cpu
Normal file
@ -0,0 +1,69 @@
|
||||
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
|
||||
|
||||
FROM ubuntu:22.04 AS cpu-test-1
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
|
||||
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
|
||||
|
||||
RUN --mount=type=cache,target=/var/cache/apt \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
|
||||
# intel-openmp provides additional performance improvement vs. openmp
|
||||
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install intel-openmp==2025.0.1
|
||||
|
||||
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so"
|
||||
|
||||
RUN echo 'ulimit -c 0' >> ~/.bashrc
|
||||
|
||||
RUN pip install intel_extension_for_pytorch==2.5.0
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements-build.txt,target=requirements-build.txt \
|
||||
pip install --upgrade pip && \
|
||||
pip install -r requirements-build.txt
|
||||
|
||||
FROM cpu-test-1 AS build
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements-common.txt,target=requirements-common.txt \
|
||||
--mount=type=bind,src=requirements-cpu.txt,target=requirements-cpu.txt \
|
||||
pip install -v -r requirements-cpu.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# Support for building with non-AVX512 vLLM: docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" ...
|
||||
ARG VLLM_CPU_DISABLE_AVX512
|
||||
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
|
||||
pip install dist/*.whl && \
|
||||
rm -rf dist
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install -e tests/vllm_test_utils
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
@ -1,10 +1,10 @@
|
||||
FROM vault.habana.ai/gaudi-docker/1.20.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
FROM vault.habana.ai/gaudi-docker/1.19.1/ubuntu22.04/habanalabs/pytorch-installer-2.5.1:latest
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN pip install -v -r requirements/hpu.txt
|
||||
RUN pip install -v -r requirements-hpu.txt
|
||||
|
||||
ENV no_proxy=localhost,127.0.0.1
|
||||
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
|
@ -1,6 +1,6 @@
|
||||
# default base image
|
||||
# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
|
||||
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.5.1-neuronx-py310-sdk2.22.0-ubuntu22.04"
|
||||
ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.5.1-neuronx-py310-sdk2.21.0-ubuntu22.04"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
|
||||
@ -21,14 +21,12 @@ VOLUME [ ${APP_MOUNT} ]
|
||||
WORKDIR ${APP_MOUNT}/vllm
|
||||
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas tenacity
|
||||
RUN python3 -m pip install sentencepiece transformers==4.48.0 -U
|
||||
RUN python3 -m pip install neuronx-cc==2.17.194.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install --no-cache-dir fastapi ninja tokenizers pandas
|
||||
RUN python3 -m pip install sentencepiece transformers==4.45.2 -U
|
||||
RUN python3 -m pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install neuronx-cc==2.16.345.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com -U
|
||||
RUN python3 -m pip install pytest
|
||||
|
||||
# uninstall transformers-neuronx package explicitly to avoid version conflict
|
||||
RUN python3 -m pip uninstall -y transformers-neuronx
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
@ -36,7 +34,7 @@ RUN --mount=type=bind,source=.git,target=.git \
|
||||
|
||||
RUN python3 -m pip install -U \
|
||||
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
-r requirements/neuron.txt
|
||||
-r requirements-neuron.txt
|
||||
|
||||
ENV VLLM_TARGET_DEVICE neuron
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
@ -45,10 +43,6 @@ RUN --mount=type=bind,source=.git,target=.git \
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
# install transformers-neuronx package as an optional dependencies (for V0)
|
||||
# FIXME: `--no-deps` argument is temporarily added to resolve transformers package version conflict
|
||||
RUN python3 -m pip install transformers-neuronx==0.13.* --extra-index-url=https://pip.repos.neuron.amazonaws.com -U --no-deps
|
||||
|
||||
# overwrite entrypoint to run bash script
|
||||
RUN echo "import subprocess; import sys; subprocess.check_call(sys.argv[1:])" > /usr/local/bin/dockerd-entrypoint.py
|
||||
|
29
Dockerfile.openvino
Normal file
29
Dockerfile.openvino
Normal file
@ -0,0 +1,29 @@
|
||||
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
|
||||
# to run the OpenAI compatible server.
|
||||
|
||||
FROM ubuntu:22.04 AS dev
|
||||
|
||||
RUN apt-get update -y && \
|
||||
apt-get install -y \
|
||||
git python3-pip \
|
||||
ffmpeg libsm6 libxext6 libgl1
|
||||
WORKDIR /workspace
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
RUN python3 -m pip install -U pip
|
||||
# install build requirements
|
||||
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/requirements-build.txt
|
||||
# build vLLM with OpenVINO backend
|
||||
RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" VLLM_TARGET_DEVICE="openvino" python3 -m pip install /workspace
|
||||
|
||||
COPY examples/ /workspace/examples
|
||||
COPY benchmarks/ /workspace/benchmarks
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
CMD ["/bin/bash"]
|
38
Dockerfile.ppc64le
Normal file
38
Dockerfile.ppc64le
Normal file
@ -0,0 +1,38 @@
|
||||
FROM mambaorg/micromamba
|
||||
ARG MAMBA_DOCKERFILE_ACTIVATE=1
|
||||
USER root
|
||||
|
||||
ENV PATH="/usr/local/cargo/bin:$PATH:/opt/conda/bin/"
|
||||
|
||||
RUN apt-get update -y && apt-get install -y git wget curl vim libnuma-dev libsndfile-dev libprotobuf-dev build-essential ffmpeg libsm6 libxext6 libgl1 libssl-dev
|
||||
|
||||
# Some packages in requirements-cpu are installed here
|
||||
# IBM provides optimized packages for ppc64le processors in the open-ce project for mamba
|
||||
# Currently these may not be available for venv or pip directly
|
||||
RUN micromamba install -y -n base -c https://ftp.osuosl.org/pub/open-ce/1.11.0-p10/ -c defaults python=3.10 torchvision-cpu=0.16.2 rust && micromamba clean --all --yes
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
RUSTFLAGS='-L /opt/conda/lib' pip install -v --prefer-binary --extra-index-url https://repo.fury.io/mgiessing \
|
||||
'cmake>=3.26' ninja packaging 'setuptools-scm>=8' wheel jinja2 \
|
||||
torch==2.3.1 \
|
||||
-r requirements-cpu.txt \
|
||||
xformers uvloop==0.20.0
|
||||
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py install
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
ENTRYPOINT ["/opt/conda/bin/python3", "-m", "vllm.entrypoints.openai.api_server"]
|
@ -12,8 +12,7 @@ ENV PYTORCH_ROCM_ARCH=${ARG_PYTORCH_ROCM_ARCH:-${PYTORCH_ROCM_ARCH}}
|
||||
|
||||
# Install some basic utilities
|
||||
RUN apt-get update -q -y && apt-get install -q -y \
|
||||
sqlite3 libsqlite3-dev libfmt-dev libmsgpack-dev libsuitesparse-dev \
|
||||
apt-transport-https ca-certificates wget curl
|
||||
sqlite3 libsqlite3-dev libfmt-dev libmsgpack-dev libsuitesparse-dev
|
||||
# Remove sccache
|
||||
RUN python3 -m pip install --upgrade pip && pip install setuptools_scm
|
||||
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
|
||||
@ -39,14 +38,14 @@ FROM fetch_vllm AS build_vllm
|
||||
ARG USE_CYTHON
|
||||
# Build vLLM
|
||||
RUN cd vllm \
|
||||
&& python3 -m pip install -r requirements/rocm.txt \
|
||||
&& python3 -m pip install -r requirements-rocm.txt \
|
||||
&& python3 setup.py clean --all \
|
||||
&& if [ ${USE_CYTHON} -eq "1" ]; then python3 tests/build_cython.py build_ext --inplace; fi \
|
||||
&& if [ ${USE_CYTHON} -eq "1" ]; then python3 setup_cython.py build_ext --inplace; fi \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=dist
|
||||
FROM scratch AS export_vllm
|
||||
ARG COMMON_WORKDIR
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/dist/*.whl /
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/requirements /requirements
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/requirements*.txt /
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/benchmarks /benchmarks
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/tests /tests
|
||||
COPY --from=build_vllm ${COMMON_WORKDIR}/vllm/examples /examples
|
||||
@ -61,8 +60,7 @@ RUN python3 -m pip install --upgrade pip && rm -rf /var/lib/apt/lists/*
|
||||
# Install vLLM
|
||||
RUN --mount=type=bind,from=export_vllm,src=/,target=/install \
|
||||
cd /install \
|
||||
&& pip install -U -r requirements/rocm.txt \
|
||||
&& pip install -U -r requirements/rocm-test.txt \
|
||||
&& pip install -U -r requirements-rocm.txt \
|
||||
&& pip uninstall -y vllm \
|
||||
&& pip install *.whl
|
||||
|
||||
@ -101,7 +99,7 @@ RUN if [ ${BUILD_RPD} -eq "1" ]; then \
|
||||
# Install vLLM
|
||||
RUN --mount=type=bind,from=export_vllm,src=/,target=/install \
|
||||
cd /install \
|
||||
&& pip install -U -r requirements/rocm.txt \
|
||||
&& pip install -U -r requirements-rocm.txt \
|
||||
&& pip uninstall -y vllm \
|
||||
&& pip install *.whl
|
||||
|
@ -1,26 +1,24 @@
|
||||
ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.3.1-complete
|
||||
ARG HIPBLASLT_BRANCH="db8e93b4"
|
||||
ARG HIPBLASLT_BRANCH="4d40e36"
|
||||
ARG HIPBLAS_COMMON_BRANCH="7c1566b"
|
||||
ARG LEGACY_HIPBLASLT_OPTION=
|
||||
ARG RCCL_BRANCH="648a58d"
|
||||
ARG RCCL_REPO="https://github.com/ROCm/rccl"
|
||||
ARG TRITON_BRANCH="e5be006"
|
||||
ARG TRITON_REPO="https://github.com/triton-lang/triton.git"
|
||||
ARG PYTORCH_BRANCH="295f2ed4"
|
||||
ARG PYTORCH_VISION_BRANCH="v0.21.0"
|
||||
ARG PYTORCH_BRANCH="8d4926e"
|
||||
ARG PYTORCH_VISION_BRANCH="v0.19.1"
|
||||
ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
|
||||
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
|
||||
ARG FA_BRANCH="1a7f4dfa"
|
||||
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
|
||||
ARG AITER_BRANCH="7e1ed08"
|
||||
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
|
||||
ARG FA_BRANCH="b7d29fb"
|
||||
ARG FA_REPO="https://github.com/ROCm/flash-attention.git"
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
ENV PATH=/opt/rocm/llvm/bin:$PATH
|
||||
ENV ROCM_PATH=/opt/rocm
|
||||
ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942;gfx1100;gfx1101;gfx1200;gfx1201
|
||||
ARG PYTORCH_ROCM_ARCH=gfx90a;gfx942
|
||||
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
@ -31,7 +29,7 @@ ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install Python and other dependencies
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y software-properties-common git curl sudo vim less libgfortran5 \
|
||||
&& apt-get install -y software-properties-common git curl sudo vim less \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
@ -42,7 +40,7 @@ RUN apt-get update -y \
|
||||
&& curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
RUN pip install -U packaging 'cmake<4' ninja wheel setuptools pybind11 Cython
|
||||
RUN pip install -U packaging cmake ninja wheel setuptools pybind11 Cython
|
||||
|
||||
FROM base AS build_hipblaslt
|
||||
ARG HIPBLASLT_BRANCH
|
||||
@ -60,8 +58,7 @@ RUN cd hipBLAS-common \
|
||||
RUN git clone https://github.com/ROCm/hipBLASLt
|
||||
RUN cd hipBLASLt \
|
||||
&& git checkout ${HIPBLASLT_BRANCH} \
|
||||
&& apt-get install -y llvm-dev \
|
||||
&& ./install.sh -dc --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \
|
||||
&& ./install.sh -d --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \
|
||||
&& cd build/release \
|
||||
&& make package
|
||||
RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/hipBLAS-common/build/*.deb /app/install
|
||||
@ -111,24 +108,11 @@ RUN git clone ${FA_REPO}
|
||||
RUN cd flash-attention \
|
||||
&& git checkout ${FA_BRANCH} \
|
||||
&& git submodule update --init \
|
||||
&& GPU_ARCHS=$(echo ${PYTORCH_ROCM_ARCH} | sed -e 's/;gfx1[0-9]\{3\}//g') python3 setup.py bdist_wheel --dist-dir=dist
|
||||
&& MAX_JOBS=64 GPU_ARCHS=${PYTORCH_ROCM_ARCH} python3 setup.py bdist_wheel --dist-dir=dist
|
||||
RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \
|
||||
&& cp /app/vision/dist/*.whl /app/install \
|
||||
&& cp /app/flash-attention/dist/*.whl /app/install
|
||||
|
||||
FROM base AS build_aiter
|
||||
ARG AITER_BRANCH
|
||||
ARG AITER_REPO
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN git clone --recursive ${AITER_REPO}
|
||||
RUN cd aiter \
|
||||
&& git checkout ${AITER_BRANCH} \
|
||||
&& git submodule update --init --recursive \
|
||||
&& pip install -r requirements.txt
|
||||
RUN pip install pyyaml && cd aiter && PREBUILD_KERNELS=1 GPU_ARCHS=gfx942 python3 setup.py bdist_wheel --dist-dir=dist && ls /app/aiter/dist/*.whl
|
||||
RUN mkdir -p /app/install && cp /app/aiter/dist/*.whl /app/install
|
||||
|
||||
FROM base AS final
|
||||
RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \
|
||||
dpkg -i /install/*deb \
|
||||
@ -144,11 +128,8 @@ RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
RUN --mount=type=bind,from=build_aiter,src=/app/install/,target=/install \
|
||||
pip install /install/*.whl
|
||||
|
||||
ARG BASE_IMAGE
|
||||
ARG HIPBLAS_COMMON_BRANCH
|
||||
ARG HIPBLASLT_BRANCH
|
||||
ARG LEGACY_HIPBLASLT_OPTION
|
||||
ARG RCCL_BRANCH
|
||||
@ -161,8 +142,6 @@ ARG PYTORCH_REPO
|
||||
ARG PYTORCH_VISION_REPO
|
||||
ARG FA_BRANCH
|
||||
ARG FA_REPO
|
||||
ARG AITER_BRANCH
|
||||
ARG AITER_REPO
|
||||
RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "HIPBLAS_COMMON_BRANCH: ${HIPBLAS_COMMON_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "HIPBLASLT_BRANCH: ${HIPBLASLT_BRANCH}" >> /app/versions.txt \
|
||||
@ -176,5 +155,4 @@ RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \
|
||||
&& echo "PYTORCH_REPO: ${PYTORCH_REPO}" >> /app/versions.txt \
|
||||
&& echo "PYTORCH_VISION_REPO: ${PYTORCH_VISION_REPO}" >> /app/versions.txt \
|
||||
&& echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "AITER_BRANCH: ${AITER_BRANCH}" >> /app/versions.txt \
|
||||
&& echo "AITER_REPO: ${AITER_REPO}" >> /app/versions.txt
|
||||
&& echo "FA_REPO: ${FA_REPO}" >> /app/versions.txt
|
@ -1,4 +1,4 @@
|
||||
ARG NIGHTLY_DATE="20250124"
|
||||
ARG NIGHTLY_DATE="20250122"
|
||||
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
@ -15,14 +15,11 @@ ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
|
||||
|
||||
# Remove existing versions of dependencies
|
||||
RUN pip uninstall -y torch torch_xla torchvision
|
||||
|
||||
ENV VLLM_TARGET_DEVICE="tpu"
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
python3 -m pip install \
|
||||
-r requirements/tpu.txt
|
||||
-r requirements-tpu.txt
|
||||
RUN python3 setup.py develop
|
||||
|
||||
# install development dependencies (for testing)
|
69
Dockerfile.xpu
Normal file
69
Dockerfile.xpu
Normal file
@ -0,0 +1,69 @@
|
||||
FROM intel/oneapi-basekit:2024.2.1-0-devel-ubuntu22.04 AS vllm-base
|
||||
|
||||
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
|
||||
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
|
||||
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||
chmod 644 /usr/share/keyrings/intel-graphics.gpg
|
||||
|
||||
RUN apt-get update -y && \
|
||||
apt-get install -y --no-install-recommends --fix-missing \
|
||||
curl \
|
||||
ffmpeg \
|
||||
git \
|
||||
libsndfile1 \
|
||||
libsm6 \
|
||||
libxext6 \
|
||||
libgl1 \
|
||||
lsb-release \
|
||||
numactl \
|
||||
python3 \
|
||||
python3-dev \
|
||||
python3-pip \
|
||||
# vim \
|
||||
wget
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
COPY requirements-xpu.txt /workspace/vllm/requirements-xpu.txt
|
||||
COPY requirements-common.txt /workspace/vllm/requirements-common.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install --no-cache-dir \
|
||||
-r requirements-xpu.txt
|
||||
|
||||
RUN git clone https://github.com/intel/pti-gpu && \
|
||||
cd pti-gpu/sdk && \
|
||||
git checkout 6c491f07a777ed872c2654ca9942f1d0dde0a082 && \
|
||||
mkdir build && \
|
||||
cd build && \
|
||||
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=../cmake/toolchains/icpx_toolchain.cmake -DBUILD_TESTING=OFF .. && \
|
||||
make -j && \
|
||||
cmake --install . --config Release --prefix "/usr/local"
|
||||
|
||||
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib/"
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh; fi
|
||||
|
||||
ENV VLLM_TARGET_DEVICE=xpu
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
python3 setup.py install
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
FROM vllm-base AS vllm-openai
|
||||
|
||||
# install additional dependencies for openai api server
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install accelerate hf_transfer 'modelscope!=1.15.0'
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image \
|
||||
TRITON_XPU_PROFILE 1
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
10
MANIFEST.in
10
MANIFEST.in
@ -1,9 +1,9 @@
|
||||
include LICENSE
|
||||
include requirements/common.txt
|
||||
include requirements/cuda.txt
|
||||
include requirements/rocm.txt
|
||||
include requirements/neuron.txt
|
||||
include requirements/cpu.txt
|
||||
include requirements-common.txt
|
||||
include requirements-cuda.txt
|
||||
include requirements-rocm.txt
|
||||
include requirements-neuron.txt
|
||||
include requirements-cpu.txt
|
||||
include CMakeLists.txt
|
||||
|
||||
recursive-include cmake *
|
||||
|
37
README.md
37
README.md
@ -10,24 +10,14 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
</h3>
|
||||
|
||||
<p align="center">
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://blog.vllm.ai/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://discuss.vllm.ai"><b>User Forum</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> | <a href="https://x.com/vllm_project"><b>Twitter/X</b></a> | <a href="https://slack.vllm.ai"><b>Developer Slack</b></a> |
|
||||
</p>
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
- [2025/04] We hosted [Asia Developer Day](https://www.sginnovate.com/event/limited-availability-morning-evening-slots-remaining-inaugural-vllm-asia-developer-day)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/19cp6Qu8u48ihB91A064XfaXruNYiBOUKrBxAmDOllOo/edit?usp=sharing).
|
||||
- [2025/03] We hosted [vLLM x Ollama Inference Night](https://lu.ma/vllm-ollama)! Please find the meetup slides from the vLLM team [here](https://docs.google.com/presentation/d/16T2PDD1YwRnZ4Tu8Q5r6n53c5Lr5c73UV9Vd2_eBo4U/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the first vLLM China Meetup](https://mp.weixin.qq.com/s/n77GibL2corAtQHtVEAzfg)! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1REHvfQMKGnvz6p3Fd23HhSO4c8j5WPGZV0bKYLwnHyQ/edit?usp=sharing).
|
||||
- [2025/03] We hosted [the East Coast vLLM Meetup](https://lu.ma/7mu4k4xx)! Please find the meetup slides [here](https://docs.google.com/presentation/d/1NHiv8EUFF1NLd3fEYODm56nDmL26lEeXCaDgyDlTsRs/edit#slide=id.g31441846c39_0_0).
