Compare commits

..

1 Commits

Author SHA1 Message Date
e17250f0d2 fix precommit 2025-06-18 21:17:43 -07:00
928 changed files with 24263 additions and 76950 deletions

View File

@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
done
lm_eval --model vllm \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,trust_remote_code=true,max_model_len=4096" \
--model_args "pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend=ray,trust_remote_code=true,max_model_len=4096" \
--tasks gsm8k --num_fewshot "$FEWSHOT" --limit "$LIMIT" \
--batch_size "$BATCH_SIZE"

View File

@ -18,14 +18,12 @@ RTOL = 0.08
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get("trust_remote_code", False)
max_model_len = eval_config.get("max_model_len", 4096)
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager=true,"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code},"
f"max_model_len={max_model_len}"
f"trust_remote_code={trust_remote_code}"
)
results = lm_eval.simple_evaluate(
model="vllm",

View File

@ -11,7 +11,7 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performanc
## Performance benchmark quick overview
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!) and Intel® Xeon® Processors, with different models.
**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for FP8 benchmark on H100 is coming!), with different models.
**Benchmarking Duration**: about 1hr.
@ -31,27 +31,13 @@ Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Manually Trigger the benchmark
```bash
bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
```
Runtime environment variables:
- `ON_CPU`: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
- `SERVING_JSON`: JSON file to use for the serving tests. Default value is empty string (use default file).
- `LATENCY_JSON`: JSON file to use for the latency tests. Default value is empty string (use default file).
- `THROUGHPUT_JSON`: JSON file to use for the throughout tests. Default value is empty string (use default file).
- `REMOTE_HOST`: IP for the remote vLLM service to benchmark. Default value is empty string.
- `REMOTE_PORT`: Port for the remote vLLM service to benchmark. Default value is empty string.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
> NOTE: For Intel® Xeon® Processors, use `tests/latency-tests-cpu.json`, `tests/throughput-tests-cpu.json`, `tests/serving-tests-cpu.json` instead.
### Latency test
Here is an example of one test inside `latency-tests.json`:
@ -133,30 +119,6 @@ If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
The `compare-json-results.py` helps to compare benchmark results JSON files converted using `convert-results-json-to-markdown.py`.
When run, benchmark script generates results under `benchmark/results` folder, along with the `benchmark_results.md` and `benchmark_results.json`.
`compare-json-results.py` compares two `benchmark_results.json` files and provides performance ratio e.g. for Output Tput, Median TTFT and Median TPOT.
Here is an example using the script to compare result_a and result_b without detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json --ignore_test_name`
| | results_a/benchmark_results.json | results_b/benchmark_results.json | perf_ratio |
|----|----------------------------------------|----------------------------------------|----------|
| 0 | 142.633982 | 156.526018 | 1.097396 |
| 1 | 241.620334 | 294.018783 | 1.216863 |
| 2 | 218.298905 | 262.664916 | 1.203235 |
| 3 | 242.743860 | 299.816190 | 1.235113 |
Here is an example using the script to compare result_a and result_b with detail test name.
`python3 compare-json-results.py -f results_a/benchmark_results.json -f results_b/benchmark_results.json`
| | results_a/benchmark_results.json_name | results_a/benchmark_results.json | results_b/benchmark_results.json_name | results_b/benchmark_results.json | perf_ratio |
|---|---------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------|
| 0 | serving_llama8B_tp1_sharegpt_qps_1 | 142.633982 | serving_llama8B_tp1_sharegpt_qps_1 | 156.526018 | 1.097396 |
| 1 | serving_llama8B_tp1_sharegpt_qps_16 | 241.620334 | serving_llama8B_tp1_sharegpt_qps_16 | 294.018783 | 1.216863 |
| 2 | serving_llama8B_tp1_sharegpt_qps_4 | 218.298905 | serving_llama8B_tp1_sharegpt_qps_4 | 262.664916 | 1.203235 |
| 3 | serving_llama8B_tp1_sharegpt_qps_inf | 242.743860 | serving_llama8B_tp1_sharegpt_qps_inf | 299.816190 | 1.235113 |
| 4 | serving_llama8B_tp2_random_1024_128_qps_1 | 96.613390 | serving_llama8B_tp4_random_1024_128_qps_1 | 108.404853 | 1.122048 |
## Nightly test details
See [nightly-descriptions.md](nightly-descriptions.md) for the detailed description on test workload, models and docker containers of benchmarking other llm engines.

View File

@ -16,7 +16,7 @@ Please download the visualization scripts in the post
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code:
```bash
```console
export HF_TOKEN=<your HF token>
apt update
apt install -y git

View File

@ -4,8 +4,7 @@
- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: end-to-end latency (mean, median, p99).
{latency_tests_markdown_table}
@ -15,8 +14,7 @@
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- CPU Models: llama-3.1 8B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput.
{throughput_tests_markdown_table}
@ -27,18 +25,12 @@
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B on GPU, under QPS 2
- CPU Models: llama-3.1 8B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B, under QPS 2
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
- For CPU, we added random dataset tests to benchmark fixed input/output length with 100 prompts.
{serving_tests_markdown_table}
## Platform Information
{platform_markdown_table}
## json version of the benchmarking tables
This section contains the data of the markdown tables above in JSON format.

View File

@ -1,66 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import pandas as pd
def compare_data_columns(
files, name_column, data_column, drop_column, ignore_test_name=False
):
print("\ncompare_data_column: " + data_column)
frames = []
compare_frames = []
for file in files:
data_df = pd.read_json(file)
serving_df = data_df.dropna(subset=[drop_column], ignore_index=True)
if ignore_test_name is False:
serving_df = serving_df.rename(columns={name_column: file + "_name"})
frames.append(serving_df[file + "_name"])
serving_df = serving_df.rename(columns={data_column: file})
frames.append(serving_df[file])
compare_frames.append(serving_df[file])
if len(compare_frames) >= 2:
# Compare numbers among two files
ratio_df = compare_frames[1] / compare_frames[0]
frames.append(ratio_df)
compare_frames.pop(1)
concat_df = pd.concat(frames, axis=1)
return concat_df
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-f", "--file", action="append", type=str, help="input file name"
)
parser.add_argument(
"--ignore_test_name", action="store_true", help="ignore_test_name or not"
)
args = parser.parse_args()
files = args.file
print("comparing : " + ", ".join(files))
drop_column = "P99"
name_column = "Test name"
data_cols_to_compare = ["Output Tput (tok/s)", "Median TTFT (ms)", "Median"]
html_msgs_for_data_cols = [
"Compare Output Tokens /n",
"Median TTFT /n",
"Median TPOT /n",
]
ignore_test_name = args.ignore_test_name
with open("perf_comparison.html", "w") as text_file:
for i in range(len(data_cols_to_compare)):
output_df = compare_data_columns(
files,
name_column,
data_cols_to_compare[i],
drop_column,
ignore_test_name=ignore_test_name,
)
print(output_df)
html = output_df.to_html()
text_file.write(html_msgs_for_data_cols[i])
text_file.write(html)

View File

@ -3,11 +3,9 @@
import json
import os
from importlib import util
from pathlib import Path
import pandas as pd
import psutil
from tabulate import tabulate
results_folder = Path("results/")
@ -31,11 +29,11 @@ throughput_results = []
throughput_results_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"num_requests": "# of req.",
"total_num_tokens": "Total # of tokens",
"elapsed_time": "Elapsed time (s)",
# "num_requests": "# of req.",
# "total_num_tokens": "Total # of tokens",
# "elapsed_time": "Elapsed time (s)",
"requests_per_second": "Tput (req/s)",
"tokens_per_second": "Tput (tok/s)",
# "tokens_per_second": "Tput (tok/s)",
}
# serving results and the keys that will be printed into markdown
@ -43,18 +41,16 @@ serving_results = []
serving_column_mapping = {
"test_name": "Test name",
"gpu_type": "GPU",
"completed": "# of req.",
# "completed": "# of req.",
"request_throughput": "Tput (req/s)",
"total_token_throughput": "Total Token Tput (tok/s)",
"output_throughput": "Output Tput (tok/s)",
"total_input_tokens": "Total input tokens",
"total_output_tokens": "Total output tokens",
# "input_throughput": "Input Tput (tok/s)",
# "output_throughput": "Output Tput (tok/s)",
"mean_ttft_ms": "Mean TTFT (ms)",
"median_ttft_ms": "Median TTFT (ms)",
"p99_ttft_ms": "P99 TTFT (ms)",
"mean_tpot_ms": "Mean TPOT (ms)",
"median_tpot_ms": "Median",
"p99_tpot_ms": "P99",
# "mean_tpot_ms": "Mean TPOT (ms)",
# "median_tpot_ms": "Median",
# "p99_tpot_ms": "P99",
"mean_itl_ms": "Mean ITL (ms)",
"median_itl_ms": "Median ITL (ms)",
"p99_itl_ms": "P99 ITL (ms)",
@ -79,20 +75,6 @@ def results_to_json(latency, throughput, serving):
)
def get_size_with_unit(bytes, suffix="B"):
"""
Scale bytes to its proper format
e.g:
1253656 => '1.20MB'
1253656678 => '1.17GB'
"""
factor = 1024
for unit in ["", "K", "M", "G", "T", "P"]:
if bytes < factor:
return f"{bytes:.2f}{unit}{suffix}"
bytes /= factor
if __name__ == "__main__":
# collect results
for test_file in results_folder.glob("*.json"):
@ -173,27 +155,6 @@ if __name__ == "__main__":
serving_results = pd.DataFrame.from_dict(serving_results)
throughput_results = pd.DataFrame.from_dict(throughput_results)
svmem = psutil.virtual_memory()
platform_data = {
"Physical cores": [psutil.cpu_count(logical=False)],
"Total cores": [psutil.cpu_count(logical=True)],
"Total Memory": [get_size_with_unit(svmem.total)],
}
if util.find_spec("numa") is not None:
from numa import info
platform_data["Total NUMA nodes"] = [info.get_num_configured_nodes()]
if util.find_spec("cpuinfo") is not None:
from cpuinfo import get_cpu_info
platform_data["CPU Brand"] = [get_cpu_info()["brand_raw"]]
platform_results = pd.DataFrame.from_dict(
platform_data, orient="index", columns=["Platform Info"]
)
raw_results_json = results_to_json(
latency_results, throughput_results, serving_results
)
@ -239,9 +200,6 @@ if __name__ == "__main__":
throughput_md_table = tabulate(
throughput_results, headers="keys", tablefmt="pipe", showindex=False
)
platform_md_table = tabulate(
platform_results, headers="keys", tablefmt="pipe", showindex=True
)
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
@ -253,7 +211,6 @@ if __name__ == "__main__":
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
serving_tests_markdown_table=serving_md_table,
platform_markdown_table=platform_md_table,
benchmarking_results_in_json_string=processed_results_json,
)
f.write(results)

