Compare commits

...

7 Commits

Author SHA1 Message Date
d1fb65bde3 Enable v1 metrics tests (#20953)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
2025-07-20 03:22:02 +00:00
3a1d8940ae [TPU] support fp8 kv cache quantization (#19292)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-07-20 03:01:00 +00:00
2b504eb770 [Docs] [V1] Update docs to remove enforce_eager limitation for hybrid models. (#21233)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-07-19 16:09:58 -07:00
10eb24cc91 GLM-4 Update (#20736)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Lu Fang <fanglu@fb.com>
2025-07-19 22:40:31 +00:00
2e8cbb58f3 [BugFix] Fix full cuda graph slot_mapping (#21228)
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
2025-07-19 14:13:18 -07:00
752c6ade2e [V0 Deprecation] Deprecate BlockSparse Attention & Phi3-Small (#21217)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-19 13:53:17 -07:00
881e3cbe3b [V1] [Hybrid] Enable piecewise CUDA Graph for mamba layers (#21194)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-07-19 19:27:21 +00:00
67 changed files with 2288 additions and 2515 deletions

View File

@ -108,7 +108,6 @@ fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \

View File

@ -264,6 +264,7 @@ steps:
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py

View File

@ -576,7 +576,11 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"):
elif config.architectures[0] in (
"DeepseekV3ForCausalLM",
"DeepseekV2ForCausalLM",
"Glm4MoeForCausalLM",
):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size

View File

@ -318,6 +318,7 @@ def main(args: argparse.Namespace):
elif (
config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"
or config.architectures[0] == "Glm4MoeForCausalLM"
):
E = config.n_routed_experts
topk = config.num_experts_per_tok

View File

@ -376,7 +376,6 @@ Specified using `--task generate`.
| `OrionForCausalLM` | Orion | `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc. | | ✅︎ | ✅︎ |
| `PhiForCausalLM` | Phi | `microsoft/phi-1_5`, `microsoft/phi-2`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi3ForCausalLM` | Phi-4, Phi-3 | `microsoft/Phi-4-mini-instruct`, `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi3SmallForCausalLM` | Phi-3-Small | `microsoft/Phi-3-small-8k-instruct`, `microsoft/Phi-3-small-128k-instruct`, etc. | | ✅︎ | ✅︎ |
| `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi4FlashForCausalLM` | Phi-4-mini-flash-reasoning | `microsoft/microsoft/Phi-4-mini-instruct`, etc. | | | |
| `PersimmonForCausalLM` | Persimmon | `adept/persimmon-8b-base`, `adept/persimmon-8b-chat`, etc. | | ✅︎ | ✅︎ |
@ -577,6 +576,7 @@ Specified using `--task generate`.
| `Gemma3ForConditionalGeneration` | Gemma 3 | T + I<sup>+</sup> | `google/gemma-3-4b-it`, `google/gemma-3-27b-it`, etc. | ✅︎ | ✅︎ | ⚠️ |
| `GLM4VForCausalLM`<sup>^</sup> | GLM-4V | T + I | `THUDM/glm-4v-9b`, `THUDM/cogagent-9b-20241220`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4vForConditionalGeneration` | GLM-4.1V-Thinking | T + I<sup>E+</sup> + V<sup>E+</sup> | `THUDM/GLM-4.1V-9B-Thinking`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4MoeForCausalLM` | GLM-4.5 | T + I<sup>E+</sup> + V<sup>E+</sup> | `THUDM/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GraniteSpeechForConditionalGeneration` | Granite Speech | T + A | `ibm-granite/granite-speech-3.3-8b` | ✅︎ | ✅︎ | ✅︎ |
| `H2OVLChatModel` | H2OVL | T + I<sup>E+</sup> | `h2oai/h2ovl-mississippi-800m`, `h2oai/h2ovl-mississippi-2b`, etc. | | ✅︎ | ✅︎ |
| `Idefics3ForConditionalGeneration` | Idefics3 | T + I | `HuggingFaceM4/Idefics3-8B-Llama3`, etc. | ✅︎ | | ✅︎ |

View File

@ -107,12 +107,11 @@ to enable simultaneous generation and embedding using the same engine instance i
Models using selective state-space mechanisms instead of standard transformer attention are partially supported.
Models that use Mamba-2 layers (e.g., `Mamba2ForCausalLM`) are supported, but models that use older Mamba-1 layers
(e.g., `MambaForCausalLM`, `JambaForCausalLM`) are not yet supported. Please note that these models currently require
enforcing eager mode and disabling prefix caching in V1.
disabling prefix caching in V1.
Models that combine Mamba-2 layers with standard attention layers are also supported (e.g., `BambaForCausalLM`,
`Zamba2ForCausalLM`, `NemotronHForCausalLM`, `FalconH1ForCausalLM` and `GraniteMoeHybridForCausalLM`). Please note that
these models currently require enforcing eager mode, disabling prefix caching, and using the FlashInfer attention
backend in V1.
these models currently require disabling prefix caching and using the FlashInfer attention backend in V1.
#### Encoder-Decoder Models

View File

@ -15,15 +15,18 @@ import pytest
from vllm.platforms import current_platform
MODEL_NAMES = [
"Qwen/Qwen2-1.5B-Instruct",
"Qwen/Qwen3-1.7B",
"google/gemma-3-1b-it",
]
FP8_KV_MODEL_NAMES = [
"Qwen/Qwen3-1.7B",
]
NUM_CONCURRENT = 500
TASK = "gsm8k"
FILTER = "exact_match,strict-match"
RTOL = 0.03
EXPECTED_VALUES = {
"Qwen/Qwen2-1.5B-Instruct": 0.58,
"Qwen/Qwen3-1.7B": 0.68,
"google/gemma-3-1b-it": 0.25,
}
@ -70,10 +73,9 @@ def test_lm_eval_accuracy_v1_engine(model, monkeypatch: pytest.MonkeyPatch):
if current_platform.is_tpu():
# Limit compilation time for TPU V1
if model == "google/gemma-3-1b-it":
# TPU + google/gemma-3-1b-it + xet doesn't work well.
m.setenv("HF_HUB_DISABLE_XET", "1")
# xet doesn't work well for both Qwen/Qwen3-1.7B and
# google/gemma-3-1b-it
m.setenv("HF_HUB_DISABLE_XET", "1")
more_args = "max_model_len=2048,max_num_seqs=64"
# Add TP test (if provided)
@ -83,9 +85,27 @@ def test_lm_eval_accuracy_v1_engine(model, monkeypatch: pytest.MonkeyPatch):
run_test(model, more_args)
def test_lm_eval_accuracy_v0_engine(monkeypatch: pytest.MonkeyPatch):
"""Run with the V0 Engine."""
@pytest.mark.skipif(not current_platform.is_cuda()
and not current_platform.is_tpu(),
reason="V1 is currently only supported on CUDA and TPU")
@pytest.mark.parametrize("model", FP8_KV_MODEL_NAMES)
def test_lm_eval_accuracy_v1_engine_fp8_kv_cache(
model, monkeypatch: pytest.MonkeyPatch):
"""Run with the V1 Engine."""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
run_test("Qwen/Qwen2-1.5B-Instruct")
m.setenv("VLLM_USE_V1", "1")
more_args = None
if current_platform.is_tpu():
# Limit compilation time for TPU V1
# xet doesn't work well for Qwen/Qwen3-1.7B
m.setenv("HF_HUB_DISABLE_XET", "1")
more_args = "max_model_len=2048,max_num_seqs=128,kv_cache_dtype=fp8"
# Add TP test (if provided)
if TPU_TP_TEST_STR:
more_args += ",{}".format(TPU_TP_TEST_STR)
run_test(model, more_args)

View File

@ -1,441 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import random
from typing import Optional
import pytest
import torch
from tests.kernels.allclose_default import get_default_atol, get_default_rtol
from vllm import _custom_ops as ops
from vllm.attention.ops.blocksparse_attention.interface import (
LocalStridedBlockSparseAttn)
from vllm.platforms import current_platform
from vllm.utils import get_max_shared_memory_bytes
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
# - 512 as a buffer
MAX_SEQ_LEN = get_max_shared_memory_bytes() // FLOAT32_BYTES - 512
# MAX_SEQ_LEN = 2771
# There may not be enough gpu memory due to large NUM_BLOCKS.
# Reduce NUM_BLOCKS when it happens.
NUM_BLOCKS = 4321 # Arbitrary values for testing
PARTITION_SIZE = 512
DTYPES = [torch.half, torch.bfloat16]
NUM_GEN_SEQS = [3] # Arbitrary values for testing
NUM_PREFILL_SEQS = [3] # Arbitrary values for testing
NUM_HEADS = [(40, 40)] # Arbitrary values for testing
HEAD_SIZES = [64, 112]
BLOCK_SIZES = [16]
USE_ALIBI = [False, True]
KV_CACHE_DTYPE = ["auto", "fp8"]
SEEDS = [0]
CUDA_DEVICES = ['cuda:0']
BLOCKSPARSE_LOCAL_BLOCKS = [16]
BLOCKSPARSE_VERT_STRIDES = [8]
BLOCKSPARSE_BLOCK_SIZES = [64]
BLOCKSPARSE_HEADS_SLIDINGS = [2, -1]
BLOCKSPARSE_HOMO_HEADS = [True, False]
def ref_masked_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
if attn_mask is not None:
attn_weights = attn_weights + attn_mask.float()
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.einsum("hqk,khd->qhd", attn_weights, value)
return out
def ref_single_query_cached_kv_attention(
output: torch.Tensor,
query: torch.Tensor,
num_queries_per_kv: int,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
seq_lens: torch.Tensor,
scale: float,
alibi_slopes: Optional[torch.Tensor],
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 1,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
num_query_heads = query.shape[1]
num_kv_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
block_size = value_cache.shape[3]
num_seqs = query.shape[0]
block_tables_lst = block_tables.cpu().tolist()
seq_lens_lst = seq_lens.cpu().tolist()
for i in range(num_seqs):
q = query[i].unsqueeze(0)
block_table = block_tables_lst[i]
seq_len = int(seq_lens_lst[i])
keys_lst: list[torch.Tensor] = []
values_lst: list[torch.Tensor] = []
for j in range(seq_len):
block_number = int(block_table[j // block_size])
block_offset = j % block_size
k = key_cache[block_number, :, :, block_offset, :]
k = k.reshape(num_kv_heads, head_size)
keys_lst.append(k)
v = value_cache[block_number, :, :, block_offset]
values_lst.append(v)
keys = torch.stack(keys_lst, dim=0)
values = torch.stack(values_lst, dim=0)
if num_queries_per_kv > 1:
# Handle MQA and GQA
keys = torch.repeat_interleave(keys, num_queries_per_kv, dim=1)
values = torch.repeat_interleave(values, num_queries_per_kv, dim=1)
alibi_bias = None
if alibi_slopes is not None:
# Create the ALiBi bias used in the paged attention kernel.
position_ids = torch.arange(seq_len).int()
alibi_bias = (position_ids - seq_len + 1).float()
alibi_bias = alibi_slopes.view(-1, 1, 1) * alibi_bias.view(
1, 1, -1)
if blocksparse_vert_stride >= 1:
bsize = blocksparse_block_size
hsliding = blocksparse_head_sliding_step
vert = blocksparse_vert_stride
locals = blocksparse_local_blocks
qb = (seq_len - 1) // bsize
attn_mask = q.new_zeros(
(num_query_heads, 1, seq_len)).float() - torch.inf
for h in range(num_query_heads):
if hsliding >= 0: # slide with q heads
bs_offset = (tp_rank * num_query_heads + h) * hsliding + 1
else: # slide with kv heads
bs_offset = (tp_rank * num_kv_heads +
h // num_queries_per_kv) * (-hsliding) + 1
for kb in range(qb + 1):
kj = kb * bsize
if (qb - kb) < locals or \
(kb + bs_offset) % vert == 0:
attn_mask[h, 0, kj:min(kj + bsize, seq_len)] = 0
if alibi_bias is not None:
attn_mask += alibi_bias
else:
attn_mask = alibi_bias
out = ref_masked_attention(q, keys, values, scale, attn_mask=attn_mask)
out = out.view(num_query_heads, head_size)
output[i].copy_(out, non_blocking=True)
@pytest.mark.parametrize("version", ["v1", "v2"])
@pytest.mark.parametrize("num_seqs", NUM_GEN_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("use_alibi", USE_ALIBI)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("blocksparse_local_blocks", BLOCKSPARSE_LOCAL_BLOCKS)
@pytest.mark.parametrize("blocksparse_vert_stride", BLOCKSPARSE_VERT_STRIDES)
@pytest.mark.parametrize("blocksparse_block_size", BLOCKSPARSE_BLOCK_SIZES)
@pytest.mark.parametrize("blocksparse_head_sliding_step",
BLOCKSPARSE_HEADS_SLIDINGS)
def test_paged_attention(
kv_cache_factory,
version: str,
num_seqs: int,
num_heads: tuple[int, int],
head_size: int,
use_alibi: bool,
block_size: int,
dtype: torch.dtype,
kv_cache_dtype: str,
seed: int,
device: str,
blocksparse_local_blocks: int,
blocksparse_vert_stride: int,
blocksparse_block_size: int,
blocksparse_head_sliding_step: int,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
query = torch.empty(num_seqs, num_query_heads, head_size, dtype=dtype)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
num_queries_per_kv = num_query_heads // num_kv_heads
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.rand(num_query_heads, dtype=torch.float)
seq_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
seq_lens[-1] = MAX_SEQ_LEN
max_seq_len = max(seq_lens)
seq_lens = torch.tensor(seq_lens, dtype=torch.int)
# Create the block tables.
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int)
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(NUM_BLOCKS, block_size, 1,
num_kv_heads, head_size,
kv_cache_dtype, dtype, seed,
device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Using default kv_scale
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
tp_rank = 0
# Call the paged attention kernel.
output = torch.empty_like(query)
if version == "v1":
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
tp_rank=tp_rank,
blocksparse_local_blocks=blocksparse_local_blocks,
blocksparse_vert_stride=blocksparse_vert_stride,
blocksparse_block_size=blocksparse_block_size,
blocksparse_head_sliding_step=blocksparse_head_sliding_step,
)
elif version == "v2":
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
assert PARTITION_SIZE % block_size == 0
num_seqs, num_heads, head_size = output.shape
tmp_output = torch.empty(
size=(num_seqs, num_heads, num_partitions, head_size),
dtype=output.dtype,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, num_partitions),
dtype=torch.float32,
)
max_logits = torch.empty_like(exp_sums)
ops.paged_attention_v2(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
tp_rank=tp_rank,
blocksparse_local_blocks=blocksparse_local_blocks,
blocksparse_vert_stride=blocksparse_vert_stride,
blocksparse_block_size=blocksparse_block_size,
blocksparse_head_sliding_step=blocksparse_head_sliding_step,
)
else:
raise AssertionError(f"Unknown version: {version}")
# Run the reference implementation.
if kv_cache_dtype == "fp8":
# Convert cache data back to dtype.
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x,
block_size, x)
dequantized_key_cache = torch.empty(size=key_cache_shape,
dtype=dtype,
device=device)
ops.convert_fp8(dequantized_key_cache, key_cache)
key_cache = dequantized_key_cache
value_cache_shape = value_cache.shape
dequantized_value_cache = torch.empty(size=value_cache_shape,
dtype=dtype,
device=device)
ops.convert_fp8(dequantized_value_cache, value_cache)
value_cache = dequantized_value_cache
ref_output = torch.empty_like(query)
ref_single_query_cached_kv_attention(
ref_output,
query,
num_queries_per_kv,
key_cache,
value_cache,
block_tables,
seq_lens,
scale,
alibi_slopes,
tp_rank,
blocksparse_local_blocks,
blocksparse_vert_stride,
blocksparse_block_size,
blocksparse_head_sliding_step,
)
# NOTE(woosuk): Due to the kernel-level differences in the two
# implementations, there is a small numerical difference in the two
# outputs. Thus, we use a relaxed tolerance for the test.
atol = get_default_atol(output) if current_platform.is_rocm() else 1e-3
rtol = get_default_rtol(output) if current_platform.is_rocm() else 1e-5
# NOTE(zhaoyang): FP8 KV Cache will introduce quantization error,
# so we use a relaxed tolerance for the test.
atol, rtol = 1e-3, 1e-5
if kv_cache_dtype == "fp8":
atol, rtol = 1e-2, 1e-5
torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol)
def ref_multi_query_kv_attention(
cu_seq_lens: list[int],
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
dtype: torch.dtype,
) -> torch.Tensor:
num_seqs = len(cu_seq_lens) - 1
ref_outputs = []
for i in range(num_seqs):
start_idx = cu_seq_lens[i]
end_idx = cu_seq_lens[i + 1]
seq_len = end_idx - start_idx
# Create attention mask.
attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
diagonal=1)
attn_mask = attn_mask * torch.finfo(dtype).min
attn_mask = attn_mask.to(dtype=dtype)
ref_output = ref_masked_attention(
query[start_idx:end_idx],
key[start_idx:end_idx],
value[start_idx:end_idx],
scale,
attn_mask=attn_mask,
)
ref_outputs.append(ref_output)
ref_output = torch.cat(ref_outputs, dim=0)
return ref_output
@pytest.mark.parametrize("num_seqs", NUM_PREFILL_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("blocksparse_local_blocks", BLOCKSPARSE_LOCAL_BLOCKS)
@pytest.mark.parametrize("blocksparse_vert_stride", BLOCKSPARSE_VERT_STRIDES)
@pytest.mark.parametrize("blocksparse_block_size", BLOCKSPARSE_BLOCK_SIZES)
@pytest.mark.parametrize("blocksparse_homo_heads", BLOCKSPARSE_HOMO_HEADS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_varlen_blocksparse_attention_prefill(
num_seqs: int,
num_heads: tuple[int, int],
head_size: int,
blocksparse_local_blocks: int,
blocksparse_vert_stride: int,
blocksparse_block_size: int,
blocksparse_homo_heads: bool,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
# MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
# As the xformers library is already tested with its own tests, we can use
# a smaller MAX_SEQ_LEN here.
max_len = min(MAX_SEQ_LEN, 4096)
seq_lens = random.sample(range(1, max_len), num_seqs)
cu_seq_lens = torch.cumsum(torch.tensor([0] + seq_lens), dim=0)
num_tokens = sum(seq_lens)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
assert num_query_heads % num_kv_heads == 0
num_queries_per_kv = num_query_heads // num_kv_heads
qkv = torch.empty(num_tokens,
num_query_heads + 2 * num_kv_heads,
head_size,
dtype=dtype)
qkv.uniform_(-scale, scale)
query, key, value = qkv.split(
[num_query_heads, num_kv_heads, num_kv_heads], dim=1)
bs_attn_op = LocalStridedBlockSparseAttn(
num_query_heads,
max_len,
local_blocks=blocksparse_local_blocks,
vert_stride=blocksparse_vert_stride,
block_size=blocksparse_block_size,
device=device,
dtype=dtype,
homo_head=blocksparse_homo_heads)
output = bs_attn_op(query,
key,
value,
cu_seq_lens.to(device),
sm_scale=scale)
if num_queries_per_kv > 1:
# Handle MQA and GQA
key = torch.repeat_interleave(key, num_queries_per_kv, dim=1)
value = torch.repeat_interleave(value, num_queries_per_kv, dim=1)
ref_output = ref_multi_query_kv_attention(
cu_seq_lens.tolist(),
query,
key,
value,
scale,
dtype,
)
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2)