|
||||
- [2025/02] We hosted [the ninth vLLM meetup](https://lu.ma/h7g3kuj9) with Meta! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1jzC_PZVXrVNSFVCW-V4cFXb6pn7zZ2CyP_Flwo05aqg/edit?usp=sharing) and AMD [here](https://drive.google.com/file/d/1Zk5qEJIkTmlQ2eQcXQZlljAx3m9s7nwn/view?usp=sharing). The slides from Meta will not be posted.
|
||||
- [2025/01] We are excited to announce the alpha release of vLLM V1: A major architectural upgrade with 1.7x speedup! Clean code, optimized execution loop, zero-overhead prefix caching, enhanced multimodal support, and more. Please check out our blog post [here](https://blog.vllm.ai/2025/01/27/v1-alpha-release.html).
|
||||
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing), and Google Cloud team [here](https://drive.google.com/file/d/1h24pHewANyRL11xy5dXUbvRC9F9Kkjix/view?usp=sharing).
|
||||
- [2025/01] We hosted [the eighth vLLM meetup](https://lu.ma/zep56hui) with Google Cloud! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1epVkt4Zu8Jz_S5OhEHPc798emsYh2BwYfRuDDVEF7u4/edit?usp=sharing).
|
||||
- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone!
|
||||
|
||||
<details>
|
||||
<summary>Previous News</summary>
|
||||
|
||||
- [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing).
|
||||
- [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there!
|
||||
- [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users!
|
||||
@ -41,14 +31,11 @@ Easy, fast, and cheap LLM serving for everyone
|
||||
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
|
||||
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
|
||||
|
||||
</details>
|
||||
|
||||
---
|
||||
## About
|
||||
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
|
||||
Originally developed in the [Sky Computing Lab](https://sky.cs.berkeley.edu) at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry.
|
||||
Originally developed in the [Sky Computing Lab](https://sky.cs.berkeley.edu) at UC Berkeley, vLLM has evloved into a community-driven project with contributions from both academia and industry.
|
||||
|
||||
vLLM is fast with:
|
||||
|
||||
@ -91,14 +78,14 @@ pip install vllm
|
||||
```
|
||||
|
||||
Visit our [documentation](https://docs.vllm.ai/en/latest/) to learn more.
|
||||
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation.html)
|
||||
- [Installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html)
|
||||
- [Quickstart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html)
|
||||
- [List of Supported Models](https://docs.vllm.ai/en/latest/models/supported_models.html)
|
||||
|
||||
## Contributing
|
||||
|
||||
We welcome and value any contributions and collaborations.
|
||||
Please check out [Contributing to vLLM](https://docs.vllm.ai/en/stable/contributing/overview.html) for how to get involved.
|
||||
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
|
||||
|
||||
## Sponsors
|
||||
|
||||
@ -121,7 +108,6 @@ Compute Resources:
|
||||
- Databricks
|
||||
- DeepInfra
|
||||
- Google Cloud
|
||||
- Intel
|
||||
- Lambda Lab
|
||||
- Nebius
|
||||
- Novita AI
|
||||
@ -140,7 +126,6 @@ We also have an official fundraising venue through [OpenCollective](https://open
|
||||
## Citation
|
||||
|
||||
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
|
||||
|
||||
```bibtex
|
||||
@inproceedings{kwon2023efficient,
|
||||
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
|
||||
@ -152,12 +137,12 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
|
||||
|
||||
## Contact Us
|
||||
|
||||
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
|
||||
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
|
||||
- coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
|
||||
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
|
||||
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
|
||||
* For technical questions and feature requests, please use Github issues or discussions.
|
||||
* For discussing with fellow users, please use Discord.
|
||||
* For coordinating contributions and development, please use Slack.
|
||||
* For security disclosures, please use Github's security advisory feature.
|
||||
* For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.
|
||||
|
||||
## Media Kit
|
||||
|
||||
- If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).
|
||||
* If you wish to use vLLM's logo, please refer to [our media kit repo](https://github.com/vllm-project/media-kit).
|
||||
|
54
RELEASE.md
54
RELEASE.md
@ -1,54 +0,0 @@
|
||||
# Releasing vLLM
|
||||
|
||||
vLLM releases offer a reliable version of the code base, packaged into a binary format that can be conveniently accessed via PyPI. These releases also serve as key milestones for the development team to communicate with the community about newly available features, improvements, and upcoming changes that could affect users, including potential breaking changes.
|
||||
|
||||
## Release Versioning
|
||||
|
||||
vLLM uses a “right-shifted” versioning scheme where a new patch release is out every 2 weeks. And patch releases contain features and bug fixes (as opposed to semver where patch release contains only backwards-compatible bug fixes). When critical fixes need to be made, special release post1 is released.
|
||||
|
||||
* _major_ major architectural milestone and when incompatible API changes are made, similar to PyTorch 2.0.
|
||||
* _minor_ major features
|
||||
* _patch_ features and backwards-compatible bug fixes
|
||||
* _post1_ or _patch-1_ backwards-compatible bug fixes, either explicit or implicit post release
|
||||
|
||||
## Release Cadence
|
||||
|
||||
Patch release is released on bi-weekly basis. Post release 1-3 days after patch release and uses same branch as patch release.
|
||||
Following is the release cadence for year 2025. All future release dates below are tentative. Please note: Post releases are optional.
|
||||
|
||||
| Release Date | Patch release versions | Post Release versions |
|
||||
| --- | --- | --- |
|
||||
| Jan 2025 | 0.7.0 | --- |
|
||||
| Feb 2025 | 0.7.1, 0.7.2, 0.7.3 | --- |
|
||||
| Mar 2025 | 0.7.4, 0.7.5 | --- |
|
||||
| Apr 2025 | 0.7.6, 0.7.7 | --- |
|
||||
| May 2025 | 0.7.8, 0.7.9 | --- |
|
||||
| Jun 2025 | 0.7.10, 0.7.11 | --- |
|
||||
| Jul 2025 | 0.7.12, 0.7.13 | --- |
|
||||
| Aug 2025 | 0.7.14, 0.7.15 | --- |
|
||||
| Sep 2025 | 0.7.16, 0.7.17 | --- |
|
||||
| Oct 2025 | 0.7.18, 0.7.19 | --- |
|
||||
| Nov 2025 | 0.7.20, 0.7.21 | --- |
|
||||
| Dec 2025 | 0.7.22, 0.7.23 | --- |
|
||||
|
||||
## Release branch
|
||||
|
||||
Each release is built from a dedicated release branch.
|
||||
|
||||
* For _major_, _minor_, _patch_ releases, the release branch cut is performed 1-2 days before release is live.
|
||||
* For post releases, previously cut release branch is reused
|
||||
* Release builds are triggered via push to RC tag like vX.Y.Z-rc1 . This enables us to build and test multiple RCs for each release.
|
||||
* Final tag : vX.Y.Z does not trigger the build but used for Release notes and assets.
|
||||
* After branch cut is created we monitor the main branch for any reverts and apply these reverts to a release branch.
|
||||
|
||||
## Release Cherry-Pick Criteria
|
||||
|
||||
After branch cut, we approach finalizing the release branch with clear criteria on what cherry picks are allowed in. Note: a cherry pick is a process to land a PR in the release branch after branch cut. These are typically limited to ensure that the team has sufficient time to complete a thorough round of testing on a stable code base.
|
||||
|
||||
* Regression fixes - that address functional/performance regression against the most recent release (e.g. 0.7.0 for 0.7.1 release)
|
||||
* Critical fixes - critical fixes for severe issue such as silent incorrectness, backwards compatibility, crashes, deadlocks, (large) memory leaks
|
||||
* Fixes to new features introduced in the most recent release (e.g. 0.7.0 for 0.7.1 release)
|
||||
* Documentation improvements
|
||||
* Release branch specific changes (e.g. change version identifiers or CI fixes)
|
||||
|
||||
Please note: **No feature work allowed for cherry picks**. All PRs that are considered for cherry-picks need to be merged on trunk, the only exception are Release branch specific changes.
|
@ -1,343 +1,19 @@
|
||||
# Benchmarking vLLM
|
||||
|
||||
This README guides you through running benchmark tests with the extensive
|
||||
datasets supported on vLLM. It’s a living document, updated as new features and datasets
|
||||
become available.
|
||||
|
||||
## Dataset Overview
|
||||
|
||||
<table style="width:100%; border-collapse: collapse;">
|
||||
<thead>
|
||||
<tr>
|
||||
<th style="width:15%; text-align: left;">Dataset</th>
|
||||
<th style="width:10%; text-align: center;">Online</th>
|
||||
<th style="width:10%; text-align: center;">Offline</th>
|
||||
<th style="width:65%; text-align: left;">Data Path</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td><strong>ShareGPT</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>BurstGPT</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Sonnet</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>Random</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>synthetic</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-VisionArena</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmarena-ai/VisionArena-Chat</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-InstructCoder</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>likaixin/InstructCoder</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-AIMO</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><strong>HuggingFace-Other</strong></td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td style="text-align: center;">✅</td>
|
||||
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
✅: supported
|
||||
|
||||
🟡: Partial support
|
||||
|
||||
🚧: to be supported
|
||||
|
||||
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
|
||||
|
||||
---
|
||||
## Example - Online Benchmark
|
||||
|
||||
First start serving your model
|
||||
## Downloading the ShareGPT dataset
|
||||
|
||||
You can download the dataset by running:
|
||||
```bash
|
||||
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
```
|
||||
|
||||
Then run the benchmarking script
|
||||
## Downloading the ShareGPT4V dataset
|
||||
|
||||
The json file refers to several image datasets (coco, llava, etc.). The benchmark scripts
|
||||
will ignore a datapoint if the referred image is missing.
|
||||
```bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--num-prompts 10
|
||||
wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json
|
||||
mkdir coco -p
|
||||
wget http://images.cocodataset.org/zips/train2017.zip -O coco/train2017.zip
|
||||
unzip coco/train2017.zip -d coco/
|
||||
```
|
||||
|
||||
If successful, you will see the following output
|
||||
|
||||
```
|
||||
============ Serving Benchmark Result ============
|
||||
Successful requests: 10
|
||||
Benchmark duration (s): 5.78
|
||||
Total input tokens: 1369
|
||||
Total generated tokens: 2212
|
||||
Request throughput (req/s): 1.73
|
||||
Output token throughput (tok/s): 382.89
|
||||
Total Token throughput (tok/s): 619.85
|
||||
---------------Time to First Token----------------
|
||||
Mean TTFT (ms): 71.54
|
||||
Median TTFT (ms): 73.88
|
||||
P99 TTFT (ms): 79.49
|
||||
-----Time per Output Token (excl. 1st token)------
|
||||
Mean TPOT (ms): 7.91
|
||||
Median TPOT (ms): 7.96
|
||||
P99 TPOT (ms): 8.03
|
||||
---------------Inter-token Latency----------------
|
||||
Mean ITL (ms): 7.74
|
||||
Median ITL (ms): 7.70
|
||||
P99 ITL (ms): 8.39
|
||||
==================================================
|
||||
```
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
```bash
|
||||
# need a model with vision capability here
|
||||
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||||
--hf-split train \
|
||||
--num-prompts 1000
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
|
||||
``` bash
|
||||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--speculative-model "[ngram]" \
|
||||
--ngram_prompt_lookup_min 2 \
|
||||
--ngram-prompt-lookup-max 5 \
|
||||
--num_speculative_tokens 5
|
||||
```
|
||||
|
||||
``` bash
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--dataset-name hf \
|
||||
--dataset-path likaixin/InstructCoder \
|
||||
--num-prompts 2048
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
|
||||
```bash
|
||||
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
**`lmms-lab/LLaVA-OneVision-Data`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||||
--hf-split train \
|
||||
--hf-subset "chart2text(cauldron)" \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`Aeala/ShareGPT_Vicuna_unfiltered`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
--dataset-name hf \
|
||||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--num-prompts 10 \
|
||||
--seed 42
|
||||
```
|
||||
|
||||
### Running With Sampling Parameters
|
||||
|
||||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
parameters can be specified. Example client command:
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--top-k 10 \
|
||||
--top-p 0.9 \
|
||||
--temperature 0.5 \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
---
|
||||
## Example - Offline Throughput Benchmark
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path vllm/benchmarks/sonnet.txt \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
If successful, you will see the following output
|
||||
|
||||
```
|
||||
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
|
||||
Total num prompt tokens: 5014
|
||||
Total num output tokens: 1500
|
||||
```
|
||||
|
||||
### VisionArena Benchmark for Vision Language Models
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||||
--num-prompts 1000 \
|
||||
--hf-split train
|
||||
```
|
||||
|
||||
The `num prompt tokens` now includes image token counts
|
||||
|
||||
```
|
||||
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
|
||||
Total num prompt tokens: 14527
|
||||
Total num output tokens: 1280
|
||||
```
|
||||
|
||||
### InstructCoder Benchmark with Speculative Decoding
|
||||
|
||||
``` bash
|
||||
VLLM_WORKER_MULTIPROC_METHOD=spawn \
|
||||
VLLM_USE_V1=1 \
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--dataset-name=hf \
|
||||
--dataset-path=likaixin/InstructCoder \
|
||||
--model=meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--input-len=1000 \
|
||||
--output-len=100 \
|
||||
--num-prompts=2048 \
|
||||
--async-engine \
|
||||
--speculative-model="[ngram]" \
|
||||
--ngram_prompt_lookup_min=2 \
|
||||
--ngram-prompt-lookup-max=5 \
|
||||
--num_speculative_tokens=5
|
||||
```
|
||||
|
||||
```
|
||||
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
|
||||
Total num prompt tokens: 261136
|
||||
Total num output tokens: 204800
|
||||
```
|
||||
|
||||
### Other HuggingFaceDataset Examples
|
||||
|
||||
**`lmms-lab/LLaVA-OneVision-Data`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||||
--hf-split train \
|
||||
--hf-subset "chart2text(cauldron)" \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`Aeala/ShareGPT_Vicuna_unfiltered`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_throughput.py \
|
||||
--model Qwen/QwQ-32B \
|
||||
--backend vllm \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
--hf-split train \
|
||||
--num-prompts 10
|
||||
```
|
||||
|
||||
### Benchmark with LoRA Adapters
|
||||
|
||||
``` bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
--model meta-llama/Llama-2-7b-hf \
|
||||
--backend vllm \
|
||||
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
--dataset_name sharegpt \
|
||||
--num-prompts 10 \
|
||||
--max-loras 2 \
|
||||
--max-lora-rank 8 \
|
||||
--enable-lora \
|
||||
--lora-path yard1/llama-2-7b-sql-lora-test
|
||||
```
|
||||
|
@ -1,13 +1,10 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import aiohttp
|
||||
import huggingface_hub.constants
|
||||
@ -15,9 +12,6 @@ from tqdm.asyncio import tqdm
|
||||
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
||||
PreTrainedTokenizerFast)
|
||||
|
||||
# NOTE(simon): do not import vLLM here so the benchmark script
|
||||
# can run without vLLM installed.
|
||||
|
||||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
|
||||
|
||||
|
||||
@ -29,11 +23,11 @@ class RequestFuncInput:
|
||||
output_len: int
|
||||
model: str
|
||||
model_name: Optional[str] = None
|
||||
best_of: int = 1
|
||||
logprobs: Optional[int] = None
|
||||
extra_body: Optional[dict] = None
|
||||
multi_modal_content: Optional[dict] = None
|
||||
ignore_eos: bool = False
|
||||
language: Optional[str] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -43,8 +37,8 @@ class RequestFuncOutput:
|
||||
latency: float = 0.0
|
||||
output_tokens: int = 0
|
||||
ttft: float = 0.0 # Time to first token
|
||||
itl: list[float] = field(
|
||||
default_factory=list) # list of inter-token latencies
|
||||
itl: List[float] = field(
|
||||
default_factory=list) # List of inter-token latencies
|
||||
tpot: float = 0.0 # avg next-token latencies
|
||||
prompt_len: int = 0
|
||||
error: str = ""
|
||||
@ -57,15 +51,15 @@ async def async_request_tgi(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
params = {
|
||||
"best_of": request_func_input.best_of,
|
||||
"max_new_tokens": request_func_input.output_len,
|
||||
"do_sample": True,
|
||||
"temperature": 0.01, # TGI does not accept 0.0 temperature.
|
||||
"top_p": 0.99, # TGI does not accept 1.0 top_p.
|
||||
"truncate": request_func_input.prompt_len,
|
||||
"ignore_eos_token": request_func_input.ignore_eos,
|
||||
# TGI does not accept ignore_eos flag.
|
||||
}
|
||||
payload = {
|
||||
"inputs": request_func_input.prompt,
|
||||
@ -73,10 +67,6 @@ async def async_request_tgi(
|
||||
}
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
if request_func_input.ignore_eos:
|
||||
output.output_tokens = request_func_input.output_len
|
||||
else:
|
||||
output.output_tokens = None
|
||||
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
@ -133,8 +123,8 @@ async def async_request_trt_llm(
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith("generate_stream")
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
assert request_func_input.best_of == 1
|
||||
payload = {
|
||||
"accumulate_tokens": True,
|
||||
"text_input": request_func_input.prompt,
|
||||
@ -197,8 +187,8 @@ async def async_request_deepspeed_mii(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
assert request_func_input.best_of == 1
|
||||
|
||||
payload = {
|
||||
"prompt": request_func_input.prompt,
|
||||
@ -221,15 +211,7 @@ async def async_request_deepspeed_mii(
|
||||
if response.status == 200:
|
||||
parsed_resp = await response.json()
|
||||
output.latency = time.perf_counter() - st
|
||||
if "choices" in parsed_resp:
|
||||
output.generated_text = parsed_resp["choices"][0][
|
||||
"text"]
|
||||
elif "text" in parsed_resp:
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
else:
|
||||
output.error = ("Unexpected response format: "
|
||||
"neither 'choices' nor 'text' found")
|
||||
output.success = False
|
||||
output.generated_text = parsed_resp["text"][0]
|
||||
output.success = True
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
@ -253,13 +235,13 @@ async def async_request_openai_completions(
|
||||
("completions", "profile")
|
||||
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
payload = {
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"prompt": request_func_input.prompt,
|
||||
"temperature": 0.0,
|
||||
"best_of": request_func_input.best_of,
|
||||
"max_tokens": request_func_input.output_len,
|
||||
"logprobs": request_func_input.logprobs,
|
||||
"stream": True,
|
||||
@ -348,11 +330,10 @@ async def async_request_openai_chat_completions(
|
||||
) -> RequestFuncOutput:
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("chat/completions", "profile")
|
||||
"chat/completions"
|
||||
), "OpenAI Chat Completions API URL must end with 'chat/completions'."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
if request_func_input.multi_modal_content:
|
||||
content.append(request_func_input.multi_modal_content)
|
||||
@ -438,125 +419,16 @@ async def async_request_openai_chat_completions(
|
||||
return output
|
||||
|
||||
|
||||
async def async_request_openai_audio(
|
||||
request_func_input: RequestFuncInput,
|
||||
pbar: Optional[tqdm] = None,
|
||||
) -> RequestFuncOutput:
|
||||
# Lazy import without PlaceholderModule to avoid vllm dep.
|
||||
import soundfile
|
||||
api_url = request_func_input.api_url
|
||||
assert api_url.endswith(
|
||||
("transcriptions", "translations"
|
||||
)), "OpenAI Chat Completions API URL must end with 'transcriptions' "
|
||||
"or `translations`."