View File

@ -31,20 +31,6 @@ check_gpus() {
echo "GPU type is $gpu_type"
}
check_cpus() {
# check the number of CPUs and NUMA Node and GPU type.
declare -g numa_count=$(python3 -c "from numa import info;numa_size = info.get_num_configured_nodes(); print(numa_size)")
if [[ $numa_count -gt 0 ]]; then
echo "NUMA found."
echo $numa_count
else
echo "Need at least 1 NUMA to run benchmarking."
exit 1
fi
declare -g gpu_type="cpu"
echo "GPU type is $gpu_type"
}
check_hf_token() {
# check if HF_TOKEN is available and valid
if [[ -z "$HF_TOKEN" ]]; then
@ -83,22 +69,6 @@ json2args() {
echo "$args"
}
json2envs() {
# transforms the JSON string to environment variables.
# example:
# input: { "VLLM_CPU_KVCACHE_SPACE": 5 }
# output: VLLM_CPU_KVCACHE_SPACE=5
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map((.key ) + "=" + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
wait_for_server() {
# wait for vllm server to start
# return 1 if vllm server crashes
@ -188,24 +158,15 @@ run_latency_tests() {
# get arguments
latency_params=$(echo "$params" | jq -r '.parameters')
latency_args=$(json2args "$latency_params")
latency_environment_variables=$(echo "$params" | jq -r '.environment_variables')
latency_envs=$(json2envs "$latency_environment_variables")
# check if there is enough GPU to run the test
tp=$(echo "$latency_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
latency_command=" $latency_envs python3 benchmark_latency.py \
latency_command="python3 benchmark_latency.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$latency_args"
@ -255,24 +216,15 @@ run_throughput_tests() {
# get arguments
throughput_params=$(echo "$params" | jq -r '.parameters')
throughput_args=$(json2args "$throughput_params")
throughput_environment_variables=$(echo "$params" | jq -r '.environment_variables')
throughput_envs=$(json2envs "$throughput_environment_variables")
# check if there is enough GPU to run the test
tp=$(echo "$throughput_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
throughput_command=" $throughput_envs python3 benchmark_throughput.py \
throughput_command="python3 benchmark_throughput.py \
--output-json $RESULTS_FOLDER/${test_name}.json \
$throughput_args"
@ -320,27 +272,18 @@ run_serving_tests() {
# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
server_envs=$(echo "$params" | jq -r '.server_environment_variables')
client_params=$(echo "$params" | jq -r '.client_parameters')
server_args=$(json2args "$server_params")
server_envs=$(json2envs "$server_envs")
client_args=$(json2args "$client_params")
qps_list=$(echo "$params" | jq -r '.qps_list')
qps_list=$(echo "$qps_list" | jq -r '.[] | @sh')
echo "Running over qps list $qps_list"
# check if there is enough resources to run the test
# check if there is enough GPU to run the test
tp=$(echo "$server_params" | jq -r '.tensor_parallel_size')
if [ "$ON_CPU" == "1" ];then
if [[ $numa_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $numa_count NUMA nodes found. Skip testcase $test_name."
continue
fi
else
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
if [[ $gpu_count -lt $tp ]]; then
echo "Required tensor-parallel-size $tp but only $gpu_count GPU found. Skip testcase $test_name."
continue
fi
# check if server model and client model is aligned
@ -351,33 +294,23 @@ run_serving_tests() {
continue
fi
server_command="$server_envs python3 \
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
$server_args"
# run the server
echo "Running test case $test_name"
echo "Server command: $server_command"
# support remote vllm server
client_remote_args=""
if [[ -z "${REMOTE_HOST}" ]]; then
bash -c "$server_command" &
server_pid=$!
# wait until the server is alive
if wait_for_server; then
echo ""
echo "vLLM server is up and running."
else
echo ""
echo "vLLM failed to start within the timeout period."
fi
bash -c "$server_command" &
server_pid=$!
# wait until the server is alive
if wait_for_server; then
echo ""
echo "vllm server is up and running."
else
server_command="Using Remote Server $REMOTE_HOST $REMOTE_PORT"
if [[ ${REMOTE_PORT} ]]; then
client_remote_args=" --host=$REMOTE_HOST --port=$REMOTE_PORT "
else
client_remote_args=" --host=$REMOTE_HOST "
fi
echo ""
echo "vllm failed to start within the timeout period."
fi
# iterate over different QPS
@ -399,7 +332,7 @@ run_serving_tests() {
--result-filename ${new_test_name}.json \
--request-rate $qps \
--metadata "tensor_parallel_size=$tp" \
$client_args $client_remote_args "
$client_args"
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
@ -427,14 +360,7 @@ run_serving_tests() {
}
main() {
local ARCH
ARCH=''
if [ "$ON_CPU" == "1" ];then
check_cpus
ARCH='-cpu'
else
check_gpus
fi
check_gpus
check_hf_token
# Set to v1 to run v1 benchmark
@ -460,9 +386,9 @@ main() {
QUICK_BENCHMARK_ROOT=../.buildkite/nightly-benchmarks/
# benchmarking
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/"${SERVING_JSON:-serving-tests$ARCH.json}"
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/"${LATENCY_JSON:-latency-tests$ARCH.json}"
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/"${THROUGHPUT_JSON:-throughput-tests$ARCH.json}"
run_serving_tests $QUICK_BENCHMARK_ROOT/tests/serving-tests.json
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json
# postprocess benchmarking results
pip install tabulate pandas

View File

@ -1,30 +0,0 @@
[
{
"test_name": "latency_llama8B_tp1",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
{
"test_name": "latency_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
}
]

View File

@ -1,158 +0,0 @@
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp2_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 2,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"max_concurrency": 60,
"num_prompts": 200
}
},
{
"test_name": "serving_llama8B_tp4_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
},
{
"test_name": "serving_llama8B_pp6_random_1024_128",
"qps_list": [1, 4, 16, "inf"],
"server_environment_variables": {
"VLLM_RPC_TIMEOUT": 100000,
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_ENGINE_ITERATION_TIMEOUT_S": 120,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"server_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"pipeline_parallel_size": 6,
"dtype": "bfloat16",
"distributed_executor_backend": "mp",
"block_size": 128,
"trust_remote_code": "",
"enable_chunked_prefill": "",
"disable_log_stats": "",
"disable_log_requests": "",
"enforce_eager": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"backend": "vllm",
"dataset_name": "random",
"random-input-len": 1024,
"random-output-len": 128,
"ignore-eos": "",
"max_concurrency": 100,
"num_prompts": 100
}
}
]

View File

@ -1,32 +0,0 @@
[
{
"test_name": "throughput_llama8B_tp1",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 1,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
},
{
"test_name": "throughput_llama8B_tp4",
"environment_variables": {
"VLLM_ALLOW_LONG_MAX_MODEL_LEN": 1,
"VLLM_CPU_KVCACHE_SPACE": 40
},
"parameters": {
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"dataset": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"backend": "vllm"
}
}
]

View File

@ -52,7 +52,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --build-arg INSTALL_KV_CONNECTORS=true --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Annotate release workflow"
@ -101,8 +101,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --build-arg VLLM_CPU_AVX512BF16=true --build-arg VLLM_CPU_AVX512VNNI=true --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:latest --progress plain --target vllm-openai -f docker/Dockerfile.cpu ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-cpu-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"
@ -118,7 +117,6 @@ steps:
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg GIT_REPO_CHECK=1 --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version) --tag public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest --progress plain -f docker/Dockerfile.neuron ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:latest"
- "docker push public.ecr.aws/q9t5s3a7/vllm-neuron-release-repo:$(buildkite-agent meta-data get release-version)"
env:
DOCKER_BUILDKIT: "1"

View File

@ -107,9 +107,10 @@ fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/stest_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \
--ignore=kernels/attention/test_prefix_prefill.py \

View File

@ -48,16 +48,9 @@ function cpu_tests() {
# Run basic model test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
# Note: disable until supports V1
# pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
# pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
# Note: disable Bart until supports V1
pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
VLLM_CPU_SGL_KERNEL=1 pytest -v -s tests/models/language/generation -m cpu_model \
--ignore=tests/models/language/generation/test_bart.py
pytest -v -s tests/kernels/attention/test_cache.py -m cpu_model
pytest -v -s tests/kernels/attention/test_mla_decode_cpu.py -m cpu_model
pytest -v -s tests/models/language/generation -m cpu_model
pytest -v -s tests/models/language/pooling -m cpu_model
pytest -v -s tests/models/multimodal/generation \
--ignore=tests/models/multimodal/generation/test_mllama.py \
@ -68,14 +61,20 @@ function cpu_tests() {
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynamic_per_token"
# Note: disable it until supports V1
# Run AWQ test
# docker exec cpu-test-"$NUMA_NODE" bash -c "
# set -e
# VLLM_USE_V1=0 pytest -s -v \
# tests/quantization/test_ipex_quant.py"
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
VLLM_USE_V1=0 pytest -s -v \
tests/quantization/test_ipex_quant.py"
# Run chunked-prefill and prefix-cache test
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v -k cpu_model \
tests/basic_correctness/test_chunked_prefill.py"
# online serving
docker exec cpu-test-"$NUMA_NODE" bash -c "
@ -99,4 +98,4 @@ function cpu_tests() {
# All of CPU tests are expected to be finished less than 40 mins.
export -f cpu_tests
timeout 1.5h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"
timeout 1h bash -c "cpu_tests $CORE_RANGE $NUMA_NODE"

View File

@ -2,32 +2,10 @@
# This script build the CPU docker image and run the offline inference inside the container.
# It serves a sanity check for compilation and basic model usage.
set -exuo pipefail
set -ex
# Try building the docker image
cat <<EOF | docker build -t hpu-plugin-v1-test-env -f - .
FROM gaudi-base-image:latest
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
ENV no_proxy=localhost,127.0.0.1
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
RUN VLLM_TARGET_DEVICE=empty pip install .
RUN pip install git+https://github.com/vllm-project/vllm-gaudi.git
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN git clone https://github.com/vllm-project/vllm-gaudi.git
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
EOF
docker build -t hpu-test-env -f docker/Dockerfile.hpu .
# Setup cleanup
# certain versions of HPU software stack have a bug that can
@ -36,21 +14,13 @@ EOF
# functions, while other platforms only need one remove_docker_container
# function.
EXITCODE=1
remove_docker_containers() { docker rm -f hpu-plugin-v1-test || true; }
trap 'remove_docker_containers; exit $EXITCODE;' EXIT
remove_docker_containers() { docker rm -f hpu-test || true; docker rm -f hpu-test-tp2 || true; }
remove_docker_containers_and_exit() { remove_docker_containers; exit $EXITCODE; }
trap remove_docker_containers_and_exit EXIT
remove_docker_containers
echo "Running HPU plugin v1 test"
docker run --rm --runtime=habana --name=hpu-plugin-v1-test --network=host \
-e HABANA_VISIBLE_DEVICES=all \
hpu-plugin-v1-test-env \
/bin/bash "/workspace/vllm-gaudi/tests/upstream_tests/ci_tests.sh"
# Run the image and launch offline inference
docker run --runtime=habana --name=hpu-test --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
docker run --runtime=habana --name=hpu-test-tp2 --network=host -e HABANA_VISIBLE_DEVICES=all -e VLLM_SKIP_WARMUP=true --entrypoint="" hpu-test-env python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --tensor-parallel-size 2
EXITCODE=$?
if [ $EXITCODE -eq 0 ]; then
echo "Test with basic model passed"
else
echo "Test with basic model FAILED with exit code: $EXITCODE" >&2
fi
# The trap will handle the container removal and final exit.

View File

@ -54,11 +54,10 @@ docker run --rm -it --device=/dev/neuron0 --network bridge \
--name "${container_name}" \
${image_name} \
/bin/bash -c "
set -e; # Exit on first error
python3 /workspace/vllm/examples/offline_inference/neuron.py;
python3 -m pytest /workspace/vllm/tests/neuron/1_core/ -v --capture=tee-sys;
for f in /workspace/vllm/tests/neuron/2_core/*.py; do
echo \"Running test file: \$f\";
echo 'Running test file: '$f;
python3 -m pytest \$f -v --capture=tee-sys;
done
"

View File

@ -159,8 +159,6 @@ run_and_track_test 14 "test_tpu_qkv_linear.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
run_and_track_test 16 "test_kv_cache_update_kernel.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then

View File

@ -11,8 +11,8 @@ container_name="xpu_${BUILDKITE_COMMIT}_$(tr -dc A-Za-z0-9 < /dev/urandom | head
docker build -t ${image_name} -f docker/Dockerfile.xpu .
# Setup cleanup
remove_docker_container() {
docker rm -f "${container_name}" || true;
remove_docker_container() {
docker rm -f "${container_name}" || true;
docker image rm -f "${image_name}" || true;
docker system prune -f || true;
}
@ -26,9 +26,6 @@ docker run \
--name "${container_name}" \
"${image_name}" \
sh -c '
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
cd tests
pytest -v -s v1/core
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m
VLLM_USE_V1=0 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m -tp 2
'

View File

@ -4,8 +4,8 @@ CONTAINER_NAME=vllm-tpu
# vllm config
MODEL=meta-llama/Llama-3.1-8B-Instruct
MAX_NUM_SEQS=256
MAX_NUM_BATCHED_TOKENS=1024
MAX_NUM_SEQS=512
MAX_NUM_BATCHED_TOKENS=512
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist

View File

@ -22,6 +22,16 @@ trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build docker image.
# TODO: build the image outside the script and share the image with other
# tpu test if building time is too long.
DOCKER_BUILDKIT=1 docker build \
--build-arg max_jobs=16 \
--build-arg USE_SCCACHE=1 \
--build-arg GIT_REPO_CHECK=0 \
--tag vllm/vllm-tpu-bm \
--progress plain -f docker/Dockerfile.tpu .
LOG_ROOT=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $LOG_ROOT"
@ -58,7 +68,7 @@ docker run \
echo "run script..."
echo
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/tpu/run_bm.sh"
docker exec "$CONTAINER_NAME" /bin/bash -c ".buildkite/scripts/hardware_ci/run_bm.sh"
echo "copy result back..."
VLLM_LOG="$LOG_ROOT/$TEST_NAME"_vllm_log.txt

View File

@ -1,14 +0,0 @@
# Environment config
TEST_NAME=llama8bw8a8
CONTAINER_NAME=vllm-tpu
# vllm config
MODEL=RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w8a8
MAX_NUM_SEQS=128
MAX_NUM_BATCHED_TOKENS=1024
TENSOR_PARALLEL_SIZE=1
MAX_MODEL_LEN=2048
DOWNLOAD_DIR=/mnt/disks/persist
EXPECTED_THROUGHPUT=10.0
INPUT_LEN=1800
OUTPUT_LEN=128