View File

@ -33,8 +33,12 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
# change the attention backend to triton MLA
m.setenv(STR_BACKEND_ENV_VAR, "TRITON_MLA")
backend = get_attn_backend(576, torch.bfloat16, "auto", 16, False,
False, True)
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
16,
False,
use_mla=True)
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
@ -42,15 +46,23 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
# If use_mla is true
# The selected backend is triton MLA
m.setenv(STR_BACKEND_ENV_VAR, None)
backend = get_attn_backend(576, torch.bfloat16, "auto", 16, False,
False, True)
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
16,
False,
use_mla=True)
assert (backend.get_name() == "TRITON_MLA"
or backend.get_name() == "TRITON_MLA_VLLM_V1")
# change the attention backend to AITER MLA
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_AITER_MLA")
backend = get_attn_backend(576, torch.bfloat16, "auto", 1, False,
False, True)
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
1,
False,
use_mla=True)
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")
@ -60,7 +72,11 @@ def test_selector(monkeypatch: pytest.MonkeyPatch):
# The selected backend is ROCM_AITER_MLA
m.setenv(STR_BACKEND_ENV_VAR, None)
m.setenv("VLLM_ROCM_USE_AITER", "1")
backend = get_attn_backend(576, torch.bfloat16, "auto", 1, False,
False, True)
backend = get_attn_backend(576,
torch.bfloat16,
"auto",
1,
False,
use_mla=True)
assert (backend.get_name() == "ROCM_AITER_MLA"
or backend.get_name() == "ROCM_AITER_MLA_VLLM_V1")

View File

@ -104,7 +104,6 @@ def test_models(
m.setenv("VLLM_ATTENTION_BACKEND", "FLASHINFER")
with vllm_runner(model,
max_num_seqs=MAX_NUM_SEQS,
enforce_eager=True,
enable_prefix_caching=False) as vllm_model:
vllm_v1_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)

View File

@ -247,10 +247,6 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"PersimmonForCausalLM": _HfExamplesInfo("adept/persimmon-8b-chat"),
"PhiForCausalLM": _HfExamplesInfo("microsoft/phi-2"),
"Phi3ForCausalLM": _HfExamplesInfo("microsoft/Phi-3-mini-4k-instruct"),
# Blocksparse attention not supported in V1 yet
"Phi3SmallForCausalLM": _HfExamplesInfo("microsoft/Phi-3-small-8k-instruct",
trust_remote_code=True,
v0_only=True),
"Phi4FlashForCausalLM": _HfExamplesInfo("microsoft/Phi-4-mini-flash-reasoning", # noqa: E501
trust_remote_code=True,
v0_only=True,
@ -364,6 +360,9 @@ _MULTIMODAL_EXAMPLE_MODELS = {
trust_remote_code=True,
hf_overrides={"architectures": ["GLM4VForCausalLM"]}), # noqa: E501
"Glm4vForConditionalGeneration": _HfExamplesInfo("THUDM/GLM-4.1V-9B-Thinking", min_transformers_version="4.53"), # noqa: E501
"Glm4MoeForCausalLM": _HfExamplesInfo("THUDM/GLM-4.5",
min_transformers_version="4.54",
is_available_online=False), # noqa: E501
"H2OVLChatModel": _HfExamplesInfo("h2oai/h2ovl-mississippi-800m",
extras={"2b": "h2oai/h2ovl-mississippi-2b"}, # noqa: E501
max_transformers_version="4.48", # noqa: E501
@ -489,6 +488,10 @@ _SPECULATIVE_DECODING_EXAMPLE_MODELS = {
is_available_online=False,
speculative_model="openbmb/MiniCPM-2B-sft-bf16",
tokenizer="openbmb/MiniCPM-2B-sft-bf16"),
"Glm4MoeMTPModel": _HfExamplesInfo("THUDM/GLM-4.5",
speculative_model="THUDM/GLM-4.5",
min_transformers_version="4.54",
is_available_online=False),
"MiMoMTPModel": _HfExamplesInfo("XiaomiMiMo/MiMo-7B-RL",
trust_remote_code=True,
speculative_model="XiaomiMiMo/MiMo-7B-RL")

View File

@ -0,0 +1,410 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# ruff: noqa: E501
import json
import pytest
from vllm.entrypoints.openai.protocol import FunctionCall, ToolCall
from vllm.entrypoints.openai.tool_parsers import Glm4MoeModelToolParser
from vllm.transformers_utils.tokenizer import get_tokenizer
pytest.skip("skip glm4_moe parser test", allow_module_level=True)
# Use a common model that is likely to be available
MODEL = "THUDM/GLM-4.5"
@pytest.fixture(scope="module")
def glm4_moe_tokenizer():
return get_tokenizer(tokenizer_name=MODEL)
@pytest.fixture
def glm4_moe_tool_parser(glm4_moe_tokenizer):
return Glm4MoeModelToolParser(glm4_moe_tokenizer)
def assert_tool_calls(actual_tool_calls: list[ToolCall],
expected_tool_calls: list[ToolCall]):
assert len(actual_tool_calls) == len(expected_tool_calls)
for actual_tool_call, expected_tool_call in zip(actual_tool_calls,
expected_tool_calls):
assert isinstance(actual_tool_call.id, str)
assert len(actual_tool_call.id) > 0
assert actual_tool_call.type == "function"
assert actual_tool_call.function.name == expected_tool_call.function.name
# Compare arguments as JSON objects to handle formatting differences
actual_args = json.loads(actual_tool_call.function.arguments)
expected_args = json.loads(expected_tool_call.function.arguments)
assert actual_args == expected_args
def test_extract_tool_calls_no_tools(glm4_moe_tool_parser):
model_output = "This is a test"
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert not extracted_tool_calls.tools_called
assert extracted_tool_calls.tool_calls == []
assert extracted_tool_calls.content == model_output
@pytest.mark.parametrize(
ids=[
"single_tool_call",
"multiple_tool_calls",
"tool_call_with_content_before",
"tool_call_with_mixed_args",
"tool_call_with_chinese_content",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
(
"""<tool_call>get_current_weather
<arg_key>city</arg_key>
<arg_value>Dallas</arg_value>
<arg_key>state</arg_key>
<arg_value>TX</arg_value>
<arg_key>unit</arg_key>
<arg_value>fahrenheit</arg_value>
</tool_call>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit",
}),
))
],
None,
),
(
"""<tool_call>get_current_weather
<arg_key>city</arg_key>
<arg_value>Dallas</arg_value>
<arg_key>state</arg_key>
<arg_value>TX</arg_value>
<arg_key>unit</arg_key>
<arg_value>fahrenheit</arg_value>
</tool_call>
<tool_call>get_current_weather
<arg_key>city</arg_key>
<arg_value>Orlando</arg_value>
<arg_key>state</arg_key>
<arg_value>FL</arg_value>
<arg_key>unit</arg_key>
<arg_value>fahrenheit</arg_value>
</tool_call>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit",
}),
)),
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Orlando",
"state": "FL",
"unit": "fahrenheit",
}),
)),
],
None,
),
(
"""I'll help you check the weather. <tool_call>get_current_weather
<arg_key>city</arg_key>
<arg_value>Seattle</arg_value>
<arg_key>state</arg_key>
<arg_value>WA</arg_value>
<arg_key>unit</arg_key>
<arg_value>celsius</arg_value>
</tool_call>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Seattle",
"state": "WA",
"unit": "celsius",
}),
))
],
"I'll help you check the weather.",
),
(
"""<tool_call>get_current_weather
<arg_key>city</arg_key>
<arg_value>New York</arg_value>
<arg_key>state</arg_key>
<arg_value>NY</arg_value>
<arg_key>unit</arg_key>
<arg_value>celsius</arg_value>
</tool_call>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "New York",
"state": "NY",
"unit": "celsius",
}),
))
],
None,
),
("""I will help you get the weather.<tool_call>get_weather
<arg_key>city</arg_key>
<arg_value>Beijing</arg_value>
<arg_key>date</arg_key>
<arg_value>2025-08-01</arg_value>
</tool_call>""", [
ToolCall(function=FunctionCall(
name="get_weather",
arguments=json.dumps({
"city": "Beijing",
"date": "2025-08-01",
}),
))
], "I will help you get the weather."),
],
)
def test_extract_tool_calls(glm4_moe_tool_parser, model_output,
expected_tool_calls, expected_content):
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert_tool_calls(extracted_tool_calls.tool_calls, expected_tool_calls)
assert extracted_tool_calls.content == expected_content
def test_extract_tool_calls_with_thinking_tags(glm4_moe_tool_parser):
"""Test tool extraction when thinking tags are present."""
model_output = """<think>I want to get the weather.</think>
I will help you get the weather.
<tool_call>get_weather
<arg_key>city</arg_key>
<arg_value>Beijing</arg_value>
<arg_key>date</arg_key>
<arg_value>2025-08-01</arg_value>
</tool_call>"""
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert len(extracted_tool_calls.tool_calls) == 1
assert extracted_tool_calls.tool_calls[0].function.name == "get_weather"
expected_content = """<think>I want to get the weather.</think>
I will help you get the weather."""
assert extracted_tool_calls.content == expected_content
def test_extract_tool_calls_malformed_xml(glm4_moe_tool_parser):
"""Test that malformed XML is handled gracefully."""
model_output = """<tool_call>get_weather
<arg_key>city</arg_key>
<arg_value>Seattle</arg_value>
<arg_key>incomplete_arg
<arg_value>value</arg_value>
</tool_call>"""
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
# Should handle malformed XML gracefully
# The parser should either extract what it can or return no tool calls
# depending on how robust we want the parsing to be
assert isinstance(extracted_tool_calls.tools_called, bool)
assert isinstance(extracted_tool_calls.tool_calls, list)
def test_extract_tool_calls_empty_arguments(glm4_moe_tool_parser):
"""Test tool calls with no arguments."""
model_output = """<tool_call>get_current_time
</tool_call>"""
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert len(extracted_tool_calls.tool_calls) == 1
assert extracted_tool_calls.tool_calls[
0].function.name == "get_current_time"
# Empty arguments should result in empty JSON object
assert extracted_tool_calls.tool_calls[0].function.arguments == "{}"
def test_extract_tool_calls_mixed_content(glm4_moe_tool_parser):
"""Test extraction with mixed content and multiple tool calls."""
model_output = """I will help you get the weather info.
<tool_call>get_weather
<arg_key>city</arg_key>
<arg_value>Beijing</arg_value>
<arg_key>date</arg_key>
<arg_value>2025-08-01</arg_value>
</tool_call>
meaningwhile, I will also check the weather in Shanghai.
<tool_call>get_weather
<arg_key>city</arg_key>
<arg_value>Shanghai</arg_value>
<arg_key>date</arg_key>
<arg_value>2025-08-01</arg_value>
</tool_call>"""
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert len(extracted_tool_calls.tool_calls) == 2
# Check first tool call
assert extracted_tool_calls.tool_calls[0].function.name == "get_weather"
args1 = json.loads(extracted_tool_calls.tool_calls[0].function.arguments)
assert args1["city"] == "Beijing"
assert args1["date"] == "2025-08-01"
# Check second tool call
assert extracted_tool_calls.tool_calls[1].function.name == "get_weather"
args2 = json.loads(extracted_tool_calls.tool_calls[1].function.arguments)
assert args2["city"] == "Shanghai"
assert args2["date"] == "2025-08-01"
# Content should be everything before the first tool call
assert extracted_tool_calls.content == "I will help you get the weather info."
def test_streaming_basic_functionality(glm4_moe_tool_parser):
"""Test basic streaming functionality."""
# Reset streaming state
glm4_moe_tool_parser.current_tool_name_sent = False
glm4_moe_tool_parser.prev_tool_call_arr = []
glm4_moe_tool_parser.current_tool_id = -1
glm4_moe_tool_parser.streamed_args_for_tool = []
# Test with a simple tool call
current_text = """<tool_call>get_weather
<arg_key>city</arg_key>
<arg_value>Beijing</arg_value>
</tool_call>"""
# Mock token IDs for testing
tool_call_start_id = glm4_moe_tool_parser.tool_call_start_token_id or 12345
tool_call_end_id = glm4_moe_tool_parser.tool_call_end_token_id or 12346
result = glm4_moe_tool_parser.extract_tool_calls_streaming(
previous_text="",
current_text=current_text,
delta_text="</tool_call>",
previous_token_ids=[],
current_token_ids=[tool_call_start_id, tool_call_end_id],
delta_token_ids=[tool_call_end_id],
request=None,
)
# The result behavior depends on the streaming state
# This test mainly ensures no exceptions are thrown
assert result is None or hasattr(result, 'tool_calls') or hasattr(
result, 'content')
def test_streaming_no_tool_calls(glm4_moe_tool_parser):
"""Test streaming when there are no tool calls."""
current_text = "This is just regular text without any tool calls."
result = glm4_moe_tool_parser.extract_tool_calls_streaming(
previous_text="This is just regular text",
current_text=current_text,
delta_text=" without any tool calls.",
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
# Should return the delta text as content
assert result is not None
assert hasattr(result, 'content')
assert result.content == " without any tool calls."
def test_streaming_with_content_before_tool_calls(glm4_moe_tool_parser):
"""Test streaming when there's content before tool calls."""
# Reset streaming state
glm4_moe_tool_parser.current_tool_name_sent = False
glm4_moe_tool_parser.prev_tool_call_arr = []
glm4_moe_tool_parser.current_tool_id = -1
glm4_moe_tool_parser.streamed_args_for_tool = []
current_text = "I will help you get the weather<tool_call>"
result = glm4_moe_tool_parser.extract_tool_calls_streaming(
previous_text="I will help you",
current_text=current_text,
delta_text="get the weather.<tool_call>",
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
# Should return content when no tool call tokens are detected
assert result is not None
assert hasattr(result, 'content')
assert result.content == "get the weather.<tool_call>"
def test_extract_tool_calls_special_characters(glm4_moe_tool_parser):
"""Test tool calls with special characters and unicode."""
model_output = """<tool_call>send_message
<arg_key>recipient</arg_key>
<arg_value>Amy</arg_value>
<arg_key>message</arg_key>
<arg_value>It is a nice day</arg_value>
<arg_key>priority</arg_key>
<arg_value>high</arg_value>
</tool_call>"""
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert len(extracted_tool_calls.tool_calls) == 1
assert extracted_tool_calls.tool_calls[0].function.name == "send_message"
args = json.loads(extracted_tool_calls.tool_calls[0].function.arguments)
assert args["recipient"] == "Amy"
assert args["message"] == "It is a nice day"
assert args["priority"] == "high"
def test_extract_tool_calls_incomplete_tool_call(glm4_moe_tool_parser):
"""Test incomplete tool calls (missing closing tag)."""
model_output = """<tool_call>get_weather
<arg_key>city</arg_key>
<arg_value>Beijing</arg_value>
<arg_key>date</arg_key>
<arg_value>2025-08-01</arg_value>"""
extracted_tool_calls = glm4_moe_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
# Incomplete tool calls should not be extracted
assert not extracted_tool_calls.tools_called
assert extracted_tool_calls.tool_calls == []
assert extracted_tool_calls.content == model_output

View File

@ -1,8 +1,11 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import pytest
import ray
from vllm.config import ModelDType
from vllm.sampling_params import SamplingParams
from vllm.v1.engine.async_llm import AsyncEngineArgs, AsyncLLM
from vllm.v1.metrics.ray_wrappers import RayPrometheusStatLogger
@ -27,7 +30,7 @@ MODELS = [
def test_engine_log_metrics_ray(
example_prompts,
model: str,
dtype: str,
dtype: ModelDType,
max_tokens: int,
) -> None:
""" Simple smoke test, verifying this can be used without exceptions.
@ -37,11 +40,14 @@ def test_engine_log_metrics_ray(
class EngineTestActor:
async def run(self):
engine_args = AsyncEngineArgs(
model=model,
dtype=dtype,
disable_log_stats=False,
)
# Set environment variable inside the Ray actor since environment
# variables from pytest fixtures don't propagate to Ray actors
os.environ['VLLM_USE_V1'] = '1'
engine_args = AsyncEngineArgs(model=model,
dtype=dtype,
disable_log_stats=False,
enforce_eager=True)
engine = AsyncLLM.from_engine_args(
engine_args, stat_loggers=[RayPrometheusStatLogger])

View File

@ -95,4 +95,6 @@ def test_ragged_paged_attention():
sm_scale=scale,
sliding_window=sliding_window,
soft_cap=logits_soft_cap,
k_scale=1.0,
v_scale=1.0,
)

View File

@ -269,7 +269,6 @@ class AttentionImpl(ABC, Generic[T]):
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
kv_cache_dtype: str = "auto",
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,