|
||||
|
||||
async with aiohttp.ClientSession(trust_env=True,
|
||||
timeout=AIOHTTP_TIMEOUT) as session:
|
||||
content = [{"type": "text", "text": request_func_input.prompt}]
|
||||
payload = {
|
||||
"model": request_func_input.model_name \
|
||||
if request_func_input.model_name else request_func_input.model,
|
||||
"temperature": 0.0,
|
||||
"max_completion_tokens": request_func_input.output_len,
|
||||
"stream": True,
|
||||
"language": "en",
|
||||
# Flattened due to multipart/form-data
|
||||
"stream_include_usage": True,
|
||||
"stream_continuous_usage_stats": True
|
||||
}
|
||||
if request_func_input.extra_body:
|
||||
payload.update(request_func_input.extra_body)
|
||||
headers = {
|
||||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
|
||||
}
|
||||
|
||||
# Send audio file
|
||||
def to_bytes(y, sr):
|
||||
buffer = io.BytesIO()
|
||||
soundfile.write(buffer, y, sr, format="WAV")
|
||||
buffer.seek(0)
|
||||
return buffer
|
||||
|
||||
with to_bytes(*request_func_input.multi_modal_content['audio']) as f:
|
||||
form = aiohttp.FormData()
|
||||
form.add_field('file', f, content_type='audio/wav')
|
||||
for key, value in payload.items():
|
||||
form.add_field(key, str(value))
|
||||
|
||||
output = RequestFuncOutput()
|
||||
output.prompt_len = request_func_input.prompt_len
|
||||
|
||||
generated_text = ""
|
||||
ttft = 0.0
|
||||
st = time.perf_counter()
|
||||
most_recent_timestamp = st
|
||||
try:
|
||||
async with session.post(url=api_url,
|
||||
data=form,
|
||||
headers=headers) as response:
|
||||
if response.status == 200:
|
||||
async for chunk_bytes in response.content:
|
||||
chunk_bytes = chunk_bytes.strip()
|
||||
if not chunk_bytes:
|
||||
continue
|
||||
|
||||
chunk = chunk_bytes.decode("utf-8").removeprefix(
|
||||
"data: ")
|
||||
if chunk != "[DONE]":
|
||||
timestamp = time.perf_counter()
|
||||
data = json.loads(chunk)
|
||||
|
||||
if choices := data.get("choices"):
|
||||
content = choices[0]["delta"].get(
|
||||
"content")
|
||||
# First token
|
||||
if ttft == 0.0:
|
||||
ttft = timestamp - st
|
||||
output.ttft = ttft
|
||||
|
||||
# Decoding phase
|
||||
else:
|
||||
output.itl.append(
|
||||
timestamp - most_recent_timestamp)
|
||||
|
||||
generated_text += content or ""
|
||||
elif usage := data.get("usage"):
|
||||
output.output_tokens = usage.get(
|
||||
"completion_tokens")
|
||||
|
||||
most_recent_timestamp = timestamp
|
||||
|
||||
output.generated_text = generated_text
|
||||
output.success = True
|
||||
output.latency = most_recent_timestamp - st
|
||||
else:
|
||||
output.error = response.reason or ""
|
||||
output.success = False
|
||||
except Exception:
|
||||
output.success = False
|
||||
exc_info = sys.exc_info()
|
||||
output.error = "".join(traceback.format_exception(*exc_info))
|
||||
|
||||
if pbar:
|
||||
pbar.update(1)
|
||||
return output
|
||||
|
||||
|
||||
def get_model(pretrained_model_name_or_path: str) -> str:
|
||||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
|
||||
from modelscope import snapshot_download
|
||||
|
||||
from vllm.model_executor.model_loader.weight_utils import get_lock
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
|
||||
# Use file lock to prevent multiple processes from
|
||||
# downloading the same model weights at the same time.
|
||||
with get_lock(pretrained_model_name_or_path):
|
||||
model_path = snapshot_download(
|
||||
model_id=pretrained_model_name_or_path,
|
||||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
||||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
|
||||
|
||||
return model_path
|
||||
return model_path
|
||||
return pretrained_model_name_or_path
|
||||
|
||||
|
||||
@ -599,14 +471,7 @@ ASYNC_REQUEST_FUNCS = {
|
||||
"deepspeed-mii": async_request_deepspeed_mii,
|
||||
"openai": async_request_openai_completions,
|
||||
"openai-chat": async_request_openai_chat_completions,
|
||||
"openai-audio": async_request_openai_audio,
|
||||
"tensorrt-llm": async_request_trt_llm,
|
||||
"scalellm": async_request_openai_completions,
|
||||
"sglang": async_request_openai_completions,
|
||||
}
|
||||
|
||||
OPENAI_COMPATIBLE_BACKENDS = [
|
||||
k for k, v in ASYNC_REQUEST_FUNCS.items()
|
||||
if v in (async_request_openai_completions,
|
||||
async_request_openai_chat_completions)
|
||||
]
|
||||
|
@ -1,897 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
This module defines a framework for sampling benchmark requests from various
|
||||
datasets. Each dataset subclass of BenchmarkDataset must implement sample
|
||||
generation. Supported dataset types include:
|
||||
- ShareGPT
|
||||
- Random (synthetic)
|
||||
- Sonnet
|
||||
- BurstGPT
|
||||
- HuggingFace
|
||||
- VisionArena
|
||||
|
||||
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
|
||||
SampleRequest instances, similar to the approach used in ShareGPT.
|
||||
"""
|
||||
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import logging
|
||||
import random
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from dataclasses import dataclass
|
||||
from functools import cache
|
||||
from io import BytesIO
|
||||
from typing import Any, Callable, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from datasets import load_dataset
|
||||
from PIL import Image
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.lora.utils import get_adapter_absolute_path
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Data Classes
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
@dataclass
|
||||
class SampleRequest:
|
||||
"""
|
||||
Represents a single inference request for benchmarking.
|
||||
"""
|
||||
|
||||
prompt: Union[str, Any]
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Benchmark Dataset Base Class
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class BenchmarkDataset(ABC):
|
||||
DEFAULT_SEED = 0
|
||||
IS_MULTIMODAL = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_path: Optional[str] = None,
|
||||
random_seed: int = DEFAULT_SEED,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the BenchmarkDataset with an optional dataset path and random
|
||||
seed. Args:
|
||||
dataset_path (Optional[str]): Path to the dataset. If None, it
|
||||
indicates that a default or random dataset might be used.
|
||||
random_seed (int): Seed value for reproducible shuffling or
|
||||
sampling. Defaults to DEFAULT_SEED.
|
||||
"""
|
||||
self.dataset_path = dataset_path
|
||||
# Set the random seed, ensuring that a None value is replaced with the
|
||||
# default seed.
|
||||
self.random_seed = (random_seed
|
||||
if random_seed is not None else self.DEFAULT_SEED)
|
||||
self.data = None
|
||||
|
||||
def apply_multimodal_chat_transformation(
|
||||
self,
|
||||
prompt: str,
|
||||
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
|
||||
"""
|
||||
Transform a prompt and optional multimodal content into a chat format.
|
||||
This method is used for chat models that expect a specific conversation
|
||||
format.
|
||||
"""
|
||||
content = [{"text": prompt, "type": "text"}]
|
||||
if mm_content is not None:
|
||||
content.append(mm_content)
|
||||
return [{"role": "user", "content": content}]
|
||||
|
||||
def load_data(self) -> None:
|
||||
"""
|
||||
Load data from the dataset path into self.data.
|
||||
|
||||
This method must be overridden by subclasses since the method to load
|
||||
data will vary depending on the dataset format and source.
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If a subclass does not implement this method.
|
||||
"""
|
||||
# TODO (jenniferzhao): add support for downloading data
|
||||
raise NotImplementedError(
|
||||
"load_data must be implemented in subclasses.")
|
||||
|
||||
def get_random_lora_request(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
max_loras: Optional[int] = None,
|
||||
lora_path: Optional[str] = None,
|
||||
) -> tuple[Optional[LoRARequest], AnyTokenizer]:
|
||||
"""
|
||||
Optionally select a random LoRA request and return its associated
|
||||
tokenizer.
|
||||
|
||||
This method is used when LoRA parameters are provided. It randomly
|
||||
selects a LoRA based on max_loras and retrieves a cached tokenizer for
|
||||
that LoRA if available. Otherwise, it returns the base tokenizer.
|
||||
|
||||
Args:
|
||||
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
|
||||
LoRA is selected. max_loras (Optional[int]): The maximum number of
|
||||
LoRAs available. If None, LoRA is not used. lora_path
|
||||
(Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
|
||||
is not used.
|
||||
|
||||
Returns:
|
||||
tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
|
||||
element is a LoRARequest (or None if not applicable) and the second
|
||||
element is the tokenizer associated with the LoRA request (or the
|
||||
base tokenizer).
|
||||
"""
|
||||
if max_loras is None or lora_path is None:
|
||||
return None, tokenizer
|
||||
|
||||
# Generate a random LoRA ID in the range [1, max_loras].
|
||||
lora_id = random.randint(1, max_loras)
|
||||
lora_request = LoRARequest(
|
||||
lora_name=str(lora_id),
|
||||
lora_int_id=lora_id,
|
||||
lora_path=lora_path_on_disk(lora_path),
|
||||
)
|
||||
if lora_id not in lora_tokenizer_cache:
|
||||
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
|
||||
# Return lora_request and the cached tokenizer if available; otherwise,
|
||||
# return the base tokenizer
|
||||
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int) -> list[SampleRequest]:
|
||||
"""
|
||||
Abstract method to generate sample requests from the dataset.
|
||||
|
||||
Subclasses must override this method to implement dataset-specific logic
|
||||
for generating a list of SampleRequest objects.
|
||||
|
||||
Args:
|
||||
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
|
||||
for processing the dataset's text.
|
||||
num_requests (int): The number of sample requests to generate.
|
||||
|
||||
Returns:
|
||||
list[SampleRequest]: A list of sample requests generated from the
|
||||
dataset.
|
||||
"""
|
||||
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||
|
||||
def maybe_oversample_requests(self, requests: list[SampleRequest],
|
||||
num_requests: int) -> None:
|
||||
"""
|
||||
Oversamples the list of requests if its size is less than the desired
|
||||
number.
|
||||
|
||||
Args:
|
||||
requests (List[SampleRequest]): The current list of sampled
|
||||
requests. num_requests (int): The target number of requests.
|
||||
"""
|
||||
if len(requests) < num_requests:
|
||||
random.seed(self.random_seed)
|
||||
additional = random.choices(requests,
|
||||
k=num_requests - len(requests))
|
||||
requests.extend(additional)
|
||||
logger.info("Oversampled requests to reach %d total samples.",
|
||||
num_requests)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Utility Functions and Global Caches
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def is_valid_sequence(
|
||||
prompt_len: int,
|
||||
output_len: int,
|
||||
min_len: int = 4,
|
||||
max_prompt_len: int = 1024,
|
||||
max_total_len: int = 2048,
|
||||
skip_min_output_len_check: bool = False,
|
||||
) -> bool:
|
||||
"""
|
||||
Validate a sequence based on prompt and output lengths.
|
||||
|
||||
Default pruning criteria are copied from the original `sample_hf_requests`
|
||||
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
|
||||
from `sample_requests` in benchmark_throughput.py.
|
||||
"""
|
||||
# Check for invalid conditions
|
||||
prompt_too_short = prompt_len < min_len
|
||||
output_too_short = (not skip_min_output_len_check) and (output_len
|
||||
< min_len)
|
||||
prompt_too_long = prompt_len > max_prompt_len
|
||||
combined_too_long = (prompt_len + output_len) > max_total_len
|
||||
|
||||
# Return True if none of the invalid conditions are met
|
||||
return not (prompt_too_short or output_too_short or prompt_too_long
|
||||
or combined_too_long)
|
||||
|
||||
|
||||
@cache
|
||||
def lora_path_on_disk(lora_path: str) -> str:
|
||||
return get_adapter_absolute_path(lora_path)
|
||||
|
||||
|
||||
# Global cache for LoRA tokenizers.
|
||||
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
|
||||
|
||||
|
||||
def process_image(image: Any) -> Mapping[str, Any]:
|
||||
"""
|
||||
Process a single image input and return a multimedia content dictionary.
|
||||
|
||||
Supports three input types:
|
||||
|
||||
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
|
||||
containing raw image data. - Loads the bytes as a PIL.Image.Image.
|
||||
|
||||
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
|
||||
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
|
||||
a dictionary with the image as a base64 data URL.
|
||||
|
||||
3. String input: - Treats the string as a URL or local file path. -
|
||||
Prepends "file://" if the string doesn't start with "http://" or
|
||||
"file://". - Returns a dictionary with the image URL.
|
||||
|
||||
Raises:
|
||||
ValueError: If the input is not a supported type.
|
||||
"""
|
||||
if isinstance(image, dict) and 'bytes' in image:
|
||||
image = Image.open(BytesIO(image['bytes']))
|
||||
if isinstance(image, Image.Image):
|
||||
image = image.convert("RGB")
|
||||
with io.BytesIO() as image_data:
|
||||
image.save(image_data, format="JPEG")
|
||||
image_base64 = base64.b64encode(
|
||||
image_data.getvalue()).decode("utf-8")
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
},
|
||||
}
|
||||
|
||||
if isinstance(image, str):
|
||||
image_url = (image if image.startswith(
|
||||
("http://", "file://")) else f"file://{image}")
|
||||
return {"type": "image_url", "image_url": {"url": image_url}}
|
||||
|
||||
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
|
||||
" or str or dictionary with raw image bytes.")
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Random Dataset Implementation (Synthetic Data)
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class RandomDataset(BenchmarkDataset):
|
||||
# Default values copied from benchmark_serving.py for the random dataset.
|
||||
DEFAULT_PREFIX_LEN = 0
|
||||
DEFAULT_RANGE_RATIO = 0.0
|
||||
DEFAULT_INPUT_LEN = 1024
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||
range_ratio: float = DEFAULT_RANGE_RATIO,
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
**kwargs,
|
||||
) -> list[SampleRequest]:
|
||||
# Enforce range_ratio < 1
|
||||
assert range_ratio < 1.0, (
|
||||
"random_range_ratio must be < 1.0 to ensure a valid sampling range"
|
||||
)
|
||||
|
||||
vocab_size = tokenizer.vocab_size
|
||||
|
||||
prefix_token_ids = (np.random.randint(
|
||||
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
|
||||
|
||||
# New sampling logic: [X * (1 - b), X * (1 + b)]
|
||||
input_low = int(input_len * (1 - range_ratio))
|
||||
input_high = int(input_len * (1 + range_ratio))
|
||||
output_low = int(output_len * (1 - range_ratio))
|
||||
output_high = int(output_len * (1 + range_ratio))
|
||||
|
||||
# Add logging for debugging
|
||||
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
|
||||
logger.info("Sampling output_len from [%s, %s]", output_low,
|
||||
output_high)
|
||||
|
||||
input_lens = np.random.randint(input_low,
|
||||
input_high + 1,
|
||||
size=num_requests)
|
||||
output_lens = np.random.randint(output_low,
|
||||
output_high + 1,
|
||||
size=num_requests)
|
||||
offsets = np.random.randint(0, vocab_size, size=num_requests)
|
||||
|
||||
requests = []
|
||||
for i in range(num_requests):
|
||||
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
|
||||
vocab_size).tolist()
|
||||
token_sequence = prefix_token_ids + inner_seq
|
||||
prompt = tokenizer.decode(token_sequence)
|
||||
total_input_len = prefix_len + int(input_lens[i])
|
||||
requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=total_input_len,
|
||||
expected_output_len=int(output_lens[i]),
|
||||
))
|
||||
return requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# ShareGPT Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class ShareGPTDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
||||
sample requests based on conversation turns.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
with open(self.dataset_path, encoding="utf-8") as f:
|
||||
self.data = json.load(f)
|
||||
# Filter entries with at least two conversation turns.
|
||||
self.data = [
|
||||
entry for entry in self.data
|
||||
if "conversations" in entry and len(entry["conversations"]) >= 2
|
||||
]
|
||||
random.seed(self.random_seed)
|
||||
random.shuffle(self.data)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
lora_path: Optional[str] = None,
|
||||
max_loras: Optional[int] = None,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
samples: list = []
|
||||
for entry in self.data:
|
||||
if len(samples) >= num_requests:
|
||||
break
|
||||
prompt, completion = (
|
||||
entry["conversations"][0]["value"],
|
||||
entry["conversations"][1]["value"],
|
||||
)
|
||||
|
||||
lora_request, tokenizer = self.get_random_lora_request(
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_ids)
|
||||
new_output_len = (len(completion_ids)
|
||||
if output_len is None else output_len)
|
||||
if not is_valid_sequence(prompt_len,
|
||||
new_output_len,
|
||||
skip_min_output_len_check=output_len
|
||||
is not None):
|
||||
continue
|
||||
if enable_multimodal_chat:
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, None)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=new_output_len,
|
||||
lora_request=lora_request,
|
||||
))
|
||||
self.maybe_oversample_requests(samples, num_requests)
|
||||
return samples
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Sonnet Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class SonnetDataset(BenchmarkDataset):
|
||||
"""
|
||||
Simplified implementation of the Sonnet dataset. Loads poem lines from a
|
||||
text file and generates sample requests. Default values here copied from
|
||||
`benchmark_serving.py` for the sonnet dataset.
|
||||
"""
|
||||
|
||||
DEFAULT_PREFIX_LEN = 200
|
||||
DEFAULT_INPUT_LEN = 550
|
||||
DEFAULT_OUTPUT_LEN = 150
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
if not self.dataset_path:
|
||||
raise ValueError("dataset_path must be provided.")
|
||||
with open(self.dataset_path, encoding="utf-8") as f:
|
||||
self.data = f.readlines()
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer,
|
||||
num_requests: int,
|
||||
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||
input_len: int = DEFAULT_INPUT_LEN,
|
||||
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||
return_prompt_formatted: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
# Calculate average token length for a poem line.
|
||||
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
|
||||
avg_len = sum(len(tokens)
|
||||
for tokens in tokenized_lines) / len(tokenized_lines)
|
||||
|
||||
# Build the base prompt.
|
||||
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
||||
base_msg = [{"role": "user", "content": base_prompt}]
|
||||
base_fmt = tokenizer.apply_chat_template(base_msg,
|
||||
add_generation_prompt=True,
|
||||
tokenize=False)
|
||||
base_offset = len(tokenizer(base_fmt).input_ids)
|
||||
if input_len <= base_offset:
|
||||
raise ValueError(
|
||||
f"'input_len' must be higher than the base prompt length "
|
||||
f"({base_offset}).")
|
||||
|
||||
# Determine how many poem lines to use.
|
||||
num_input_lines = round((input_len - base_offset) / avg_len)
|
||||
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
|
||||
prefix_lines = self.data[:num_prefix_lines]
|
||||
|
||||
samples = []
|
||||
while len(samples) < num_requests:
|
||||
extra_lines = random.choices(self.data,
|
||||
k=num_input_lines - num_prefix_lines)
|
||||
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
|
||||
msg = [{"role": "user", "content": prompt}]
|
||||
prompt_formatted = tokenizer.apply_chat_template(
|
||||
msg, add_generation_prompt=True, tokenize=False)
|
||||
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
||||
if prompt_len <= input_len:
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt_formatted
|
||||
if return_prompt_formatted else prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
return samples
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# BurstGPT Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class BurstGPTDataset(BenchmarkDataset):
|
||||
"""
|
||||
Implements the BurstGPT dataset. Loads data from a CSV file and generates
|
||||
sample requests based on synthetic prompt generation. Only rows with Model
|
||||
"GPT-4" and positive response tokens are used.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.load_data()
|
||||
|
||||
def load_data(self, ):
|
||||
if self.dataset_path is None:
|
||||
raise ValueError("dataset_path must be provided for loading data.")
|
||||
|
||||
df = pd.read_csv(self.dataset_path)
|
||||
# Filter to keep only GPT-4 rows.
|
||||
gpt4_df = df[df["Model"] == "GPT-4"]
|
||||
# Remove failed requests (where Response tokens is 0 or less).
|
||||
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
|
||||
# Sample the desired number of rows.
|
||||
self.data = gpt4_df
|
||||
|
||||
def _sample_loaded_data(self, num_requests: int) -> list:
|
||||
if num_requests <= len(self.data):
|
||||
data = self.data.sample(n=num_requests,
|
||||
random_state=self.random_seed)
|
||||
else:
|
||||
data = self.data.sample(
|
||||
n=num_requests,
|
||||
random_state=self.random_seed,
|
||||
replace=True,
|
||||
)
|
||||
# Convert the dataframe to a list of lists.
|
||||
return data.values.tolist()
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
max_loras: Optional[int] = None,
|
||||
lora_path: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> list[SampleRequest]:
|
||||
samples = []
|
||||
data = self._sample_loaded_data(num_requests=num_requests)
|
||||
for i in range(num_requests):
|
||||
input_len = int(data[i][2])
|
||||
output_len = int(data[i][3])
|
||||
lora_req, tokenizer = self.get_random_lora_request(
|
||||
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||
vocab_size = tokenizer.vocab_size
|
||||
# Generate a synthetic prompt: a list of token IDs computed as (i +
|
||||
# j) modulo vocab_size.
|
||||
token_ids = [(i + j) % vocab_size for j in range(input_len)]
|
||||
prompt = tokenizer.decode(token_ids)
|
||||
samples.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=output_len,
|
||||
lora_request=lora_req,
|
||||
))
|
||||
return samples
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# HuggingFace Dataset Base Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
class HuggingFaceDataset(BenchmarkDataset):
|
||||
"""Base class for datasets hosted on HuggingFace."""
|
||||
|
||||
SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set()
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_path: str,
|
||||
dataset_split: str,
|
||||
dataset_subset: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(dataset_path=dataset_path, **kwargs)
|
||||
|
||||
self.dataset_split = dataset_split
|
||||
self.dataset_subset = dataset_subset
|
||||
self.load_data()
|
||||
|
||||
def load_data(self) -> None:
|
||||
"""Load data from HuggingFace datasets."""
|
||||
self.data = load_dataset(
|
||||
self.dataset_path,
|
||||
name=self.dataset_subset,
|
||||
split=self.dataset_split,
|
||||
streaming=True,
|
||||
)
|
||||
self.data = self.data.shuffle(seed=self.random_seed)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Conversation Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class ConversationDataset(HuggingFaceDataset):
|
||||
"""Dataset for conversation data with multimodal support."""