View File

@ -41,16 +41,6 @@ steps:
# TODO: add `--strict` once warnings in docstrings are fixed
- mkdocs build
- label: Pytorch Nightly Dependency Override Check # 2min
# if this test fails, it means the nightly torch version is not compatible with some
# of the dependencies. Please check the error message and add the package to whitelist
# in /vllm/tools/generate_nightly_torch_test.py
soft_fail: true
source_file_dependencies:
- requirements/nightly_torch_test.txt
commands:
- bash standalone_tests/pytorch_nightly_dependency.sh
- label: Async Engine, Inputs, Utils, Worker Test # 24min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
@ -99,7 +89,7 @@ steps:
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
@ -117,7 +107,7 @@ steps:
commands:
- pytest -v -s core
- label: Entrypoints Test (LLM) # 40min
- label: Entrypoints Test # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
@ -125,6 +115,8 @@ steps:
source_file_dependencies:
- vllm/
- tests/entrypoints/llm
- tests/entrypoints/openai
- tests/entrypoints/test_chat_utils
- tests/entrypoints/offline_mode
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
@ -133,21 +125,9 @@ steps:
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Test (API Server) # 40min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
fast_check: true
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/entrypoints/openai
- tests/entrypoints/test_chat_utils
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/test_chat_utils.py
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Distributed Tests (4 GPUs) # 10min
mirror_hardwares: [amdexperimental]
@ -165,7 +145,6 @@ steps:
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with tp=2 and external_dp=2
@ -174,9 +153,8 @@ steps:
# test with tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- python3 ../examples/offline_inference/data_parallel.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
@ -190,23 +168,6 @@ steps:
- VLLM_ALLOW_INSECURE_SERIALIZATION=1 RAY_DEDUP_LOGS=0 python3 rlhf_colocate.py
- popd
- label: EPLB Algorithm Test
working_dir: "/vllm-workspace/tests"
source_file_dependencies:
- vllm/distributed/eplb
- tests/distributed/test_eplb_algo.py
commands:
- pytest -v -s distributed/test_eplb_algo.py
- label: EPLB Execution Test # 5min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
source_file_dependencies:
- vllm/distributed/eplb
- tests/distributed/test_eplb_execute.py
commands:
- pytest -v -s distributed/test_eplb_execute.py
- label: Metrics, Tracing Test # 10min
mirror_hardwares: [amdexperimental, amdproduction]
num_gpus: 2
@ -227,7 +188,7 @@ steps:
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -237,7 +198,7 @@ steps:
working_dir: "/vllm-workspace/tests" # optional
- label: Engine Test # 10min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/engine
@ -292,7 +253,7 @@ steps:
- python3 offline_inference/llm_engine_example.py
- python3 offline_inference/audio_language.py --seed 0
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_pooling.py --seed 0
- python3 offline_inference/vision_language_embedding.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- VLLM_USE_V1=0 python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder.py
@ -310,15 +271,6 @@ steps:
commands:
- pytest -v -s prefix_caching
- label: Platform Tests (CUDA)
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/cuda
commands:
- pytest -v -s cuda/test_cuda_context.py
- label: Samplers Test # 36min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
@ -350,7 +302,7 @@ steps:
parallelism: 4
- label: PyTorch Compilation Unit Tests
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -432,7 +384,7 @@ steps:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
@ -524,7 +476,7 @@ steps:
##### models test #####
- label: Basic Models Test # 24min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
torch_nightly: true
source_file_dependencies:
- vllm/
@ -548,17 +500,6 @@ steps:
- pip freeze | grep -E 'torch'
- pytest -v -s models/language -m core_model
- label: Language Models Test (Hybrid) # 35 min
mirror_hardwares: [amdexperimental]
torch_nightly: true
source_file_dependencies:
- vllm/
- tests/models/language/generation
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language/generation -m hybrid_model
- label: Language Models Test (Extended Generation) # 1hr20min
mirror_hardwares: [amdexperimental]
optional: true
@ -568,7 +509,7 @@ steps:
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/language/generation -m '(not core_model) and (not hybrid_model)'
- pytest -v -s models/language/generation -m 'not core_model'
- label: Language Models Test (Extended Pooling) # 36min
mirror_hardwares: [amdexperimental]
@ -613,7 +554,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
- label: Multi-Modal Models Test (Extended) 3
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
optional: true
source_file_dependencies:
- vllm/
@ -640,18 +581,6 @@ steps:
# e.g. pytest -v -s models/encoder_decoder/vision_language/test_mllama.py
# *To avoid merge conflicts, remember to REMOVE (not just comment out) them before merging the PR*
- label: Transformers Nightly Models Test
working_dir: "/vllm-workspace/"
optional: true
commands:
- pip install --upgrade git+https://github.com/huggingface/transformers
- pytest -v -s tests/models/test_initialization.py
- pytest -v -s tests/models/multimodal/processing/
- pytest -v -s tests/models/multimodal/test_mapping.py
- python3 examples/offline_inference/basic/chat.py
- python3 examples/offline_inference/audio_language.py --model-type whisper
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
##### 1 GPU test #####
##### multi gpus test #####
@ -677,18 +606,13 @@ steps:
- vllm/executor/
- vllm/model_executor/models/
- tests/distributed/
- tests/examples/offline_inference/data_parallel.py
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=0 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep 'Same node test passed'
- NUM_NODES=2 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_node_count.py | grep 'Node count test passed'
- python3 ../examples/offline_inference/data_parallel.py --dp-size=2 --tp-size=1 --node-size=2 --node-rank=1 --master-addr=192.168.10.10 --master-port=12345 --enforce-eager --trust-remote-code
- label: Distributed Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]
@ -706,12 +630,10 @@ steps:
- vllm/worker/model_runner.py
- entrypoints/llm/test_collective_rpc.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/entrypoints/openai/test_multi_api_servers.py
- vllm/v1/engine/
commands:
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=1 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- DP_SIZE=2 pytest -v -s v1/entrypoints/openai/test_multi_api_servers.py
- pytest -v -s entrypoints/llm/test_collective_rpc.py
- pytest -v -s ./compile/test_basic_correctness.py
@ -814,7 +736,7 @@ steps:
- bash weight_loading/run_model_weight_loading_test.sh -c weight_loading/models.txt
- label: Weight Loading Multiple GPU Test - Large Models # optional
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
gpu: a100

View File

@ -1,6 +0,0 @@
# https://developers.google.com/gemini-code-assist/docs/customize-gemini-behavior-github
have_fun: false # Just review the code
code_review:
comment_severity_threshold: HIGH # Reduce quantity of comments
pull_request_opened:
summary: false # Don't summarize the PR in a separate comment

7
.github/CODEOWNERS vendored
View File

@ -16,12 +16,7 @@
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
/vllm/entrypoints @aarnphm
/vllm/compilation @zou3519 @youkaichao
CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
# so spam a lot of people
/vllm/config.py @simon-mo @WoosukKwon @youkaichao @robertgshaw2-redhat @mgoin @tlrmchlsmth @houseroad @hmellor
CMakeLists.txt @tlrmchlsmth
# vLLM V1
/vllm/v1 @WoosukKwon @robertgshaw2-redhat @njhill @ywang96 @comaniac @alexm-redhat

50
.github/mergify.yml vendored
View File

@ -27,22 +27,6 @@ pull_request_rules:
add:
- ci/build
- name: label-deepseek
description: Automatically apply deepseek label
conditions:
- or:
- files~=^examples/.*deepseek.*\.py
- files~=^tests/.*deepseek.*\.py
- files~=^vllm/entrypoints/openai/tool_parsers/.*deepseek.*\.py
- files~=^vllm/model_executor/models/.*deepseek.*\.py
- files~=^vllm/reasoning/.*deepseek.*\.py
- files~=^vllm/transformers_utils/.*deepseek.*\.py
- title~=(?i)DeepSeek
actions:
label:
add:
- deepseek
- name: label-frontend
description: Automatically apply frontend label
conditions:
@ -61,7 +45,6 @@ pull_request_rules:
- files~=^vllm/entrypoints/openai/tool_parsers/llama.*\.py
- files~=^vllm/model_executor/models/.*llama.*\.py
- files~=^vllm/transformers_utils/configs/.*llama.*\.py
- title~=(?i)llama
actions:
label:
add:
@ -74,36 +57,14 @@ pull_request_rules:
- files~=^vllm/multimodal/
- files~=^tests/multimodal/
- files~=^tests/models/multimodal/
- files~=^tests/models/*/audio_language/
- files~=^tests/models/*/vision_language/
- files=tests/models/test_vision.py
actions:
label:
add:
- multi-modality
- name: label-new-model
description: Automatically apply new-model label
conditions:
- and:
- files~=^vllm/model_executor/models/
- files=vllm/model_executor/models/registry.py
actions:
label:
add:
- new-model
- name: label-performance
description: Automatically apply performance label
conditions:
- or:
- files~=^benchmarks/
- files~=^vllm/benchmarks/
- files~=^tests/benchmarks/
- files~=^\.buildkite/nightly-benchmarks/
actions:
label:
add:
- performance
- name: label-qwen
description: Automatically apply qwen label
conditions:
@ -113,6 +74,7 @@ pull_request_rules:
- files~=^vllm/model_executor/models/.*qwen.*\.py
- files~=^vllm/reasoning/.*qwen.*\.py
- title~=(?i)Qwen
- body~=(?i)Qwen
actions:
label:
add:
@ -165,14 +127,8 @@ pull_request_rules:
conditions:
- or:
- files~=^vllm/spec_decode/
- files~=^vllm/v1/spec_decode/
- files=vllm/model_executor/layers/spec_decode_base_sampler.py
- files~=^tests/spec_decode/
- files~=^tests/v1/spec_decode/
- files~=^examples/.*(spec_decode|mlpspeculator|eagle|speculation).*\.py
- files~=^vllm/model_executor/models/.*eagle.*\.py
- files=vllm/model_executor/models/mlp_speculator.py
- files~=^vllm/transformers_utils/configs/(eagle|medusa|mlp_speculator)\.py
actions:
label:
add:

View File

@ -68,7 +68,7 @@ jobs:
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set image.env[2].name=VLLM_CPU_CI_ENV --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string image.env[2].value="1" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |

1
.gitignore vendored
View File

@ -146,7 +146,6 @@ venv.bak/
# mkdocs documentation
/site
docs/argparse
docs/examples
# mypy

View File

@ -21,7 +21,7 @@ repos:
- id: ruff-format
files: ^(.buildkite|benchmarks|examples)/.*
- repo: https://github.com/crate-ci/typos
rev: v1.34.0
rev: v1.32.0
hooks:
- id: typos
- repo: https://github.com/PyCQA/isort
@ -53,11 +53,6 @@ repos:
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:
- id: format-torch-nightly-test
name: reformat nightly_torch_test.txt to be in sync with test.in
language: python
entry: python tools/generate_nightly_torch_test.py
files: ^requirements/test\.(in|txt)$
- id: mypy-local
name: Run mypy for local Python installation
entry: tools/mypy.sh 0 "local"
@ -120,11 +115,6 @@ repos:
entry: python tools/check_spdx_header.py
language: python
types: [python]
- id: check-root-lazy-imports
name: Check root lazy imports
entry: python tools/check_init_lazy_imports.py
language: python
types: [python]
- id: check-filenames
name: Check for spaces in all filenames
entry: bash
@ -160,17 +150,10 @@ repos:
types: [python]
pass_filenames: false
additional_dependencies: [pathspec, regex]
- id: validate-config
name: Validate configuration has default values and that each field has a docstring
entry: python tools/validate_config.py
language: python
types: [python]
pass_filenames: true
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
# Keep `suggestion` last
- id: suggestion
name: Suggestion
entry: bash -c 'echo "To bypass all the pre-commit hooks, add --no-verify to git commit. To skip a specific hook, prefix the commit command with SKIP=<hook-id>."'
entry: bash -c 'echo "To bypass pre-commit hooks, add --no-verify to git commit."'
language: system
verbose: true
pass_filenames: false