View File

@ -1,466 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionLayer,
AttentionMetadata, AttentionType)
from vllm.attention.backends.utils import (CommonAttentionState,
CommonMetadataBuilder)
from vllm.attention.ops.blocksparse_attention.interface import (
LocalStridedBlockSparseAttn, get_head_sliding_step)
from vllm.attention.ops.paged_attn import PagedAttention
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
@dataclass
class BlocksparseParams:
max_seqlen: int
# Num q heads per tensor-parallel rank/partition
num_heads: int # per TP partition
# Num kv heads per tensor-parallel rank/partition
num_kv_heads: int
# block size used for blocksparse attention.
# This is the block_size used in `local_blocks`, `vert_stride`.
block_size: int
# Number of blocks for local attention, i.e., number of
# local attended tokens / `sparse_block_size`
local_blocks: int
# Attend to one block per every `vert_stride` blocks.
# Controlling the sparsity
vert_stride: int
"""
If to use the same vertical stride offset for all heads,
i.e., attend to the same block of tokens on all heads.
By default, it is False, i.e., attention on the non-local
blocks depends on the `head_idx`, that is on
blocks satisfying
`(block_idx + head_idx * head_sliding_step + 1) % vert_stride == 0`
where `head_sliding_step=max(1, int(vert_stride / num_total_heads))`,
`block_idx = position_id // sparse_block_size`.
See `..ops.blocksparse_attention.utils:get_sparse_attn_mask`
for more detail.
"""
homo_head: bool = False
# If within a group, the kv offsets that each q attends is the same or no.
homo_head_group: bool = False
# Decided by homo_head and homo_head group
head_sliding_step: int = field(init=False)
# range of q heads to for a TP rank
active_head_range: Tuple = field(init=False)
def __post_init__(self):
assert self.block_size > 0
assert self.local_blocks >= 0
assert self.vert_stride >= 1
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
total_heads = tp_size * self.num_heads
total_kv_heads = tp_size * self.num_kv_heads
if self.homo_head:
self.head_sliding_step = 0
elif self.homo_head_group:
head_sliding_step = get_head_sliding_step(total_kv_heads,
self.vert_stride)
# negative indicates sliding along kv heads, i.e., homo q group
self.head_sliding_step = -head_sliding_step
else:
self.head_sliding_step = get_head_sliding_step(
total_heads, self.vert_stride)
self.active_head_range = (
tp_rank * self.num_heads,
(tp_rank + 1) * self.num_heads,
)
class BlocksparseFlashAttentionBackend(AttentionBackend):
@staticmethod
def get_name() -> str:
return "BLOCK_SPARSE_FLASH_ATTN"
@staticmethod
def get_impl_cls() -> Type["BlocksparseFlashAttentionImpl"]:
return BlocksparseFlashAttentionImpl
@staticmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
return BlocksparseFlashAttentionMetadata
@staticmethod
def get_builder_cls() -> Type["BlocksparseFlashAttentionMetadataBuilder"]:
return BlocksparseFlashAttentionMetadataBuilder
@staticmethod
def get_state_cls() -> Type["CommonAttentionState"]:
return CommonAttentionState
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
num_kv_heads, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: Dict[int, int],
) -> None:
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: Dict[int, List[int]],
) -> None:
PagedAttention.copy_blocks(kv_caches, src_to_dists)
@dataclass
class BlocksparseFlashAttentionMetadata(AttentionMetadata):
"""A copy of Metadata for FlashAttentionBackend,
to avoid having to install flash_attn.
NOTE: Any python object stored here is not updated when it is
cuda-graph replayed. If you have values that need to be changed
dynamically, it should be stored in tensor. The tensor has to be
updated from `CUDAGraphRunner.forward` API.
"""
# (batch_size,). The sequence length per sequence. Sequence length means
# the computed tokens + new tokens None if it is a decoding.
seq_lens: Optional[List[int]]
# seq_lens stored as a tensor.
seq_lens_tensor: Optional[torch.Tensor]
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ----------------------|
# |-- query_len ---|
# Maximum query length in the batch. None for decoding.
max_query_len: Optional[int]
# Maximum sequence length among prefill batch. 0 if there are decoding
# requests only.
max_prefill_seq_len: int
# Maximum sequence length among decode batch. 0 if there are prefill
# requests only.
max_decode_seq_len: int
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
# the batch, used to index into subquery. E.g., if the subquery length
# is [4, 6], it is [0, 4, 10].
query_start_loc: Optional[torch.Tensor]
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
# the batch, used to index into sequence. E.g., if the sequence length is
# [4, 6], it is [0, 4, 10].
seq_start_loc: Optional[torch.Tensor]
# (batch_size,) A tensor of context lengths (tokens that are computed
# so far).
context_lens_tensor: Optional[torch.Tensor]
# (batch_size, max_blocks_per_seq).
# Block addresses per sequence. (Seq id -> list of physical block)
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
# in the kv cache. Each block can contain up to block_size tokens.
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
# captured.
block_tables: Optional[torch.Tensor]
# Whether or not if cuda graph is enabled.
# Cuda-graph is currently enabled for decoding only.
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
use_cuda_graph: bool
# Max number of query tokens for among request in the batch.
max_decode_query_len: Optional[int] = None
_cached_prefill_metadata: Optional[
"BlocksparseFlashAttentionMetadata"] = None
_cached_decode_metadata: Optional[
"BlocksparseFlashAttentionMetadata"] = None
@property
def prefill_metadata(
self) -> Optional["BlocksparseFlashAttentionMetadata"]:
if self.num_prefills == 0:
return None
if self._cached_prefill_metadata is not None:
return self._cached_prefill_metadata
assert self.seq_lens is not None
assert self.seq_lens_tensor is not None
assert self.query_start_loc is not None
assert self.context_lens_tensor is not None
assert self.block_tables is not None
assert self.seq_start_loc is not None
self._cached_prefill_metadata = BlocksparseFlashAttentionMetadata(
num_prefills=self.num_prefills,
num_prefill_tokens=self.num_prefill_tokens,
num_decode_tokens=0,
slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
multi_modal_placeholder_index_maps=self.
multi_modal_placeholder_index_maps,
enable_kv_scales_calculation=self.enable_kv_scales_calculation,
seq_lens=self.seq_lens[:self.num_prefills],
seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
max_query_len=self.max_query_len,
max_prefill_seq_len=self.max_prefill_seq_len,
max_decode_seq_len=0,
query_start_loc=self.query_start_loc[:self.num_prefills + 1],
seq_start_loc=self.seq_start_loc[:self.num_prefills + 1],
context_lens_tensor=self.context_lens_tensor[:self.num_prefills],
block_tables=self.block_tables[:self.num_prefills],
use_cuda_graph=False,
)
return self._cached_prefill_metadata
@property
def decode_metadata(self) -> Optional["BlocksparseFlashAttentionMetadata"]:
if self.num_decode_tokens == 0:
return None
if self._cached_decode_metadata is not None:
return self._cached_decode_metadata
assert self.block_tables is not None
assert self.seq_lens_tensor is not None
self._cached_decode_metadata = BlocksparseFlashAttentionMetadata(
num_prefills=0,
num_prefill_tokens=0,
num_decode_tokens=self.num_decode_tokens,
slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=False,
seq_lens=None,
seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
max_query_len=None,
max_prefill_seq_len=0,
max_decode_seq_len=self.max_decode_seq_len,
query_start_loc=None,
seq_start_loc=None,
context_lens_tensor=None,
block_tables=self.block_tables[self.num_prefills:],
use_cuda_graph=self.use_cuda_graph,
)
return self._cached_decode_metadata
class BlocksparseFlashAttentionMetadataBuilder(
CommonMetadataBuilder[BlocksparseFlashAttentionMetadata]):
_metadata_cls = BlocksparseFlashAttentionMetadata
class BlocksparseFlashAttentionImpl(AttentionImpl):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prompt_tokens -------------->|
|<--prompt_0-->|<--prompt_1-->|...|<--prompt_N-1-->|
Otherwise, the layout is as follows:
|<------------------ num_generation_tokens (M) ----------------->|
|<--generation_0-->|..........|<--generation_M-1-->|<--padding-->|
Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.
The prompts might have different lengths, while the generation tokens
always have length 1.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
) -> None:
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0 "
"BLOCK_SPARSE_FLASH_ATTN Backend.")
assert blocksparse_params is not None
assert alibi_slopes is None, ValueError(
"Alibi not support for blocksparse flash attention.")
assert sliding_window is None, ValueError(
"sliding_window is invalid for blocksparse attention.")
assert logits_soft_cap is None, ValueError(
"logits_soft_cap is invalid for blocksparse attention.")
if "num_heads" not in blocksparse_params:
blocksparse_params["num_heads"] = num_heads
if "num_kv_heads" not in blocksparse_params:
blocksparse_params["num_kv_heads"] = num_kv_heads or num_heads
self.blocksparse_params = BlocksparseParams(**blocksparse_params)
self.kv_cache_dtype = kv_cache_dtype
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.alibi_slopes = alibi_slopes
self.num_kv_heads = num_kv_heads
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.local_blocks = self.blocksparse_params.local_blocks
self.vert_stride = self.blocksparse_params.vert_stride
self.sparse_block_size = self.blocksparse_params.block_size
self.head_sliding_step = self.blocksparse_params.head_sliding_step
supported_head_sizes = PagedAttention.get_supported_head_sizes()
if head_size not in supported_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by PagedAttention. "
f"Supported head sizes are: {supported_head_sizes}.")
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
total_num_heads = num_heads * self.tp_size
self.bs_attn = LocalStridedBlockSparseAttn(
total_num_heads,
self.blocksparse_params.max_seqlen,
self.blocksparse_params.local_blocks,
self.blocksparse_params.vert_stride,
self.blocksparse_params.block_size,
homo_head=self.blocksparse_params.homo_head,
active_head_range=self.blocksparse_params.active_head_range,
)
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"BlocksparseFlashAttentionImpl")
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: BlocksparseFlashAttentionMetadata,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
NOTE: kv_cache will be an empty tensor with shape [0]
for profiling run.
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
if output_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for BlocksparseFlashAttentionImpl")
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if kv_cache.numel() > 0:
key_cache, value_cache = PagedAttention.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)
# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory profiling run.
PagedAttention.write_to_paged_cache(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping,
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
# normal attention
# When block_tables are not filled, it means q and k are the
# prompt, and they have the same length.
assert kv_cache.numel() == 0 \
or prefill_meta.block_tables is None \
or prefill_meta.block_tables.numel() == 0, \
"Does not support prefix-enabled attention."
output = self.bs_attn(
q=query,
k=key,
v=value,
cu_seqlens_q=prefill_meta.seq_start_loc,
cu_seqlens_k=prefill_meta.seq_start_loc,
sm_scale=self.scale,
)
if decode_meta := attn_metadata.decode_metadata:
# Decoding run.
output = PagedAttention.forward_decode(
query,
key_cache,
value_cache,
decode_meta.block_tables,
decode_meta.seq_lens_tensor,
self.blocksparse_params.max_seqlen,
self.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
layer._k_scale,
layer._v_scale,
tp_rank=self.tp_rank,
blocksparse_local_blocks=self.local_blocks,
blocksparse_vert_stride=self.vert_stride,
blocksparse_block_size=self.sparse_block_size,
blocksparse_head_sliding_step=self.head_sliding_step,
)
assert output is not None
# Reshape the output tensor.
return output.view(num_tokens, hidden_size)

View File

@ -667,7 +667,6 @@ class DifferentialFlashAttentionImpl(AttentionImpl):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
@ -680,9 +679,6 @@ class DifferentialFlashAttentionImpl(AttentionImpl):
differential_flash_attention_config
self.used_shared_kv_cache = kv_sharing_target_layer_name is not None
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
if blocksparse_params is not None:
raise ValueError(
"FlashAttention does not support block-sparse attention.")
if use_irope:
logger.warning(
"Using irope in V0 is not supported yet, it will fall back "

View File

@ -287,7 +287,6 @@ class DualChunkFlashAttentionImpl(FlashAttentionImpl):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,

View File

@ -4,7 +4,7 @@
from collections import defaultdict
from dataclasses import dataclass
from itertools import accumulate
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Type
import torch
@ -615,7 +615,6 @@ class FlashAttentionImpl(AttentionImpl):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
@ -624,9 +623,6 @@ class FlashAttentionImpl(AttentionImpl):
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0 "
"FLASH_ATTN backend.")
if blocksparse_params is not None:
raise ValueError(
"FlashAttention does not support block-sparse attention.")
if use_irope:
logger.warning(
"Using irope in V0 is not supported yet, it will fall back "

View File

@ -999,7 +999,6 @@ class FlashInferImpl(AttentionImpl):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,

View File

@ -3,7 +3,7 @@
from contextlib import contextmanager
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
from typing import TYPE_CHECKING, List, Optional, Tuple, Type
import torch
@ -181,7 +181,6 @@ class FlashMLAImpl(MLACommonImpl[FlashMLAMetadata]):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str] = None,
@ -189,20 +188,17 @@ class FlashMLAImpl(MLACommonImpl[FlashMLAMetadata]):
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
assert is_flashmla_supported(), \
"FlashMLA is not supported on this device"
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"FlashMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "

View File

@ -997,7 +997,6 @@ class MLACommonImpl(MLAAttentionImpl[T], Generic[T]):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],

View File

@ -3,7 +3,7 @@
from contextlib import contextmanager
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional, Type, Union
from typing import TYPE_CHECKING, Optional, Type, Union
import torch
@ -367,7 +367,6 @@ class AiterMLAImpl(MLACommonImpl[AiterMLAMetadata]):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
@ -375,17 +374,14 @@ class AiterMLAImpl(MLACommonImpl[AiterMLAMetadata]):
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"Aiter MLA does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
"alibi_slopes, sliding_window, logits_soft_cap")
from aiter import flash_attn_varlen_func
self.flash_attn_varlen_func = flash_attn_varlen_func

View File

@ -4,7 +4,7 @@
import itertools
from dataclasses import dataclass
from functools import cache
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
from typing import TYPE_CHECKING, List, Optional, Tuple, Type
import torch
@ -494,7 +494,6 @@ class ROCmFlashAttentionImpl(AttentionImpl):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
@ -507,9 +506,6 @@ class ROCmFlashAttentionImpl(AttentionImpl):
logger.warning_once(
"Using irope in ROCm Flash Attention is not supported yet, it "
"will fail back to global attention for long context.")
if blocksparse_params is not None:
raise ValueError(
"ROCmFlashAttention does not support blocksparse attention.")
if use_irope:
logger.warning(
"Using irope in V0 is not supported yet, it will fall back "

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Dict, List, Optional, Type
from typing import List, Optional, Type
import torch
@ -35,7 +35,6 @@ class TritonMLAImpl(MLACommonImpl[MLACommonMetadata]):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
@ -43,17 +42,14 @@ class TritonMLAImpl(MLACommonImpl[MLACommonMetadata]):
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"TritonMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with xFormers and PagedAttention."""
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type
from typing import Dict, List, Optional, Tuple, Type
import torch
from xformers import ops as xops
@ -387,7 +387,6 @@ class XFormersImpl(AttentionImpl[XFormersMetadata]):
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
@ -396,9 +395,6 @@ class XFormersImpl(AttentionImpl[XFormersMetadata]):
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0 "
"XFORMERS backend.")
if blocksparse_params is not None:
raise ValueError(
"XFormers does not support block-sparse attention.")
if logits_soft_cap is not None:
logger.warning_once("XFormers does not support logits soft cap. "
"Outputs may be slightly off.")