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
# Filter examples with at least 2 conversations
|
||||
filtered_data = self.data.filter(
|
||||
lambda x: len(x["conversations"]) >= 2)
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
for item in filtered_data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
conv = item["conversations"]
|
||||
prompt, completion = conv[0]["value"], conv[1]["value"]
|
||||
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_ids)
|
||||
completion_len = len(completion_ids)
|
||||
output_len = completion_len if dynamic_output else output_len
|
||||
assert isinstance(output_len, int) and output_len > 0
|
||||
if dynamic_output and not is_valid_sequence(
|
||||
prompt_len, completion_len):
|
||||
continue
|
||||
mm_content = process_image(
|
||||
item["image"]) if "image" in item else None
|
||||
if enable_multimodal_chat:
|
||||
# Note: when chat is enabled the request prompt_len is no longer
|
||||
# accurate and we will be using request output to count the
|
||||
# actual prompt len and output len
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, mm_content)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Vision Arena Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class VisionArenaDataset(HuggingFaceDataset):
|
||||
"""
|
||||
Vision Arena Dataset.
|
||||
"""
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"lmarena-ai/VisionArena-Chat":
|
||||
lambda x: x["conversation"][0][0]["content"],
|
||||
"lmarena-ai/vision-arena-bench-v0.1":
|
||||
lambda x: x["turns"][0][0]["content"]
|
||||
}
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
|
||||
if parser_fn is None:
|
||||
raise ValueError(
|
||||
f"Unsupported dataset path: {self.dataset_path}")
|
||||
prompt = parser_fn(item)
|
||||
mm_content = process_image(item["images"][0])
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
if enable_multimodal_chat:
|
||||
# Note: when chat is enabled the request prompt_len is no longer
|
||||
# accurate and we will be using request output to count the
|
||||
# actual prompt len
|
||||
prompt = self.apply_multimodal_chat_transformation(
|
||||
prompt, mm_content)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Instruct Coder Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class InstructCoderDataset(HuggingFaceDataset):
|
||||
"""
|
||||
InstructCoder Dataset.
|
||||
https://huggingface.co/datasets/likaixin/InstructCoder
|
||||
|
||||
InstructCoder is the dataset designed for general code editing. It consists
|
||||
of 114,239 instruction-input-output triplets, and covers multiple distinct
|
||||
code editing scenario.
|
||||
"""
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 200 # this is the average default output length
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"likaixin/InstructCoder",
|
||||
}
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
enable_multimodal_chat: bool = False,
|
||||
**kwargs) -> list:
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
sampled_requests = []
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt = f"{item['instruction']}:\n{item['input']}"
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# AIMO Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class AIMODataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a AIMO dataset with reasoning questions.
|
||||
"""
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
|
||||
"AI-MO/NuminaMath-CoT"
|
||||
}
|
||||
|
||||
def sample(self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs) -> list:
|
||||
sampled_requests = []
|
||||
dynamic_output = output_len is None
|
||||
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
prompt, completion = item['problem'], item["solution"]
|
||||
|
||||
prompt_ids = tokenizer(prompt).input_ids
|
||||
completion_ids = tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_ids)
|
||||
completion_len = len(completion_ids)
|
||||
output_len = completion_len if dynamic_output else output_len
|
||||
assert isinstance(output_len, int) and output_len > 0
|
||||
if dynamic_output and not is_valid_sequence(prompt_len,
|
||||
completion_len,
|
||||
max_prompt_len=2048,
|
||||
max_total_len=32000):
|
||||
continue
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=None,
|
||||
))
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# ASR Dataset Implementation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
class ASRDataset(HuggingFaceDataset):
|
||||
"""
|
||||
Dataset class for processing a ASR dataset for transcription.
|
||||
Tested on the following set:
|
||||
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| Dataset | Domain | Speaking Style | hf-subset |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
|
||||
| | | | release3-speaker-adaptation |
|
||||
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
|
||||
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
|
||||
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
|
||||
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
|
||||
| AMI | Meetings | Spontaneous | ihm, sdm |
|
||||
+----------------+----------------------------------------+--------------------------+-----------------------------+
|
||||
|
||||
""" # noqa: E501
|
||||
SUPPORTED_DATASET_PATHS = {
|
||||
"openslr/librispeech_asr", "facebook/voxpopuli", "LIUM/tedlium",
|
||||
"edinburghcstr/ami", "speechcolab/gigaspeech", "kensho/spgispeech"
|
||||
}
|
||||
|
||||
DEFAULT_OUTPUT_LEN = 128
|
||||
IS_MULTIMODAL = True
|
||||
|
||||
# TODO Whisper-specific. Abstract interface when more models are supported.
|
||||
TRANSCRIPTION_PREAMBLE = "<|startoftranscript|><|en|><|transcribe|>"\
|
||||
"<|notimestamps|>"
|
||||
skip_long_audios: bool = True
|
||||
|
||||
def sample(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_requests: int,
|
||||
output_len: Optional[int] = None,
|
||||
**kwargs,
|
||||
) -> list:
|
||||
import librosa
|
||||
output_len = (output_len
|
||||
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
|
||||
prompt_len = len(tokenizer(prompt).input_ids)
|
||||
sampled_requests = []
|
||||
skipped = 0
|
||||
for item in self.data:
|
||||
if len(sampled_requests) >= num_requests:
|
||||
break
|
||||
audio = item["audio"]
|
||||
y, sr = audio["array"], audio["sampling_rate"]
|
||||
duration_s = librosa.get_duration(y=y, sr=sr)
|
||||
# Whisper max supported duration
|
||||
if self.skip_long_audios and duration_s > 30:
|
||||
skipped += 1
|
||||
continue
|
||||
|
||||
mm_content = {"audio": (y, sr)}
|
||||
sampled_requests.append(
|
||||
SampleRequest(
|
||||
prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=mm_content,
|
||||
))
|
||||
if skipped:
|
||||
logger.warning("%d samples discarded from dataset due to" \
|
||||
" their length being greater than" \
|
||||
" what Whisper supports.", skipped)
|
||||
self.maybe_oversample_requests(sampled_requests, num_requests)
|
||||
return sampled_requests
|
494
benchmarks/benchmark_guided.py
Normal file
494
benchmarks/benchmark_guided.py
Normal file
@ -0,0 +1,494 @@
|
||||
"""Benchmark guided decoding throughput."""
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
import datasets
|
||||
import pandas as pd
|
||||
import uvloop
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
|
||||
from vllm.entrypoints.openai.api_server import (
|
||||
build_async_engine_client_from_engine_args)
|
||||
from vllm.sampling_params import GuidedDecodingParams
|
||||
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SampleRequest:
|
||||
"""A class representing a single inference request for benchmarking.
|
||||
|
||||
Attributes:
|
||||
prompt: The input text prompt for the model.
|
||||
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
|
||||
images).
|
||||
prompt_len: The length of the prompt in tokens.
|
||||
expected_output_len: The expected length of the output in tokens.
|
||||
"""
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
schema: dict
|
||||
structure_type: str = 'json'
|
||||
completion: str = None
|
||||
|
||||
|
||||
def run_vllm(requests: List[SampleRequest],
|
||||
engine_args: EngineArgs,
|
||||
n: int,
|
||||
guided_decoding_rate: float = 1.0,
|
||||
warmup: bool = False) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**vars(engine_args))
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: List[str] = []
|
||||
sampling_params: List[SamplingParams] = []
|
||||
# create a list containing random selected true or false
|
||||
guided_decoding_req_idx = random.sample(
|
||||
range(len(requests)), int(len(requests) * guided_decoding_rate))
|
||||
|
||||
if warmup:
|
||||
print(">>>>> Running warmup prompt, for the first 5")
|
||||
# We setup the first 5 requests to warmup FSM
|
||||
# if using xgrammar dataset, we will skip warmup
|
||||
warmup_requests = requests[:5]
|
||||
for i, request in enumerate(warmup_requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(json=request.schema)
|
||||
if guided_decoding_rate > 0 else None,
|
||||
))
|
||||
llm.generate(prompts, sampling_params, use_tqdm=False)
|
||||
|
||||
print(">>>>> Benchmark started...")
|
||||
prompts = []
|
||||
sampling_params = []
|
||||
for i, request in enumerate(requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(
|
||||
**{request.structure_type: request.schema})
|
||||
if i in guided_decoding_req_idx else None,
|
||||
))
|
||||
|
||||
start = time.perf_counter()
|
||||
outputs = llm.generate(prompts, sampling_params, use_tqdm=False)
|
||||
ret = []
|
||||
for output, request in zip(outputs, requests):
|
||||
generated_text = output.outputs[0].text
|
||||
ret.append({
|
||||
"generated": generated_text,
|
||||
"expected": request.completion
|
||||
})
|
||||
end = time.perf_counter()
|
||||
return end - start, ret
|
||||
|
||||
|
||||
async def run_vllm_async(
|
||||
requests: List[SampleRequest],
|
||||
engine_args: AsyncEngineArgs,
|
||||
n: int,
|
||||
guided_decoding_rate: float = 1.0,
|
||||
warmup: bool = False,
|
||||
disable_frontend_multiprocessing: bool = False) -> float:
|
||||
from vllm import SamplingParams
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, disable_frontend_multiprocessing) as llm:
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: List[str] = []
|
||||
sampling_params: List[SamplingParams] = []
|
||||
guided_decoding_req_idx = random.sample(
|
||||
range(len(requests)), int(len(requests) * guided_decoding_rate))
|
||||
|
||||
if warmup:
|
||||
print(">>>>>> Running warmup prompt, for the first 5")
|
||||
# We setup the first 5 requests to warmup FSM
|
||||
# if using xgrammar dataset, we will skip warmup
|
||||
warmup_requests = requests[:5]
|
||||
for i, request in enumerate(warmup_requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(
|
||||
json=request.schema)
|
||||
if guided_decoding_rate > 0 else None,
|
||||
))
|
||||
generators = []
|
||||
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
|
||||
generator = llm.generate(prompt, sp, request_id=f"test{i}")
|
||||
generators.append(generator)
|
||||
all_gens = merge_async_iterators(*generators)
|
||||
async for i, res in all_gens:
|
||||
pass
|
||||
|
||||
print(">>>>> Benchmark started...")
|
||||
prompts = []
|
||||
sampling_params = []
|
||||
for i, request in enumerate(requests):
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
guided_decoding=GuidedDecodingParams(json=request.schema)
|
||||
if i in guided_decoding_req_idx else None,
|
||||
))
|
||||
|
||||
generators = []
|
||||
start_time = []
|
||||
latencies = []
|
||||
start = time.perf_counter()
|
||||
for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
|
||||
generator = llm.generate(prompt, sp, request_id=f"test{i}")
|
||||
generators.append(generator)
|
||||
start_time.append(time.perf_counter())
|
||||
latencies.append([])
|
||||
all_gens = merge_async_iterators(*generators)
|
||||
generated_texts = [''] * len(requests)
|
||||
async for i, res in all_gens:
|
||||
generated_texts[i] = res.outputs[0].text
|
||||
lat = time.perf_counter() - start_time[i]
|
||||
latencies[i].append(lat)
|
||||
ret = [{
|
||||
'generated': gt,
|
||||
'expected': req.completion
|
||||
} for gt, req in zip(generated_texts, requests)]
|
||||
end = time.perf_counter()
|
||||
first_latency = pd.Series([lat[0] * 1000 for lat in latencies])
|
||||
next_latency = pd.Series([(lat[-1] - lat[0]) / len(lat[1:]) * 1000
|
||||
for lat in latencies])
|
||||
return end - start, ret, (first_latency, next_latency)
|
||||
|
||||
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> List[SampleRequest]:
|
||||
if args.dataset == 'json':
|
||||
if args.json_schema_path is None:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
args.json_schema_path = os.path.join(dir_path,
|
||||
"structured_schemas",
|
||||
"structured_schema_1.json")
|
||||
with open(args.json_schema_path) as f:
|
||||
schema = json.load(f)
|
||||
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "grammar":
|
||||
schema = """
|
||||
?start: select_statement
|
||||
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
|
||||
?column_list: column_name ("," column_name)*
|
||||
|
||||
?table_name: identifier
|
||||
|
||||
?column_name: identifier
|
||||
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
"""
|
||||
prompt = "Generate an SQL query to show the 'username' \
|
||||
and 'email' from the 'users' table."
|
||||
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "regex":
|
||||
regex = r"\w+@\w+\.com\n"
|
||||
args.regex = regex
|
||||
prompt = "Generate an email address for Alan Turing, \
|
||||
who works in Enigma. End in .com and new line. \
|
||||
Example result: alan.turing@enigma.com\n"
|
||||
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=regex,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "choice":
|
||||
choice = ["Positive", "Negative"]
|
||||
args.choice = choice
|
||||
prompt = "Classify this sentiment: vLLM is wonderful!"
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=choice,
|
||||
structure_type=args.structure_type)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "xgrammar_bench":
|
||||
args.warmup = False
|
||||
requests: List[SampleRequest] = []
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
|
||||
split="train")
|
||||
print(f"dataset has {len(dataset)} entries")
|
||||
len_dataset = len(dataset)
|
||||
for data_point_idx in range(args.num_prompts):
|
||||
idx = data_point_idx
|
||||
while idx >= len_dataset:
|
||||
idx -= len_dataset
|
||||
schema = dataset["schema"][idx]
|
||||
prompt = tokenizer.apply_chat_template(dataset["prompt"][idx],
|
||||
tokenize=False)
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
completion = dataset["completion"][idx]
|
||||
|
||||
requests.append(
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=schema,
|
||||
completion=completion))
|
||||
|
||||
return requests
|
||||
|
||||
|
||||
def evaluate(ret, args):
|
||||
|
||||
def _eval_correctness_json(expected, actual):
|
||||
# extract json string from string using regex
|
||||
import re
|
||||
actual = actual.replace('\n', '').replace(' ', '').strip()
|
||||
try:
|
||||
actual = re.search(r'\{.*\}', actual).group()
|
||||
actual = json.loads(actual)
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _eval_correctness_choice(expected, actual):
|
||||
return actual in args.choice
|
||||
|
||||
def _eval_correctness_regex(expected, actual):
|
||||
import re
|
||||
return re.match(args.regex, actual) is not None
|
||||
|
||||
def _eval_correctness(expected, actual):
|
||||
if args.structure_type == 'json':
|
||||
return _eval_correctness_json(expected, actual)
|
||||
elif args.structure_type == 'regex':
|
||||
return _eval_correctness_regex(expected, actual)
|
||||
elif args.structure_type == 'choice':
|
||||
return _eval_correctness_choice(expected, actual)
|
||||
else:
|
||||
return None
|
||||
|
||||
scores = []
|
||||
for res in ret:
|
||||
score = _eval_correctness(res['expected'], res['generated'])
|
||||
res['correctness'] = score
|
||||
scores.append(score)
|
||||
|
||||
not_none_scores = [score for score in scores if score is not None]
|
||||
|
||||
return (sum(not_none_scores) / len(not_none_scores) *
|
||||
100) if len(not_none_scores) > 0 else None
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
|
||||
# async engine is working for 'regex', 'choice' and 'grammar'
|
||||
if args.dataset == 'grammar':
|
||||
args.structure_type = 'grammar'
|
||||
args.async_engine = False
|
||||
elif args.dataset == 'regex':
|
||||
args.structure_type = 'regex'
|
||||
args.async_engine = False
|
||||
elif args.dataset == 'choice':
|
||||
args.structure_type = 'choice'
|
||||
args.async_engine = False
|
||||
else:
|
||||
args.structure_type = 'json'
|
||||
|
||||
if args.no_guided_decoding:
|
||||
args.guided_decoding_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f'{args.guided_decoding_ratio}guided'
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
result_file_name += f"_{args.dataset}"
|
||||
result_file_name += f"_{args.num_prompts}"
|
||||
result_file_name += f"_out{args.output_len}"
|
||||
result_file_name += f"_async{args.async_engine}"
|
||||
result_file_name += f"_warmup{args.warmup}"
|
||||
result_file_name += f"_chunkedprefill{args.enable_chunked_prefill}"
|
||||
result_file_name += ".txt"
|
||||
else:
|
||||
result_file_name = None
|
||||
|
||||
# Synthesize a prompt with the given input length.
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
requests = sample_requests(tokenizer, args)
|
||||
|
||||
if args.async_engine:
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
elapsed_time, ret, (first_latency, next_latency) = uvloop.run(
|
||||
run_vllm_async(requests, engine_args, args.n,
|
||||
args.guided_decoding_ratio, args.warmup,
|
||||
args.disable_frontend_multiprocessing))
|
||||
else:
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
elapsed_time, ret = run_vllm(requests, engine_args, args.n,
|
||||
args.guided_decoding_ratio, args.warmup)
|
||||
first_latency, next_latency = None, None
|
||||
|
||||
score = evaluate(ret, args)
|
||||
total_num_tokens = sum(request.prompt_len + request.expected_output_len
|
||||
for request in requests)
|
||||
total_output_tokens = sum(request.expected_output_len
|
||||
for request in requests)
|
||||
if first_latency is not None:
|
||||
latency_breakdown = "\nFirst token latency(msecs):\n"
|
||||
latency_breakdown += f"{first_latency.describe()}"
|
||||
latency_breakdown += "\nNext token latency(msecs):\n"
|
||||
latency_breakdown += f"{next_latency.describe()}"
|
||||
print(
|
||||
f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
|
||||
f"{total_output_tokens / elapsed_time:.2f} output tokens/s",
|
||||
f"Correct rate is {score} %",
|
||||
f"{latency_breakdown if first_latency is not None else ''}")
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json or result_file_name:
|
||||
results = {
|
||||
"elapsed_time": elapsed_time,
|
||||
"num_requests": len(requests),
|
||||
"total_num_tokens": total_num_tokens,
|
||||
"total_output_tokens": total_output_tokens,
|
||||
"requests_per_second": len(requests) / elapsed_time,
|
||||
"tokens_per_second": f"{total_num_tokens / elapsed_time:.2f}",
|
||||
"output_tokens_per_second":
|
||||
f"{total_output_tokens / elapsed_time:.2f}",
|
||||
"correct_rate(%)": score
|
||||
}
|
||||
results = {"outputs": ret, **results}
|
||||
if first_latency is not None:
|
||||
results["first_token_latency(msecs)"] = first_latency.describe(
|
||||
).to_dict()
|
||||
results["next_token_latency(msecs)"] = next_latency.describe(
|
||||
).to_dict()
|
||||
if args.output_json:
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
elif result_file_name:
|
||||
with open(result_file_name, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark guided decoding.")
|
||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||
|
||||
parser.add_argument("--output-len",
|
||||
type=int,
|
||||
default=512,
|
||||
help="Output length for each request. Overrides the "
|
||||
"output length from the dataset.")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default='json',
|
||||
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
|
||||
parser.add_argument("--json_schema_path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to json schema.")
|
||||
parser.add_argument("--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.")
|
||||
parser.add_argument("--num-prompts",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of prompts to process.")
|
||||
parser.add_argument(
|
||||
'--output-json',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to save the throughput results in JSON format.')
|
||||
parser.add_argument("--async-engine",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Use vLLM async engine rather than LLM class.")
|
||||
parser.add_argument("--no-guided-decoding",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.")
|
||||
parser.add_argument("--guided-decoding-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Guided Decoding requests")
|
||||
parser.add_argument("--disable-frontend-multiprocessing",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Disable decoupled async engine frontend.")
|
||||
parser.add_argument("--warmup",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Run warmup prompts before benchmark.")
|
||||
parser.add_argument("--save-results",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="save output results.")
|
||||
args = parser.parse_args()
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
main(args)
|
@ -1,17 +1,13 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Benchmark the latency of processing a single batch of requests."""