View File

@ -171,6 +171,7 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
# setup.py will override FETCHCONTENT_BASE_DIR to play nicely with sccache.
@ -231,6 +232,7 @@ endif()
set(VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/cache_kernels.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
@ -257,7 +259,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
# Set CUTLASS_REVISION. Used for FetchContent. Also fixes some bogus messages when building.
set(CUTLASS_REVISION "v4.0.0" CACHE STRING "CUTLASS revision to use")
set(CUTLASS_REVISION "v3.9.2" CACHE STRING "CUTLASS revision to use")
# Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided
if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR})
@ -391,7 +393,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.0 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm90.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm90_fp8.cu"
@ -407,7 +409,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm90 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm90 as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
"later if you intend on running FP8 quantized models on "
@ -418,40 +420,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
# The cutlass_scaled_mm kernels for Geforce Blackwell SM120 (c3x, i.e. CUTLASS 3.x) require
# CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "12.0;12.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm120.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm120_fp8.cu"
)
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SCALED_MM_SM120=1")
# Let scaled_mm_c2x know it doesn't need to build these arches
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm120 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm120 as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
"later if you intend on running FP8 quantized models on "
"Blackwell.")
else()
message(STATUS "Not building scaled_mm_c3x_120 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
# The cutlass_scaled_mm kernels for Blackwell SM100 (c3x, i.e. CUTLASS 3.x)
# require CUDA 12.8 or later
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a;10.1a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
set(SRCS
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x_sm100.cu"
"csrc/quantization/cutlass_w8a8/c3x/scaled_mm_sm100_fp8.cu"
@ -466,7 +438,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND SCALED_MM_3X_ARCHS "${SCALED_MM_ARCHS}")
message(STATUS "Building scaled_mm_c3x_sm100 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building scaled_mm_c3x_sm100 as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or "
"later if you intend on running FP8 quantized models on "
@ -509,7 +481,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The 2:4 sparse kernels cutlass_scaled_sparse_mm and cutlass_compressor
# require CUDA 12.2 or later (and only work on Hopper).
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a;" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.2 AND SCALED_MM_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
set(SRCS "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
@ -518,7 +490,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_SPARSE_SCALED_MM_C3X=1")
message(STATUS "Building sparse_scaled_mm_c3x for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.2 AND SCALED_MM_ARCHS)
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.2 AND SCALED_MM_ARCHS)
message(STATUS "Not building sparse_scaled_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.2, we recommend upgrading to CUDA 12.2 or later "
"if you intend on running FP8 sparse quantized models on Hopper.")
@ -530,7 +502,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# FP4 Archs and flags
cuda_archs_loose_intersection(FP4_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND FP4_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND FP4_ARCHS)
set(SRCS
"csrc/quantization/fp4/nvfp4_quant_kernels.cu"
"csrc/quantization/fp4/nvfp4_experts_quant.cu"
@ -541,7 +513,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
CUDA_ARCHS "${FP4_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_NVFP4=1")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
message(STATUS "Building NVFP4 for archs: ${FP4_ARCHS}")
else()
message(STATUS "Not building NVFP4 as no compatible archs were found.")
@ -551,10 +522,9 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# CUTLASS MLA Archs and flags
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.8 AND MLA_ARCHS)
set(SRCS
"csrc/attention/mla/cutlass_mla_kernels.cu"
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
"csrc/attention/mla/cutlass_mla_kernels.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${MLA_ARCHS}")
@ -577,7 +547,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# if it's possible to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu")
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu"
"csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -591,46 +562,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"if you intend on running FP8 quantized MoE models on Hopper.")
else()
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
"in CUDA target architectures.")
endif()
endif()
# moe_data.cu is used by all CUTLASS MoE kernels.
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/moe_data.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${CUTLASS_MOE_DATA_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
message(STATUS "Building moe_data for archs: ${CUTLASS_MOE_DATA_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
message(STATUS "Not building moe_data as CUDA Compiler version is "
"not >= 12.3, we recommend upgrading to CUDA 12.3 or later "
"if you intend on running FP8 quantized MoE models on Hopper or Blackwell.")
else()
message(STATUS "Not building moe_data as no compatible archs found "
"in CUDA target architectures.")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
message(STATUS "Building blockwise_scaled_group_mm_sm100 for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building blockwise_scaled_group_mm_sm100 kernels as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or later "
"if you intend on running FP8 quantized MoE models on Blackwell.")
else()
message(STATUS "Not building blockwise_scaled_group_mm_sm100 as no compatible archs found "
"in CUDA target architectures")
endif()
endif()
@ -641,7 +572,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# The machete kernels only work on hopper and require CUDA 12.0 or later.
# Only build Machete kernels if we are building for something compatible with sm90a
cuda_archs_loose_intersection(MACHETE_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0 AND MACHETE_ARCHS)
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND MACHETE_ARCHS)
#
# For the Machete kernels we automatically generate sources for various
# preselected input type pairs and schedules.
@ -693,7 +624,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
message(STATUS "Building Machete kernels for archs: ${MACHETE_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.0
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0
AND MACHETE_ARCHS)
message(STATUS "Not building Machete kernels as CUDA Compiler version is "
"not >= 12.0, we recommend upgrading to CUDA 12.0 or "
@ -707,14 +638,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# if CUDA endif
endif()
if (VLLM_GPU_LANG STREQUAL "HIP")
# Add QuickReduce kernels
list(APPEND VLLM_EXT_SRC
"csrc/custom_quickreduce.cu"
)
# if ROCM endif
endif()
message(STATUS "Enabling C extension.")
define_gpu_extension_target(
_C

View File

@ -63,11 +63,13 @@ vLLM is fast with:
- Speculative decoding
- Chunked prefill
**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script.
vLLM is flexible and easy to use with:
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor, pipeline, data and expert parallelism support for distributed inference
- Tensor parallelism and pipeline parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
@ -152,13 +154,11 @@ If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs
## Contact Us
<!-- --8<-- [start:contact-us] -->
- For technical questions and feature requests, please use GitHub [Issues](https://github.com/vllm-project/vllm/issues) or [Discussions](https://github.com/vllm-project/vllm/discussions)
- For discussing with fellow users, please use the [vLLM Forum](https://discuss.vllm.ai)
- For coordinating contributions and development, please use [Slack](https://slack.vllm.ai)
- For security disclosures, please use GitHub's [Security Advisories](https://github.com/vllm-project/vllm/security/advisories) feature
- For collaborations and partnerships, please contact us at [vllm-questions@lists.berkeley.edu](mailto:vllm-questions@lists.berkeley.edu)
<!-- --8<-- [end:contact-us] -->
## Media Kit

View File

@ -4,7 +4,7 @@ This README guides you through running benchmark tests with the extensive
datasets supported on vLLM. Its a living document, updated as new features and datasets
become available.
**Dataset Overview**
## Dataset Overview
<table style="width:100%; border-collapse: collapse;">
<thead>
@ -82,10 +82,7 @@ become available.
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`
---
<details>
<summary><b>🚀 Example - Online Benchmark</b></summary>
<br/>
## Example - Online Benchmark
First start serving your model
@ -133,8 +130,7 @@ P99 ITL (ms): 8.39
==================================================
```
**Custom Dataset**
### Custom Dataset
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
```
@ -166,7 +162,7 @@ python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detaile
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
**VisionArena Benchmark for Vision Language Models**
### VisionArena Benchmark for Vision Language Models
```bash
# need a model with vision capability here
@ -184,7 +180,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
--num-prompts 1000
```
**InstructCoder Benchmark with Speculative Decoding**
### InstructCoder Benchmark with Speculative Decoding
``` bash
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
@ -201,7 +197,7 @@ python3 benchmarks/benchmark_serving.py \
--num-prompts 2048
```
**Other HuggingFaceDataset Examples**
### Other HuggingFaceDataset Examples
```bash
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
@ -255,7 +251,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
--num-prompts 80
```
**Running With Sampling Parameters**
### Running With Sampling Parameters
When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:
@ -273,27 +269,8 @@ python3 vllm/benchmarks/benchmark_serving.py \
--num-prompts 10
```
**Running With Ramp-Up Request Rate**
The benchmark tool also supports ramping up the request rate over the
duration of the benchmark run. This can be useful for stress testing the
server or finding the maximum throughput that it can handle, given some latency budget.
Two ramp-up strategies are supported:
- `linear`: Increases the request rate linearly from a start value to an end value.
- `exponential`: Increases the request rate exponentially.
The following arguments can be used to control the ramp-up:
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
</details>
<details>
<summary><b>📈 Example - Offline Throughput Benchmark</b></summary>
<br/>
---
## Example - Offline Throughput Benchmark
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
@ -311,7 +288,7 @@ Total num prompt tokens: 5014
Total num output tokens: 1500
```
**VisionArena Benchmark for Vision Language Models**
### VisionArena Benchmark for Vision Language Models
``` bash
python3 vllm/benchmarks/benchmark_throughput.py \
@ -331,7 +308,7 @@ Total num prompt tokens: 14527
Total num output tokens: 1280
```
**InstructCoder Benchmark with Speculative Decoding**
### InstructCoder Benchmark with Speculative Decoding
``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
@ -355,7 +332,7 @@ Total num prompt tokens: 261136
Total num output tokens: 204800
```
**Other HuggingFaceDataset Examples**
### Other HuggingFaceDataset Examples
**`lmms-lab/LLaVA-OneVision-Data`**
@ -394,7 +371,7 @@ python3 benchmarks/benchmark_throughput.py \
--num-prompts 10
```
**Benchmark with LoRA Adapters**
### Benchmark with LoRA Adapters
``` bash
# download dataset
@ -410,196 +387,3 @@ python3 vllm/benchmarks/benchmark_throughput.py \
--enable-lora \
--lora-path yard1/llama-2-7b-sql-lora-test
```
</details>
<details>
<summary><b>🛠️ Example - Structured Output Benchmark</b></summary>
<br/>
Benchmark the performance of structured output generation (JSON, grammar, regex).
**Server Setup**
```bash
vllm serve NousResearch/Hermes-3-Llama-3.1-8B --disable-log-requests
```
**JSON Schema Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset json \
--structured-output-ratio 1.0 \
--request-rate 10 \
--num-prompts 1000
```
**Grammar-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset grammar \
--structure-type grammar \
--request-rate 10 \
--num-prompts 1000
```
**Regex-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset regex \
--request-rate 10 \
--num-prompts 1000
```
**Choice-based Generation Benchmark**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset choice \
--request-rate 10 \
--num-prompts 1000
```
**XGrammar Benchmark Dataset**
```bash
python3 benchmarks/benchmark_serving_structured_output.py \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset xgrammar_bench \
--request-rate 10 \
--num-prompts 1000
```
</details>
<details>
<summary><b>📚 Example - Long Document QA Benchmark</b></summary>
<br/>
Benchmark the performance of long document question-answering with prefix caching.
**Basic Long Document QA Test**
```bash
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 16 \
--document-length 2000 \
--output-len 50 \
--repeat-count 5
```
**Different Repeat Modes**
```bash
# Random mode (default) - shuffle prompts randomly
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode random
# Tile mode - repeat entire prompt list in sequence
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode tile
# Interleave mode - repeat each prompt consecutively
python3 benchmarks/benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--document-length 3000 \
--repeat-count 3 \
--repeat-mode interleave
```
</details>
<details>
<summary><b>🗂️ Example - Prefix Caching Benchmark</b></summary>
<br/>
Benchmark the efficiency of automatic prefix caching.
**Fixed Prompt with Prefix Caching**
```bash
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100 \
--input-length-range 128:256
```
**ShareGPT Dataset with Prefix Caching**
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 benchmarks/benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
```
</details>
<details>
<summary><b>⚡ Example - Request Prioritization Benchmark</b></summary>
<br/>
Benchmark the performance of request prioritization in vLLM.
**Basic Prioritization Test**
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority
```
**Multiple Sequences per Prompt**
```bash
python3 benchmarks/benchmark_prioritization.py \
--model meta-llama/Llama-2-7b-chat-hf \
--input-len 128 \
--output-len 64 \
--num-prompts 100 \
--scheduling-policy priority \
--n 2
```
</details>

View File

@ -10,7 +10,6 @@
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# SYSTEM: the hardware, choice TPU or GPU, for other systems, "get best profile" might not support.
# TP: ways of tensor parallelism
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
@ -35,7 +34,6 @@
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
@ -47,15 +45,12 @@ NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"
LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
PROFILE_PATH="$LOG_FOLDER/profile"
echo "result file: $RESULT"
echo "model: $MODEL"
rm -rf $LOG_FOLDER
rm -rf $PROFILE_PATH
mkdir -p $LOG_FOLDER
mkdir -p $PROFILE_PATH
cd "$BASE/vllm"
@ -75,11 +70,10 @@ start_server() {
local max_num_seqs=$2
local max_num_batched_tokens=$3
local vllm_log=$4
local profile_dir=$5
pkill -f vllm
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir vllm serve $MODEL \
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 vllm serve $MODEL \
--disable-log-requests \
--port 8004 \
--gpu-memory-utilization $gpu_memory_utilization \
@ -111,37 +105,19 @@ start_server() {
fi
}
update_best_profile() {
local profile_dir=$1
local profile_index=$2
sorted_paths=($(find "$profile_dir" -maxdepth 1 -not -path "$profile_dir" | sort))
selected_profile_file=
if [[ "$SYSTEM" == "TPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}/*.xplane.pb"
fi
if [[ "$SYSTEM" == "GPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}"
fi
rm -f $PROFILE_PATH/*
cp $selected_profile_file $PROFILE_PATH
}
run_benchmark() {
local max_num_seqs=$1
local max_num_batched_tokens=$2
local gpu_memory_utilization=$3
echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
local profile_dir="$LOG_FOLDER/profile_${max_num_seqs}_${max_num_batched_tokens}"
echo "vllm_log: $vllm_log"
echo
rm -f $vllm_log
mkdir -p $profile_dir
pkill -f vllm
local profile_index=0
echo "starting server..."
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log $profile_dir
start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log
result=$?
if [[ "$result" -eq 1 ]]; then
echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
@ -168,8 +144,7 @@ run_benchmark() {
--goodput e2el:$MAX_LATENCY_ALLOWED_MS \
--num-prompts 1000 \
--random-prefix-len $prefix_len \
--port 8004 \
--profile &> "$bm_log"
--port 8004 &> "$bm_log"
throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
@ -183,7 +158,6 @@ run_benchmark() {
# start from request-rate as int(throughput) + 1
request_rate=$((${throughput%.*} + 1))
while ((request_rate > 0)); do
profile_index=$((profile_index+1))
# clear prefix cache
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
@ -221,12 +195,6 @@ run_benchmark() {
best_max_num_seqs=$max_num_seqs
best_num_batched_tokens=$max_num_batched_tokens
best_goodput=$goodput
if [[ "$SYSTEM" == "TPU" ]]; then
update_best_profile "$profile_dir/plugins/profile" $profile_index
fi
if [[ "$SYSTEM" == "GPU" ]]; then
update_best_profile "$profile_dir" $profile_index
fi
fi
else
echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
@ -271,6 +239,6 @@ for num_seqs in "${num_seqs_list[@]}"; do
done
done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput" >> "$RESULT"