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer."""
from typing import Any, Dict, List, Optional
from typing import List, Optional
import torch
import torch.nn as nn
@ -74,7 +74,6 @@ class Attention(nn.Module):
alibi_slopes: Optional[List[float]] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
per_layer_sliding_window: Optional[int] = None,
use_mla: bool = False,
@ -163,12 +162,11 @@ class Attention(nn.Module):
kv_cache_dtype,
block_size,
is_attention_free,
blocksparse_params is not None,
use_mla=use_mla)
impl_cls = attn_backend.get_impl_cls()
self.impl = impl_cls(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **extra_impl_args)
self.backend = backend_name_to_enum(attn_backend.get_name())
self.dtype = dtype

View File

@ -1,433 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from vllm.triton_utils import tl, triton
def blocksparse_flash_attn_varlen_fwd(
q,
k,
v, # (#tokens, n_heads, head_size)
cu_seqlens_k,
cu_seqlens_q,
sm_scale,
sparse_layout,
*,
block_size=64,
q_block_size=None,
max_seqlen=None):
# split q to blocks
assert isinstance(sparse_layout, (list, tuple))
_, n_heads, head_size = q.shape
batch_size = cu_seqlens_k.size(0) - 1
q_block_size = q_block_size or block_size
assert q.dim() == k.dim() == v.dim() == 3
assert q.size(1) % k.size(1) == 0
assert q.size(2) == k.size(2)
# TODO(linxihui): allow k, v to have different head_size
assert k.shape == v.shape
assert cu_seqlens_k.dim() == 1
q_k_ratio = q.size(1) // k.size(1)
if cu_seqlens_q is None:
if q.size(0) == batch_size: # decoding only
cu_seqlens_q = torch.arange(
0,
batch_size + 1,
dtype=cu_seqlens_k.dtype,
device=cu_seqlens_k.device,
)
elif q.size(0) == k.size(0):
cu_seqlens_q = cu_seqlens_k
else:
raise ValueError("cu_seqlens_q must be specified\
if it mix of prefilling and decoding.")
else:
assert cu_seqlens_k.size(0) == cu_seqlens_q.size(0)
# switch to use cpu to avoid too many kernel launches when iterated over
q_lens = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]).cpu()
k_lens = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]).cpu()
assert torch.logical_or(q_lens == 1, k_lens == q_lens).all(), (
"length of q should either be 1 (decoding) or same as k (prefilling).")
if max_seqlen:
assert k_lens.max() <= max_seqlen
n_blocks = (q_lens + q_block_size - 1) // q_block_size
q_batch_ids = torch.tensor(
[i for i, n in enumerate(n_blocks) for _ in range(n)],
dtype=cu_seqlens_q.dtype,
device=cu_seqlens_q.device,
)
q_start_sids = torch.tensor(
[i * q_block_size for n in n_blocks for i in range(n)],
dtype=cu_seqlens_q.dtype,
device=cu_seqlens_q.device,
)
out = q.new_empty(q.shape)
cu_seqlens_q = cu_seqlens_q.contiguous()
cu_seqlens_k = cu_seqlens_k.contiguous()
layout_crow_indices, layout_col_indices = sparse_layout
block_d = triton.next_power_of_2(head_size)
decoding_only = (q_lens == 1).all().item()
grid = (len(q_start_sids), n_heads, 1)
_fwd_kernel_batch_inference[grid](
q,
k,
v,
out,
sm_scale,
cu_seqlens_q[:-1],
cu_seqlens_q[1:],
cu_seqlens_k[:-1],
cu_seqlens_k[1:],
q_batch_ids,
q_start_sids,
0,
*q.stride(),
0,
*k.stride(),
0,
*v.stride(),
0,
*out.stride(),
layout_crow_indices,
layout_col_indices,
*layout_crow_indices.stride(),
*layout_col_indices.stride(),
q_k_ratio,
HAS_BATCH_DIM=False,
D_HEAD=head_size,
BLOCK_M=q_block_size,
BLOCK_N=block_size,
BLOCK_D=block_d,
BLOCK_M_LOADING=(16 if decoding_only else
q_block_size), # smaller for decoding
EVEN_D=block_d == head_size,
num_warps=1 if decoding_only else 4,
num_stages=3)
return out
@triton.jit
def _fwd_kernel_inner(
acc,
l_i,
m_i,
q,
Q,
k_block_col_idx,
layout_col_ptr,
layout_col_stride_h,
layout_col_stride_m,
k_ptrs,
v_ptrs,
off_h,
offs_m,
offs_n,
offs_d,
stride_kt,
stride_vt,
sm_scale,
k_seqlen,
past_len,
LAST_K_BLOCK: tl.constexpr,
BLOCK_M_LOADING: tl.constexpr,
BLOCK_N: tl.constexpr,
D_HEAD: tl.constexpr,
EVEN_D: tl.constexpr,
M_LT_N: tl.constexpr,
):
k_block_id = tl.load(layout_col_ptr + off_h * layout_col_stride_h +
k_block_col_idx * layout_col_stride_m).to(tl.int32)
start_n = k_block_id * BLOCK_N
if LAST_K_BLOCK:
if EVEN_D:
k = tl.load(
k_ptrs + start_n * stride_kt,
mask=offs_n[None, :] + start_n < k_seqlen,
other=0.0,
)
else:
k = tl.load(
k_ptrs + start_n * stride_kt,
mask=(offs_n[None, :] + start_n < k_seqlen) &
(offs_d[:, None] < D_HEAD),
other=0.0,
)
else:
if EVEN_D:
k = tl.load(k_ptrs + start_n * stride_kt)
else:
k = tl.load(k_ptrs + start_n * stride_kt,
mask=offs_d[:, None] < D_HEAD,
other=0.0)
qk = tl.zeros([BLOCK_M_LOADING, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
qk *= sm_scale
# the following is needed only when LAST_K_BLOCK or BLOCK_M < BLOCK_N
if LAST_K_BLOCK | M_LT_N:
qk += tl.where(
offs_m[:, None] + past_len >= (start_n + offs_n[None, :]),
0,
float("-inf"),
)
# flash-attn2
m_ij = tl.maximum(m_i, tl.max(qk, 1))
p = tl.math.exp2(qk - m_ij[:, None])
l_ij = tl.sum(p, 1)
alpha = tl.math.exp2(m_i - m_ij)
acc = acc * alpha[:, None]
# update m_i
m_i = m_ij
l_i = l_i * alpha + l_ij
p = p.to(Q.dtype.element_ty)
# update acc
if LAST_K_BLOCK:
if EVEN_D:
v = tl.load(
v_ptrs + start_n * stride_vt,
mask=offs_n[:, None] + start_n < k_seqlen,
other=0.0,
)
else:
v = tl.load(
v_ptrs + start_n * stride_vt,
mask=(offs_n[:, None] + start_n < k_seqlen) &
(offs_d[None, :] < D_HEAD),
other=0.0,
)
else:
if EVEN_D:
v = tl.load(v_ptrs + start_n * stride_vt)
else:
v = tl.load(v_ptrs + start_n * stride_vt,
mask=offs_d[None, :] < D_HEAD,
other=0.0)
acc += tl.dot(p, v)
return acc, l_i, m_i
@triton.heuristics({
"M_LT_N":
lambda kwargs: kwargs["BLOCK_M"] < kwargs["BLOCK_N"],
})
@triton.jit
def _fwd_kernel_batch_inference(
Q,
K,
V,
Out,
sm_scale,
q_batch_starts,
q_batch_ends,
k_batch_starts,
k_batch_ends,
q_batch_ids,
q_start_sids,
stride_qb,
stride_qt,
stride_qh,
stride_qd,
stride_kb,
stride_kt,
stride_kh,
stride_kd,
stride_vb,
stride_vt,
stride_vh,
stride_vd,
stride_ob,
stride_ot,
stride_oh,
stride_od,
layout_crow_ptr,
layout_col_ptr,
layout_crow_stride_h,
layout_crow_stride_m,
layout_col_stride_h,
layout_col_stride_m,
q_k_ratio,
HAS_BATCH_DIM: tl.constexpr,
D_HEAD: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_D: tl.constexpr,
BLOCK_M_LOADING: tl.constexpr,
EVEN_D: tl.constexpr,
M_LT_N: tl.constexpr,
):
"""
NOTATION:
pid: position id
sid: storage id
sbid: storage block id
pbid: position block id
offs_m, offs_n: storage offsets of m-dim(q, row) and n-dim(k, col)
TODO(linxihui):
Optimize grouped-attn
"""
off_zm = tl.program_id(0)
off_h = tl.program_id(1)
off_h_for_kv = off_h // q_k_ratio
if HAS_BATCH_DIM:
off_z = tl.program_id(2)
Q += off_z * stride_qb
K += off_z * stride_kb
V += off_z * stride_vb
Out += off_z * stride_ob
start_m = off_zm
q_start_sid = start_m * BLOCK_M # always 0 for decoding
else:
off_z = tl.load(q_batch_ids + off_zm).to(tl.int32) # [0, 0, 0, 1]
q_start_sid = tl.load(q_start_sids + off_zm)
start_m = q_start_sid // BLOCK_M # q_sbid
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M_LOADING)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_D)
q_cu_start = tl.load(q_batch_starts + off_z).to(tl.int32)
q_seqlen = tl.load(q_batch_ends + off_z).to(tl.int32) - q_cu_start
k_cu_start = tl.load(k_batch_starts + off_z).to(tl.int32)
k_seqlen = tl.load(k_batch_ends + off_z).to(tl.int32) - k_cu_start
past_len = k_seqlen - q_seqlen
Q += q_cu_start * stride_qt + off_h * stride_qh
K += k_cu_start * stride_kt + off_h_for_kv * stride_kh
V += k_cu_start * stride_vt + off_h_for_kv * stride_vh
Out += q_cu_start * stride_ot + off_h * stride_oh
q_pbid = (past_len + q_start_sid) // BLOCK_M
if EVEN_D:
q = tl.load(
Q + offs_m[:, None] * stride_qt + offs_d[None, :] * stride_qd,
mask=offs_m[:, None] < q_seqlen,
other=0.0,
)
else:
q = tl.load(
Q + offs_m[:, None] * stride_qt + offs_d[None, :] * stride_qd,
mask=(offs_m[:, None] < q_seqlen) & (offs_d[None, :] < D_HEAD),
other=0.0,
)
sparse_crow_ptr = (layout_crow_ptr + off_h * layout_crow_stride_h +
q_pbid * layout_crow_stride_m)
# TODO(linxihui): load at once, with any Triton version
# that supports `tl.split`, e.g., Triton 3.0
k_block_start = tl.load(sparse_crow_ptr).to(tl.int32)
k_block_end = tl.load(sparse_crow_ptr + 1).to(tl.int32)
m_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32)
acc = tl.zeros([BLOCK_M_LOADING, BLOCK_D], dtype=tl.float32)
k_ptrs = K + offs_n[None, :] * stride_kt + offs_d[:, None] * stride_kd
v_ptrs = V + offs_n[:, None] * stride_vt + offs_d[None, :] * stride_vd
sm_scale *= (
1.44269504 # 1/log2 as we use base2 for exponential and logarithm
)
for k_block_col_idx in range(k_block_start, k_block_end - 1):
acc, l_i, m_i = _fwd_kernel_inner(
acc,
l_i,
m_i,
q,
Q,
k_block_col_idx,
layout_col_ptr,
layout_col_stride_h,
layout_col_stride_m,
k_ptrs,
v_ptrs,
off_h,
offs_m,
offs_n,
offs_d,
stride_kt,
stride_vt,
sm_scale,
k_seqlen,
past_len,
False,
BLOCK_M_LOADING,
BLOCK_N,
D_HEAD,
EVEN_D,
M_LT_N,
)
acc, l_i, m_i = _fwd_kernel_inner(
acc,
l_i,
m_i,
q,
Q,
k_block_end - 1,
layout_col_ptr,
layout_col_stride_h,
layout_col_stride_m,
k_ptrs,
v_ptrs,
off_h,
offs_m,
offs_n,
offs_d,
stride_kt,
stride_vt,
sm_scale,
k_seqlen,
past_len,
True,
BLOCK_M_LOADING,
BLOCK_N,
D_HEAD,
EVEN_D,
M_LT_N,
)
# flash-attn 2
m_i += tl.math.log2(l_i)
acc = acc / l_i[:, None]
# write output
if EVEN_D:
tl.store(
Out + offs_m[:, None] * stride_ot + offs_d[None, :] * stride_od,
acc,
mask=offs_m[:, None] < q_seqlen,
)
else:
tl.store(
Out + offs_m[:, None] * stride_ot + offs_d[None, :] * stride_od,
acc,
mask=(offs_m[:, None] < q_seqlen) & (offs_d[None, :] < D_HEAD),
)

View File

@ -1,239 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
import torch
from vllm.platforms import current_platform
from .utils import (dense_to_crow_col, get_head_sliding_step,
get_sparse_attn_mask)
IS_COMPUTE_8_OR_ABOVE = current_platform.has_device_capability(80)
if IS_COMPUTE_8_OR_ABOVE:
from .blocksparse_attention_kernel import blocksparse_flash_attn_varlen_fwd
class LocalStridedBlockSparseAttn(torch.nn.Module):
def __init__(
self,
n_heads,
max_seqlen,
local_blocks,
vert_stride,
block_size,
device=None,
dtype=None,
homo_head=False,
active_head_range=None,
q_block_size=None,
use_spda=None,
):
super().__init__()
if use_spda is None:
use_spda = current_platform.is_rocm() or \
current_platform.is_cpu() or not \
IS_COMPUTE_8_OR_ABOVE
device = device or (torch.cuda.current_device()
if current_platform.is_cuda_alike() else "cpu")
device = torch.device(device)
# NOTE: vllm CPU backend support BF16 instead of FP16.
dtype = dtype or (torch.bfloat16 if IS_COMPUTE_8_OR_ABOVE
or device.type == "cpu" else torch.half)
self.n_heads = n_heads
self.max_seqlen = max_seqlen
self.local_blocks = local_blocks
self.vert_stride = vert_stride
self.use_spda = use_spda
self.dtype = dtype
self.device = device
self.block_size = block_size
self.q_block_size = q_block_size
self.homo_head = homo_head
self.active_head_range = active_head_range
self.head_sliding_step = get_head_sliding_step(n_heads, vert_stride,
homo_head)
sparse_layout, sparse_pattern, self.dense_attn_mask = (
self.get_attn_pattern(dtype, device))
if q_block_size is not None and q_block_size != block_size:
if q_block_size > block_size:
assert q_block_size % block_size == 0
blocks_to_merge = q_block_size // block_size
shape = sparse_pattern.shape
sparse_pattern = sparse_pattern.view(shape[0], -1,
blocks_to_merge,
shape[-1])
sparse_pattern = sparse_pattern.sum(2)
sparse_layout = dense_to_crow_col(sparse_pattern)
else:
raise ValueError(
"Does not support smaller q_block_size. It will be slower."
)
self.sparse_layout = sparse_layout
def get_attn_pattern(self, dtype, device):
sparse_layout, sparse_pattern, dense_attn_mask = get_sparse_attn_mask(
self.n_heads,
self.max_seqlen,
self.max_seqlen,
dtype,
device,
block_size=self.block_size,
local_blocks=self.local_blocks,
vert_stride=self.vert_stride,
homo_head=self.homo_head,
return_dense=self.use_spda,
dense_mask_type="bias",
)
if (not self.homo_head) and (self.active_head_range is not None):
assert isinstance(self.active_head_range, tuple)
assert (len(self.active_head_range) == 2)
h_start, h_end = self.active_head_range
sparse_layout = tuple(x[h_start:h_end] for x in sparse_layout)
if self.use_spda:
dense_attn_mask = dense_attn_mask[h_start:h_end]
return sparse_layout, sparse_pattern, dense_attn_mask
def varlen_attn(self,
q,
k,
v,
cu_seqlens_k,
cu_seqlens_q=None,
sm_scale=None):
"""
q, k, v: shape = (num_tokens, num_heads_q/kv, head_size).
Support grouped attention, with `q[:, i*r:(i*r + r)]`
is correspondent to `k[:, i]`, where `r` is the q/k ratio.
cu_seqlens_k: shape=(batch_size + 1,),
indicating segment of samples,
e.g., `k[cu_seqlen[i]:cu_seqlne[i+1]]` is q of sample i
cu_seqlens_q: shape=(batch_size + 1, ).
Default None: same as cu_seqlens_k for prefilling or
[0, 1, .., batch_size] for decoding.
The only case you need to specify is when q is a mix of
prefilling and decoding.
sm_scale: softmax scale, default to 1/sqrt(head_size).
return: tensor of shape as q.
"""
assert (
IS_COMPUTE_8_OR_ABOVE
), "Requires compute capability of 8 or above (Ampere or newer) to use \
Triton kernel."
sm_scale = sm_scale or 1.0 / math.sqrt(q.size(-1))
return blocksparse_flash_attn_varlen_fwd(
q,
k,
v,
cu_seqlens_k,
cu_seqlens_q,
sm_scale,
self.sparse_layout,
block_size=self.block_size,
q_block_size=self.q_block_size,
max_seqlen=self.max_seqlen,
)
@staticmethod
def transpose_and_pad(x, cu_seqlens, maxlen, head_repeats=1):
"""
:param x: (total_tokens, n_heads, head_size)
:return: (batch, n_heads, length, head_size)
"""
x_padded = x.new_empty(
len(cu_seqlens) - 1, x.size(1), head_repeats, maxlen, x.size(2))
cu_seqlens = cu_seqlens.cpu()
for i, (s, e) in enumerate(zip(cu_seqlens[:-1], cu_seqlens[1:])):
x_padded[i, :, :, :e - s].copy_(x[s:e].transpose(0,
1).unsqueeze(1))
return x_padded.flatten(1, 2)
@staticmethod
def transpose_and_unpad(x_padded, cu_seqlens):
"""
:param x_padded: (batch, n_heads, length, head_size)
:return: (total_tokens, n_heads, head_size)
"""
cu_seqlens = cu_seqlens.cpu()
total_n_tokens = cu_seqlens[-1]
x = x_padded.new_empty(total_n_tokens, x_padded.size(1),
x_padded.size(3))
for i, (s, e) in enumerate(zip(cu_seqlens[:-1], cu_seqlens[1:])):
x[s:e].copy_(x_padded[i, :, :e - s].transpose(0, 1))
return x
def spda(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None):
"""For CPU, V100 or other older GPUs.
NOTE: torch SPDA supports nested tensor,
but seems extremely slow. Choose to pad instead.
"""
assert (cu_seqlens_q is None or
(cu_seqlens_q
== cu_seqlens_k).all()), "Can only handle prompt with SPDA."
assert q.size(0) == k.size(0), "can only handle prompt with SPDA."
assert q.size(1) % k.size(1) == 0
q_k_ratio = q.size(1) // k.size(1)
sm_scale = sm_scale or 1.0 / math.sqrt(q.size(-1))
cu_seqlens = cu_seqlens_k.cpu()
maxlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
if (self.dense_attn_mask.dtype != q.dtype
or self.dense_attn_mask.device != q.device):
_, _, self.dense_attn_mask = self.get_attn_pattern(
q.dtype, q.device)
attn_mask = self.dense_attn_mask[None, :, :maxlen, :maxlen]
q2 = self.transpose_and_pad(q, cu_seqlens, maxlen, 1)
k2, v2 = (self.transpose_and_pad(x, cu_seqlens, maxlen, q_k_ratio)
for x in [k, v])
spda_output = torch.nn.functional.scaled_dot_product_attention(
q2, k2, v2, attn_mask=attn_mask, scale=sm_scale)
return self.transpose_and_unpad(spda_output, cu_seqlens)
def forward(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None):
"""Dispatch to `varlen_attn` (Ampere or newer) or
`self.spda`(cpu, Volta, Turing or older)based on
the type of device used and cuda compute capability.
q, k, v: shape = (num_tokens, num_heads_q/kv, head_size).
Support grouped attention, with `q[:, i*r:(i*r + r)]`
is correspondent to `k[:, i]`, where `r` is the q/k ratio.
cu_seqlens_k: shape=(batch_size + 1,), indicating segment of samples,
e.g., `k[cu_seqlen[i]:cu_seqlne[i+1]]` is q of sample i
cu_seqlens_q: shape=(batch_size + 1, ).
Default None: same as cu_seqlens_k for prefilling or
[0, 1, .., batch_size] for decoding.
The only case you need to specify
is when q is a mix of prefilling
and decoding.
sm_scale: softmax scale, default to 1/sqrt(head_size).
return: tensor of shape as q.
"""
assert k.dim() == 3
if self.use_spda:
return self.spda(
q,
k,
v,
cu_seqlens_k,
cu_seqlens_q=cu_seqlens_q,
sm_scale=sm_scale,
)
return self.varlen_attn(q,
k,
v,
cu_seqlens_k,
cu_seqlens_q=cu_seqlens_q,
sm_scale=sm_scale)