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from tqdm import tqdm
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
@ -21,18 +17,6 @@ from vllm.sampling_params import BeamSearchParams
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any]) -> None:
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={"latency": results["latencies"]},
|
||||
extra_info={k: results[k]
|
||||
for k in ["avg_latency", "percentiles"]})
|
||||
if pt_records:
|
||||
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
|
||||
write_to_json(pt_file, pt_records)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
|
||||
@ -41,10 +25,6 @@ def main(args: argparse.Namespace):
|
||||
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert llm.llm_engine.model_config.max_model_len >= (
|
||||
args.input_len +
|
||||
args.output_len), ("Please ensure that max_model_len is greater than"
|
||||
" the sum of input_len and output_len.")
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
@ -52,13 +32,12 @@ def main(args: argparse.Namespace):
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize,
|
||||
)
|
||||
print(sampling_params)
|
||||
dummy_prompt_token_ids = np.random.randint(10000,
|
||||
size=(args.batch_size,
|
||||
args.input_len))
|
||||
dummy_prompts: list[PromptType] = [{
|
||||
dummy_prompts: List[PromptType] = [{
|
||||
"prompt_token_ids": batch
|
||||
} for batch in dummy_prompt_token_ids.tolist()]
|
||||
|
||||
@ -74,8 +53,7 @@ def main(args: argparse.Namespace):
|
||||
beam_width=args.n,
|
||||
max_tokens=args.output_len,
|
||||
ignore_eos=True,
|
||||
),
|
||||
)
|
||||
))
|
||||
|
||||
def run_to_completion(profile_dir: Optional[str] = None):
|
||||
if profile_dir:
|
||||
@ -85,8 +63,7 @@ def main(args: argparse.Namespace):
|
||||
torch.profiler.ProfilerActivity.CUDA,
|
||||
],
|
||||
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
||||
str(profile_dir)),
|
||||
) as p:
|
||||
str(profile_dir))) as p:
|
||||
llm_generate()
|
||||
print(p.key_averages().table(sort_by="self_cuda_time_total"))
|
||||
else:
|
||||
@ -103,8 +80,9 @@ def main(args: argparse.Namespace):
|
||||
if args.profile:
|
||||
profile_dir = args.profile_result_dir
|
||||
if not profile_dir:
|
||||
profile_dir = (Path(".") / "vllm_benchmark_result" /
|
||||
f"latency_result_{time.time()}")
|
||||
profile_dir = Path(
|
||||
"."
|
||||
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
|
||||
print(f"Profiling (results will be saved to '{profile_dir}')...")
|
||||
run_to_completion(profile_dir=profile_dir)
|
||||
return
|
||||
@ -116,9 +94,9 @@ def main(args: argparse.Namespace):
|
||||
latencies = np.array(latencies)
|
||||
percentages = [10, 25, 50, 75, 90, 99]
|
||||
percentiles = np.percentile(latencies, percentages)
|
||||
print(f"Avg latency: {np.mean(latencies)} seconds")
|
||||
print(f'Avg latency: {np.mean(latencies)} seconds')
|
||||
for percentage, percentile in zip(percentages, percentiles):
|
||||
print(f"{percentage}% percentile latency: {percentile} seconds")
|
||||
print(f'{percentage}% percentile latency: {percentile} seconds')
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json:
|
||||
@ -129,57 +107,43 @@ def main(args: argparse.Namespace):
|
||||
}
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
save_to_pytorch_benchmark_format(args, results)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the latency of processing a single batch of "
|
||||
"requests till completion.")
|
||||
parser.add_argument("--input-len", type=int, default=32)
|
||||
parser.add_argument("--output-len", type=int, default=128)
|
||||
parser.add_argument("--batch-size", type=int, default=8)
|
||||
parser.add_argument(
|
||||
"--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.",
|
||||
)
|
||||
parser.add_argument("--use-beam-search", action="store_true")
|
||||
parser.add_argument(
|
||||
"--num-iters-warmup",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of iterations to run for warmup.",
|
||||
)
|
||||
parser.add_argument("--num-iters",
|
||||
description='Benchmark the latency of processing a single batch of '
|
||||
'requests till completion.')
|
||||
parser.add_argument('--input-len', type=int, default=32)
|
||||
parser.add_argument('--output-len', type=int, default=128)
|
||||
parser.add_argument('--batch-size', type=int, default=8)
|
||||
parser.add_argument('--n',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of generated sequences per prompt.')
|
||||
parser.add_argument('--use-beam-search', action='store_true')
|
||||
parser.add_argument('--num-iters-warmup',
|
||||
type=int,
|
||||
default=10,
|
||||
help='Number of iterations to run for warmup.')
|
||||
parser.add_argument('--num-iters',
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of iterations to run.")
|
||||
help='Number of iterations to run.')
|
||||
parser.add_argument(
|
||||
"--profile",
|
||||
action="store_true",
|
||||
help="profile the generation process of a single batch",
|
||||
)
|
||||
'--profile',
|
||||
action='store_true',
|
||||
help='profile the generation process of a single batch')
|
||||
parser.add_argument(
|
||||
"--profile-result-dir",
|
||||
'--profile-result-dir',
|
||||
type=str,
|
||||
default=None,
|
||||
help=("path to save the pytorch profiler output. Can be visualized "
|
||||
"with ui.perfetto.dev or Tensorboard."),
|
||||
)
|
||||
help=('path to save the pytorch profiler output. Can be visualized '
|
||||
'with ui.perfetto.dev or Tensorboard.'))
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
'--output-json',
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to save the latency results in JSON format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
help='Path to save the latency results in JSON format.')
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
@ -1,4 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
Offline benchmark to test the long document QA throughput.
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
Benchmark the efficiency of prefix caching.
|
||||
|
||||
@ -31,7 +30,7 @@ import dataclasses
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
@ -77,9 +76,9 @@ def sample_requests_from_dataset(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_length_range: tuple[int, int],
|
||||
input_length_range: Tuple[int, int],
|
||||
fixed_output_len: Optional[int],
|
||||
) -> list[Request]:
|
||||
) -> List[Request]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
||||
@ -99,7 +98,7 @@ def sample_requests_from_dataset(
|
||||
assert min_len >= 0 and max_len >= min_len, "input_length_range too small"
|
||||
|
||||
# Filter out sequences that are too long or too short
|
||||
filtered_requests: list[Request] = []
|
||||
filtered_requests: List[Request] = []
|
||||
|
||||
for i in range(len(dataset)):
|
||||
if len(filtered_requests) == num_requests:
|
||||
@ -122,10 +121,10 @@ def sample_requests_from_dataset(
|
||||
def sample_requests_from_random(
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_length_range: tuple[int, int],
|
||||
input_length_range: Tuple[int, int],
|
||||
fixed_output_len: Optional[int],
|
||||
prefix_len: int,
|
||||
) -> list[Request]:
|
||||
) -> List[Request]:
|
||||
|
||||
requests = []
|
||||
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
|
||||
@ -144,9 +143,9 @@ def sample_requests_from_random(
|
||||
return requests
|
||||
|
||||
|
||||
def repeat_and_sort_requests(requests: list[Request],
|
||||
def repeat_and_sort_requests(requests: List[Request],
|
||||
repeat_count: int,
|
||||
sort: bool = False) -> list[str]:
|
||||
sort: bool = False) -> List[str]:
|
||||
repeated_requests = requests * repeat_count
|
||||
if sort:
|
||||
repeated_requests.sort(key=lambda x: x[1])
|
||||
@ -194,9 +193,7 @@ def main(args):
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
sampling_params = SamplingParams(temperature=0,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize)
|
||||
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
|
||||
|
||||
print("Testing filtered requests")
|
||||
prompts = repeat_and_sort_requests(filtered_requests,
|
||||
@ -245,12 +242,6 @@ if __name__ == "__main__":
|
||||
"subtract this length when filtering prompts. Only used "
|
||||
"when dataset-path is not provided.",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
@ -1,11 +1,10 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Benchmark offline prioritization."""
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
|
||||
@ -13,17 +12,12 @@ from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
#Select a equi-probable random priority
|
||||
def get_random_flag():
|
||||
return 0 if random.random() < 0.5 else 1
|
||||
|
||||
|
||||
def sample_requests(
|
||||
dataset_path: str,
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
fixed_output_len: Optional[int],
|
||||
) -> list[tuple[str, int, int, int]]:
|
||||
) -> List[Tuple[str, int, int]]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
||||
@ -40,7 +34,7 @@ def sample_requests(
|
||||
random.shuffle(dataset)
|
||||
|
||||
# Filter out sequences that are too long or too short
|
||||
filtered_dataset: list[tuple[str, int, int]] = []
|
||||
filtered_dataset: List[Tuple[str, int, int]] = []
|
||||
for i in range(len(dataset)):
|
||||
if len(filtered_dataset) == num_requests:
|
||||
break
|
||||
@ -60,7 +54,8 @@ def sample_requests(
|
||||
# Prune too long sequences.
|
||||
continue
|
||||
|
||||
priority = get_random_flag()
|
||||
#Select a equi-probable random priority
|
||||
priority = 0 if random.random() < 0.5 else 1
|
||||
|
||||
filtered_dataset.append((prompt, prompt_len, output_len, priority))
|
||||
|
||||
@ -68,20 +63,13 @@ def sample_requests(
|
||||
|
||||
|
||||
def run_vllm(
|
||||
requests: list[tuple[str, int, int]],
|
||||
requests: List[Tuple[str, int, int]],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (request[1] + request[2])
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" input_len and output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts = []
|
||||
sampling_params = []
|
||||
@ -96,7 +84,6 @@ def run_vllm(
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
|
||||
start = time.perf_counter()
|
||||
@ -115,16 +102,15 @@ def main(args: argparse.Namespace):
|
||||
if args.dataset is None:
|
||||
# Synthesize a prompt with the given input length.
|
||||
prompt = "hi" * (args.input_len - 1)
|
||||
requests = [(prompt, args.input_len, args.output_len,
|
||||
get_random_flag()) for _ in range(args.num_prompts)]
|
||||
requests = [(prompt, args.input_len, args.output_len)
|
||||
for _ in range(args.num_prompts)]
|
||||
else:
|
||||
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
|
||||
args.output_len)
|
||||
|
||||
if args.backend == "vllm":
|
||||
elapsed_time = run_vllm(requests, args.n,
|
||||
EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
EngineArgs.from_cli_args(args))
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {args.backend}")
|
||||
total_num_tokens = sum(prompt_len + output_len
|
||||
@ -177,12 +163,6 @@ if __name__ == "__main__":
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to save the throughput results in JSON format.')
|
||||
parser.add_argument(
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,17 +1,19 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
r"""Benchmark online serving throughput with structured outputs.
|
||||
r"""Benchmark online serving throughput with guided decoding.
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
(vLLM OpenAI API server)
|
||||
vllm serve <your_model> --disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
|
||||
|
||||
On the client side, run:
|
||||
python benchmarks/benchmark_serving_structured_output.py \
|
||||
python benchmarks/benchmark_serving.py \
|
||||
--backend <backend> \
|
||||
--model <your_model> \
|
||||
--dataset json \
|
||||
--structured-output-ratio 1.0 \
|
||||
--structured-output-backend auto \
|
||||
--guided-decoding-ratio 1.0 \
|
||||
--guided-decoding-backend xgrammar \
|
||||
--request-rate 10 \
|
||||
--num-prompts 1000
|
||||
|
||||
@ -21,17 +23,14 @@ On the client side, run:
|
||||
"""
|
||||
import argparse
|
||||
import asyncio
|
||||
import copy
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
import uuid
|
||||
import warnings
|
||||
from collections.abc import AsyncGenerator
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
from typing import AsyncGenerator, List, Optional, Tuple
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
@ -51,9 +50,6 @@ try:
|
||||
except ImportError:
|
||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||
|
||||
from vllm.v1.structured_output.backend_xgrammar import (
|
||||
has_xgrammar_unsupported_json_features)
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
|
||||
|
||||
@ -69,22 +65,22 @@ class BenchmarkMetrics:
|
||||
mean_ttft_ms: float
|
||||
median_ttft_ms: float
|
||||
std_ttft_ms: float
|
||||
percentiles_ttft_ms: list[tuple[float, float]]
|
||||
percentiles_ttft_ms: List[Tuple[float, float]]
|
||||
mean_tpot_ms: float
|
||||
median_tpot_ms: float
|
||||
std_tpot_ms: float
|
||||
percentiles_tpot_ms: list[tuple[float, float]]
|
||||
percentiles_tpot_ms: List[Tuple[float, float]]
|
||||
mean_itl_ms: float
|
||||
median_itl_ms: float
|
||||
std_itl_ms: float
|
||||
percentiles_itl_ms: list[tuple[float, float]]
|
||||
percentiles_itl_ms: List[Tuple[float, float]]
|
||||
# E2EL stands for end-to-end latency per request.
|
||||
# It is the time taken on the client side from sending
|
||||
# a request to receiving a complete response.
|
||||
mean_e2el_ms: float
|
||||
median_e2el_ms: float
|
||||
std_e2el_ms: float
|
||||
percentiles_e2el_ms: list[tuple[float, float]]
|
||||
percentiles_e2el_ms: List[Tuple[float, float]]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
@ -107,45 +103,25 @@ class SampleRequest:
|
||||
|
||||
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> list[SampleRequest]:
|
||||
if args.dataset == 'json' or args.dataset == 'json-unique':
|
||||
args: argparse.Namespace) -> List[SampleRequest]:
|
||||
if args.dataset == 'json':
|
||||
if args.json_schema_path is None:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
args.json_schema_path = os.path.join(dir_path,
|
||||
"structured_schemas",
|
||||
"structured_schema_1.json")
|
||||
json_schemas = []
|
||||
with open(args.json_schema_path) as f:
|
||||
schema = json.load(f)
|
||||
|
||||
if args.dataset == 'json-unique':
|
||||
json_schemas = [
|
||||
copy.deepcopy(schema) for _ in range(args.num_prompts)
|
||||
]
|
||||
for i in range(len(json_schemas)):
|
||||
json_schemas[i]["properties"][
|
||||
f"__optional_field_{uuid.uuid4()}"] = {
|
||||
"type":
|
||||
"string",
|
||||
"description":
|
||||
"An unique optional field to avoid cached schemas"
|
||||
}
|
||||
else:
|
||||
json_schemas = [schema] * args.num_prompts
|
||||
|
||||
def gen_prompt(index: int):
|
||||
return f"Generate an example of a user profile given the following schema: {json.dumps(get_schema(index))}" # noqa: E501
|
||||
|
||||
def get_schema(index: int):
|
||||
return json_schemas[index % len(json_schemas)]
|
||||
|
||||
prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501
|
||||
input_len = len(tokenizer(prompt).input_ids)
|
||||
print(f"Input length of the prompt: {input_len} tokens")
|
||||
requests = [
|
||||
SampleRequest(prompt=gen_prompt(i),
|
||||
prompt_len=len(tokenizer(gen_prompt(i)).input_ids),
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=input_len,
|
||||
expected_output_len=args.output_len,
|
||||
schema=get_schema(i),
|
||||
schema=schema,
|
||||
structure_type=args.structure_type)
|
||||
for i in range(args.num_prompts)
|
||||
for _ in range(args.num_prompts)
|
||||
]
|
||||
|
||||
elif args.dataset == "grammar":
|
||||
@ -210,20 +186,10 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
]
|
||||
|
||||
elif args.dataset == "xgrammar_bench":
|
||||
requests: list[SampleRequest] = []
|
||||
requests: List[SampleRequest] = []
|
||||
dataset = datasets.load_dataset("NousResearch/json-mode-eval",
|
||||
split="train")
|
||||
full_dataset_len = len(dataset)
|
||||
|
||||
def _filter_func(item):
|
||||
import json
|
||||
schema = json.loads(item["schema"])
|
||||
return not has_xgrammar_unsupported_json_features(schema)
|
||||
|
||||
dataset = dataset.filter(_filter_func)
|
||||
num_filtered_out = full_dataset_len - len(dataset)
|
||||
print(f"dataset has {len(dataset)} entries after filtering "
|
||||
f"out {num_filtered_out} entries with unsupported features")
|
||||
print(f"dataset has {len(dataset)} entries")
|
||||
len_dataset = len(dataset)
|
||||
for data_point_idx in range(args.num_prompts):
|
||||
idx = data_point_idx
|
||||
@ -247,26 +213,26 @@ def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: list[SampleRequest],
|
||||
input_requests: List[SampleRequest],
|
||||
request_rate: float,
|
||||
burstiness: float = 1.0,
|
||||
) -> AsyncGenerator[tuple[int, SampleRequest], None]:
|
||||
) -> AsyncGenerator[Tuple[int, SampleRequest], None]:
|
||||
"""
|
||||
Asynchronously generates requests at a specified rate
|
||||
Asynchronously generates requests at a specified rate
|
||||
with OPTIONAL burstiness.
|
||||
|
||||
|
||||
Args:
|
||||
input_requests:
|
||||
input_requests:
|
||||
A list of input requests, each represented as a tuple.
|
||||
request_rate:
|
||||
request_rate:
|
||||
The rate at which requests are generated (requests/s).
|
||||
burstiness (optional):
|
||||
The burstiness factor of the request generation.
|
||||
burstiness (optional):
|
||||
The burstiness factor of the request generation.
|
||||
Only takes effect when request_rate is not inf.
|
||||
Default value is 1, which follows a Poisson process.
|
||||
Otherwise, the request intervals follow a gamma distribution.
|
||||
A lower burstiness value (0 < burstiness < 1) results
|
||||
in more bursty requests, while a higher burstiness value
|
||||
A lower burstiness value (0 < burstiness < 1) results
|
||||
in more bursty requests, while a higher burstiness value
|
||||
(burstiness > 1) results in a more uniform arrival of requests.