View File

@ -404,14 +404,8 @@ async def async_request_openai_chat_completions(
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk_bytes = chunk_bytes.decode("utf-8")
# NOTE: SSE comments (often used as pings) start with a colon.
# These are not JSON data payload and should be skipped.
if chunk_bytes.startswith(":"):
continue
chunk = chunk_bytes.removeprefix("data: ")
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)

View File

@ -324,9 +324,6 @@ class RandomDataset(BenchmarkDataset):
input_low = int(real_input_len * (1 - range_ratio))
input_high = int(real_input_len * (1 + range_ratio))
output_low = int(output_len * (1 - range_ratio))
# Ensure the lower bound for output length is at least 1 to prevent
# sampling 0 tokens, which can cause request failures.
output_low = max(output_low, 1)
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
@ -352,12 +349,11 @@ class RandomDataset(BenchmarkDataset):
# [1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
# To avoid uncontrolled change of the prompt length,
# the encoded sequence is truncated before being decode again.
total_input_len = prefix_len + int(input_lens[i])
re_encoded_sequence = tokenizer.encode(prompt, add_special_tokens=False)[
:total_input_len
: input_lens[i]
]
prompt = tokenizer.decode(re_encoded_sequence)
total_input_len = len(re_encoded_sequence)
total_input_len = prefix_len + int(input_lens[i])
requests.append(
SampleRequest(
prompt=prompt,
@ -704,7 +700,6 @@ class HuggingFaceDataset(BenchmarkDataset):
self,
dataset_path: str,
dataset_split: str,
no_stream: bool = False,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None:
@ -712,7 +707,6 @@ class HuggingFaceDataset(BenchmarkDataset):
self.dataset_split = dataset_split
self.dataset_subset = dataset_subset
self.load_stream = not no_stream
self.load_data()
def load_data(self) -> None:
@ -721,7 +715,7 @@ class HuggingFaceDataset(BenchmarkDataset):
self.dataset_path,
name=self.dataset_subset,
split=self.dataset_split,
streaming=self.load_stream,
streaming=True,
)
self.data = self.data.shuffle(seed=self.random_seed)

View File

@ -33,7 +33,7 @@ import warnings
from collections.abc import AsyncGenerator, Iterable
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal, Optional
from typing import Any, Optional
import numpy as np
from tqdm.asyncio import tqdm
@ -107,42 +107,14 @@ class BenchmarkMetrics:
percentiles_e2el_ms: list[tuple[float, float]]
def _get_current_request_rate(
ramp_up_strategy: Optional[Literal["linear", "exponential"]],
ramp_up_start_rps: Optional[int],
ramp_up_end_rps: Optional[int],
request_index: int,
total_requests: int,
request_rate: float,
) -> float:
if (
ramp_up_strategy
and ramp_up_start_rps is not None
and ramp_up_end_rps is not None
):
progress = request_index / max(total_requests - 1, 1)
if ramp_up_strategy == "linear":
increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
return ramp_up_start_rps + increase
elif ramp_up_strategy == "exponential":
ratio = ramp_up_end_rps / ramp_up_start_rps
return ramp_up_start_rps * (ratio**progress)
else:
raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
return request_rate
async def get_request(
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
ramp_up_start_rps: Optional[int] = None,
ramp_up_end_rps: Optional[int] = None,
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
) -> AsyncGenerator[SampleRequest, None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness and OPTIONAL ramp-up strategy.
with OPTIONAL burstiness.
Args:
input_requests:
@ -157,44 +129,22 @@ async def get_request(
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
ramp_up_strategy (optional):
The ramp-up strategy. Can be "linear" or "exponential".
If None, uses constant request rate (specified by request_rate).
ramp_up_start_rps (optional):
The starting request rate for ramp-up.
ramp_up_end_rps (optional):
The ending request rate for ramp-up.
"""
input_requests: Iterable[SampleRequest] = iter(input_requests)
# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}."
)
# Convert to list to get length for ramp-up calculations
if isinstance(input_requests, Iterable) and not isinstance(input_requests, list):
input_requests = list(input_requests)
total_requests = len(input_requests)
request_index = 0
theta = 1.0 / (request_rate * burstiness)
for request in input_requests:
current_request_rate = _get_current_request_rate(
ramp_up_strategy,
ramp_up_start_rps,
ramp_up_end_rps,
request_index,
total_requests,
request_rate,
)
yield request
yield request, current_request_rate
request_index += 1
if current_request_rate == float("inf"):
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
theta = 1.0 / (current_request_rate * burstiness)
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
@ -340,9 +290,6 @@ async def benchmark(
max_concurrency: Optional[int],
lora_modules: Optional[Iterable[str]],
extra_body: Optional[dict],
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
ramp_up_start_rps: Optional[int] = None,
ramp_up_end_rps: Optional[int] = None,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS[backend]
@ -406,15 +353,7 @@ async def benchmark(
distribution = "Poisson process" if burstiness == 1.0 else "Gamma distribution"
if ramp_up_strategy is not None:
print(
f"Traffic ramp-up strategy: {ramp_up_strategy}. Will increase "
f"RPS from {ramp_up_start_rps} to {ramp_up_end_rps} RPS over "
"the duration of the benchmark."
)
else:
print(f"Traffic request rate: {request_rate} RPS.")
print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")
@ -434,34 +373,7 @@ async def benchmark(
benchmark_start_time = time.perf_counter()
tasks: list[asyncio.Task] = []
rps_change_events = []
last_int_rps = -1
if ramp_up_strategy is not None and ramp_up_start_rps is not None:
last_int_rps = ramp_up_start_rps
rps_change_events.append(
{
"rps": last_int_rps,
"timestamp": datetime.now().isoformat(),
}
)
async for request, current_request_rate in get_request(
input_requests,
request_rate,
burstiness,
ramp_up_strategy,
ramp_up_start_rps,
ramp_up_end_rps,
):
if ramp_up_strategy is not None:
current_int_rps = int(current_request_rate)
if current_int_rps > last_int_rps:
timestamp = datetime.now().isoformat()
for rps_val in range(last_int_rps + 1, current_int_rps + 1):
rps_change_events.append({"rps": rps_val, "timestamp": timestamp})
last_int_rps = current_int_rps
async for request in get_request(input_requests, request_rate, burstiness):
prompt, prompt_len, output_len, mm_content = (
request.prompt,
request.prompt_len,
@ -485,8 +397,11 @@ async def benchmark(
ignore_eos=ignore_eos,
extra_body=extra_body,
)
task = limited_request_func(request_func_input=request_func_input, pbar=pbar)
tasks.append(asyncio.create_task(task))
tasks.append(
asyncio.create_task(
limited_request_func(request_func_input=request_func_input, pbar=pbar)
)
)
outputs: list[RequestFuncOutput] = await asyncio.gather(*tasks)
if profile:
@ -551,7 +466,7 @@ async def benchmark(
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_throughput": metrics.request_throughput,
"request_goodput": metrics.request_goodput if goodput_config_dict else None,
"request_goodput:": metrics.request_goodput if goodput_config_dict else None,
"output_throughput": metrics.output_throughput,
"total_token_throughput": metrics.total_token_throughput,
"input_lens": [output.prompt_len for output in outputs],
@ -562,9 +477,6 @@ async def benchmark(
"errors": [output.error for output in outputs],
}
if rps_change_events:
result["rps_change_events"] = rps_change_events
def process_one_metric(
# E.g., "ttft"
metric_attribute_name: str,
@ -698,26 +610,6 @@ def main(args: argparse.Namespace):
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
tokenizer_mode = args.tokenizer_mode
# Validate ramp-up arguments
if args.ramp_up_strategy is not None:
if args.request_rate != float("inf"):
raise ValueError(
"When using ramp-up, do not specify --request-rate. "
"The request rate will be controlled by ramp-up parameters. "
"Please remove the --request-rate argument."
)
if args.ramp_up_start_rps is None or args.ramp_up_end_rps is None:
raise ValueError(
"When using --ramp-up-strategy, both --ramp-up-start-rps and "
"--ramp-up-end-rps must be specified"
)
if args.ramp_up_start_rps < 0 or args.ramp_up_end_rps < 0:
raise ValueError("Ramp-up start and end RPS must be non-negative")
if args.ramp_up_start_rps > args.ramp_up_end_rps:
raise ValueError("Ramp-up start RPS must be less than end RPS")
if args.ramp_up_strategy == "exponential" and args.ramp_up_start_rps == 0:
raise ValueError("For exponential ramp-up, the start RPS cannot be 0.")
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
base_url = f"{args.base_url}"
@ -825,7 +717,6 @@ def main(args: argparse.Namespace):
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
random_seed=args.seed,
no_stream=args.no_stream,
).sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
@ -911,9 +802,6 @@ def main(args: argparse.Namespace):
max_concurrency=args.max_concurrency,
lora_modules=args.lora_modules,
extra_body=sampling_params,
ramp_up_strategy=args.ramp_up_strategy,
ramp_up_start_rps=args.ramp_up_start_rps,
ramp_up_end_rps=args.ramp_up_end_rps,
)
)
@ -946,11 +834,6 @@ def main(args: argparse.Namespace):
result_json["burstiness"] = args.burstiness
result_json["max_concurrency"] = args.max_concurrency
if args.ramp_up_strategy is not None:
result_json["ramp_up_strategy"] = args.ramp_up_strategy
result_json["ramp_up_start_rps"] = args.ramp_up_start_rps
result_json["ramp_up_end_rps"] = args.ramp_up_end_rps
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
@ -976,10 +859,7 @@ def main(args: argparse.Namespace):
if args.max_concurrency is not None
else ""
)
if args.ramp_up_strategy is not None:
file_name = f"{backend}-ramp-up-{args.ramp_up_strategy}-{args.ramp_up_start_rps}qps-{args.ramp_up_end_rps}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
else:
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
file_name = f"{backend}-{args.request_rate}qps{max_concurrency_str}-{base_model_id}-{current_dt}.json" # noqa
if args.result_filename:
file_name = args.result_filename
if args.result_dir:
@ -1034,11 +914,6 @@ def create_argument_parser():
help="Path to the sharegpt/sonnet dataset. "
"Or the huggingface dataset ID if using HF dataset.",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--max-concurrency",
type=int,
@ -1350,31 +1225,6 @@ def create_argument_parser():
"script chooses a LoRA module at random.",
)
parser.add_argument(
"--ramp-up-strategy",
type=str,
default=None,
choices=["linear", "exponential"],
help="The ramp-up strategy. This would be used to "
"ramp up the request rate from initial RPS to final "
"RPS rate (specified by --ramp-up-start-rps and --ramp-up-end-rps). "
"over the duration of the benchmark.",
)
parser.add_argument(
"--ramp-up-start-rps",
type=int,
default=None,
help="The starting request rate for ramp-up (RPS). "
"Needs to be specified when --ramp-up-strategy is used.",
)
parser.add_argument(
"--ramp-up-end-rps",
type=int,
default=None,
help="The ending request rate for ramp-up (RPS). "
"Needs to be specified when --ramp-up-strategy is used.",
)
return parser

View File

@ -97,7 +97,7 @@ def run_vllm(
assert lora_requests is None, "BeamSearch API does not support LoRA"
prompts = [request.prompt for request in requests]
# output_len should be the same for all requests.
output_len = requests[0].expected_output_len
output_len = requests[0][2]
for request in requests:
assert request.expected_output_len == output_len
start = time.perf_counter()
@ -356,7 +356,6 @@ def get_requests(args, tokenizer):
elif args.dataset_name == "burstgpt":
dataset_cls = BurstGPTDataset
elif args.dataset_name == "hf":
common_kwargs["no_stream"] = args.no_stream
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_cls = VisionArenaDataset
common_kwargs["dataset_subset"] = None
@ -611,11 +610,6 @@ def create_argument_parser():
help="Name of the dataset to benchmark on.",
default="sharegpt",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--dataset",
type=str,

View File

@ -19,7 +19,7 @@ from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul,
)
from vllm.utils import FlexibleArgumentParser, cdiv
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
@ -117,9 +117,14 @@ def bench_fp8(
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
block_scale_a = torch.rand((m, cdiv(k, 128)), device="cuda", dtype=torch.float32)
def ceil_div(x: int, y: int) -> int:
return (x + y - 1) // y
block_scale_a = torch.rand(
(m, ceil_div(k, 128)), device="cuda", dtype=torch.float32
)
block_scale_b = torch.rand(
cdiv(k, 128), cdiv(n, 128), device="cuda", dtype=torch.float32
ceil_div(k, 128), ceil_div(n, 128), device="cuda", dtype=torch.float32
)
block_scale_a_M_major = block_scale_a.t().contiguous().t()
block_scale_b_K_major = block_scale_b.t().contiguous().t()