View File

@ -1,246 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Helper functions for 3D sparse pattern
# These function are not optimized and very inefficient.
# Avoid calling them too frequent or use a cache mechanism.
from functools import lru_cache
import numpy as np
import torch
from vllm.triton_utils import triton
class csr_matrix:
"""Simple implementation of CSR matrix conversion without scipy.
This replaced scipy.sparse.csr_matrix() previously used."""
def __init__(self, input_array):
if not isinstance(input_array, np.ndarray):
raise ValueError("Input must be a NumPy array")
self.shape = input_array.shape
rows, cols = self.shape
data = []
indices = []
indptr = [0]
for i in range(rows):
for j in range(cols):
if input_array[i, j]:
data.append(input_array[i, j])
indices.append(j)
indptr.append(len(indices))
self.data = np.array(data)
self.indices = np.array(indices)
self.indptr = np.array(indptr)
def dense_to_crow_col(x: torch.Tensor):
"""Turning a 2D/3D torch tensor (x) to CSR rows/cols indexing.
NOTE: col_indices padded -1
"""
device = x.device
pad = -1
dim = x.dim()
assert x.dim() in (2, 3)
if x.dim() == 2:
x = x[None]
x = [csr_matrix(xi.bool().cpu().numpy()) for xi in x]
crows = torch.vstack([torch.from_numpy(xi.indptr) for xi in x])
cols = [torch.from_numpy(xi.indices) for xi in x]
max_cols = max(len(xi) for xi in cols)
cols = [
torch.cat([xi, pad + xi.new_zeros(max_cols - xi.shape[0])])
for xi in cols
]
cols = torch.vstack(cols)
if dim == 2:
crows = crows[0]
cols = cols[0]
return crows.to(device), cols.to(device)
def crow_col_to_dense(crows: torch.Tensor,
cols: torch.Tensor,
dtype: torch.dtype = torch.float16):
dim = crows.dim()
if dim == 1:
crows = crows[None]
cols = cols[None]
device = crows.device
crows, cols = crows.cpu(), cols.cpu() # faster in cpu
shape = (crows.shape[0], crows.shape[1] - 1, cols.max() + 1)
x = torch.zeros(shape, dtype=dtype)
for i in range(shape[0]):
for j in range(shape[1]):
x[i, j, cols[i, crows[i, j]:crows[i, j + 1]]] = 1
if dim == 1:
x = x[0]
return x.to(device)
def dense_to_ccol_row(x: torch.Tensor):
"""Similar, but to CSC format"""
x = x.transpose(-2, -1)
return dense_to_crow_col(x)
def ccol_row_to_dense(ccol: torch.Tensor,
rows: torch.Tensor,
dtype: torch.dtype = torch.float16):
return crow_col_to_dense(ccol, rows, dtype).permute(0, 2, 1).contiguous()
def _get_sparse_attn_mask_homo_head(
q_len: int,
max_seqlen: int,
dtype: torch.dtype,
device: torch.device,
block_size: int = 128,
local_blocks: int = 4,
vert_stride: int = 4,
return_dense: bool = False,
):
"""
:return: a tuple of 3:
- tuple of crow_indices, col_indices representation
of CSR format.
- block dense mask
- all token dense mask (be aware that it can be
OOM if it is too big) if `return_dense==True`,
otherwise, None
"""
with torch.no_grad():
num_blocks = triton.cdiv(max_seqlen, block_size)
q_pos = torch.arange(num_blocks)[:, None]
k_pos = torch.arange(num_blocks)[None]
mask_vert_strided = (torch.arange(num_blocks) + 1) % vert_stride == 0
block_mask_dense = (((q_pos >= k_pos)
& ((q_pos - k_pos < local_blocks)
| mask_vert_strided)).to(device).to(dtype))
num_blocks_q = triton.cdiv(q_len, block_size)
block_mask_dense_output = (dense_to_crow_col(
block_mask_dense[-num_blocks_q:].contiguous()))
if return_dense:
mask_dense = torch.kron(
block_mask_dense,
block_mask_dense.new_ones((block_size, block_size)),
)
causal_mask = torch.tril(torch.ones(
max_seqlen, max_seqlen)).type_as(mask_dense)[-q_len:]
mask_dense = mask_dense[-q_len:, :max_seqlen] * causal_mask
return (
block_mask_dense_output,
block_mask_dense,
mask_dense,
)
else:
return (
block_mask_dense_output,
block_mask_dense,
None,
)
def binary_mask_to_bias(mask_dense: torch.Tensor):
mask_dense = 1 - mask_dense
mask_dense.masked_fill_(mask_dense.bool(), -torch.inf)
return mask_dense
def get_head_sliding_step(n_heads: int,
vert_stride: int,
homo_head: bool = False):
if homo_head:
return 0
return max(1, int(vert_stride / n_heads))
@lru_cache
def get_sparse_attn_mask(
n_heads: int,
q_len: int,
max_seqlen: int,
dtype: torch.dtype,
device: torch.device,
block_size: int = 64,
local_blocks: int = 4,
vert_stride: int = 4,
homo_head: bool = True,
return_dense: bool = False,
dense_mask_type: str = "binary",
):
"""
:param dense_mask_type: "binary" (0 for skip token, 1 for others)
or "bias" (-inf for skip token, 0 or others)
:return: a tuple of 3:
- tuple of crow_indices, col_indices representation
of CSR format.
- block dense mask
- all token dense mask (be aware that it can be OOM if it
is too big) if `return_dense==True`, otherwise, None
"""
assert dense_mask_type in ("binary", "bias")
if homo_head:
with torch.no_grad():
(crow, col), block_mask_dense, mask_dense = (
_get_sparse_attn_mask_homo_head(
q_len,
max_seqlen,
dtype,
device,
block_size,
local_blocks,
vert_stride,
return_dense,
))
crow = crow[None].expand(n_heads, crow.shape[0])
col = col[None].expand(n_heads, col.shape[0])
if return_dense:
mask_dense = mask_dense[None].expand(n_heads,
*mask_dense.shape)
if dense_mask_type == "bias":
mask_dense = binary_mask_to_bias(mask_dense)
return (crow, col), block_mask_dense, mask_dense
with torch.no_grad():
num_blocks = triton.cdiv(max_seqlen, block_size)
q_pos = torch.arange(num_blocks)[None, :, None]
k_pos = torch.arange(num_blocks)[None, None]
head_sliding_step = get_head_sliding_step(n_heads, vert_stride)
mask_vert_strided = [
(torch.arange(num_blocks) + h * head_sliding_step + 1) %
vert_stride == 0 for h in range(n_heads)
]
mask_vert_strided = torch.vstack(mask_vert_strided).unsqueeze(1)
block_mask_dense = (((q_pos >= k_pos)
& ((q_pos - k_pos < local_blocks)
| mask_vert_strided)).to(device).to(dtype))
num_blocks_q = triton.cdiv(q_len, block_size)
block_mask_dense_output = block_mask_dense[:, -num_blocks_q:]
if return_dense:
mask_dense = torch.kron(
block_mask_dense,
block_mask_dense.new_ones((block_size, block_size)),
)
causal_mask = torch.tril(torch.ones(
max_seqlen, max_seqlen)).type_as(mask_dense)[-q_len:]
mask_dense = mask_dense[..., -q_len:, :max_seqlen] * causal_mask[None]
if dense_mask_type == "bias":
mask_dense = binary_mask_to_bias(mask_dense)
return (
dense_to_crow_col(block_mask_dense_output),
block_mask_dense,
mask_dense,
)
else:
return (
dense_to_crow_col(block_mask_dense_output),
block_mask_dense,
None,
)

View File

@ -143,7 +143,6 @@ def get_attn_backend(
kv_cache_dtype: Optional[str],
block_size: int,
is_attention_free: bool,
is_blocksparse: bool = False,
use_mla: bool = False,
) -> type[AttentionBackend]:
"""Selects which attention backend to use and lazily imports it."""
@ -157,7 +156,6 @@ def get_attn_backend(
kv_cache_dtype=kv_cache_dtype,
block_size=block_size,
is_attention_free=is_attention_free,
is_blocksparse=is_blocksparse,
use_v1=envs.VLLM_USE_V1,
use_mla=use_mla,
)
@ -170,16 +168,9 @@ def _cached_get_attn_backend(
kv_cache_dtype: Optional[str],
block_size: int,
is_attention_free: bool,
is_blocksparse: bool = False,
use_v1: bool = False,
use_mla: bool = False,
) -> type[AttentionBackend]:
if is_blocksparse:
logger.info("Using BlocksparseFlashAttention backend.")
from vllm.attention.backends.blocksparse_attn import (
BlocksparseFlashAttentionBackend)
return BlocksparseFlashAttentionBackend
# If there are no attention layers (e.g. we are running Mamba),
# use the placeholder NO_ATTENTION
if is_attention_free:

View File

@ -1333,7 +1333,8 @@ class ModelConfig:
self, parallel_config: "ParallelConfig") -> tuple[int, int]:
from vllm.distributed.utils import get_pp_indices
if (self.hf_text_config.model_type == "deepseek_mtp"
or self.hf_config.model_type == "mimo_mtp"):
or self.hf_config.model_type == "mimo_mtp"
or self.hf_config.model_type == "glm4_moe_mtp"):
total_num_hidden_layers = getattr(self.hf_text_config,
"num_nextn_predict_layers", 0)
else:
@ -2663,7 +2664,15 @@ class SpeculativeConfig:
"n_predict": n_predict,
"architectures": ["MiMoMTPModel"]
})
return hf_config
if hf_config.architectures[0] == "Glm4MoeForCausalLM":
hf_config.model_type = "glm4_moe_mtp"
n_predict = getattr(hf_config, "num_nextn_predict_layers", None)
hf_config.update({
"num_hidden_layers": 0,
"n_predict": n_predict,
"architectures": ["Glm4MoeMTPModel"]
})
return hf_config
@ -2774,7 +2783,7 @@ class SpeculativeConfig:
"mlp_speculator"):
self.method = "mlp_speculator"
elif (self.draft_model_config.hf_config.model_type
in ("deepseek_mtp", "mimo_mtp")):
in ("deepseek_mtp", "mimo_mtp", "glm4_moe_mtp")):
self.method = "deepseek_mtp"
if self.num_speculative_tokens > 1:
logger.warning(
@ -4312,6 +4321,7 @@ class CompilationConfig:
self.splitting_ops = [] if self.full_cuda_graph else [
"vllm.unified_attention",
"vllm.unified_attention_with_output",
"vllm.mamba_mixer2",
]

View File

@ -1358,10 +1358,10 @@ class EngineArgs:
and not envs.is_set("VLLM_ATTENTION_BACKEND")
) or envs.VLLM_ATTENTION_BACKEND == "FLASH_ATTN_VLLM_V1"
supported = False
if current_platform.is_rocm() or (
current_platform.is_cuda()
and current_platform.is_device_capability(100)
): # handle hpu also for OOT platform
if (current_platform.is_rocm()
or (current_platform.is_cuda()
and current_platform.is_device_capability(100))
or current_platform.is_tpu()):
supported = True
elif fp8_attention and will_use_fa:
from vllm.attention.utils.fa_utils import (

View File

@ -3,6 +3,7 @@
from .abstract_tool_parser import ToolParser, ToolParserManager
from .deepseekv3_tool_parser import DeepSeekV3ToolParser
from .glm4_moe_tool_parser import Glm4MoeModelToolParser
from .granite_20b_fc_tool_parser import Granite20bFCToolParser
from .granite_tool_parser import GraniteToolParser
from .hermes_tool_parser import Hermes2ProToolParser
@ -19,10 +20,22 @@ from .pythonic_tool_parser import PythonicToolParser
from .xlam_tool_parser import xLAMToolParser
__all__ = [
"ToolParser", "ToolParserManager", "Granite20bFCToolParser",
"GraniteToolParser", "Hermes2ProToolParser", "MistralToolParser",
"Internlm2ToolParser", "Llama3JsonToolParser", "JambaToolParser",
"Llama4PythonicToolParser", "PythonicToolParser", "Phi4MiniJsonToolParser",
"DeepSeekV3ToolParser", "xLAMToolParser", "MinimaxToolParser",
"KimiK2ToolParser", "HunyuanA13BToolParser"
"ToolParser",
"ToolParserManager",
"Granite20bFCToolParser",
"GraniteToolParser",
"Hermes2ProToolParser",
"MistralToolParser",
"Internlm2ToolParser",
"Llama3JsonToolParser",
"JambaToolParser",
"Llama4PythonicToolParser",
"PythonicToolParser",
"Phi4MiniJsonToolParser",
"DeepSeekV3ToolParser",
"xLAMToolParser",
"MinimaxToolParser",
"KimiK2ToolParser",
"HunyuanA13BToolParser",
"Glm4MoeModelToolParser",
]