|
||||
"""
|
||||
input_requests = iter(input_requests)
|
||||
@ -291,23 +257,22 @@ async def get_request(
|
||||
|
||||
|
||||
def calculate_metrics(
|
||||
input_requests: list[tuple[str, int, int]],
|
||||
outputs: list[RequestFuncOutput],
|
||||
input_requests: List[Tuple[str, int, int]],
|
||||
outputs: List[RequestFuncOutput],
|
||||
dur_s: float,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[float],
|
||||
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||
) -> tuple[BenchmarkMetrics, list[int]]:
|
||||
actual_output_lens: list[int] = []
|
||||
selected_percentile_metrics: List[str],
|
||||
selected_percentiles: List[float],
|
||||
) -> Tuple[BenchmarkMetrics, List[int]]:
|
||||
actual_output_lens: List[int] = []
|
||||
total_input = 0
|
||||
completed = 0
|
||||
good_completed = 0
|
||||
itls: list[float] = []
|
||||
tpots: list[float] = []
|
||||
all_tpots: list[float] = []
|
||||
ttfts: list[float] = []
|
||||
e2els: list[float] = []
|
||||
itls: List[float] = []
|
||||
tpots: List[float] = []
|
||||
all_tpots: List[float] = []
|
||||
ttfts: List[float] = []
|
||||
e2els: List[float] = []
|
||||
for i in range(len(outputs)):
|
||||
if outputs[i].success:
|
||||
# We use the tokenizer to count the number of output tokens for all
|
||||
@ -321,10 +286,10 @@ def calculate_metrics(
|
||||
total_input += input_requests[i].prompt_len
|
||||
tpot = 0
|
||||
if output_len > 1:
|
||||
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
|
||||
tpot = latency_minus_ttft / (output_len - 1)
|
||||
tpot = (outputs[i].latency - outputs[i].ttft) / (output_len -
|
||||
1)
|
||||
tpots.append(tpot)
|
||||
outputs[i].tpot = tpot
|
||||
outputs[i].tpot = sum(tpots) / len(tpots) if len(tpots) else 0
|
||||
# Note: if output_len <= 1, we regard tpot as 0 for goodput
|
||||
all_tpots.append(tpot)
|
||||
itls += outputs[i].itl
|
||||
@ -334,28 +299,6 @@ def calculate_metrics(
|
||||
else:
|
||||
actual_output_lens.append(0)
|
||||
|
||||
if goodput_config_dict:
|
||||
valid_metrics = []
|
||||
slo_values = []
|
||||
|
||||
if "ttft" in goodput_config_dict:
|
||||
valid_metrics.append(ttfts)
|
||||
slo_values.append(goodput_config_dict["ttft"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "tpot" in goodput_config_dict:
|
||||
valid_metrics.append(all_tpots)
|
||||
slo_values.append(goodput_config_dict["tpot"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
if "e2el" in goodput_config_dict:
|
||||
valid_metrics.append(e2els)
|
||||
slo_values.append(goodput_config_dict["e2el"] /
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION)
|
||||
|
||||
for req_metric in zip(*valid_metrics):
|
||||
is_good_req = all([s >= r for s, r in zip(slo_values, req_metric)])
|
||||
if is_good_req:
|
||||
good_completed += 1
|
||||
|
||||
if completed == 0:
|
||||
warnings.warn(
|
||||
"All requests failed. This is likely due to a misconfiguration "
|
||||
@ -401,18 +344,17 @@ async def benchmark(
|
||||
base_url: str,
|
||||
model_id: str,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
input_requests: list[SampleRequest],
|
||||
input_requests: List[SampleRequest],
|
||||
request_rate: float,
|
||||
burstiness: float,
|
||||
disable_tqdm: bool,
|
||||
profile: bool,
|
||||
selected_percentile_metrics: list[str],
|
||||
selected_percentiles: list[str],
|
||||
selected_percentile_metrics: List[str],
|
||||
selected_percentiles: List[str],
|
||||
ignore_eos: bool,
|
||||
max_concurrency: Optional[int],
|
||||
structured_output_ratio: float,
|
||||
structured_output_backend: str,
|
||||
goodput_config_dict: Optional[dict[str, float]] = None,
|
||||
guided_decoding_ratio: float,
|
||||
guided_decoding_backend: str,
|
||||
):
|
||||
if backend in ASYNC_REQUEST_FUNCS:
|
||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||
@ -423,18 +365,16 @@ async def benchmark(
|
||||
extra_body = {}
|
||||
# Add the schema to the extra_body
|
||||
extra_body[request.structure_type] = request.schema
|
||||
# Add the specific structured_output_backend
|
||||
extra_body["guided_decoding_backend"] = structured_output_backend
|
||||
# Add the specific guided_decoding_backend
|
||||
extra_body["guided_decoding_backend"] = guided_decoding_backend
|
||||
return extra_body
|
||||
|
||||
print("Starting initial single prompt test run...")
|
||||
structured_output_req_idx = random.sample(
|
||||
guided_decoding_req_idx = random.sample(
|
||||
range(len(input_requests)),
|
||||
int(len(input_requests) * structured_output_ratio))
|
||||
int(len(input_requests) * guided_decoding_ratio))
|
||||
|
||||
test_request = input_requests[0]
|
||||
test_req_extra_body = (prepare_extra_body(test_request)
|
||||
if 0 in structured_output_req_idx else None)
|
||||
test_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=test_request.prompt,
|
||||
@ -442,7 +382,7 @@ async def benchmark(
|
||||
prompt_len=test_request.prompt_len,
|
||||
output_len=test_request.expected_output_len,
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=test_req_extra_body,
|
||||
extra_body=prepare_extra_body(test_request),
|
||||
)
|
||||
test_output = await request_func(request_func_input=test_input)
|
||||
if not test_output.success:
|
||||
@ -461,7 +401,7 @@ async def benchmark(
|
||||
prompt_len=test_request.prompt_len,
|
||||
output_len=test_request.expected_output_len,
|
||||
ignore_eos=ignore_eos,
|
||||
extra_body=test_req_extra_body,
|
||||
extra_body=prepare_extra_body(test_request),
|
||||
)
|
||||
profile_output = await request_func(request_func_input=profile_input)
|
||||
if profile_output.success:
|
||||
@ -494,12 +434,12 @@ async def benchmark(
|
||||
pbar=pbar)
|
||||
|
||||
benchmark_start_time = time.perf_counter()
|
||||
tasks: list[asyncio.Task] = []
|
||||
expected: list[str] = []
|
||||
tasks: List[asyncio.Task] = []
|
||||
expected: List[str] = []
|
||||
async for i, request in get_request(input_requests, request_rate,
|
||||
burstiness):
|
||||
extra_body = prepare_extra_body(
|
||||
request) if i in structured_output_req_idx else None
|
||||
request) if i in guided_decoding_req_idx else None
|
||||
request_func_input = RequestFuncInput(
|
||||
model=model_id,
|
||||
prompt=request.prompt,
|
||||
@ -514,7 +454,7 @@ async def benchmark(
|
||||
asyncio.create_task(
|
||||
limited_request_func(request_func_input=request_func_input,
|
||||
pbar=pbar)))
|
||||
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
|
||||
|
||||
if profile:
|
||||
print("Stopping profiler...")
|
||||
@ -542,7 +482,6 @@ async def benchmark(
|
||||
tokenizer=tokenizer,
|
||||
selected_percentile_metrics=selected_percentile_metrics,
|
||||
selected_percentiles=selected_percentiles,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
)
|
||||
|
||||
print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
|
||||
@ -554,9 +493,6 @@ async def benchmark(
|
||||
metrics.total_output))
|
||||
print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
|
||||
metrics.request_throughput))
|
||||
if goodput_config_dict:
|
||||
print("{:<40} {:<10.2f}".format("Request goodput (req/s):",
|
||||
metrics.request_goodput))
|
||||
print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
|
||||
metrics.output_throughput))
|
||||
print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):",
|
||||
@ -680,40 +616,6 @@ def evaluate(ret, args):
|
||||
100) if len(not_none_scores) > 0 else None
|
||||
|
||||
|
||||
def parse_goodput(slo_pairs):
|
||||
goodput_config_dict = {}
|
||||
try:
|
||||
for slo_pair in slo_pairs:
|
||||
slo_name, slo_val = slo_pair.split(":")
|
||||
goodput_config_dict[slo_name] = float(slo_val)
|
||||
except ValueError as err:
|
||||
raise argparse.ArgumentTypeError(
|
||||
"Invalid format found for service level objectives. "
|
||||
"Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
"pairs, where the key is a metric name, and the value is a "
|
||||
"number in milliseconds.") from err
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
def check_goodput_args(args):
|
||||
goodput_config_dict = {}
|
||||
VALID_NAMES = ["ttft", "tpot", "e2el"]
|
||||
if args.goodput:
|
||||
goodput_config_dict = parse_goodput(args.goodput)
|
||||
for slo_name, slo_val in goodput_config_dict.items():
|
||||
if slo_name not in VALID_NAMES:
|
||||
raise ValueError(
|
||||
f"Invalid metric name found, {slo_name}: {slo_val}. "
|
||||
"The service level objective name should be one of "
|
||||
f"{str(VALID_NAMES)}. ")
|
||||
if slo_val < 0:
|
||||
raise ValueError(
|
||||
f"Invalid value found, {slo_name}: {slo_val}. "
|
||||
"The service level objective value should be "
|
||||
"non-negative.")
|
||||
return goodput_config_dict
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
@ -730,11 +632,8 @@ def main(args: argparse.Namespace):
|
||||
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
|
||||
base_url = f"http://{args.host}:{args.port}"
|
||||
|
||||
tokenizer = get_tokenizer(
|
||||
tokenizer_id,
|
||||
trust_remote_code=args.trust_remote_code,
|
||||
tokenizer_mode=args.tokenizer_mode,
|
||||
)
|
||||
tokenizer = get_tokenizer(tokenizer_id,
|
||||
trust_remote_code=args.trust_remote_code)
|
||||
|
||||
if args.dataset == 'grammar':
|
||||
args.structure_type = 'guided_grammar'
|
||||
@ -745,10 +644,10 @@ def main(args: argparse.Namespace):
|
||||
else:
|
||||
args.structure_type = 'guided_json'
|
||||
|
||||
if args.no_structured_output:
|
||||
args.structured_output_ratio = 0
|
||||
if args.no_guided_decoding:
|
||||
args.guided_decoding_ratio = 0
|
||||
if args.save_results:
|
||||
result_file_name = f'{args.structured_output_ratio}guided'
|
||||
result_file_name = f'{args.guided_decoding_ratio}guided'
|
||||
result_file_name += f"_{backend}"
|
||||
result_file_name += f"_{args.request_rate}qps"
|
||||
result_file_name += f"_{args.model.split('/')[-1]}"
|
||||
@ -761,8 +660,6 @@ def main(args: argparse.Namespace):
|
||||
|
||||
input_requests = sample_requests(tokenizer, args)
|
||||
|
||||
goodput_config_dict = check_goodput_args(args)
|
||||
|
||||
benchmark_result, ret = asyncio.run(
|
||||
benchmark(
|
||||
backend=backend,
|
||||
@ -781,9 +678,8 @@ def main(args: argparse.Namespace):
|
||||
],
|
||||
ignore_eos=args.ignore_eos,
|
||||
max_concurrency=args.max_concurrency,
|
||||
structured_output_ratio=args.structured_output_ratio,
|
||||
structured_output_backend=args.structured_output_backend,
|
||||
goodput_config_dict=goodput_config_dict,
|
||||
guided_decoding_ratio=args.guided_decoding_ratio,
|
||||
guided_decoding_backend=args.guided_decoding_backend,
|
||||
))
|
||||
|
||||
# Save config and results to json
|
||||
@ -834,8 +730,7 @@ if __name__ == "__main__":
|
||||
default=None,
|
||||
help="Server or API base url if not using http host and port.",
|
||||
)
|
||||
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
|
||||
parser.add_argument("--host", type=str, default="127.0.0.1")
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=8000)
|
||||
parser.add_argument(
|
||||
"--endpoint",
|
||||
@ -843,12 +738,10 @@ if __name__ == "__main__":
|
||||
default="/v1/completions",
|
||||
help="API endpoint.",
|
||||
)
|
||||
parser.add_argument("--dataset",
|
||||
default='json',
|
||||
choices=[
|
||||
'json', 'json-unique', 'grammar', 'regex',
|
||||
'choice', 'xgrammar_bench'
|
||||
])
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
default='json',
|
||||
choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench'])
|
||||
parser.add_argument("--json_schema_path",
|
||||
type=str,
|
||||
default=None,
|
||||
@ -877,13 +770,6 @@ if __name__ == "__main__":
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer-mode",
|
||||
type=str,
|
||||
default="auto",
|
||||
help=
|
||||
"Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-prompts",
|
||||
type=int,
|
||||
@ -964,7 +850,7 @@ if __name__ == "__main__":
|
||||
"--percentile-metrics",
|
||||
type=str,
|
||||
default="ttft,tpot,itl",
|
||||
help="Comma-separated list of selected metrics to report percentils. "
|
||||
help="Comma-seperated list of selected metrics to report percentils. "
|
||||
"This argument specifies the metrics to report percentiles. "
|
||||
"Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". "
|
||||
"Default value is \"ttft,tpot,itl\".")
|
||||
@ -972,39 +858,24 @@ if __name__ == "__main__":
|
||||
"--metric-percentiles",
|
||||
type=str,
|
||||
default="99",
|
||||
help="Comma-separated list of percentiles for selected metrics. "
|
||||
help="Comma-seperated list of percentiles for selected metrics. "
|
||||
"To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". "
|
||||
"Default value is \"99\". "
|
||||
"Use \"--percentile-metrics\" to select metrics.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--goodput",
|
||||
nargs="+",
|
||||
required=False,
|
||||
help="Specify service level objectives for goodput as \"KEY:VALUE\" "
|
||||
"pairs, where the key is a metric name, and the value is in "
|
||||
"milliseconds. Multiple \"KEY:VALUE\" pairs can be provided, "
|
||||
"separated by spaces. Allowed request level metric names are "
|
||||
"\"ttft\", \"tpot\", \"e2el\". For more context on the definition of "
|
||||
"goodput, refer to DistServe paper: https://arxiv.org/pdf/2401.09670 "
|
||||
"and the blog: https://hao-ai-lab.github.io/blogs/distserve")
|
||||
|
||||
parser.add_argument("--no-structured-output",
|
||||
parser.add_argument("--no-guided-decoding",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether to disable JSON decoding or not.")
|
||||
parser.add_argument("--structured-output-ratio",
|
||||
parser.add_argument("--guided-decoding-ratio",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Ratio of Structured Outputs requests")
|
||||
parser.add_argument("--structured-output-backend",
|
||||
help="Ratio of Guided Decoding requests")
|
||||
parser.add_argument("--guided-decoding-backend",
|
||||
type=str,
|
||||
choices=[
|
||||
"outlines", "lm-format-enforcer", "xgrammar",
|
||||
"guidance", "auto"
|
||||
],
|
||||
default="auto",
|
||||
help="Backend to use for structured outputs")
|
||||
choices=["outlines", "lm-format-enforcer", "xgrammar"],
|
||||
default="xgrammar",
|
||||
help="Backend to use for guided decoding")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
@ -1,21 +1,15 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Benchmark offline inference throughput."""
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
import warnings
|
||||
from typing import Any, Optional, Union
|
||||
from functools import cache
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import uvloop
|
||||
from benchmark_dataset import (AIMODataset, BurstGPTDataset,
|
||||
ConversationDataset, InstructCoderDataset,
|
||||
RandomDataset, SampleRequest, ShareGPTDataset,
|
||||
SonnetDataset, VisionArenaDataset)
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||
PreTrainedTokenizerBase)
|
||||
@ -23,35 +17,163 @@ from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
|
||||
from vllm.entrypoints.openai.api_server import (
|
||||
build_async_engine_client_from_engine_args)
|
||||
from vllm.inputs import TextPrompt, TokensPrompt
|
||||
from vllm.inputs import TextPrompt
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.outputs import RequestOutput
|
||||
from vllm.lora.utils import get_adapter_absolute_path
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.sampling_params import BeamSearchParams
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
||||
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SampleRequest:
|
||||
"""A class representing a single inference request for benchmarking.
|
||||
|
||||
Attributes:
|
||||
prompt: The input text prompt for the model.
|
||||
prompt_len: The length of the prompt in tokens.
|
||||
expected_output_len: The expected length of the output in tokens.
|
||||
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
|
||||
images).
|
||||
lora_request: Optional LoRARequest specifying the LoRA to use.
|
||||
"""
|
||||
prompt: str
|
||||
prompt_len: int
|
||||
expected_output_len: int
|
||||
multi_modal_data: Optional[MultiModalDataDict] = None
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
|
||||
|
||||
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
|
||||
"""Prepend and append special tokens around the question to form a prompt.
|
||||
|
||||
Args:
|
||||
question: The input question text to wrap with special tokens
|
||||
model: The name of the model being used, to determine which special
|
||||
tokens to add
|
||||
|
||||
Returns:
|
||||
The formatted prompt string with appropriate special tokens for the
|
||||
model
|
||||
|
||||
Raises:
|
||||
ValueError: If an unsupported model name is provided
|
||||
"""
|
||||
model = model.lower()
|
||||
if "pixtral" in model:
|
||||
return f"<s>[INST]{question}\n[IMG][/INST]"
|
||||
raise ValueError(f"Unsupported model {model}")
|
||||
|
||||
|
||||
@cache
|
||||
def lora_path_on_disk(lora_path: str) -> str:
|
||||
return get_adapter_absolute_path(lora_path)
|
||||
|
||||
|
||||
lora_tokenizer_cache: Dict[int, AnyTokenizer] = {}
|
||||
|
||||
|
||||
def get_random_lora_request(
|
||||
args: argparse.Namespace
|
||||
) -> Tuple[LoRARequest, Optional[AnyTokenizer]]:
|
||||
global lora_tokenizer_cache
|
||||
lora_id = random.randint(1, args.max_loras)
|
||||
lora_request = LoRARequest(lora_name=str(lora_id),
|
||||
lora_int_id=lora_id,
|
||||
lora_path=lora_path_on_disk(args.lora_path))
|
||||
if lora_id not in lora_tokenizer_cache:
|
||||
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
|
||||
return lora_request, lora_tokenizer_cache[lora_id]
|
||||
|
||||
|
||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
||||
args: argparse.Namespace) -> List[SampleRequest]:
|
||||
|
||||
dataset_path: str = args.dataset
|
||||
num_requests: int = args.num_prompts
|
||||
fixed_output_len: Optional[int] = args.output_len
|
||||
model: str = args.model
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
||||
# Load the dataset.
|
||||
with open(dataset_path) as f:
|
||||
dataset = json.load(f)
|
||||
# Filter out the conversations with less than 2 turns.
|
||||
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
||||
# Shuffle the dataset.
|
||||
random.shuffle(dataset)
|
||||
|
||||
# Filter out sequences that are too long or too short
|
||||
filtered_dataset: List[SampleRequest] = []
|
||||
for data in tqdm(dataset,
|
||||
total=len(filtered_dataset),
|
||||
desc="sampling requests"):
|
||||
if len(filtered_dataset) == num_requests:
|
||||
break
|
||||
|
||||
# Only keep the first two turns of each conversation.
|
||||
prompt = data["conversations"][0]["value"]
|
||||
completion = data["conversations"][1]["value"]
|
||||
|
||||
multi_modal_data: Optional[MultiModalDataDict] = None
|
||||
if "image" in data:
|
||||
multi_modal_data = multi_modal_data or {}
|
||||
image_path = data["image"]
|
||||
# TODO(vllm-project/vllm/issues/9778): Support multiple images.
|
||||
assert isinstance(image_path,
|
||||
str), "Only support single image input"
|
||||
try:
|
||||
multi_modal_data["image"] = Image.open(image_path).convert(
|
||||
"RGB")
|
||||
except FileNotFoundError:
|
||||
# Ignore datapoint where asset is missing
|
||||
continue
|
||||
prompt = _get_prompt_for_image_model(question=prompt, model=model)
|
||||
|
||||
request_tokenizer = tokenizer
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
if args.enable_lora:
|
||||
lora_request, lora_tokenizer = get_random_lora_request(args)
|
||||
if lora_tokenizer:
|
||||
request_tokenizer = lora_tokenizer
|
||||
|
||||
# Tokenize the prompts and completions.
|
||||
prompt_token_ids = request_tokenizer(prompt).input_ids
|
||||
completion_token_ids = request_tokenizer(completion).input_ids
|
||||
prompt_len = len(prompt_token_ids)
|
||||
output_len = len(completion_token_ids
|
||||
) if fixed_output_len is None else fixed_output_len
|
||||
if prompt_len < 4 or output_len < 4:
|
||||
# Prune too short sequences.
|
||||
continue
|
||||
if prompt_len > 1024 or prompt_len + output_len > 2048:
|
||||
# Prune too long sequences.
|
||||
continue
|
||||
filtered_dataset.append(
|
||||
SampleRequest(prompt=prompt,
|
||||
prompt_len=prompt_len,
|
||||
expected_output_len=output_len,
|
||||
multi_modal_data=multi_modal_data,
|
||||
lora_request=lora_request))
|
||||
|
||||
return filtered_dataset
|
||||
|
||||
|
||||
def run_vllm(
|
||||
requests: list[SampleRequest],
|
||||
requests: List[SampleRequest],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
disable_detokenize: bool = False,
|
||||
) -> tuple[float, Optional[list[RequestOutput]]]:
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (
|
||||
request.prompt_len + request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: list[Union[TextPrompt, TokensPrompt]] = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
prompts: List[TextPrompt] = []
|
||||
sampling_params: List[SamplingParams] = []
|
||||
for request in requests:
|
||||
prompts.append(
|
||||
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
|
||||
multi_modal_data=request.multi_modal_data)
|
||||
if "prompt_token_ids" in request.prompt else \
|
||||
TextPrompt(prompt=request.prompt,
|
||||
multi_modal_data=request.multi_modal_data))
|
||||
sampling_params.append(
|
||||
@ -61,21 +183,19 @@ def run_vllm(
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
lora_requests: Optional[list[LoRARequest]] = None
|
||||
lora_requests: Optional[List[LoRARequest]] = None
|
||||
if engine_args.enable_lora:
|
||||
lora_requests = [request.lora_request for request in requests]
|
||||
|
||||
use_beam_search = False
|
||||
|
||||
outputs = None
|
||||
if not use_beam_search:
|
||||
start = time.perf_counter()
|
||||
outputs = llm.generate(prompts,
|
||||
sampling_params,
|
||||
lora_request=lora_requests,
|
||||
use_tqdm=True)
|
||||
llm.generate(prompts,
|
||||
sampling_params,
|
||||
lora_request=lora_requests,
|
||||
use_tqdm=True)
|
||||
end = time.perf_counter()
|
||||
else:
|
||||
assert lora_requests is None, "BeamSearch API does not support LoRA"
|
||||
@ -93,75 +213,26 @@ def run_vllm(
|
||||
ignore_eos=True,
|
||||
))
|
||||
end = time.perf_counter()
|
||||
return end - start, outputs
|
||||
|
||||
|
||||
def run_vllm_chat(
|
||||
requests: list[SampleRequest],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
disable_detokenize: bool = False) -> tuple[float, list[RequestOutput]]:
|
||||
"""
|
||||
Run vLLM chat benchmark. This function is recommended ONLY for benchmarking
|
||||
multimodal models as it properly handles multimodal inputs and chat
|
||||
formatting. For non-multimodal models, use run_vllm() instead.