View File

@ -1,5 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools

View File

@ -1,141 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import torch
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
from vllm.triton_utils import triton
if not current_platform.has_device_capability(100):
raise RuntimeError("NVFP4 requires compute capability of 10.0 (Blackwell)")
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
PROVIDER_CFGS = {
"torch-bf16": dict(enabled=True),
"nvfp4": dict(no_a_quant=False, enabled=True),
"nvfp4-noquant": dict(no_a_quant=True, enabled=True),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def _quant_weight_nvfp4(b: torch.Tensor, device: str):
# Compute global scale for weight
b_amax = torch.abs(b).max().to(torch.float32)
b_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
b_fp4, scale_b_fp4 = ops.scaled_fp4_quant(b, b_global_scale)
return b_fp4, scale_b_fp4, b_global_scale
def build_nvfp4_runner(cfg, a, b, dtype, device):
b_fp4, scale_b_fp4, b_global_scale = _quant_weight_nvfp4(b, device)
# Compute global scale for activation
# NOTE: This is generally provided ahead-of-time by the model checkpoint.
a_amax = torch.abs(a).max().to(torch.float32)
a_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / a_amax
# Alpha for the GEMM operation
alpha = 1.0 / (a_global_scale * b_global_scale)
if cfg["no_a_quant"]:
# Pre-quantize activation
a_fp4, scale_a_fp4 = ops.scaled_fp4_quant(a, a_global_scale)
def run():
return ops.cutlass_scaled_fp4_mm(
a_fp4, b_fp4, scale_a_fp4, scale_b_fp4, alpha, dtype
)
return run
# Quantize activation on-the-fly
def run():
a_fp4, scale_a_fp4 = ops.scaled_fp4_quant(a, a_global_scale)
return ops.cutlass_scaled_fp4_mm(
a_fp4, b_fp4, scale_a_fp4, scale_b_fp4, alpha, dtype
)
return run
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs NVFP4 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch-bf16":
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
else:
cfg = PROVIDER_CFGS[provider]
run_quant = build_nvfp4_runner(cfg, a, b, dtype, device)
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
out.append(KN)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
args = parser.parse_args()
for K, N, model in prepare_shapes(args):
print(f"{model}, N={N} K={K}, BF16 vs NVFP4 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_nvfp4_res_n{N}_k{K}",
N=N,
K=K,
)
print("Benchmark finished!")

View File

@ -1,98 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
from typing import Callable
import torch
from vllm import _custom_ops as ops
from vllm.config import CompilationConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
from vllm.triton_utils import triton
# TODO(luka): use standalone_compile utility
def with_dyn_arg(fn: Callable, arg_index: int, dim_index: int):
def inner(*args):
torch._dynamo.mark_dynamic(args[arg_index], dim_index)
return fn(*args)
return inner
torch._dynamo.config.recompile_limit = 8888
compilation_config = CompilationConfig(custom_ops=["none"])
with set_current_vllm_config(VllmConfig(compilation_config=compilation_config)):
torch_per_token_quant_fp8 = torch.compile(
QuantFP8(False, GroupShape.PER_TOKEN),
fullgraph=True,
dynamic=False, # recompile for different shapes
)
# First dim is explicitly dynamic to simulate vLLM usage
torch_per_token_quant_fp8 = with_dyn_arg(torch_per_token_quant_fp8, 0, 0)
def cuda_per_token_quant_fp8(
input: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
return ops.scaled_fp8_quant(input)
def calculate_diff(batch_size: int, seq_len: int):
"""Calculate difference between Triton and CUDA implementations."""
device = torch.device("cuda")
x = torch.rand((batch_size * seq_len, 4096), dtype=torch.float16, device=device)
torch_out, torch_scale = torch_per_token_quant_fp8(x)
cuda_out, cuda_scale = cuda_per_token_quant_fp8(x)
if torch.allclose(
cuda_out.to(torch.float32), torch_out.to(torch.float32), rtol=1e-3, atol=1e-5
) and torch.allclose(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5):
print("✅ All implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [1, 16, 32, 64, 128]
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
configs = list(itertools.product(batch_size_range, seq_len_range))
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len"],
x_vals=configs,
line_arg="provider",
line_vals=["torch", "cuda"],
line_names=["Torch", "CUDA"],
styles=[("blue", "-"), ("green", "-")],
ylabel="us",
plot_name="per-token-dynamic-quant-fp8-performance",
args={},
)
)
def benchmark_quantization(batch_size, seq_len, provider):
dtype = torch.float16
device = torch.device("cuda")
x = torch.randn(batch_size * seq_len, 4096, device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
fn = lambda: torch_per_token_quant_fp8(x.clone())
elif provider == "cuda":
fn = lambda: cuda_per_token_quant_fp8(x.clone())
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(fn, quantiles=quantiles)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
if __name__ == "__main__":
calculate_diff(batch_size=4, seq_len=4096)
benchmark_quantization.run(print_data=True)

View File

@ -113,7 +113,6 @@ def bench_run(
w2_scale: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
per_act_token: bool,
num_repeats: int,
):
for _ in range(num_repeats):
@ -125,8 +124,7 @@ def bench_run(
topk_ids,
w1_scale,
w2_scale,
per_act_token,
a1_scale=None,
a1_scale=a_scale,
)
def run_cutlass_from_graph(
@ -150,8 +148,7 @@ def bench_run(
topk_ids,
w1_scale,
w2_scale,
per_act_token,
a1_scale=None,
a1_scale=a_scale,
)
def run_triton_from_graph(
@ -230,7 +227,6 @@ def bench_run(
"w2_q": w2_q,
"w1_scale": w1_scale,
"w2_scale": w2_scale,
"per_act_token": per_act_token,
# cuda graph params
"cutlass_graph": cutlass_graph,
"triton_graph": triton_graph,
@ -291,13 +287,12 @@ def bench_run(
w2_scale,
topk_weights,
topk_ids,
per_act_token,
num_warmup,
)
results.append(
benchmark.Timer(
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, per_act_token, num_runs)", # noqa: E501
stmt="run_cutlass_moe(a, a_scale, w1_q, w2_q, w1_scale, w2_scale, topk_weights, topk_ids, num_runs)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,

View File

@ -234,10 +234,8 @@ def marlin_create_bench_fn(bt: BenchmarkTensors) -> Callable:
fn = lambda: ops.gptq_marlin_gemm(
a=bt.a,
c=None,
b_q_weight=w_q,
b_scales=w_s,
global_scale=None,
b_zeros=w_zp,
g_idx=g_idx,
perm=sort_indices,

View File

@ -22,16 +22,8 @@ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
MARLIN_SUPPORTED_GROUP_SIZES,
query_marlin_supported_quant_types,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
FP4_MARLIN_SUPPORTED_GROUP_SIZES,
rand_marlin_weight_fp4_like,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
marlin_quant_fp8_torch,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
MarlinWorkspace,
awq_marlin_quantize,
marlin_quantize,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test_24 import (
@ -43,7 +35,7 @@ from vllm.model_executor.layers.quantization.utils.quant_utils import (
quantize_weights,
sort_weights,
)
from vllm.scalar_type import ScalarType, scalar_types
from vllm.scalar_type import ScalarType
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
@ -65,144 +57,80 @@ def bench_run(
size_n: int,
):
label = "Quant Matmul"
sub_label = "{}, act={} k_full={}, q={}, g={}, MKN=({}x{}x{})".format(
model, act_order, is_k_full, str(quant_type), group_size, size_m, size_k, size_n
)
print(f"Testing: {sub_label}")
a = torch.randn(size_m, size_k).to(torch.half).cuda()
b = torch.rand(size_k, size_n).to(torch.half).cuda()
has_zp = quant_type in [scalar_types.uint4, scalar_types.uint8]
if act_order and (group_size == -1 or group_size == size_k or has_zp):
return
if size_k % group_size != 0:
return
marlin_24_supported = (
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
)
repack_supported = (
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in MARLIN_SUPPORTED_GROUP_SIZES
)
allspark_supported = (
quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
and group_size == -1
and not act_order
and is_k_full
)
def gen_marlin_params():
# Marlin quant
marlin_g_idx = marlin_sort_indices = marlin_zp = marlin_s2 = None
if quant_type == scalar_types.float4_e2m1f:
if group_size != 16 or act_order:
return
marlin_w_ref, marlin_q_w, marlin_s, marlin_s2 = rand_marlin_weight_fp4_like(
b.T, group_size
)
elif quant_type == scalar_types.float8_e4m3fn:
if group_size not in [-1, 128] or act_order:
return
marlin_w_ref, marlin_q_w, marlin_s = marlin_quant_fp8_torch(b.T, group_size)
elif group_size == 16:
return
elif has_zp:
marlin_w_ref, marlin_q_w, marlin_s, marlin_zp = awq_marlin_quantize(
b, quant_type, group_size
)
else:
marlin_w_ref, marlin_q_w, marlin_s, marlin_g_idx, marlin_sort_indices, _ = (
marlin_quantize(b, quant_type, group_size, act_order)
)
return (
marlin_w_ref,
marlin_q_w,
marlin_s,
marlin_s2,
marlin_zp,
marlin_g_idx,
marlin_sort_indices,
)
def gen_marlin_24_params():
marlin_24_w_ref = marlin_24_q_w_comp = marlin_24_meta = marlin_24_s = None
if marlin_24_supported:
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = (
marlin_24_quantize(b, quant_type, group_size)
)
return (marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s)
def gen_repack_params():
q_w_gptq = None
repack_sort_indices = None
if repack_supported:
(w_ref, q_w, s, g_idx, rand_perm) = gptq_quantize_weights(
b, quant_type, group_size, act_order
)
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
# For act_order, sort the "weights" and "g_idx"
# so that group ids are increasing
repack_sort_indices = torch.empty(0, dtype=torch.int, device=b.device)
if act_order:
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
return q_w_gptq, repack_sort_indices
def gen_allspark_params():
qw_reorder = s_reorder = zp_reorder = sm_count = sm_version = (
CUBLAS_M_THRESHOLD
) = None
nonlocal allspark_supported
if allspark_supported:
properties = torch.cuda.get_device_properties(b.device.index)
sm_count = properties.multi_processor_count
sm_version = properties.major * 10 + properties.minor
supported_arch = sm_version >= 80 and sm_version < 90
allspark_supported = allspark_supported and supported_arch
if supported_arch:
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size, has_zp)
qw = qw.to(torch.uint8)
qw_reorder, s_reorder, zp_reorder = ops.allspark_repack_weight(
qw, s, zp, has_zp
)
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
return (
qw_reorder,
s_reorder,
zp_reorder,
sm_count,
sm_version,
CUBLAS_M_THRESHOLD,
)
a_tmp = torch.zeros(size_m, size_k).to(torch.half).cuda()
# Marlin quant
(
marlin_w_ref,
marlin_q_w,
marlin_s,
marlin_s2,
marlin_zp,
marlin_g_idx,
marlin_sort_indices,
) = gen_marlin_params()
marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s = (
gen_marlin_24_params()
marlin_rand_perm,
) = marlin_quantize(b, quant_type, group_size, act_order)
# Marlin_24 quant
(marlin_24_w_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = (
marlin_24_quantize(b, quant_type, group_size)
)
q_w_gptq, repack_sort_indices = gen_repack_params()
qw_reorder, s_reorder, zp_reorder, sm_count, sm_version, CUBLAS_M_THRESHOLD = (
gen_allspark_params()
marlin_zp = torch.empty(0, dtype=torch.int, device=b.device)
# GPTQ quant
(w_ref, q_w, s, g_idx, rand_perm) = gptq_quantize_weights(
b, quant_type, group_size, act_order
)
q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)
# For act_order, sort the "weights" and "g_idx"
# so that group ids are increasing
repack_sort_indices = torch.empty(0, dtype=torch.int, device=b.device)
if act_order:
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)
# Prepare
marlin_workspace = MarlinWorkspace(
size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
)
marlin_24_workspace = MarlinWorkspace(
size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL
)
marlin_zp = torch.zeros_like(marlin_s, dtype=torch.int)
# AllSpark W8A16 quant
as_supported_case = (
quant_type in ALLSPARK_SUPPORTED_QUANT_TYPES
and group_size == -1
and not act_order
and is_k_full
)
if as_supported_case:
properties = torch.cuda.get_device_properties(b.device.index)
sm_count = properties.multi_processor_count
sm_version = properties.major * 10 + properties.minor
supported_arch = sm_version >= 80 and sm_version < 90
as_supported_case = as_supported_case and supported_arch
if supported_arch:
has_zp = False
w_ref, qw, s, zp = quantize_weights(b, quant_type, group_size, has_zp)
qw = qw.to(torch.uint8)
qw_reorder, s_reorder, zp_reorder = ops.allspark_repack_weight(
qw, s, zp, has_zp
)
CUBLAS_M_THRESHOLD = ALLSPARK_AMPERE_M_CUBLAS_THRESHOLD
globals = {
# Gen params
@ -212,14 +140,15 @@ def bench_run(
"size_n": size_n,
"size_k": size_k,
"a": a,
"a_tmp": a_tmp,
# Marlin params
"marlin_w_ref": marlin_w_ref,
"marlin_q_w": marlin_q_w,
"marlin_s": marlin_s,
"marlin_s2": marlin_s2,
"marlin_zp": marlin_zp,
"marlin_g_idx": marlin_g_idx,
"marlin_sort_indices": marlin_sort_indices,
"marlin_rand_perm": marlin_rand_perm,
"marlin_workspace": marlin_workspace,
"is_k_full": is_k_full,
# Marlin_24 params
@ -232,12 +161,12 @@ def bench_run(
"q_w_gptq": q_w_gptq,
"repack_sort_indices": repack_sort_indices,
# AllSpark W8A16 params
"qw_reorder": qw_reorder,
"s_reorder": s_reorder,
"zp_reorder": zp_reorder,
"sm_count": sm_count,
"sm_version": sm_version,
"CUBLAS_M_THRESHOLD": CUBLAS_M_THRESHOLD,
"qw_reorder": qw_reorder if as_supported_case else None,
"s_reorder": s_reorder if as_supported_case else None,
"zp_reorder": zp_reorder if as_supported_case else None,
"sm_count": sm_count if as_supported_case else None,
"sm_version": sm_version if as_supported_case else None,
"CUBLAS_M_THRESHOLD": CUBLAS_M_THRESHOLD if as_supported_case else None,
# Kernels
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
"gptq_marlin_24_gemm": ops.gptq_marlin_24_gemm,
@ -248,7 +177,7 @@ def bench_run(
min_run_time = 1
# Warmup pytorch
for _ in range(5):
for i in range(5):
torch.matmul(a, marlin_w_ref)
results.append(
@ -263,17 +192,17 @@ def bench_run(
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, False, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm",
description="gptq_marlin_gemm_fp16",
).blocked_autorange(min_run_time=min_run_time)
)
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_gemm(a, None, marlin_q_w, marlin_s, marlin_s2, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
stmt="output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_zp, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, quant_type, size_m, size_n, size_k, is_k_full, False, True, False)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
@ -281,7 +210,10 @@ def bench_run(
).blocked_autorange(min_run_time=min_run_time)
)
if marlin_24_supported:
if (
quant_type in GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES
and group_size in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
):
results.append(
benchmark.Timer(
stmt="output = gptq_marlin_24_gemm(a, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, marlin_24_workspace.scratch, quant_type, size_m, size_n, size_k)", # noqa: E501
@ -292,18 +224,17 @@ def bench_run(
).blocked_autorange(min_run_time=min_run_time)
)
if repack_supported:
results.append(
benchmark.Timer(
stmt="q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_repack",
).blocked_autorange(min_run_time=min_run_time)
)
results.append(
benchmark.Timer(
stmt="q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, quant_type.size_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_repack",
).blocked_autorange(min_run_time=min_run_time)
)
if allspark_supported:
if as_supported_case:
results.append(
benchmark.Timer(
stmt="output = allspark_w8a16_gemm(a, qw_reorder, s_reorder, zp_reorder, size_n, group_size, sm_count, sm_version, CUBLAS_M_THRESHOLD, False, True)", # noqa: E501
@ -319,6 +250,7 @@ def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")
results: list[benchmark.Measurement] = []
for model in args.models:
@ -346,17 +278,14 @@ def main(args):
):
continue
for quant_type in query_marlin_supported_quant_types():
for quant_type in query_marlin_supported_quant_types(False):
if (
len(args.limit_num_bits) > 0
and quant_type.size_bits not in args.limit_num_bits
):
continue
for group_size in (
MARLIN_SUPPORTED_GROUP_SIZES
+ FP4_MARLIN_SUPPORTED_GROUP_SIZES
):
for group_size in MARLIN_SUPPORTED_GROUP_SIZES:
if (
len(args.limit_group_size) > 0
and group_size not in args.limit_group_size