View File

@ -0,0 +1,402 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# code modified from deepseekv3_tool_parser.py
from collections.abc import Sequence
from typing import Union
import regex as re
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaFunctionCall, DeltaMessage,
DeltaToolCall,
ExtractedToolCallInformation,
FunctionCall, ToolCall)
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
ToolParser, ToolParserManager)
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import AnyTokenizer
logger = init_logger(__name__)
@ToolParserManager.register_module("glm4_moe")
class Glm4MoeModelToolParser(ToolParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
self.current_tool_name_sent = False
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id = -1
self.streamed_args_for_tool: list[str] = []
self.tool_call_start_token = "<tool_call>"
self.tool_call_end_token = "</tool_call>"
self.tool_calls_start_token = self.tool_call_start_token
# Updated regex for the XML-based format
self.tool_call_regex = re.compile(
r"<tool_call>\s*"
r"(?P<function_name>[^\n<]+)\s*" # 函数名(到换行或 <
r"(?P<arguments>(?:\s*<arg_key>[^<]+</arg_key>\s*"
r"<arg_value>[^<]*</arg_value>\s*)*)\s*"
r"</tool_call>",
re.DOTALL,
)
# Regex for parsing individual arguments
self.arg_regex = re.compile(
r"<arg_key>(?P<key>[^<]+)</arg_key>\s*<arg_value>(?P<value>[^<]*)</arg_value>",
re.DOTALL,
)
# Streaming regex
self.stream_tool_call_portion_regex = re.compile(
r"(?P<function_name>[^\n<]+)\s*"
r"(?P<arguments>(?:\s*<arg_key>[^<]+</arg_key>\s*"
r"<arg_value>[^<]*</arg_value>\s*)*)",
re.DOTALL,
)
# For streaming, we also need a regex to match just the function name
self.stream_tool_call_name_regex = re.compile(
r"(?P<function_name>[^\n<]+)",
re.DOTALL,
)
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ToolParser "
"constructor during construction.")
self.tool_call_start_token_id = self.vocab.get(
self.tool_call_start_token)
self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
def _parse_arguments(self, args_text: str) -> str:
"""Parse XML-based arguments into JSON format."""
if not args_text or not args_text.strip():
return "{}"
args_dict = {}
matches = self.arg_regex.findall(args_text)
for key, value in matches:
args_dict[key.strip()] = value.strip()
import json
return json.dumps(args_dict, ensure_ascii=False)
def extract_tool_calls(
self,
model_output: str,
request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
# sanity check; avoid unnecessary processing
if self.tool_calls_start_token not in model_output:
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
try:
# Find all tool calls in the output
function_call_matches = self.tool_call_regex.findall(model_output)
logger.debug("function_call_matches: %s", function_call_matches)
if not function_call_matches:
return ExtractedToolCallInformation(
tools_called=False,
tool_calls=[],
content=model_output,
)
tool_calls = []
for i, match in enumerate(function_call_matches):
function_name, function_args_xml = match
function_name = function_name.strip()
# Parse XML arguments to JSON
function_args_json = self._parse_arguments(function_args_xml)
tool_calls.append(
ToolCall(
id=f"call_{i}",
type='function',
function=FunctionCall(name=function_name,
arguments=function_args_json),
))
# Extract content before the first tool call
content = model_output[:model_output.find(self.
tool_calls_start_token)]
return ExtractedToolCallInformation(
tools_called=bool(tool_calls),
tool_calls=tool_calls,
content=content.strip() if content.strip() else None,
)
except Exception:
logger.exception("Error in extracting tool call from response.")
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
logger.debug("delta_text: %s", delta_text)
logger.debug("delta_token_ids: %s", delta_token_ids)
# check to see if we should be streaming a tool call - is there a
if self.tool_call_start_token_id not in current_token_ids:
logger.debug("No tool call tokens found!")
return DeltaMessage(content=delta_text)
delta_text = delta_text.replace(self.tool_calls_start_token,
"").replace(self.tool_call_end_token,
"")
try:
# figure out where we are in the parsing by counting tool call
# start & end tags
prev_tool_start_count = previous_token_ids.count(
self.tool_call_start_token_id)
prev_tool_end_count = previous_token_ids.count(
self.tool_call_end_token_id)
cur_tool_start_count = current_token_ids.count(
self.tool_call_start_token_id)
cur_tool_end_count = current_token_ids.count(
self.tool_call_end_token_id)
tool_call_portion = None
text_portion = None
# case: if we're generating text, OR rounding out a tool call
if (cur_tool_start_count == cur_tool_end_count
and prev_tool_end_count == cur_tool_end_count
and self.tool_call_end_token not in delta_text):
logger.debug("Generating text content! skipping tool parsing.")
return DeltaMessage(content=delta_text)
if self.tool_call_end_token in delta_text:
logger.debug("tool_call_end_token in delta_text")
full_text = current_text + delta_text
tool_call_portion = full_text.split(
self.tool_call_start_token)[-1].split(
self.tool_call_end_token)[0].rstrip()
delta_text = delta_text.split(
self.tool_call_end_token)[0].rstrip()
text_portion = delta_text.split(
self.tool_call_end_token)[-1].lstrip()
# case -- we're starting a new tool call
if (cur_tool_start_count > cur_tool_end_count
and cur_tool_start_count > prev_tool_start_count):
if len(delta_token_ids) > 1:
tool_call_portion = current_text.split(
self.tool_call_start_token)[-1]
else:
tool_call_portion = None
delta = None
text_portion = None
# set cursors and state appropriately
self.current_tool_id += 1
self.current_tool_name_sent = False
self.streamed_args_for_tool.append("")
logger.debug("Starting on a new tool %s", self.current_tool_id)
# case -- we're updating an existing tool call
elif (cur_tool_start_count > cur_tool_end_count
and cur_tool_start_count == prev_tool_start_count):
# get the portion of the text that's the tool call
tool_call_portion = current_text.split(
self.tool_call_start_token)[-1]
text_portion = None
# case -- the current tool call is being closed.
elif (cur_tool_start_count == cur_tool_end_count
and cur_tool_end_count >= prev_tool_end_count):
if self.prev_tool_call_arr is None or len(
self.prev_tool_call_arr) == 0:
logger.debug(
"attempting to close tool call, but no tool call")
return None
diff = self.prev_tool_call_arr[self.current_tool_id].get(
"arguments")
if diff:
diff = (diff.encode("utf-8").decode("unicode_escape")
if diff is str else diff)
if '"}' not in delta_text:
return None
end_loc = delta_text.rindex('"}')
diff = delta_text[:end_loc] + '"}'
logger.debug(
"Finishing tool and found diff that had not "
"been streamed yet: %s",
diff,
)
self.streamed_args_for_tool[self.current_tool_id] += diff
return DeltaMessage(tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=diff).model_dump(exclude_none=True),
)
])
# case -- otherwise we're just generating text
else:
text = delta_text.replace(self.tool_call_start_token, "")
text = text.replace(self.tool_call_end_token, "")
delta = DeltaMessage(tool_calls=[], content=text)
return delta
current_tool_call = dict()
if tool_call_portion:
current_tool_call_matches = (
self.stream_tool_call_portion_regex.match(
tool_call_portion))
if current_tool_call_matches:
tool_id, tool_args = (current_tool_call_matches.groups())
tool_name = tool_id.split('.')[1].split(':')[0]
current_tool_call['id'] = tool_id
current_tool_call["name"] = tool_name
current_tool_call["arguments"] = tool_args
else:
current_tool_call_name_matches = (
self.stream_tool_call_name_regex.match(
tool_call_portion))
if current_tool_call_name_matches:
tool_id_str, = current_tool_call_name_matches.groups()
tool_name = tool_id_str.split('.')[1].split(':')[0]
current_tool_call['id'] = tool_id_str
current_tool_call["name"] = tool_name
current_tool_call["arguments"] = ""
else:
logger.debug("Not enough token")
return None
# case - we haven't sent the tool name yet. If it's available, send
# it. otherwise, wait until it's available.
if not self.current_tool_name_sent:
if current_tool_call is None:
return None
function_name: Union[str, None] = current_tool_call.get("name")
tool_id = current_tool_call.get("id")
if function_name:
self.current_tool_name_sent = True
return DeltaMessage(tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
type="function",
id=tool_id,
function=DeltaFunctionCall(
name=function_name).model_dump(
exclude_none=True),
)
])
else:
return None
# case -- otherwise, send the tool call delta
# if the tool call portion is None, send the delta as text
if tool_call_portion is None:
# if there's text but not tool calls, send that -
# otherwise None to skip chunk
delta = (DeltaMessage(
content=delta_text) if text_portion is not None else None)
return delta
# now, the nitty-gritty of tool calls
# now we have the portion to parse as tool call.
logger.debug("Trying to parse current tool call with ID %s",
self.current_tool_id)
# if we're starting a new tool call, push an empty object in as
# a placeholder for the arguments
if len(self.prev_tool_call_arr) <= self.current_tool_id:
self.prev_tool_call_arr.append({})
# main logic for tool parsing here - compare prev. partially-parsed
# JSON to the current partially-parsed JSON
prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
"arguments")
cur_arguments = current_tool_call.get("arguments")
logger.debug("diffing old arguments: %s", prev_arguments)
logger.debug("against new ones: %s", cur_arguments)
# case -- no arguments have been created yet. skip sending a delta.
if not cur_arguments and not prev_arguments:
logger.debug("Skipping text %s - no arguments", delta_text)
delta = None
# case -- prev arguments are defined, but non are now.
# probably impossible, but not a fatal error - just keep going
elif not cur_arguments and prev_arguments:
logger.error("should be impossible to have arguments reset "
"mid-call. skipping streaming anything.")
delta = None
# case -- we now have the first info about arguments available from
# autocompleting the JSON
elif cur_arguments and not prev_arguments:
delta = DeltaMessage(tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=cur_arguments).model_dump(
exclude_none=True),
)
])
self.streamed_args_for_tool[
self.current_tool_id] = cur_arguments
# last case -- we have an update to existing arguments.
elif cur_arguments and prev_arguments:
if (isinstance(delta_text, str)
and cur_arguments != prev_arguments
and len(cur_arguments) > len(prev_arguments)
and cur_arguments.startswith(prev_arguments)):
delta_arguments = cur_arguments[len(prev_arguments):]
logger.debug("got diff %s", delta_text)
delta = DeltaMessage(tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=delta_arguments).model_dump(
exclude_none=True),
)
])
self.streamed_args_for_tool[
self.current_tool_id] = cur_arguments
else:
delta = None
# handle saving the state for the current tool into
# the "prev" list for use in diffing for the next iteration
if self.current_tool_id == len(self.prev_tool_call_arr) - 1:
self.prev_tool_call_arr[
self.current_tool_id] = current_tool_call
else:
self.prev_tool_call_arr.append(current_tool_call)
return delta
except Exception:
logger.exception("Error trying to handle streaming tool call.")
return None # do not stream a delta. skip this token ID.

View File

@ -13,7 +13,7 @@ from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce)
from vllm.forward_context import get_forward_context
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
@ -33,6 +33,8 @@ from vllm.model_executor.model_loader.weight_utils import (
LoaderFunction, composed_weight_loader, sharded_weight_loader)
from vllm.model_executor.models.mamba_cache import MambaCacheParams
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.utils import direct_register_custom_op
from vllm.v1.attention.backends.mamba_attn import Mamba2AttentionMetadata
# Added by the IBM Team, 2024
@ -424,14 +426,36 @@ class MambaMixer2(MambaBase, CustomOp):
def forward_native(
self,
hidden_states: torch.Tensor,
conv_state: torch.Tensor,
ssm_state: torch.Tensor,
output: torch.Tensor,
mamba_cache_params: MambaCacheParams,
mamba2_metadata: Mamba2Metadata,
mup_vector: Optional[torch.Tensor] = None,
):
pass
def forward(
self,
hidden_states: torch.Tensor,
output: torch.Tensor,
mamba_cache_params: MambaCacheParams,
mamba2_metadata: Mamba2Metadata,
mup_vector: Optional[torch.Tensor] = None,
):
if not envs.VLLM_USE_V1:
CustomOp.forward(self, hidden_states, output, mamba_cache_params,
mamba2_metadata, mup_vector)
else:
torch.ops.vllm.mamba_mixer2(
hidden_states,
output,
self.prefix,
mup_vector,
)
def forward_cuda(
self,
hidden_states: torch.Tensor,
output: torch.Tensor,
mamba_cache_params: MambaCacheParams,
mamba2_metadata: Mamba2Metadata,
mup_vector: Optional[torch.Tensor] = None,
@ -517,6 +541,7 @@ class MambaMixer2(MambaBase, CustomOp):
num_prefill_tokens = attn_metadata.num_prefill_tokens # token count
has_prefill = num_prefills > 0
has_decode = num_decodes > 0
num_actual_tokens = num_prefill_tokens + num_decodes
# NOTE: V0 put prefill before decode, v1 puts decode before prefill
# Separate prefill and decode by splitting varlen input
@ -524,18 +549,18 @@ class MambaMixer2(MambaBase, CustomOp):
# NOTE: V0 put prefill before decode, v1 puts decode before prefill
if envs.VLLM_USE_V1:
hidden_states_B_C_d, hidden_states_B_C_p = torch.split(
hidden_states_B_C,
hidden_states_B_C[:num_actual_tokens],
[num_decodes, num_prefill_tokens],
dim=0,
)
dt_d, dt_p = torch.split(
dt,
dt[:num_actual_tokens],
[num_decodes, num_prefill_tokens],
dim=0,
)
# Split along batch dimension
state_indices_tensor_d, state_indices_tensor_p = torch.split(
state_indices_tensor,
state_indices_tensor[:num_actual_tokens],
[num_decodes, num_prefills],
dim=0,
)
@ -696,11 +721,10 @@ class MambaMixer2(MambaBase, CustomOp):
# GatedRMSNorm internally applying SiLU to the gate
# SiLU is applied internally before normalization, unlike standard
# norm usage
hidden_states = self.norm(hidden_states, gate)
hidden_states = self.norm(hidden_states, gate[:num_actual_tokens])
# 5. Final linear projection
out, _ = self.out_proj(hidden_states)
return out
output[:num_actual_tokens], _ = self.out_proj(hidden_states)
def get_state_shape(self) -> tuple[tuple[int, ...], tuple[int, ...]]:
return get_mamba_state_shape(
@ -712,3 +736,36 @@ class MambaMixer2(MambaBase, CustomOp):
state_size=self.ssm_state_size,
conv_kernel=self.conv_kernel_size,
)
def mamba_mixer2(
hidden_states: torch.Tensor,
output: torch.Tensor,
layer_name: str,
mup_vector: Optional[torch.Tensor] = None,
) -> None:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
self.forward_cuda(hidden_states=hidden_states,
output=output,
mamba_cache_params=None,
mamba2_metadata=None,
mup_vector=mup_vector)
def mamba_mixer2_fake(
hidden_states: torch.Tensor,
output: torch.Tensor,
layer_name: str,
mup_vector: Optional[torch.Tensor] = None,
) -> None:
return
direct_register_custom_op(
op_name="mamba_mixer2",
op_func=mamba_mixer2,
mutates_args=["output"],
fake_impl=mamba_mixer2_fake,
dispatch_key=current_platform.dispatch_key,
)

View File

@ -11,6 +11,7 @@ from transformers import BambaConfig
from vllm import envs
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
@ -122,11 +123,10 @@ class BambaMixerDecoderLayer(nn.Module):
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.mamba(hidden_states, mamba_cache_params,
mamba2_metadata)
output = torch.empty_like(hidden_states)
self.mamba(hidden_states, output, mamba_cache_params, mamba2_metadata)
# Fully Connected
hidden_states, residual = self.pre_ff_layernorm(
hidden_states, residual)
hidden_states, residual = self.pre_ff_layernorm(output, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
@ -169,7 +169,7 @@ class BambaAttentionDecoderLayer(nn.Module):
self.max_position_embeddings = max_position_embeddings
if hasattr(config, "partial_rotary_factor"):
rotary_dim = self.head_dim * config.partial_rotary_factor
rotary_dim = int(self.head_dim * config.partial_rotary_factor)
elif hasattr(config, "attn_rotary_emb"):
rotary_dim = config.attn_rotary_emb # for backward compatibility
else:
@ -258,6 +258,7 @@ ALL_DECODER_LAYER_TYPES = {
}
@support_torch_compile
class BambaModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):

View File

@ -10,6 +10,7 @@ from transformers import FalconH1Config
from vllm import envs
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
@ -179,13 +180,15 @@ class FalconH1SSMDecoderLayer(nn.Module):
mamba2_metadata: Mamba2Metadata,
**kwargs,
):
hidden_states = self.mamba(
output = torch.empty_like(hidden_states)
self.mamba(
hidden_states,
output,
mamba_cache_params,
mamba2_metadata=mamba2_metadata,
mup_vector=self.mup_vector,
)
return hidden_states, residual
return output, residual
class FalconH1AttentionDecoderLayer(nn.Module):
@ -398,6 +401,7 @@ class FalconH1ParallelHybrid(nn.Module):
return hidden_states
@support_torch_compile
class FalconH1Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):

View File

@ -0,0 +1,685 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 The ZhipuAI Team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GLM-4.5 model compatible with HuggingFace weights."""
import typing
from collections.abc import Callable, Iterable
from typing import Any, Optional, Union
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config
from vllm.distributed import (get_ep_group, get_pp_group,
get_tensor_model_parallel_world_size)
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
logger = init_logger(__name__)
class Glm4MoeMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
reduce_results: bool = True,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj")
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj")
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class Glm4MoE(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_eplb: bool = False,
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.routed_scaling_factor = config.routed_scaling_factor
self.ep_group = get_ep_group().device_group
self.ep_rank = self.ep_group.rank()
self.ep_size = self.ep_group.size()
self.n_routed_experts: int = config.n_routed_experts
self.n_shared_experts: int = config.n_shared_experts
if config.hidden_act != "silu":
raise ValueError(f"Unsupported activation: {config.hidden_act}. "
"Only silu is supported for now.")
self.gate = ReplicatedLinear(config.hidden_size,
config.n_routed_experts,
bias=False,
quant_config=None,
prefix=f"{prefix}.gate")
# noaux_tc is not set in transformers new config now
self.gate.e_score_correction_bias = (nn.Parameter(
torch.empty(config.n_routed_experts)))
# Load balancing settings.
vllm_config = get_current_vllm_config()
parallel_config = vllm_config.parallel_config
self.enable_eplb = enable_eplb
self.n_redundant_experts = parallel_config.num_redundant_experts
self.n_logical_experts = self.n_routed_experts
self.n_physical_experts = (self.n_logical_experts +
self.n_redundant_experts)
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
self.physical_expert_start = (self.ep_rank *
self.n_local_physical_experts)
self.physical_expert_end = (self.physical_expert_start +
self.n_local_physical_experts)
self.experts = FusedMoE(
num_experts=config.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
use_grouped_topk=True,
num_expert_group=config.n_group,
topk_group=config.topk_group,
prefix=f"{prefix}.experts",
scoring_func="sigmoid",
e_score_correction_bias=self.gate.e_score_correction_bias,
enable_eplb=self.enable_eplb,
num_redundant_experts=self.n_redundant_experts)
if config.n_shared_experts is not None:
intermediate_size = (config.moe_intermediate_size *
config.n_shared_experts)
self.shared_experts = Glm4MoeMLP(
hidden_size=config.hidden_size,
intermediate_size=intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
reduce_results=self.experts.must_reduce_shared_expert_outputs(
),
prefix=f"{prefix}.shared_experts",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
if self.n_shared_experts is not None:
shared_output = self.shared_experts(hidden_states)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = self.experts(
hidden_states=hidden_states,
router_logits=router_logits) * self.routed_scaling_factor
if shared_output is not None:
final_hidden_states = final_hidden_states + shared_output
if self.tp_size > 1:
final_hidden_states = (
self.experts.maybe_all_reduce_tensor_model_parallel(
final_hidden_states))
return final_hidden_states.view(num_tokens, hidden_dim)
class Glm4MoeAttention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embeddings: int = 131072,
head_dim: Optional[int] = None,
rms_norm_eps: float = 1e-05,
qkv_bias: bool = False,
use_qk_norm: bool = False,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.use_qk_norm = use_qk_norm
self.qkv_proj = QKVParallelLinear(hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj")
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
partial_rotary_factor = getattr(config, "partial_rotary_factor", 0.5)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
partial_rotary_factor=partial_rotary_factor,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
if self.use_qk_norm:
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.use_qk_norm:
q = self.q_norm(q.reshape(-1, self.num_heads,
self.head_dim)).reshape(q.shape)
k = self.k_norm(k.reshape(-1, self.num_kv_heads,
self.head_dim)).reshape(k.shape)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class Glm4MoeDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_eplb: bool = False,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
131072)
# DecoderLayers are created with `make_layers` which passes the prefix
# with the layer's index.
layer_idx = int(prefix.split(sep='.')[-1])
self.layer_idx = layer_idx
self.self_attn = Glm4MoeAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
head_dim=config.head_dim,
rms_norm_eps=config.rms_norm_eps,
qkv_bias=config.attention_bias,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
use_qk_norm=config.use_qk_norm,
)
if (config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace):
self.mlp = Glm4MoE(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
enable_eplb=enable_eplb,
)
else:
self.mlp = Glm4MoeMLP(hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.routed_scaling_factor = config.routed_scaling_factor
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(positions=positions,
hidden_states=hidden_states)
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class Glm4MoeModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
enable_eplb = vllm_config.parallel_config.enable_eplb
self.config = config
self.vocab_size = config.vocab_size
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens")
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Glm4MoeDecoderLayer(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
enable_eplb=enable_eplb,
),
prefix=f"{prefix}.layers")
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype,
device: torch.device) -> IntermediateTensors:
return IntermediateTensors({
"hidden_states":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
"residual":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
})
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
if spec_layer is not None:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if (("mlp.experts." in name) and name not in params_dict):
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
is_expert_weight = False
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
# Anyway, this is an expert weight and should not be
# attempted to load as other weights later
is_expert_weight = True
# Do not modify `name` since the loop may continue here
# Instead, create a new variable
name_mapped = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name_mapped, self):
continue
param = params_dict[name_mapped]
# We should ask the weight loader to return success or not
# here since otherwise we may skip experts with other
# available replicas.
weight_loader = typing.cast(Callable[..., bool],
param.weight_loader)
success = weight_loader(param,
loaded_weight,
name_mapped,
shard_id=shard_id,
expert_id=expert_id,
return_success=True)
if success:
name = name_mapped
break
else:
if is_expert_weight:
# We've checked that this is an expert weight
# However it's not mapped locally to this rank
# So we simply skip it
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Glm4MoeForCausalLM(nn.Module, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
fall_back_to_pt_during_load = False
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.model = Glm4MoeModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
else:
self.lm_head = PPMissingLayer()
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
self.expert_weights = []
# Set MoE hyperparameters
self.num_moe_layers = (config.num_hidden_layers -
config.first_k_dense_replace)
self.num_expert_groups = config.n_group
self.moe_layers: list[FusedMoE] = []
for layer in self.model.layers:
assert isinstance(layer, Glm4MoeDecoderLayer)
if isinstance(layer.mlp, Glm4MoE):
self.moe_layers.append(layer.mlp.experts)
# Pick last one layer since the first ones may be dense layers.
example_moe = typing.cast(
Glm4MoE, self.model.layers[config.num_hidden_layers - 1].mlp)
self.num_logical_experts = example_moe.n_logical_experts
self.num_physical_experts = example_moe.n_physical_experts
self.num_local_physical_experts = example_moe.n_local_physical_experts
self.num_routed_experts = example_moe.n_routed_experts
self.num_shared_experts = example_moe.n_shared_experts
self.num_redundant_experts = example_moe.n_redundant_experts
def set_eplb_state(
self,
expert_load_view: torch.Tensor,
logical_to_physical_map: torch.Tensor,
logical_replica_count: torch.Tensor,
) -> None:
for layer_idx, layer in enumerate(self.moe_layers):
# Register the expert weights.
self.expert_weights.append(layer.get_expert_weights())
layer.set_eplb_state(
moe_layer_idx=layer_idx,
expert_load_view=expert_load_view,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count,
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def get_spec_layer_idx_from_weight_name(config: PretrainedConfig,
weight_name: str) -> Optional[int]:
if hasattr(config,
"num_nextn_predict_layers") and (config.num_nextn_predict_layers
> 0):
layer_idx = config.num_hidden_layers
for i in range(config.num_nextn_predict_layers):
if f"layers.{layer_idx+i}." in weight_name:
return layer_idx + i
return None