|
||||
"""
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
assert all(
|
||||
llm.llm_engine.model_config.max_model_len >= (
|
||||
request.prompt_len + request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of "
|
||||
"prompt_len and expected_output_len for all requests.")
|
||||
|
||||
prompts = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
for request in requests:
|
||||
prompts.append(request.prompt)
|
||||
sampling_params.append(
|
||||
SamplingParams(
|
||||
n=n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
start = time.perf_counter()
|
||||
outputs = llm.chat(prompts, sampling_params, use_tqdm=True)
|
||||
end = time.perf_counter()
|
||||
return end - start, outputs
|
||||
return end - start
|
||||
|
||||
|
||||
async def run_vllm_async(
|
||||
requests: list[SampleRequest],
|
||||
requests: List[SampleRequest],
|
||||
n: int,
|
||||
engine_args: AsyncEngineArgs,
|
||||
disable_frontend_multiprocessing: bool = False,
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
from vllm import SamplingParams
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, disable_frontend_multiprocessing) as llm:
|
||||
assert all(
|
||||
llm.model_config.max_model_len >= (request.prompt_len +
|
||||
request.expected_output_len)
|
||||
for request in requests), (
|
||||
"Please ensure that max_model_len is greater than the sum of"
|
||||
" prompt_len and expected_output_len for all requests.")
|
||||
|
||||
# Add the requests to the engine.
|
||||
prompts: list[Union[TextPrompt, TokensPrompt]] = []
|
||||
sampling_params: list[SamplingParams] = []
|
||||
lora_requests: list[Optional[LoRARequest]] = []
|
||||
prompts: List[TextPrompt] = []
|
||||
sampling_params: List[SamplingParams] = []
|
||||
lora_requests: List[Optional[LoRARequest]] = []
|
||||
for request in requests:
|
||||
prompts.append(
|
||||
TokensPrompt(prompt_token_ids=request.prompt["prompt_token_ids"],
|
||||
multi_modal_data=request.multi_modal_data)
|
||||
if "prompt_token_ids" in request.prompt else \
|
||||
TextPrompt(prompt=request.prompt,
|
||||
multi_modal_data=request.multi_modal_data))
|
||||
sampling_params.append(
|
||||
@ -171,7 +242,6 @@ async def run_vllm_async(
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
lora_requests.append(request.lora_request)
|
||||
|
||||
@ -192,13 +262,12 @@ async def run_vllm_async(
|
||||
|
||||
|
||||
def run_hf(
|
||||
requests: list[SampleRequest],
|
||||
requests: List[SampleRequest],
|
||||
model: str,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
n: int,
|
||||
max_batch_size: int,
|
||||
trust_remote_code: bool,
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
llm = AutoModelForCausalLM.from_pretrained(
|
||||
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
|
||||
@ -209,21 +278,18 @@ def run_hf(
|
||||
|
||||
pbar = tqdm(total=len(requests))
|
||||
start = time.perf_counter()
|
||||
batch: list[str] = []
|
||||
batch: List[str] = []
|
||||
max_prompt_len = 0
|
||||
max_output_len = 0
|
||||
for i in range(len(requests)):
|
||||
prompt = requests[i].prompt
|
||||
prompt_len = requests[i].prompt_len
|
||||
output_len = requests[i].expected_output_len
|
||||
prompt, prompt_len, output_len = requests[i]
|
||||
# Add the prompt to the batch.
|
||||
batch.append(prompt)
|
||||
max_prompt_len = max(max_prompt_len, prompt_len)
|
||||
max_output_len = max(max_output_len, output_len)
|
||||
if len(batch) < max_batch_size and i != len(requests) - 1:
|
||||
# Check if we can add more requests to the batch.
|
||||
next_prompt_len = requests[i + 1].prompt_len
|
||||
next_output_len = requests[i + 1].expected_output_len
|
||||
_, next_prompt_len, next_output_len = requests[i + 1]
|
||||
if (max(max_prompt_len, next_prompt_len) +
|
||||
max(max_output_len, next_output_len)) <= 2048:
|
||||
# We can add more requests to the batch.
|
||||
@ -241,9 +307,8 @@ def run_hf(
|
||||
use_cache=True,
|
||||
max_new_tokens=max_output_len,
|
||||
)
|
||||
if not disable_detokenize:
|
||||
# Include the decoding time.
|
||||
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
|
||||
# Include the decoding time.
|
||||
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
|
||||
pbar.update(len(batch))
|
||||
|
||||
# Clear the batch.
|
||||
@ -255,7 +320,7 @@ def run_hf(
|
||||
|
||||
|
||||
def run_mii(
|
||||
requests: list[SampleRequest],
|
||||
requests: List[SampleRequest],
|
||||
model: str,
|
||||
tensor_parallel_size: int,
|
||||
output_len: int,
|
||||
@ -272,92 +337,58 @@ def run_mii(
|
||||
return end - start
|
||||
|
||||
|
||||
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
results: dict[str, Any]) -> None:
|
||||
pt_records = convert_to_pytorch_benchmark_format(
|
||||
args=args,
|
||||
metrics={
|
||||
"requests_per_second": [results["requests_per_second"]],
|
||||
"tokens_per_second": [results["tokens_per_second"]],
|
||||
},
|
||||
extra_info={
|
||||
k: results[k]
|
||||
for k in ["elapsed_time", "num_requests", "total_num_tokens"]
|
||||
})
|
||||
if pt_records:
|
||||
# Don't use json suffix here as we don't want CI to pick it up
|
||||
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
|
||||
write_to_json(pt_file, pt_records)
|
||||
|
||||
|
||||
def get_requests(args, tokenizer):
|
||||
# Common parameters for all dataset types.
|
||||
common_kwargs = {
|
||||
"dataset_path": args.dataset_path,
|
||||
"random_seed": args.seed,
|
||||
}
|
||||
sample_kwargs = {
|
||||
"tokenizer": tokenizer,
|
||||
"lora_path": args.lora_path,
|
||||
"max_loras": args.max_loras,
|
||||
"num_requests": args.num_prompts,
|
||||
"input_len": args.input_len,
|
||||
"output_len": args.output_len,
|
||||
}
|
||||
|
||||
if args.dataset_path is None or args.dataset_name == "random":
|
||||
sample_kwargs["range_ratio"] = args.random_range_ratio
|
||||
sample_kwargs["prefix_len"] = args.prefix_len
|
||||
dataset_cls = RandomDataset
|
||||
elif args.dataset_name == "sharegpt":
|
||||
dataset_cls = ShareGPTDataset
|
||||
if args.backend == "vllm-chat":
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_name == "sonnet":
|
||||
assert tokenizer.chat_template or tokenizer.default_chat_template, (
|
||||
"Tokenizer/model must have chat template for sonnet dataset.")
|
||||
dataset_cls = SonnetDataset
|
||||
sample_kwargs["prefix_len"] = args.prefix_len
|
||||
sample_kwargs["return_prompt_formatted"] = True
|
||||
elif args.dataset_name == "burstgpt":
|
||||
dataset_cls = BurstGPTDataset
|
||||
elif args.dataset_name == "hf":
|
||||
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = VisionArenaDataset
|
||||
common_kwargs['dataset_subset'] = None
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = InstructCoderDataset
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = ConversationDataset
|
||||
common_kwargs['dataset_subset'] = args.hf_subset
|
||||
common_kwargs['dataset_split'] = args.hf_split
|
||||
sample_kwargs["enable_multimodal_chat"] = True
|
||||
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
|
||||
dataset_cls = AIMODataset
|
||||
common_kwargs['dataset_subset'] = None
|
||||
common_kwargs['dataset_split'] = "train"
|
||||
else:
|
||||
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
|
||||
# Remove None values
|
||||
sample_kwargs = {k: v for k, v in sample_kwargs.items() if v is not None}
|
||||
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
if args.seed is None:
|
||||
args.seed = 0
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
|
||||
# Sample the requests.
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||
requests = get_requests(args, tokenizer)
|
||||
if args.dataset is None:
|
||||
vocab_size = tokenizer.vocab_size
|
||||
requests = []
|
||||
for _ in range(args.num_prompts):
|
||||
|
||||
request_tokenizer = tokenizer
|
||||
lora_request: Optional[LoRARequest] = None
|
||||
if args.enable_lora:
|
||||
lora_request, lora_tokenizer = get_random_lora_request(args)
|
||||
if lora_tokenizer:
|
||||
request_tokenizer = lora_tokenizer
|
||||
|
||||
# Synthesize a prompt with the given input length.
|
||||
candidate_ids = [
|
||||
random.randint(0, vocab_size - 1)
|
||||
for _ in range(args.input_len)
|
||||
]
|
||||
# As tokenizer may add additional tokens like BOS, we need to try
|
||||
# different lengths to get the desired input length.
|
||||
for _ in range(5): # Max attempts to correct
|
||||
candidate_prompt = request_tokenizer.decode(candidate_ids)
|
||||
tokenized_len = len(request_tokenizer.encode(candidate_prompt))
|
||||
|
||||
if tokenized_len == args.input_len:
|
||||
break
|
||||
|
||||
# Adjust length based on difference
|
||||
diff = args.input_len - tokenized_len
|
||||
if diff > 0:
|
||||
candidate_ids.extend([
|
||||
random.randint(100, vocab_size - 100)
|
||||
for _ in range(diff)
|
||||
])
|
||||
else:
|
||||
candidate_ids = candidate_ids[:diff]
|
||||
requests.append(
|
||||
SampleRequest(prompt=candidate_prompt,
|
||||
prompt_len=args.input_len,
|
||||
expected_output_len=args.output_len,
|
||||
lora_request=lora_request))
|
||||
else:
|
||||
requests = sample_requests(tokenizer, args)
|
||||
|
||||
is_multi_modal = any(request.multi_modal_data is not None
|
||||
for request in requests)
|
||||
request_outputs: Optional[list[RequestOutput]] = None
|
||||
if args.backend == "vllm":
|
||||
if args.async_engine:
|
||||
elapsed_time = uvloop.run(
|
||||
@ -366,59 +397,31 @@ def main(args: argparse.Namespace):
|
||||
args.n,
|
||||
AsyncEngineArgs.from_cli_args(args),
|
||||
args.disable_frontend_multiprocessing,
|
||||
args.disable_detokenize,
|
||||
))
|
||||
else:
|
||||
elapsed_time, request_outputs = run_vllm(
|
||||
requests, args.n, EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
elapsed_time = run_vllm(requests, args.n,
|
||||
EngineArgs.from_cli_args(args))
|
||||
elif args.backend == "hf":
|
||||
assert args.tensor_parallel_size == 1
|
||||
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
|
||||
args.hf_max_batch_size, args.trust_remote_code,
|
||||
args.disable_detokenize)
|
||||
args.hf_max_batch_size, args.trust_remote_code)
|
||||
elif args.backend == "mii":
|
||||
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
|
||||
args.output_len)
|
||||
elif args.backend == "vllm-chat":
|
||||
elapsed_time, request_outputs = run_vllm_chat(
|
||||
requests, args.n, EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {args.backend}")
|
||||
|
||||
if request_outputs:
|
||||
# Note: with the vllm and vllm-chat backends,
|
||||
# we have request_outputs, which we use to count tokens.
|
||||
total_prompt_tokens = 0
|
||||
total_output_tokens = 0
|
||||
for ro in request_outputs:
|
||||
if not isinstance(ro, RequestOutput):
|
||||
continue
|
||||
total_prompt_tokens += len(
|
||||
ro.prompt_token_ids) if ro.prompt_token_ids else 0
|
||||
total_output_tokens += sum(
|
||||
len(o.token_ids) for o in ro.outputs if o)
|
||||
total_num_tokens = total_prompt_tokens + total_output_tokens
|
||||
else:
|
||||
total_num_tokens = sum(r.prompt_len + r.expected_output_len
|
||||
for r in requests)
|
||||
total_output_tokens = sum(r.expected_output_len for r in requests)
|
||||
total_prompt_tokens = total_num_tokens - total_output_tokens
|
||||
|
||||
if is_multi_modal and args.backend != "vllm-chat":
|
||||
print("\033[91mWARNING\033[0m: Multi-modal request with "
|
||||
f"{args.backend} backend detected. The "
|
||||
total_num_tokens = sum(request.prompt_len + request.expected_output_len
|
||||
for request in requests)
|
||||
total_output_tokens = sum(request.expected_output_len
|
||||
for request in requests)
|
||||
if is_multi_modal:
|
||||
print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
|
||||
"following metrics are not accurate because image tokens are not"
|
||||
" counted. See vllm-project/vllm/issues/9778 for details.")
|
||||
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
|
||||
# vllm-chat backend counts the image tokens now
|
||||
|
||||
# TODO(vllm-project/vllm/issues/9778): Count molti-modal token length.
|
||||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
|
||||
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
|
||||
print(f"Total num prompt tokens: {total_prompt_tokens}")
|
||||
print(f"Total num output tokens: {total_output_tokens}")
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json:
|
||||
@ -431,130 +434,20 @@ def main(args: argparse.Namespace):
|
||||
}
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
save_to_pytorch_benchmark_format(args, results)
|
||||
|
||||
|
||||
def validate_args(args):
|
||||
"""
|
||||
Validate command-line arguments.
|
||||
"""
|
||||
|
||||
# === Deprecation and Defaulting ===
|
||||
if args.dataset is not None:
|
||||
warnings.warn(
|
||||
"The '--dataset' argument will be deprecated in the next release. "
|
||||
"Please use '--dataset-name' and '--dataset-path' instead.",
|
||||
stacklevel=2)
|
||||
args.dataset_path = args.dataset
|
||||
|
||||
if not getattr(args, "tokenizer", None):
|
||||
args.tokenizer = args.model
|
||||
|
||||
# === Backend Validation ===
|
||||
valid_backends = {"vllm", "hf", "mii", "vllm-chat"}
|
||||
if args.backend not in valid_backends:
|
||||
raise ValueError(f"Unsupported backend: {args.backend}")
|
||||
|
||||
# === Dataset Configuration ===
|
||||
if not args.dataset and not args.dataset_path:
|
||||
print(
|
||||
"When dataset path is not set, it will default to random dataset")
|
||||
args.dataset_name = 'random'
|
||||
if args.input_len is None:
|
||||
raise ValueError("input_len must be provided for a random dataset")
|
||||
|
||||
# === Dataset Name Specific Checks ===
|
||||
# --hf-subset and --hf-split: only used
|
||||
# when dataset_name is 'hf'
|
||||
if args.dataset_name != "hf" and (
|
||||
getattr(args, "hf_subset", None) is not None
|
||||
or getattr(args, "hf_split", None) is not None):
|
||||
warnings.warn("--hf-subset and --hf-split will be ignored \
|
||||
since --dataset-name is not 'hf'.",
|
||||
stacklevel=2)
|
||||
elif args.dataset_name == "hf":
|
||||
if args.dataset_path in (
|
||||
VisionArenaDataset.SUPPORTED_DATASET_PATHS.keys()
|
||||
| ConversationDataset.SUPPORTED_DATASET_PATHS):
|
||||
assert args.backend == "vllm-chat", f"{args.dataset_path} needs to use vllm-chat as the backend." #noqa: E501
|
||||
elif args.dataset_path in (InstructCoderDataset.SUPPORTED_DATASET_PATHS
|
||||
| AIMODataset.SUPPORTED_DATASET_PATHS):
|
||||
assert args.backend == "vllm", f"{args.dataset_path} needs to use vllm as the backend." #noqa: E501
|
||||
else:
|
||||
raise ValueError(
|
||||
f"{args.dataset_path} is not supported by hf dataset.")
|
||||
|
||||
# --random-range-ratio: only used when dataset_name is 'random'
|
||||
if args.dataset_name != 'random' and args.random_range_ratio is not None:
|
||||
warnings.warn("--random-range-ratio will be ignored since \
|
||||
--dataset-name is not 'random'.",
|
||||
stacklevel=2)
|
||||
|
||||
# --prefix-len: only used when dataset_name is 'random', 'sonnet', or not
|
||||
# set.
|
||||
if args.dataset_name not in {"random", "sonnet", None
|
||||
} and args.prefix_len is not None:
|
||||
warnings.warn("--prefix-len will be ignored since --dataset-name\
|
||||
is not 'random', 'sonnet', or not set.",
|
||||
stacklevel=2)
|
||||
|
||||
# === LoRA Settings ===
|
||||
if getattr(args, "enable_lora", False) and args.backend != "vllm":
|
||||
raise ValueError(
|
||||
"LoRA benchmarking is only supported for vLLM backend")
|
||||
if getattr(args, "enable_lora", False) and args.lora_path is None:
|
||||
raise ValueError("LoRA path must be provided when enable_lora is True")
|
||||
|
||||
# === Backend-specific Validations ===
|
||||
if args.backend == "hf" and args.hf_max_batch_size is None:
|
||||
raise ValueError("HF max batch size is required for HF backend")
|
||||
if args.backend != "hf" and args.hf_max_batch_size is not None:
|
||||
raise ValueError("HF max batch size is only for HF backend.")
|
||||
|
||||
if args.backend in {"hf", "mii"} and getattr(args, "quantization",
|
||||
None) is not None:
|
||||
raise ValueError("Quantization is only for vLLM backend.")
|
||||
|
||||
if args.backend == "mii" and args.dtype != "auto":
|
||||
raise ValueError("dtype must be auto for MII backend.")
|
||||
if args.backend == "mii" and args.n != 1:
|
||||
raise ValueError("n must be 1 for MII backend.")
|
||||
if args.backend == "mii" and args.tokenizer != args.model:
|
||||
raise ValueError(
|
||||
"Tokenizer must be the same as the model for MII backend.")
|
||||
|
||||
# --data-parallel is not supported currently.
|
||||
# https://github.com/vllm-project/vllm/issues/16222
|
||||
if args.data_parallel_size > 1:
|
||||
raise ValueError(
|
||||
"Data parallel is not supported in offline benchmark, \
|
||||
please use benchmark serving instead")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
||||
parser.add_argument("--backend",
|
||||
type=str,
|
||||
choices=["vllm", "hf", "mii", "vllm-chat"],
|
||||
choices=["vllm", "hf", "mii"],
|
||||
default="vllm")
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
choices=["sharegpt", "random", "sonnet", "burstgpt", "hf"],
|
||||
help="Name of the dataset to benchmark on.",
|
||||
default="sharegpt")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the ShareGPT dataset, will be deprecated in\
|
||||
the next release. The dataset is expected to "
|
||||
"be a json in form of list[dict[..., conversations: "
|
||||
"list[dict[..., value: <prompt_or_response>]]]]")
|
||||
parser.add_argument("--dataset-path",
|
||||
parser.add_argument("--dataset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the dataset")
|
||||
help="Path to the dataset. The dataset is expected to "
|
||||
"be a json in form of List[Dict[..., conversations: "
|
||||
"List[Dict[..., value: <prompt_or_response>]]]]")
|
||||
parser.add_argument("--input-len",
|
||||
type=int,
|
||||
default=None,
|
||||
@ -589,11 +482,6 @@ if __name__ == "__main__":
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Disable decoupled async engine frontend.")