View File

@ -86,9 +86,6 @@ def benchmark_config(
(num_experts, 2 * shard_intermediate_size), dtype=torch.float32
)
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
if use_deep_gemm:
# we use the default block shape for deepgemm
block_quant_shape = [128, 128]
if use_fp8_w8a8:
if block_quant_shape:
block_n, block_k = block_quant_shape[0], block_quant_shape[1]
@ -623,7 +620,7 @@ def main(args: argparse.Namespace):
4096,
]
else:
batch_sizes = args.batch_size
batch_sizes = [args.batch_size]
use_deep_gemm = bool(args.use_deep_gemm)
@ -731,7 +728,7 @@ if __name__ == "__main__":
)
parser.add_argument("--use-deep-gemm", action="store_true")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, nargs="+", required=False)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--tune", action="store_true")
parser.add_argument("--trust-remote-code", action="store_true")
parser.add_argument("--model-prefix", type=str, required=False)

View File

@ -1,240 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import csv
import os
import random
from datetime import datetime
import flashinfer
import torch
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
def to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax * 0.1
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype), scale.float().reciprocal()
@torch.no_grad()
def benchmark_decode(
num_seqs,
max_seq_len,
page_size=16,
dtype=torch.bfloat16,
kv_layout="HND",
num_kv_heads=8,
kv_cache_dtype="auto",
head_dim=128,
warmup=10,
trials=20,
):
torch.set_default_device("cuda")
device = "cuda"
torch.manual_seed(0)
# Currently only HEAD_GRP_SIZE == 8 is supported
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
# large number to reduce kv_cache reuse
NUM_BLOCKS = int(256000 / page_size)
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8, device=device)
# For decode, batch_size is num_decode_token
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
sm_scale = float(1.0 / (head_dim**0.5))
q = torch.randn(num_seqs, num_qo_heads, head_dim, device=device, dtype=dtype)
kv_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
max_kv_len = max(kv_lens)
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int, device=device)
max_num_blocks_per_seq = (max_kv_len + page_size - 1) // page_size
block_tables = torch.randint(
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
)
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
kv_cache = torch.randn(size=kv_cache_shape, device=device, dtype=dtype)
k_scale = v_scale = 1.0
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
# Benchmark TRT decode
def trt_decode():
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
q,
kv_cache,
workspace_buffer,
num_qo_heads,
num_kv_heads,
sm_scale,
block_tables,
kv_lens_tensor,
page_size,
max_kv_len,
kv_cache_dtype,
k_scale,
v_scale,
)
def time_fn(fn, warmup=10, trials=20):
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
times = []
for i in range(warmup):
fn()
for i in range(trials):
start.record()
fn()
end.record()
torch.cuda.synchronize()
times.append(start.elapsed_time(end)) # ms
return sum(times) / len(times), torch.std(torch.tensor(times))
# TRT Decode
trt_mean, trt_std = time_fn(trt_decode)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = kv_lens[i]
assert seq_len > 0
num_blocks = (seq_len + page_size - 1) // page_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % page_size
if kv_last_page_len == 0:
kv_last_page_len = page_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout,
use_tensor_cores=((num_qo_heads // num_kv_heads) > 4),
)
wrapper.plan(
kv_indptr,
kv_indices,
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_dim,
page_size,
"NONE",
q_data_type=dtype,
kv_data_type=torch.float8_e4m3fn if kv_cache_dtype.startswith("fp8") else dtype,
)
def baseline_decode():
return wrapper.run(q, kv_cache, sm_scale, k_scale, v_scale)
baseline_mean, baseline_std = time_fn(baseline_decode)
# Calculate percentage speedup (positive means TRT is faster)
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
print(
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.3f}\t{trt_std.item():.3f}"
f"\t{baseline_mean:.3f}\t{baseline_std.item():.3f}\t{speedup_percent:.3f}"
)
# Return results for CSV writing
return {
"num_seqs": num_seqs,
"trt_mean": trt_mean,
"trt_std": trt_std.item(),
"baseline_mean": baseline_mean,
"baseline_std": baseline_std.item(),
"speedup_percent": speedup_percent,
"q_dtype": str(dtype),
"kv_cache_dtype": kv_cache_dtype,
"page_size": page_size,
"num_kv_heads": num_kv_heads,
"head_dim": head_dim,
"max_seq_len": max_seq_len,
}
def write_results_to_csv(results, filename=None):
"""Write benchmark results to CSV file."""
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
fieldnames = [
"num_seqs",
"trt_mean",
"trt_std",
"baseline_mean",
"baseline_std",
"speedup_percent",
"q_dtype",
"kv_cache_dtype",
"page_size",
"num_kv_heads",
"head_dim",
"max_seq_len",
]
file_exists = os.path.exists(filename)
with open(filename, "a", newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
for result in results:
writer.writerow(result)
print(f"Results written to {filename}")
if __name__ == "__main__":
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
print("Running benchmark for kv_cache_dtype: bfloat16")
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\tbaseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_decode(
bs, max_seq_len, dtype=torch.bfloat16, kv_cache_dtype="auto"
)
all_results.append(result)
print("Running benchmark for q_dtype = bfloat16, kv_cache_dtype: fp8")
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\tbaseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_decode(
bs, max_seq_len, dtype=torch.bfloat16, kv_cache_dtype="fp8"
)
all_results.append(result)
# Write all results to CSV
write_results_to_csv(all_results)

View File

@ -85,6 +85,12 @@ def benchmark_shape(m: int,
# === DeepGEMM Implementation ===
def deepgemm_gemm():
# A quantization is inside the loop as it depends on activations
# A_deepgemm, A_scale_deepgemm = per_token_cast_to_fp8(A)
# A_deepgemm, A_scale_deepgemm = per_token_group_quant_fp8(
# A, block_size[1])
# A_scale_aligned = get_col_major_tma_aligned_tensor(A_scale_deepgemm)
# C_deepgemm = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
deep_gemm.gemm_fp8_fp8_bf16_nt((A_deepgemm, A_scale_deepgemm),
(B_deepgemm, B_scale_deepgemm),
C_deepgemm)
@ -92,6 +98,8 @@ def benchmark_shape(m: int,
# === vLLM Triton Implementation ===
def vllm_triton_gemm():
# A quantization is inside the loop as it depends on activations
# A_vllm, A_scale_vllm = per_token_group_quant_fp8(A, block_size[1])
return w8a8_block_fp8_matmul(A_vllm,
B_vllm,
A_scale_vllm,
@ -101,6 +109,9 @@ def benchmark_shape(m: int,
# === vLLM CUTLASS Implementation ===
def vllm_cutlass_gemm():
# A quantization is inside the loop as it depends on activations
# A_vllm_cutlass, A_scale_vllm_cutlass = per_token_group_quant_fp8(
# A, block_size[1], column_major_scales=True)
return ops.cutlass_scaled_mm(A_vllm_cutlass,
B_vllm.T,
scale_a=A_scale_vllm_cutlass,

View File

@ -12,8 +12,9 @@ endif()
#
# Define environment variables for special configurations
#
set(ENABLE_AVX512BF16 $ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512VNNI $ENV{VLLM_CPU_AVX512VNNI})
if(DEFINED ENV{VLLM_CPU_AVX512BF16})
set(ENABLE_AVX512BF16 ON)
endif()
include_directories("${CMAKE_SOURCE_DIR}/csrc")
@ -95,30 +96,12 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512bf16")
set(ENABLE_AVX512BF16 ON)
else()
set(ENABLE_AVX512BF16 OFF)
message(WARNING "Disable AVX512-BF16 ISA support, requires gcc/g++ >= 12.3")
endif()
else()
set(ENABLE_AVX512BF16 OFF)
message(WARNING "Disable AVX512-BF16 ISA support, no avx512_bf16 found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512BF16=1.")
endif()
find_isa(${CPUINFO} "avx512_vnni" AVX512VNNI_FOUND)
if (AVX512VNNI_FOUND OR ENABLE_AVX512VNNI)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12.3)
list(APPEND CXX_COMPILE_FLAGS "-mavx512vnni")
set(ENABLE_AVX512VNNI ON)
else()
set(ENABLE_AVX512VNNI OFF)
message(WARNING "Disable AVX512-VNNI ISA support, requires gcc/g++ >= 12.3")
endif()
else()
set(ENABLE_AVX512VNNI OFF)
message(WARNING "Disable AVX512-VNNI ISA support, no avx512_vnni found in local CPU flags." " If cross-compilation is required, please set env VLLM_CPU_AVX512VNNI=1.")
endif()
elseif (AVX2_FOUND)
list(APPEND CXX_COMPILE_FLAGS "-mavx2")
@ -165,32 +148,17 @@ else()
endif()
#
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 /ARM platforms)
# Flag to enable ACL kernels for AARCH64 platforms
if ( VLLM_BUILD_ACL STREQUAL "ON")
set(USE_ACL ON)
else()
set(USE_ACL OFF)
endif()
if ((AVX512_FOUND AND NOT AVX512_DISABLED) OR ASIMD_FOUND)
# Build oneDNN for W8A8 GEMM kernels (only for x86-AVX512 platforms)
#
if (AVX512_FOUND AND NOT AVX512_DISABLED)
FetchContent_Declare(
oneDNN
GIT_REPOSITORY https://github.com/oneapi-src/oneDNN.git
GIT_TAG v3.8.1
GIT_TAG v3.7.1
GIT_PROGRESS TRUE
GIT_SHALLOW TRUE
)
if(USE_ACL)
find_library(ARM_COMPUTE_LIBRARY NAMES arm_compute PATHS $ENV{ACL_ROOT_DIR}/build/)
if(NOT ARM_COMPUTE_LIBRARY)
message(FATAL_ERROR "Could not find ARM Compute Library: please set ACL_ROOT_DIR")
endif()
set(ONEDNN_AARCH64_USE_ACL "ON")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wl,-rpath,$ENV{ACL_ROOT_DIR}/build/")
endif()
set(ONEDNN_LIBRARY_TYPE "STATIC")
set(ONEDNN_BUILD_DOC "OFF")
set(ONEDNN_BUILD_EXAMPLES "OFF")
@ -263,29 +231,11 @@ if (AVX512_FOUND AND NOT AVX512_DISABLED)
"csrc/cpu/quant.cpp"
"csrc/cpu/shm.cpp"
${VLLM_EXT_SRC})
if (ENABLE_AVX512BF16 AND ENABLE_AVX512VNNI)
set(VLLM_EXT_SRC
"csrc/cpu/sgl-kernels/gemm.cpp"
"csrc/cpu/sgl-kernels/gemm_int8.cpp"
"csrc/cpu/sgl-kernels/gemm_fp8.cpp"
"csrc/cpu/sgl-kernels/moe.cpp"
"csrc/cpu/sgl-kernels/moe_int8.cpp"
"csrc/cpu/sgl-kernels/moe_fp8.cpp"
${VLLM_EXT_SRC})
add_compile_definitions(-DCPU_CAPABILITY_AVX512)
endif()
elseif(POWER10_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
if (ASIMD_FOUND)
set(VLLM_EXT_SRC
"csrc/cpu/quant.cpp"
${VLLM_EXT_SRC})
endif()
message(STATUS "CPU extension source files: ${VLLM_EXT_SRC}")
#
# Define extension targets