View File

@ -0,0 +1,307 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 The ZhipuAI Team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GLM-4.5 MTP model compatible with HuggingFace weights."""
from collections.abc import Iterable
from typing import Optional
import torch
import torch.nn as nn
from transformers import PretrainedConfig
from vllm.config import CacheConfig, VllmConfig
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .glm4_moe import Glm4MoeDecoderLayer, get_spec_layer_idx_from_weight_name
from .interfaces import SupportsPP
from .utils import maybe_prefix
class SharedHead(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.norm(hidden_states)
class Glm4MoeMultiTokenPredictorLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.eh_proj = nn.Linear(config.hidden_size * 2,
config.hidden_size,
bias=False)
self.shared_head = SharedHead(config=config, quant_config=quant_config)
self.mtp_block = Glm4MoeDecoderLayer(config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_index: int = 0,
) -> torch.Tensor:
assert inputs_embeds is not None
# masking inputs at position 0, as not needed by MTP
inputs_embeds[positions == 0] = 0
inputs_embeds = self.enorm(inputs_embeds)
previous_hidden_states = self.hnorm(previous_hidden_states)
hidden_states = self.eh_proj(
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
hidden_states, residual = self.mtp_block(positions=positions,
hidden_states=hidden_states,
residual=None)
hidden_states = residual + hidden_states
return hidden_states
class Glm4MoeMultiTokenPredictor(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.mtp_start_layer_idx = config.num_hidden_layers
self.num_mtp_layers = config.num_nextn_predict_layers
# to map the exact layer index from weights
self.layers = torch.nn.ModuleDict({
str(idx):
Glm4MoeMultiTokenPredictorLayer(
config,
f"{prefix}.layers.{idx}",
cache_config=vllm_config.cache_config,
quant_config=vllm_config.quant_config,
)
for idx in range(self.mtp_start_layer_idx,
self.mtp_start_layer_idx + self.num_mtp_layers)
})
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.logits_processor = LogitsProcessor(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_idx: int = 0,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
current_step_idx = (spec_step_idx % self.num_mtp_layers)
return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
input_ids,
positions,
previous_hidden_states,
inputs_embeds,
current_step_idx,
)
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
spec_step_idx: int = 0,
) -> torch.Tensor:
current_step_idx = (spec_step_idx % self.num_mtp_layers)
mtp_layer = self.layers[str(self.mtp_start_layer_idx +
current_step_idx)]
logits = self.logits_processor(mtp_layer.shared_head.head,
mtp_layer.shared_head(hidden_states),
sampling_metadata)
return logits
class Glm4MoeMTP(nn.Module, SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
self.config = vllm_config.model_config.hf_config
self.model = Glm4MoeMultiTokenPredictor(vllm_config=vllm_config,
prefix=maybe_prefix(
prefix, "model"))
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_idx: int = 0,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions,
previous_hidden_states, inputs_embeds,
spec_step_idx)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
spec_step_idx: int = 0,
) -> Optional[torch.Tensor]:
return self.model.compute_logits(hidden_states, sampling_metadata,
spec_step_idx)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
if spec_layer is None:
continue
name = self._rewrite_spec_layer_name(spec_layer, name)
for (param_name, weight_name, shard_id) in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if (("mlp.experts." in name) and name not in params_dict):
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# According to DeepSeek-V3 Technical Report, MTP modules
# shares embedding layer. We only load the first weights.
if (spec_layer != self.model.mtp_start_layer_idx
and ".layers" not in name):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
"""
Rewrite the weight name to match the format of the original model.
Add .mtp_block for modules in transformer layer block for spec layer
and rename shared layer weights to be top level.
"""
spec_layer_weight_names = [
"embed_tokens", "enorm", "hnorm", "eh_proj", "shared_head"
]
shared_weight_names = ["embed_tokens"]
spec_layer_weight = False
shared_weight = False
for weight_name in spec_layer_weight_names:
if weight_name in name:
spec_layer_weight = True
if weight_name in shared_weight_names:
shared_weight = True
break
if not spec_layer_weight:
# treat rest weights as weights for transformer layer block
name = name.replace(f"model.layers.{spec_layer}.",
f"model.layers.{spec_layer}.mtp_block.")
elif shared_weight:
# treat shared weights as top level weights
name = name.replace(f"model.layers.{spec_layer}.", "model.")
return name

View File

@ -11,6 +11,7 @@ from transformers import GraniteMoeHybridConfig
from vllm import envs
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
@ -104,9 +105,9 @@ class GraniteMoeHybridMambaDecoderLayer(nn.Module):
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.mamba(hidden_states, mamba_cache_params,
mamba2_metadata)
hidden_states = residual + hidden_states * self.residual_multiplier
output = torch.empty_like(hidden_states)
self.mamba(hidden_states, output, mamba_cache_params, mamba2_metadata)
hidden_states = residual + output * self.residual_multiplier
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
@ -307,6 +308,7 @@ ALL_DECODER_LAYER_TYPES = {
}
@support_torch_compile
class GraniteMoeHybridModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):

View File

@ -10,6 +10,7 @@ from transformers import MambaConfig
from vllm import envs
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.forward_context import get_forward_context
@ -79,11 +80,12 @@ class Mamba2DecoderLayer(nn.Module):
else:
hidden_states, residual = self.norm(hidden_states, residual)
hidden_states = self.mixer(hidden_states, mamba_cache_params,
mamba2_metadata)
return hidden_states, residual
output = torch.empty_like(hidden_states)
self.mixer(hidden_states, output, mamba_cache_params, mamba2_metadata)
return output, residual
@support_torch_compile
class Mamba2Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):

View File

@ -25,6 +25,7 @@ from torch import nn
from vllm import envs
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
@ -172,9 +173,9 @@ class NemotronHMambaDecoderLayer(nn.Module):
else:
hidden_states, residual = self.norm(hidden_states, residual)
hidden_states = self.mixer(hidden_states, mamba_cache_params,
mamba2_metadata)
return hidden_states, residual
output = torch.empty_like(hidden_states)
self.mixer(hidden_states, output, mamba_cache_params, mamba2_metadata)
return output, residual
class NemotronHAttention(nn.Module):
@ -292,6 +293,7 @@ ALL_DECODER_LAYER_TYPES = {
}
@support_torch_compile
class NemotronHModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):

View File

@ -1,465 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
from collections.abc import Iterable
from typing import Optional, Union
import torch
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from vllm.attention import Attention
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (AutoWeightsLoader, WeightsMapper, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
def load_column_parallel_weight(param: torch.nn.Parameter,
loaded_weight: torch.Tensor):
tp = get_tensor_model_parallel_world_size()
rk = get_tensor_model_parallel_rank()
assert param.size(0) * tp == loaded_weight.size(0)
s = rk * param.size(0)
e = (rk + 1) * param.size(0)
loaded_weight = loaded_weight[s:e]
assert param.shape == loaded_weight.shape
param.data.copy_(loaded_weight)
class HeadMajorQKVParallelLinear(QKVParallelLinear):
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor):
return load_column_parallel_weight(param, loaded_weight)
class HeadMajorColumnParallelLinear(MergedColumnParallelLinear):
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor):
return load_column_parallel_weight(param, loaded_weight)
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def quick_gelu(x):
return x * torch.sigmoid(1.702 * x)
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def gegelu(input, limit: Optional[float] = None):
a_gelu, a_linear = input[..., ::2], input[..., 1::2]
if limit is not None:
a_gelu = torch.where(torch.isinf(a_gelu), a_gelu,
a_gelu.clamp(min=None, max=limit))
a_linear = torch.where(
torch.isinf(a_linear),
a_linear,
a_linear.clamp(min=-limit, max=limit),
)
out_gelu = quick_gelu(a_gelu)
return out_gelu * (a_linear + 1)
class Phi3SmallMLP(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
assert (self.config.hidden_act == "gegelu"
), "Only `gegelu` is supported for the 4.7 series of models .."
self.hidden_size = config.hidden_size
self.gegelu_limit = config.gegelu_limit
self.intermediate_size = config.intermediate_size
self.up_proj = HeadMajorColumnParallelLinear(
self.hidden_size,
2 * [self.intermediate_size],
bias=True,
quant_config=quant_config,
)
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
)
def forward(self, x):
gate_up, _ = self.up_proj(x)
x = gegelu(gate_up)
x, _ = self.down_proj(x)
return x
class Phi3SmallSelfAttention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.sparse_block_size = config.blocksparse_block_size
self.homo_heads = config.blocksparse_homo_head_pattern
self.local_blocks = config.blocksparse_num_local_blocks
self.vert_stride = config.blocksparse_vert_stride
assert (config.blocksparse_block_size ==
config.blocksparse_triton_kernel_block_size)
self.hidden_size = config.hidden_size
# Number of Query Heads
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.tp_size = get_tensor_model_parallel_world_size()
# Number of total Key Value Heads before tensor parallel
self.num_key_value_heads = config.num_key_value_heads
self.num_q_per_kv = self.num_heads // self.num_key_value_heads
if self.tp_size > 1:
assert self.num_key_value_heads % self.tp_size == 0
self.num_kv_heads_per_partition = max(
1, self.num_key_value_heads // self.tp_size)
self.num_heads_per_partition = self.num_heads // self.tp_size
self.max_position_embeddings = config.max_position_embeddings
self.rope_embedding_base = config.rope_embedding_base
self.rope_position_scale = config.rope_position_scale
self.is_causal = True
norm_factor = None
if config.mup_use_scaling:
norm_factor = self.head_dim / config.mup_attn_multiplier
else:
norm_factor = math.sqrt(self.head_dim)
self.scale = 1 / norm_factor
self.query_key_value = HeadMajorQKVParallelLinear(
self.hidden_size,
self.head_dim,
self.num_heads,
self.num_key_value_heads,
bias=True,
quant_config=quant_config,
)
self.dense = RowParallelLinear(self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config)
if getattr(self.config, "rope_scaling", None) is not None:
rope_scaling = self.config.rope_scaling
for key in rope_scaling:
if isinstance(rope_scaling[key], list):
rope_scaling[key] = tuple(rope_scaling[key])
if "factor" not in rope_scaling:
rope_scaling["factor"] = self.rope_position_scale
else:
rope_scaling = {
"rope_type": "linear",
"factor": self.rope_position_scale,
}
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_embedding_base,
rope_scaling=rope_scaling,
)
# blocksparse params
self.blocksparse_block_size = config.blocksparse_block_size
self.blocksparse_num_local_blocks = config.blocksparse_num_local_blocks
self.blocksparse_vert_stride = config.blocksparse_vert_stride
use_dense_attn = (getattr(self.config,
"dense_attention_every_n_layers", None)
and (self.layer_idx + 1) %
self.config.dense_attention_every_n_layers == 0)
bs_params = None
if not use_dense_attn:
bs_params = {
'max_seqlen': self.max_position_embeddings,
'num_heads': self.num_heads_per_partition,
"num_kv_heads": self.num_kv_heads_per_partition,
"block_size": self.sparse_block_size,
"local_blocks": self.local_blocks,
"vert_stride": self.vert_stride,
"homo_head": self.homo_heads
}
self.attn = Attention(self.num_heads_per_partition,
self.head_dim,
self.scale,
num_kv_heads=self.num_kv_heads_per_partition,
cache_config=cache_config,
quant_config=quant_config,
blocksparse_params=bs_params,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, Optional[torch.Tensor],
Optional[tuple[torch.Tensor]]]:
qkv, _ = self.query_key_value(hidden_states)
qkv = qkv.view(qkv.shape[:-1] +
(-1, (self.num_q_per_kv + 2), self.head_dim))
q, k, v = qkv.split([self.num_q_per_kv, 1, 1], dim=-2)
# NOTE: this is required by RotaryEmbed, which indeed does not have to
# TODO: allow 3D QK for rotary forward
q = q.reshape(-1, self.head_dim * self.num_heads_per_partition)
k = k.reshape(-1, self.head_dim * self.num_kv_heads_per_partition)
v = v.reshape(-1, self.head_dim * self.num_kv_heads_per_partition)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.dense(attn_output)
return output
class Phi3SmallDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3SmallSelfAttention(config,
layer_idx,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn")
self.mlp = Phi3SmallMLP(config, quant_config)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Phi3SmallModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.mup_embedding_multiplier = config.mup_embedding_multiplier
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Phi3SmallDecoderLayer(config,
int(prefix.split('.')[-1]),
cache_config,
quant_config,
prefix=prefix),
prefix=f"{prefix}.layers")
self.final_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.LongTensor,
positions: Optional[torch.LongTensor],
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor],
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
if (self.mup_embedding_multiplier is not None
and self.mup_embedding_multiplier > 0.0):
hidden_states = hidden_states * self.mup_embedding_multiplier
else:
assert intermediate_tensors
hidden_states = intermediate_tensors["hidden_states"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states = layer(positions, hidden_states)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Phi3SmallForCausalLM(nn.Module, SupportsPP):
_tied_weights_keys = ["lm_head.weight"]
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_suffix={"rotary_emb.inv_freq": None})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.model = Phi3SmallModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.vocab_size = config.vocab_size
self.mup_width_multiplier = config.mup_width_multiplier
self.lm_head = ParallelLMHead(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
quant_config=quant_config,
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
# tokens in tiktoken but not used
if hasattr(config, 'dummy_token_indices'):
device = self.lm_head.weight.device
self.register_buffer('dummy_token_indices',
torch.LongTensor(
config.dummy_token_indices).to(device),
persistent=False)
else:
self.dummy_token_indices = None
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
if self.dummy_token_indices is not None and logits is not None:
logits.index_fill_(-1, self.dummy_token_indices, -torch.inf)
logits = logits / self.mup_width_multiplier
return logits
def forward(
self,
input_ids: torch.LongTensor,
positions: Optional[torch.LongTensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
output_hidden_states = self.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
output_hidden_states = output_hidden_states
return output_hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head.weight"]
if self.config.tie_word_embeddings else None))
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

View File

@ -67,6 +67,7 @@ _TEXT_GENERATION_MODELS = {
"Gemma3nForConditionalGeneration": ("gemma3n", "Gemma3nForConditionalGeneration"), # noqa: E501
"GlmForCausalLM": ("glm", "GlmForCausalLM"),
"Glm4ForCausalLM": ("glm4", "Glm4ForCausalLM"),
"Glm4MoeForCausalLM": ("glm4_moe", "Glm4MoeForCausalLM"),
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
@ -110,7 +111,6 @@ _TEXT_GENERATION_MODELS = {
"PersimmonForCausalLM": ("persimmon", "PersimmonForCausalLM"),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
"Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"),
"PhiMoEForCausalLM": ("phimoe", "PhiMoEForCausalLM"),
"Phi4FlashForCausalLM": ("phi4flash", "Phi4FlashForCausalLM"),
"Plamo2ForCausalLM": ("plamo2", "Plamo2ForCausalLM"),
@ -245,6 +245,7 @@ _SPECULATIVE_DECODING_MODELS = {
"EagleMiniCPMForCausalLM": ("minicpm_eagle", "EagleMiniCPMForCausalLM"),
"Eagle3LlamaForCausalLM": ("llama_eagle3", "Eagle3LlamaForCausalLM"),
"DeepSeekMTPModel": ("deepseek_mtp", "DeepSeekMTP"),
"Glm4MoeMTPModel": ("glm4_moe_mtp", "Glm4MoeMTP"),
"MedusaModel": ("medusa", "Medusa"),
# Temporarily disabled.
# # TODO(woosuk): Re-enable this once the MLP Speculator is supported in V1.

View File

@ -17,6 +17,7 @@ from transformers import Zamba2Config
from vllm import envs
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.forward_context import get_forward_context
@ -548,14 +549,16 @@ class Zamba2MambaDecoderLayer(nn.Module):
hidden_states = self.input_layernorm(hidden_states)
# Process through Mamba mixer
hidden_states = self.mamba(
output = torch.empty_like(hidden_states)
self.mamba(
hidden_states,
output,
mamba_cache_params=mamba_cache_params,
mamba2_metadata=mamba2_metadata,
)
# residual connection after mamba
hidden_states = residual + hidden_states
hidden_states = residual + output
return hidden_states
@ -646,6 +649,7 @@ class Zamba2HybridLayer(nn.Module):
return layer_outputs
@support_torch_compile
class Zamba2Model(nn.Module):
"""Core Zamba2 model combining transformer and Mamba architectures.