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize the response (i.e. do not include "
|
||||
"detokenization time in the measurement)"))
|
||||
# LoRA
|
||||
parser.add_argument(
|
||||
"--lora-path",
|
||||
@ -601,45 +489,43 @@ if __name__ == "__main__":
|
||||
default=None,
|
||||
help="Path to the lora adapters to use. This can be an absolute path, "
|
||||
"a relative path, or a Hugging Face model identifier.")
|
||||
parser.add_argument(
|
||||
"--prefix-len",
|
||||
type=int,
|
||||
default=None,
|
||||
help=f"Number of prefix tokens to be used in RandomDataset "
|
||||
"and SonnetDataset. For RandomDataset, the total input "
|
||||
"length is the sum of prefix-len (default: "
|
||||
f"{RandomDataset.DEFAULT_PREFIX_LEN}) and a random context length "
|
||||
"sampled from [input_len * (1 - range_ratio), "
|
||||
"input_len * (1 + range_ratio)]. For SonnetDataset, "
|
||||
f"prefix_len (default: {SonnetDataset.DEFAULT_PREFIX_LEN}) "
|
||||
"controls how much of the input is fixed lines versus "
|
||||
"random lines, but the total input length remains approximately "
|
||||
"input_len tokens.")
|
||||
# random dataset
|
||||
parser.add_argument(
|
||||
"--random-range-ratio",
|
||||
type=float,
|
||||
default=None,
|
||||
help=f"Range ratio (default : {RandomDataset.DEFAULT_RANGE_RATIO}) "
|
||||
"for sampling input/output length, "
|
||||
"used only for RandomDataset. Must be in the range [0, 1) to "
|
||||
"define a symmetric sampling range "
|
||||
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
|
||||
)
|
||||
|
||||
# hf dtaset
|
||||
parser.add_argument("--hf-subset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Subset of the HF dataset.")
|
||||
parser.add_argument("--hf-split",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Split of the HF dataset.")
|
||||
|
||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
if args.tokenizer is None:
|
||||
args.tokenizer = args.model
|
||||
validate_args(args)
|
||||
if args.dataset is None:
|
||||
assert args.input_len is not None
|
||||
assert args.output_len is not None
|
||||
else:
|
||||
assert args.input_len is None
|
||||
if args.enable_lora:
|
||||
assert args.lora_path is not None
|
||||
|
||||
if args.backend == "vllm":
|
||||
if args.hf_max_batch_size is not None:
|
||||
raise ValueError("HF max batch size is only for HF backend.")
|
||||
elif args.backend == "hf":
|
||||
if args.hf_max_batch_size is None:
|
||||
raise ValueError("HF max batch size is required for HF backend.")
|
||||
if args.quantization is not None:
|
||||
raise ValueError("Quantization is only for vLLM backend.")
|
||||
if args.enable_lora is not None:
|
||||
raise ValueError("LoRA benchmarking is only supported for vLLM"
|
||||
" backend")
|
||||
elif args.backend == "mii":
|
||||
if args.dtype != "auto":
|
||||
raise ValueError("dtype must be auto for MII backend.")
|
||||
if args.n != 1:
|
||||
raise ValueError("n must be 1 for MII backend.")
|
||||
if args.quantization is not None:
|
||||
raise ValueError("Quantization is only for vLLM backend.")
|
||||
if args.hf_max_batch_size is not None:
|
||||
raise ValueError("HF max batch size is only for HF backend.")
|
||||
if args.tokenizer != args.model:
|
||||
raise ValueError("Tokenizer must be the same as the model for MII "
|
||||
"backend.")
|
||||
if args.enable_lora is not None:
|
||||
raise ValueError("LoRA benchmarking is only supported for vLLM"
|
||||
" backend")
|
||||
main(args)
|
||||
|
@ -1,69 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
|
||||
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
|
||||
metrics: dict[str, list],
|
||||
extra_info: dict[str, Any]) -> list:
|
||||
"""
|
||||
Save the benchmark results in the format used by PyTorch OSS benchmark with
|
||||
on metric per record
|
||||
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
|
||||
"""
|
||||
records = []
|
||||
if not os.environ.get("SAVE_TO_PYTORCH_BENCHMARK_FORMAT", False):
|
||||
return records
|
||||
|
||||
for name, benchmark_values in metrics.items():
|
||||
record = {
|
||||
"benchmark": {
|
||||
"name": "vLLM benchmark",
|
||||
"extra_info": {
|
||||
"args": vars(args),
|
||||
},
|
||||
},
|
||||
"model": {
|
||||
"name": args.model,
|
||||
},
|
||||
"metric": {
|
||||
"name": name,
|
||||
"benchmark_values": benchmark_values,
|
||||
"extra_info": extra_info,
|
||||
},
|
||||
}
|
||||
|
||||
tp = record["benchmark"]["extra_info"]["args"].get(
|
||||
"tensor_parallel_size")
|
||||
# Save tensor_parallel_size parameter if it's part of the metadata
|
||||
if not tp and "tensor_parallel_size" in extra_info:
|
||||
record["benchmark"]["extra_info"]["args"][
|
||||
"tensor_parallel_size"] = extra_info["tensor_parallel_size"]
|
||||
|
||||
records.append(record)
|
||||
|
||||
return records
|
||||
|
||||
|
||||
class InfEncoder(json.JSONEncoder):
|
||||
|
||||
def clear_inf(self, o: Any):
|
||||
if isinstance(o, dict):
|
||||
return {k: self.clear_inf(v) for k, v in o.items()}
|
||||
elif isinstance(o, list):
|
||||
return [self.clear_inf(v) for v in o]
|
||||
elif isinstance(o, float) and math.isinf(o):
|
||||
return "inf"
|
||||
return o
|
||||
|
||||
def iterencode(self, o: Any, *args, **kwargs) -> Any:
|
||||
return super().iterencode(self.clear_inf(o), *args, **kwargs)
|
||||
|
||||
|
||||
def write_to_json(filename: str, records: list) -> None:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(records, f, cls=InfEncoder)
|
@ -1,13 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import pandas as pd
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--input-path", type=str, required=True)
|
||||
parser.add_argument("--output-path", type=str, required=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
df = pd.read_json(args.input_path, lines=True)
|
||||
df.to_csv(args.output_path)
|
@ -1,12 +1,9 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable
|
||||
from typing import Callable, Iterable, List, Tuple
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
@ -229,7 +226,7 @@ def print_timers(timers: Iterable[TMeasurement]):
|
||||
|
||||
|
||||
def run(dtype: torch.dtype,
|
||||
MKNs: Iterable[tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
results = []
|
||||
for m, k, n in MKNs:
|
||||
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
|
||||
@ -242,7 +239,7 @@ def run(dtype: torch.dtype,
|
||||
|
||||
# output makers
|
||||
def make_output(data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
MKNs: Iterable[Tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None):
|
||||
print(f"== All Results {base_description} ====")
|
||||
@ -283,7 +280,7 @@ def run_model_bench(args):
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
|
||||
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
|
||||
KNs = []
|
||||
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
|
||||
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
|
||||
|
@ -1,7 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Cutlass bench utils
|
||||
from collections.abc import Iterable
|
||||
from typing import Iterable, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
@ -27,7 +25,7 @@ def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
|
||||
def make_rand_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
|
||||
@ -63,7 +61,7 @@ def prune_to_2_4(tensor):
|
||||
|
||||
|
||||
def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
k: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
k: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
a = torch.randn((m, k), device='cuda') * 5
|
||||
b = torch.randn((n, k), device='cuda').t() * 5
|
||||
|
||||
@ -88,7 +86,7 @@ def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int,
|
||||
|
||||
def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype,
|
||||
m: int, n: int, k: int) -> \
|
||||
tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
|
||||
Tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]:
|
||||
ABs = []
|
||||
for _ in range(num_tensors):
|
||||
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)
|
||||
|
@ -1,12 +1,9 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import itertools
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable, Iterable, List, Tuple
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
@ -15,8 +12,6 @@ from utils import make_rand_tensors
|
||||
from weight_shapes import WEIGHT_SHAPES
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||||
w8a8_block_fp8_matmul)
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
|
||||
@ -43,15 +38,8 @@ def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
|
||||
).blocked_autorange(min_run_time=min_run_time)
|
||||
|
||||
|
||||
def bench_int8(
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
"""Benchmark INT8-based kernels."""
|
||||
def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
assert dtype == torch.int8
|
||||
a, b = make_rand_tensors(torch.int8, m, n, k)
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
@ -60,132 +48,155 @@ def bench_int8(
|
||||
azp = torch.zeros((m, ), device="cuda", dtype=torch.int32)
|
||||
azp_adj = torch.zeros((n, ), device="cuda", dtype=torch.int32)
|
||||
|
||||
bench_fns = {
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
|
||||
"cutlass_i8_i8_bf16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_bias":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, None, bias),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, azp),
|
||||
"cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias":
|
||||
lambda: ops.cutlass_scaled_mm_azp(a, b, scale_a, scale_b, torch.
|
||||
bfloat16, azp_adj, azp, bias),
|
||||
}
|
||||
|
||||
timers = []
|
||||
for name, fn in bench_fns.items():
|
||||
# If bench_kernels is None, run all. Otherwise, run only exact matches.
|
||||
if bench_kernels is None or name in bench_kernels:
|
||||
print(f"Running {name}")
|
||||
timers.append(bench_fn(label, sub_label, name, fn))
|
||||
# pytorch impl - bfloat16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16),
|
||||
b.to(dtype=torch.bfloat16)))
|
||||
|
||||
# pytorch impl - float16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label,
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
|
||||
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))
|
||||
|
||||
# cutlass impl
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
|
||||
# cutlass with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias))
|
||||
|
||||
# cutlass with azp per-tensor
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj))
|
||||
|
||||
# cutlass with azp per-tensor + bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_bias",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj, None, bias))
|
||||
|
||||
# cutlass with azp per-token
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj, azp))
|
||||
|
||||
# cutlass with azp per-token + bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_azp_pt_bias",
|
||||
ops.cutlass_scaled_mm_azp, a, b, scale_a, scale_b,
|
||||
torch.bfloat16, azp_adj, azp, bias))
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench_fp8(
|
||||
dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
"""Benchmark FP8-based kernels."""
|
||||
def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
assert dtype == torch.float8_e4m3fn
|
||||
a, b = make_rand_tensors(torch.float8_e4m3fn, m, n, k)
|
||||
a_cont = a.contiguous()
|
||||
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
|
||||
block_scale_a = torch.rand((m, k // 128),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
block_scale_b = torch.rand((k // 128, n // 128),
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
block_scale_a_M_major = block_scale_a.t().contiguous().t()
|
||||
block_scale_b_K_major = block_scale_b.t().contiguous().t()
|
||||
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
print(m, k, n)
|
||||
|
||||
bench_fns = {
|
||||
"pytorch_bf16_bf16_bf16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.bfloat16), b.to(dtype=torch.bfloat16)
|
||||
),
|
||||
"pytorch_fp16_fp16_fp16_matmul-no-scales":
|
||||
lambda: torch.mm(a.to(dtype=torch.float16), b.to(dtype=torch.float16)),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm":
|
||||
lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.float16),
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum":
|
||||
lambda: torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm":
|
||||
lambda: torch._scaled_mm(
|
||||
a, b, scale_a, scale_b, out_dtype=torch.bfloat16),
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum":
|
||||
lambda: torch._scaled_mm(a,
|
||||
b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16),
|
||||
"cutlass_fp8_fp8_bf16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_bias":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.float16,
|
||||
bias.to(dtype=torch.float16)),
|
||||
"triton_fp8_fp8_fp16_scaled_mm_blockwise":
|
||||
lambda: w8a8_block_fp8_matmul(a_cont, b.t(), block_scale_a,
|
||||
block_scale_b.t(), (128, 128)),
|
||||
"cutlass_fp8_fp8_fp16_scaled_mm_blockwise":
|
||||
lambda: ops.cutlass_scaled_mm(a, b, block_scale_a_M_major,
|
||||
block_scale_b_K_major, torch.float16),
|
||||
}
|
||||
|
||||
timers = []
|
||||
for name, fn in bench_fns.items():
|
||||
# If bench_kernels is None, run all. Otherwise, run only exact matches.
|
||||
if bench_kernels is None or name in bench_kernels:
|
||||
print(f"Running {name}")
|
||||
timers.append(bench_fn(label, sub_label, name, fn))
|
||||
|
||||
# pytorch impl w. bf16
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
|
||||
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
|
||||
b.to(dtype=torch.bfloat16, device="cuda")))
|
||||
|
||||
# pytorch impl: bf16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16))
|
||||
|
||||
# pytorch impl: bf16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.bfloat16,
|
||||
use_fast_accum=True))
|
||||
|
||||
# pytorch impl: fp16 output, without fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16))
|
||||
|
||||
# pytorch impl: fp16 output, with fp8 fast accum
|
||||
timers.append(
|
||||
bench_fn(label,
|
||||
sub_label,
|
||||
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
|
||||
torch._scaled_mm,
|
||||
a,
|
||||
b,
|
||||
scale_a=scale_a,
|
||||
scale_b=scale_b,
|
||||
out_dtype=torch.float16,
|
||||
use_fast_accum=True))
|
||||
|
||||
# cutlass impl: bf16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
|
||||
torch.bfloat16))
|
||||
# cutlass impl: fp16 output
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16))
|
||||
|
||||
# cutlass impl: bf16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
|
||||
bias))
|
||||
|
||||
# cutlass impl: fp16 output, with bias
|
||||
timers.append(
|
||||
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_mm_bias",
|
||||
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.float16,
|
||||
bias.to(dtype=torch.float16)))
|
||||
|
||||
return timers
|
||||
|
||||
|
||||
def bench(dtype: torch.dtype,
|
||||
m: int,
|
||||
k: int,
|
||||
n: int,
|
||||
label: str,
|
||||
sub_label: str,
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
|
||||
sub_label: str) -> Iterable[TMeasurement]:
|
||||
if dtype == torch.int8:
|
||||
return bench_int8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||
return bench_int8(dtype, m, k, n, label, sub_label)
|
||||
if dtype == torch.float8_e4m3fn:
|
||||
return bench_fp8(dtype, m, k, n, label, sub_label, bench_kernels)
|
||||
return bench_fp8(dtype, m, k, n, label, sub_label)
|
||||
raise ValueError("unsupported type")
|
||||
|
||||
|
||||
@ -196,24 +207,20 @@ def print_timers(timers: Iterable[TMeasurement]):
|
||||
|
||||
|
||||
def run(dtype: torch.dtype,
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
bench_kernels: Optional[list[str]] = None) -> Iterable[TMeasurement]:
|
||||
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
|
||||
results = []
|
||||
for m, k, n in MKNs:
|
||||
timers = bench(dtype,
|
||||
m,
|
||||
k,
|
||||
n,
|
||||
f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})",
|
||||
bench_kernels=bench_kernels)
|
||||
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
|
||||
f"MKN=({m}x{k}x{n})")
|
||||
print_timers(timers)
|
||||
results.extend(timers)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
# output makers
|
||||
def make_output(data: Iterable[TMeasurement],
|
||||
MKNs: Iterable[tuple[int, int, int]],
|
||||
MKNs: Iterable[Tuple[int, int, int]],
|
||||
base_description: str,
|
||||
timestamp=None):
|
||||
print(f"== All Results {base_description} ====")
|
||||
@ -225,11 +232,15 @@ def make_output(data: Iterable[TMeasurement],
|
||||
pkl.dump(data, f)
|
||||
|
||||
|
||||
# argparse runners
|
||||
|
||||
|
||||
def run_square_bench(args):
|
||||
dim_sizes = list(
|
||||
range(args.dim_start, args.dim_end + 1, args.dim_increment))
|
||||
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
|
||||
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
|
||||
data = run(args.dtype, MKNs)
|
||||
|
||||
make_output(data, MKNs, f"square_bench-{args.dtype}")
|
||||
|
||||
|
||||
@ -240,7 +251,8 @@ def run_range_bench(args):
|
||||
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
|
||||
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
|
||||
MKNs = list(zip(Ms, Ks, Ns))
|
||||
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
|
||||
data = run(args.dtype, MKNs)
|
||||
|
||||
make_output(data, MKNs, f"range_bench-{args.dtype}")
|
||||
|
||||
|
||||
@ -249,7 +261,7 @@ def run_model_bench(args):
|
||||
for i, model in enumerate(args.models):
|
||||
print(f"[{i}] {model}")
|
||||
|
||||
def model_shapes(model_name: str, tp_size: int) -> list[tuple[int, int]]:
|
||||
def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
|
||||
KNs = []
|
||||
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
|
||||
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
|
||||
@ -266,7 +278,7 @@ def run_model_bench(args):
|
||||
for k, n in KNs:
|
||||
MKNs.append((m, k, n))
|
||||
|
||||
data = run(args.dtype, MKNs, bench_kernels=args.kernels)
|
||||
data = run(args.dtype, MKNs)
|
||||
model_bench_data.append(data)
|
||||
|
||||
# Print all results
|
||||
@ -316,15 +328,6 @@ Benchmark Cutlass GEMM.
|
||||
type=to_torch_dtype,
|
||||
required=True,
|
||||
help="Available options are ['int8', 'fp8']")
|
||||
parser.add_argument(
|
||||
"--kernels",
|
||||
nargs="+",
|
||||
type=str,
|
||||
default=None,
|
||||
help=
|
||||
"Exact names of the kernels to benchmark. If not set, runs all kernels."
|
||||
)
|
||||
|
||||
subparsers = parser.add_subparsers(dest="cmd")
|
||||
|
||||
square_parser = subparsers.add_parser("square_bench")
|
||||
@ -359,4 +362,4 @@ Benchmark Cutlass GEMM.
|
||||
model_parser.set_defaults(func=run_model_bench)
|
||||
|
||||
args = parser.parse_args()
|
||||
args.func(args)
|
||||
args.func(args)
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Weight Shapes are in the format
|
||||
# ([K, N], TP_SPLIT_DIM)
|
||||
# Example:
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import aiohttp
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import asyncio
|
||||
import itertools
|
||||
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import json
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
@ -1,11 +1,8 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import pickle as pkl
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass
|
||||
from itertools import product
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable, Iterable, List, Optional
|
||||
|
||||
import torch
|
||||
import torch.utils.benchmark as TBenchmark
|
||||
@ -30,7 +27,7 @@ class bench_params_t:
|
||||
f'x DT {self.dtype}')
|
||||
|
||||
|
||||
def get_bench_params() -> list[bench_params_t]:
|
||||
def get_bench_params() -> List[bench_params_t]:
|
||||
## Test Fixtures
|
||||
NUM_TOKENS = [2**x for x in range(11)]
|
||||
HIDDEN_SIZES = list(range(1024, 8129, 1024))
|
||||
|
@ -1,5 +1,3 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import Optional
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user