View File

@ -57,7 +57,6 @@ class _Backend(enum.Enum):
PALLAS = enum.auto()
PALLAS_VLLM_V1 = enum.auto()
IPEX = enum.auto()
BLOCK_SPARSE_FLASH_ATTN = enum.auto()
DUAL_CHUNK_FLASH_ATTN = enum.auto()
DIFFERENTIAL_FLASH_ATTN = enum.auto()
NO_ATTENTION = enum.auto()

View File

@ -35,7 +35,9 @@ class TpuPlatform(Platform):
device_control_env_var: str = "TPU_VISIBLE_CHIPS"
simple_compile_backend: str = "openxla"
supported_quantization: list[str] = ["tpu_int8", "compressed-tensors"]
supported_quantization: list[str] = [
"fp8", "tpu_int8", "compressed-tensors"
]
additional_env_vars: list[str] = [
"TPU_CHIPS_PER_HOST_BOUNDS", "TPU_HOST_BOUNDS"

View File

@ -3,6 +3,7 @@
from .abs_reasoning_parsers import ReasoningParser, ReasoningParserManager
from .deepseek_r1_reasoning_parser import DeepSeekR1ReasoningParser
from .glm4_moe_reasoning_parser import Glm4MoeModelReasoningParser
from .granite_reasoning_parser import GraniteReasoningParser
from .hunyuan_a13b_reasoning_parser import HunyuanA13BReasoningParser
from .qwen3_reasoning_parser import Qwen3ReasoningParser
@ -14,4 +15,5 @@ __all__ = [
"GraniteReasoningParser",
"HunyuanA13BReasoningParser",
"Qwen3ReasoningParser",
"Glm4MoeModelReasoningParser",
]

View File

@ -0,0 +1,151 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Sequence
from typing import Optional, Union
from transformers import PreTrainedTokenizerBase
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage)
from vllm.logger import init_logger
from vllm.reasoning import ReasoningParser, ReasoningParserManager
logger = init_logger(__name__)
@ReasoningParserManager.register_module("glm4_moe")
class Glm4MoeModelReasoningParser(ReasoningParser):
"""
Reasoning parser for the Glm4MoeModel model.
The Glm4MoeModel model uses <think>...</think> tokens to denote reasoning
text within its output. The model provides a strict switch to disable
reasoning output via the 'enable_thinking=False' parameter. This parser
extracts the reasoning content enclosed by <think> and </think> tokens
from the model's output.
"""
def __init__(self, tokenizer: PreTrainedTokenizerBase):
super().__init__(tokenizer)
self.think_start_token = "<think>"
self.think_end_token = "</think>"
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ReasoningParser "
"constructor during construction.")
self.think_start_token_id = self.vocab.get(self.think_start_token)
self.think_end_token_id = self.vocab.get(self.think_end_token)
if (self.think_start_token_id is None
or self.think_end_token_id is None):
raise RuntimeError(
"Glm4MoeModel reasoning parser could not locate "
"think start/end tokens in the tokenizer!")
def is_reasoning_end(self, input_ids: list[int]) -> bool:
return self.think_end_token_id in input_ids
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
"""
Extract the content after the end tokens
"""
if self.think_end_token_id not in input_ids[:-1]:
return []
else:
return input_ids[input_ids.index(self.think_end_token_id) + 1:]
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""
Extract reasoning content from a delta message.
Handles streaming output where previous + delta = current.
Uses token IDs for faster processing.
For text <think>abc</think>xyz:
- 'abc' goes to reasoning_content
- 'xyz' goes to content
"""
# Skip single special tokens
if len(delta_token_ids) == 1 and (delta_token_ids[0] in [
self.think_start_token_id, self.think_end_token_id
]):
return None
if self.think_start_token_id in previous_token_ids:
if self.think_end_token_id in delta_token_ids:
# <think> in previous, </think> in delta,
# extract reasoning content
end_index = delta_text.find(self.think_end_token)
reasoning_content = delta_text[:end_index]
content = delta_text[end_index + len(self.think_end_token):]
return DeltaMessage(reasoning_content=reasoning_content,
content=content if content else None)
elif self.think_end_token_id in previous_token_ids:
# <think> in previous, </think> in previous,
# reasoning content continues
return DeltaMessage(content=delta_text)
else:
# <think> in previous, no </think> in previous or delta,
# reasoning content continues
return DeltaMessage(reasoning_content=delta_text)
elif self.think_start_token_id in delta_token_ids:
if self.think_end_token_id in delta_token_ids:
# <think> in delta, </think> in delta, extract reasoning content
start_index = delta_text.find(self.think_start_token)
end_index = delta_text.find(self.think_end_token)
reasoning_content = delta_text[start_index +
len(self.think_start_token
):end_index]
content = delta_text[end_index + len(self.think_end_token):]
return DeltaMessage(reasoning_content=reasoning_content,
content=content if content else None)
else:
# <think> in delta, no </think> in delta,
# reasoning content continues
return DeltaMessage(reasoning_content=delta_text)
else:
# thinking is disabled, just content
return DeltaMessage(content=delta_text)
def extract_reasoning_content(
self, model_output: str, request: ChatCompletionRequest
) -> tuple[Optional[str], Optional[str]]:
"""
Extract reasoning content from the model output.
For text <think>abc</think>xyz:
- 'abc' goes to reasoning_content
- 'xyz' goes to content
Returns:
tuple[Optional[str], Optional[str]]: reasoning content and content
"""
# Check if the model output contains the <think> and </think> tokens.
if (self.think_start_token not in model_output
or self.think_end_token not in model_output):
return None, model_output
# Check if the <think> is present in the model output, remove it
# if it is present.
model_output_parts = model_output.partition(self.think_start_token)
model_output = model_output_parts[2] if model_output_parts[
1] else model_output_parts[0]
# Check if the model output contains the </think> tokens.
# If the end token is not found, return the model output as is.
if self.think_end_token not in model_output:
return None, model_output
# Extract reasoning content from the model output.
reasoning_content, _, content = model_output.partition(
self.think_end_token)
final_content = content or None
return reasoning_content, final_content

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Any, Optional
from typing import Optional
import numpy as np
import torch
@ -443,7 +443,6 @@ class TorchSDPABackendImpl(AttentionImpl[TorchSDPAMetadata]):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
@ -451,9 +450,6 @@ class TorchSDPABackendImpl(AttentionImpl[TorchSDPAMetadata]):
) -> None:
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0.")
if blocksparse_params is not None:
raise ValueError(
"Torch SPDA does not support block-sparse attention.")
if logits_soft_cap is not None:
logger.warning_once("Torch SPDA does not support logits soft cap. "
"Outputs may be slightly off.")

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with FlashAttention."""
from dataclasses import dataclass
from typing import Any, ClassVar, Optional
from typing import ClassVar, Optional
import numpy as np
import torch
@ -349,15 +349,11 @@ class FlashAttentionImpl(AttentionImpl):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
use_irope: bool = False,
) -> None:
if blocksparse_params is not None:
raise ValueError(
"FlashAttention does not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)

View File

@ -4,7 +4,7 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
from typing import TYPE_CHECKING, Optional
import torch
from flashinfer import (BatchDecodeWithPagedKVCacheWrapper,
@ -490,7 +490,6 @@ class FlashInferImpl(AttentionImpl):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[int] = None,

View File

@ -3,7 +3,7 @@
"""Attention layer with FlashAttention."""
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Optional
from typing import Optional
import torch
from torch.nn.attention.flex_attention import (BlockMask, _mask_mod_signature,
@ -342,15 +342,10 @@ class FlexAttentionImpl(AttentionImpl):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
) -> None:
if blocksparse_params is not None:
# TODO we should support this :think
raise ValueError(
"FlashAttention does not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)

View File

@ -190,7 +190,7 @@ return curr_o @ W_O
import functools
from abc import abstractmethod
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Generic, Optional, TypeVar, Union
from typing import TYPE_CHECKING, Generic, Optional, TypeVar, Union
import torch
@ -754,7 +754,6 @@ class MLACommonImpl(MLAAttentionImpl[M], Generic[M]):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from typing import Any, Optional
from typing import Optional
import torch
@ -74,7 +74,6 @@ class CutlassMLAImpl(MLACommonImpl[MLACommonMetadata]):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
@ -82,17 +81,14 @@ class CutlassMLAImpl(MLACommonImpl[MLACommonMetadata]):
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"CutlassMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Any, ClassVar, Optional
from typing import ClassVar, Optional
import torch
@ -119,7 +119,6 @@ class FlashMLAImpl(MLACommonImpl[FlashMLAMetadata]):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
@ -127,20 +126,17 @@ class FlashMLAImpl(MLACommonImpl[FlashMLAMetadata]):
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
assert is_flashmla_supported(), \
"FlashMLA is not supported on this device"
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"FlashMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Any, ClassVar, Optional
from typing import ClassVar, Optional
import torch
@ -167,7 +167,6 @@ class AiterMLAImpl(MLACommonImpl[AiterMLAMetadata]):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
@ -175,20 +174,17 @@ class AiterMLAImpl(MLACommonImpl[AiterMLAMetadata]):
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
assert (num_heads == 16 or num_heads == 128), (
f"Aiter MLA only supports 16 or 128 number of heads.\n"
f"Provided {num_heads} number of heads.\n"
"Try adjusting tensor_parallel_size value.")
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"Aiter MLA does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
"alibi_slopes, sliding_window, logits_soft_cap")
from aiter import flash_attn_varlen_func
self.flash_attn_varlen_func = flash_attn_varlen_func

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
from typing import Optional
import torch
@ -42,7 +42,6 @@ class TritonMLAImpl(MLACommonImpl[MLACommonMetadata]):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]],
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
@ -50,17 +49,14 @@ class TritonMLAImpl(MLACommonImpl[MLACommonMetadata]):
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap, attn_type,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
unsupported_features = [
alibi_slopes, sliding_window, blocksparse_params, logits_soft_cap
]
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"TritonMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, blocksparse_params, "
"logits_soft_cap")
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Any, Optional
from typing import Optional
import torch
import torch_xla.core.xla_builder as xb
@ -24,6 +24,19 @@ logger = init_logger(__name__)
# TPU requires the head size to be a multiple of 128.
TPU_HEAD_SIZE_ALIGNMENT = 128
# Note: TPU can fp8 as storage dtype but doesn't support converting from uint8
# from to fp32 directly. That's why it has a dtype mapping different from GPU
TPU_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.half,
"bfloat16": torch.bfloat16,
"float": torch.float,
"fp8": torch.float8_e4m3fn,
"fp8_e4m3": torch.float8_e4m3fn,
"fp8_e5m2": torch.float8_e5m2,
"int8": torch.int8,
"uint8": torch.uint8,
}
class PallasAttentionBackend(AttentionBackend):
@ -132,7 +145,6 @@ class PallasAttentionBackendImpl(AttentionImpl):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[int] = None,
@ -142,9 +154,6 @@ class PallasAttentionBackendImpl(AttentionImpl):
logger.warning_once(
"Using irope in Pallas is not supported yet, it will fall back "
"to global attention for long context.")
if blocksparse_params is not None:
raise ValueError("Paged attention Pallas kernel does "
"not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
@ -156,10 +165,6 @@ class PallasAttentionBackendImpl(AttentionImpl):
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if alibi_slopes is not None:
raise NotImplementedError("Alibi slopes is not supported.")
if kv_cache_dtype != "auto":
raise NotImplementedError("FP8 KV cache dtype is not supported.")
if blocksparse_params is not None:
raise NotImplementedError("Blocksparse is not supported.")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
@ -167,6 +172,11 @@ class PallasAttentionBackendImpl(AttentionImpl):
"are not implemented for "
"PallasAttentionBackendImpl")
self.kv_cache_quantized_dtype = None
if kv_cache_dtype != "auto":
self.kv_cache_quantized_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE.get(
kv_cache_dtype.lower().strip())
def forward(
self,
layer: AttentionLayer,
@ -200,7 +210,6 @@ class PallasAttentionBackendImpl(AttentionImpl):
output = torch.ones_like(query)
return output
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
num_tokens, hidden_size = query.shape
query = query.view(num_tokens, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
@ -221,10 +230,21 @@ class PallasAttentionBackendImpl(AttentionImpl):
# Skip this if sharing KV cache with an earlier attention layer.
slot_mapping = attn_metadata.slot_mapping
write_to_kv_cache(
key, value, kv_cache, slot_mapping,
key,
value,
kv_cache,
slot_mapping,
attn_metadata.num_slices_per_kv_cache_update_block,
attn_metadata.num_kv_update_slices)
attn_metadata.num_kv_update_slices,
self.kv_cache_quantized_dtype,
layer._k_scale_float,
layer._v_scale_float,
)
if self.kv_cache_quantized_dtype is not None and (
layer._k_scale_float == 0.0 or layer._v_scale_float == 0.0):
raise ValueError(
"k_scale_float and v_scale_float must be non-zero")
output = torch.ops.xla.ragged_paged_attention(
query,
kv_cache,
@ -242,6 +262,8 @@ class PallasAttentionBackendImpl(AttentionImpl):
sm_scale=self.scale,
sliding_window=self.sliding_window,
soft_cap=self.logits_soft_cap,
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
)
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
@ -257,18 +279,32 @@ def write_to_kv_cache(
slot_mapping: torch.Tensor,
num_slices_per_kv_cache_update_block: int,
num_kv_update_slices: torch.Tensor,
kv_cache_quantized_dtype: Optional[torch.dtype] = None,
k_scale: float = 1.0,
v_scale: float = 1.0,
) -> None:
""" Write the key and values to the KV cache.
Args:
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
num_slices_per_kv_cache_update_block: int
"""
_, page_size, num_combined_kv_heads, head_size = kv_cache.shape
head_size = cdiv(head_size,
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
if kv_cache_quantized_dtype is not None:
dtype_info = torch.finfo(kv_cache_quantized_dtype)
key = key.to(torch.float32) / k_scale
# NOTE: clamp is added here to avoid out of range of quantized dtype
key = torch.clamp(key, dtype_info.min, dtype_info.max)
key = key.to(kv_cache_quantized_dtype)
value = value.to(torch.float32) / v_scale
value = torch.clamp(value, dtype_info.min, dtype_info.max)
value = value.to(kv_cache_quantized_dtype)
kv = torch.cat([key, value], axis=-1).reshape(-1, num_combined_kv_heads,
head_size)

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with AiterFlashAttention."""
from dataclasses import dataclass
from typing import Any, Optional
from typing import Optional
import torch
@ -334,15 +334,11 @@ class AiterFlashAttentionImpl(AttentionImpl):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[int] = None,
use_irope: bool = False,
) -> None:
if blocksparse_params is not None:
raise ValueError(
"AiterFlashAttention does not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with PagedAttention and Triton prefix prefill."""
from dataclasses import dataclass
from typing import Any, ClassVar, Optional
from typing import ClassVar, Optional
import torch
@ -205,15 +205,11 @@ class TritonAttentionImpl(AttentionImpl):
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[int] = None,
use_irope: bool = False,
) -> None:
if blocksparse_params is not None:
raise ValueError(
"TritonAttention does not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)

View File

@ -51,7 +51,13 @@ class RayGaugeWrapper(RayPrometheusMetric):
def __init__(self,
name: str,
documentation: Optional[str] = "",
labelnames: Optional[list[str]] = None):
labelnames: Optional[list[str]] = None,
multiprocess_mode: Optional[str] = ""):
# All Ray metrics are keyed by WorkerId, so multiprocess modes like
# "mostrecent", "all", "sum" do not apply. This logic can be manually
# implemented at the observability layer (Prometheus/Grafana).
del multiprocess_mode
labelnames_tuple = tuple(labelnames) if labelnames else None
self.metric = ray_metrics.Gauge(name=name,
description=documentation,

View File

@ -2079,7 +2079,7 @@ class GPUModelRunner(LoRAModelRunnerMixin):
block_table_tensor=self.input_batch.block_table[
kv_cache_group_id].get_device_tensor()[:num_reqs],
slot_mapping=self.input_batch.
block_table[kv_cache_group_id].slot_mapping[:num_reqs])
block_table[kv_cache_group_id].slot_mapping[:num_tokens])
attn_metadata_i = self.attn_metadata_builders[
kv_cache_group_id].build_for_cudagraph_capture(
@ -2753,9 +2753,6 @@ class GPUModelRunner(LoRAModelRunnerMixin):
if self.vllm_config.speculative_config is not None:
raise NotImplementedError(
"Mamba with speculative decoding is not supported yet.")
if not self.vllm_config.model_config.enforce_eager:
raise NotImplementedError(
"Mamba with cuda graph is not supported yet.")
if self.vllm_config.cache_config.enable_prefix_caching:
raise NotImplementedError(
"Prefix caching is not supported for Mamba yet.")

View File

@ -32,9 +32,10 @@ from vllm.multimodal.inputs import (BatchedTensorInputs, MultiModalKwargs,
from vllm.multimodal.utils import group_mm_inputs_by_modality
from vllm.pooling_params import PoolingTask
from vllm.sequence import IntermediateTensors
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, LayerBlockType, cdiv,
is_pin_memory_available, prev_power_of_2)
from vllm.v1.attention.backends.pallas import (PallasAttentionBackend,
from vllm.utils import (LayerBlockType, cdiv, is_pin_memory_available,
prev_power_of_2)
from vllm.v1.attention.backends.pallas import (TPU_STR_DTYPE_TO_TORCH_DTYPE,
PallasAttentionBackend,
PallasMetadata,
get_page_size_bytes)
from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
@ -142,11 +143,11 @@ class TPUModelRunner(LoRAModelRunnerMixin):
if cache_config.cache_dtype == "auto":
model_dtype = self.dtype
if isinstance(model_dtype, str):
self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
else:
self.kv_cache_dtype = model_dtype
else:
self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[
cache_config.cache_dtype]
self._hidden_states_dtype = self.dtype

View File

@ -77,7 +77,8 @@ class Worker(LocalOrDistributedWorkerBase):
"mlp_speculator",
"eagle",
"deepseek_mtp",
"mimo_mtp")) \
"glm4_moe_mtp",
"mimo_mtp")) \
else {"return_hidden_states": True}
ModelRunnerClass: Type[GPUModelRunnerBase] = ModelRunner