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 1c2624e53c078854e0637ee566c72fe2107e75f4
GIT_TAG 763ad155a1c826f71ff318f41edb1e4e5e376ddb
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -265,8 +265,8 @@ macro(set_gencode_flags_for_srcs)
endmacro()
#
# For the given `SRC_CUDA_ARCHS` list of gencode versions in the form
# `<major>.<minor>[letter]` compute the "loose intersection" with the
# For the given `SRC_CUDA_ARCHS` list of gencode versions in the form
# `<major>.<minor>[letter]` compute the "loose intersection" with the
# `TGT_CUDA_ARCHS` list of gencodes. We also support the `+PTX` suffix in
# `SRC_CUDA_ARCHS` which indicates that the PTX code should be built when there
# is a CUDA_ARCH in `TGT_CUDA_ARCHS` that is equal to or larger than the
@ -278,7 +278,7 @@ endmacro()
# in `SRC_CUDA_ARCHS` that is less or equal to the version in `TGT_CUDA_ARCHS`.
# We have special handling for x.0a, if x.0a is in `SRC_CUDA_ARCHS` and x.0 is
# in `TGT_CUDA_ARCHS` then we should remove x.0a from `SRC_CUDA_ARCHS` and add
# x.0a to the result (and remove x.0 from TGT_CUDA_ARCHS).
# x.0a to the result (and remove x.0 from TGT_CUDA_ARCHS).
# The result is stored in `OUT_CUDA_ARCHS`.
#
# Example:
@ -313,16 +313,21 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
# if x.0a is in SRC_CUDA_ARCHS and x.0 is in CUDA_ARCHS then we should
# remove x.0a from SRC_CUDA_ARCHS and add x.0a to _CUDA_ARCHS
set(_CUDA_ARCHS)
foreach(_arch ${_SRC_CUDA_ARCHS})
if(_arch MATCHES "\\a$")
list(REMOVE_ITEM _SRC_CUDA_ARCHS "${_arch}")
string(REPLACE "a" "" _base "${_arch}")
if ("${_base}" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "${_base}")
list(APPEND _CUDA_ARCHS "${_arch}")
endif()
if ("9.0a" IN_LIST _SRC_CUDA_ARCHS)
list(REMOVE_ITEM _SRC_CUDA_ARCHS "9.0a")
if ("9.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "9.0")
set(_CUDA_ARCHS "9.0a")
endif()
endforeach()
endif()
if ("10.0a" IN_LIST _SRC_CUDA_ARCHS)
list(REMOVE_ITEM _SRC_CUDA_ARCHS "10.0a")
if ("10.0" IN_LIST TGT_CUDA_ARCHS)
list(REMOVE_ITEM _TGT_CUDA_ARCHS "10.0")
set(_CUDA_ARCHS "10.0a")
endif()
endif()
list(SORT _SRC_CUDA_ARCHS COMPARE NATURAL ORDER ASCENDING)
@ -354,7 +359,7 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
endforeach()
list(REMOVE_DUPLICATES _CUDA_ARCHS)
# reapply +PTX suffix to architectures that requested PTX
set(_FINAL_ARCHS)
foreach(_arch ${_CUDA_ARCHS})
@ -365,7 +370,7 @@ function(cuda_archs_loose_intersection OUT_CUDA_ARCHS SRC_CUDA_ARCHS TGT_CUDA_AR
endif()
endforeach()
set(_CUDA_ARCHS ${_FINAL_ARCHS})
set(${OUT_CUDA_ARCHS} ${_CUDA_ARCHS} PARENT_SCOPE)
endfunction()

View File

@ -24,7 +24,6 @@
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#include "cuda_compat.h"
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
@ -34,6 +33,12 @@ typedef __hip_bfloat16 __nv_bfloat16;
#include "../quantization/fp8/nvidia/quant_utils.cuh"
#endif
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
@ -665,6 +670,7 @@ __global__ void paged_attention_v2_reduce_kernel(
} // namespace vllm
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP

View File

@ -207,7 +207,7 @@ void cutlass_mla_decode_sm100a(torch::Tensor const& out,
"page_table must be a 32-bit integer tensor");
auto in_dtype = q_nope.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_nope));
at::cuda::CUDAGuard device_guard{(char)q_nope.get_device()};
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(q_nope.get_device());
if (in_dtype == at::ScalarType::Half) {

View File

@ -1,372 +0,0 @@
/***************************************************************************************************
* Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
* by Alcanderian JieXin Liang
*/
/*!
\file
\brief An universal device layer for cutlass 3.x-style kernels.
*/
// clang-format off
#pragma once
// common
#include "cutlass/cutlass.h"
#include "cutlass/device_kernel.h"
#if !defined(__CUDACC_RTC__)
#include "cutlass/cluster_launch.hpp"
#include "cutlass/trace.h"
#endif // !defined(__CUDACC_RTC__)
#include "../kernel/sm100_fmha_mla_tma_warpspecialized.hpp"
#include "../kernel/sm100_fmha_mla_reduction.hpp"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass::fmha::device {
using namespace cute;
using namespace cutlass::fmha::kernel;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////// CUTLASS 3.x API /////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
template<
class Kernel_
>
class MLA {
public:
using Kernel = Kernel_;
using ReductionKernel = cutlass::fmha::kernel::Sm100FmhaMlaReductionKernel<
typename Kernel::ElementOut,
typename Kernel::ElementAcc,
typename Kernel::ElementAcc,
Kernel::TileShapeH::value,
Kernel::TileShapeL::value,
256 /*Max split*/
>;
/// Argument structure: User API
using KernelArguments = typename Kernel::Arguments;
using ReductionArguments = typename ReductionKernel::Arguments;
using Arguments = KernelArguments;
/// Argument structure: Kernel API
using KernelParams = typename Kernel::Params;
using ReductionParams = typename ReductionKernel::Params;
struct Params {
KernelParams fmha_params;
ReductionParams reduction_params;
};
private:
/// Kernel API parameters object
Params params_;
bool is_initialized(bool set = false) {
static bool initialized = false;
if (set) initialized = true;
return initialized;
}
static ReductionArguments to_reduction_args(Arguments const& args) {
auto [H, K, D, B] = args.problem_shape;
return ReductionArguments{
nullptr, args.epilogue.ptr_o, nullptr, args.epilogue.ptr_lse,
args.mainloop.softmax_scale, B, args.split_kv, K, args.mainloop.ptr_seq,
args.ptr_split_kv, Kernel::TileShapeS::value
};
}
public:
/// Access the Params structure
Params const& params() const {
return params_;
}
static void set_split_kv (KernelArguments& args) {
// printf("set_split_kv start");
if (args.split_kv >= 1) return;
auto [H, K, D, B] = args.problem_shape;
// std::cout << H << " " << K << " " << D << " " << B << "\n";
int sm_count = args.hw_info.sm_count;
// printf(" sm_count = %d\n", sm_count);
int max_splits = ceil_div(K, 128);
max_splits = min(16, max_splits);
// printf(" max_splits = %d\n", max_splits);
int sms_per_batch = max(1, sm_count / B);
// printf(" sms_per_batch = %d\n", sms_per_batch);
int split_heur = min(max_splits, sms_per_batch);
int waves = ceil_div(B * split_heur, sm_count);
int k_waves = ceil_div(max_splits, split_heur);
int split_wave_aware = ceil_div(max_splits, k_waves);
args.split_kv = split_wave_aware;
// printf(" args.split_kv = %d\n", args.split_kv);
}
/// Determines whether the GEMM can execute the given problem.
static Status
can_implement(Arguments const& args) {
if (! Kernel::can_implement(args)) {
return Status::kInvalid;
}
if (! ReductionKernel::can_implement(to_reduction_args(args))) {
return Status::kInvalid;
}
return Status::kSuccess;
}
/// Gets the workspace size
static size_t
get_workspace_size(Arguments const& args) {
size_t workspace_bytes = 0;
workspace_bytes += Kernel::get_workspace_size(args);
workspace_bytes += ReductionKernel::get_workspace_size(to_reduction_args(args));
return workspace_bytes;
}
/// Computes the maximum number of active blocks per multiprocessor
static int maximum_active_blocks(int /* smem_capacity */ = -1) {
CUTLASS_TRACE_HOST("MLA::maximum_active_blocks()");
int max_active_blocks = -1;
int smem_size = Kernel::SharedStorageSize;
// first, account for dynamic smem capacity if needed
cudaError_t result;
if (smem_size >= (48 << 10)) {
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
result = cudaFuncSetAttribute(
device_kernel<Kernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(
" cudaFuncSetAttribute() returned error: "
<< cudaGetErrorString(result));
return -1;
}
}
// query occupancy after setting smem size
result = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&max_active_blocks,
device_kernel<Kernel>,
Kernel::MaxThreadsPerBlock,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(
" cudaOccupancyMaxActiveBlocksPerMultiprocessor() returned error: "
<< cudaGetErrorString(result));
return -1;
}
CUTLASS_TRACE_HOST(" max_active_blocks: " << max_active_blocks);
return max_active_blocks;
}
/// Initializes GEMM state from arguments.
Status
initialize(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
CUTLASS_TRACE_HOST("MLA::initialize() - workspace "
<< workspace << ", stream: " << (stream ? "non-null" : "null"));
// Initialize the workspace
Status status = Kernel::initialize_workspace(args, workspace, stream);
if (status != Status::kSuccess) {
return status;
}
status = ReductionKernel::initialize_workspace(to_reduction_args(args), workspace, stream);
if (status != Status::kSuccess) {
return status;
}
KernelParams kernel_params = Kernel::to_underlying_arguments(args, workspace);
ReductionArguments reduction_args = to_reduction_args(args);
if (reduction_args.split_kv > 1) {
reduction_args.ptr_oaccum = kernel_params.epilogue.ptr_o_acc;
reduction_args.ptr_lseaccum = kernel_params.epilogue.ptr_lse_acc;
}
ReductionParams reduction_params = ReductionKernel::to_underlying_arguments(reduction_args, workspace);
// Initialize the Params structure
params_ = Params {kernel_params, reduction_params};
if (is_initialized()) return Status::kSuccess;
// account for dynamic smem capacity if needed
// no dynamic smem is needed for reduction kernel
int smem_size = Kernel::SharedStorageSize;
if (smem_size >= (48 << 10)) {
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
cudaError_t result = cudaFuncSetAttribute(
device_kernel<Kernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(" cudaFuncSetAttribute() returned error: " << cudaGetErrorString(result));
return Status::kErrorInternal;
}
}
is_initialized(true);
return Status::kSuccess;
}
/// Update API is preserved in 3.0, but does not guarantee a lightweight update of params.
Status
update(Arguments const& args, void* workspace = nullptr) {
CUTLASS_TRACE_HOST("MLA()::update() - workspace: " << workspace);
size_t workspace_bytes = get_workspace_size(args);
if (workspace_bytes > 0 && nullptr == workspace) {
return Status::kErrorWorkspaceNull;
}
auto fmha_params = Kernel::to_underlying_arguments(args, workspace);
ReductionArguments reduction_args = to_reduction_args(args);
if (reduction_args.split_kv > 1) {
reduction_args.ptr_oaccum = fmha_params.epilogue.ptr_o_acc;
reduction_args.ptr_lseaccum = fmha_params.epilogue.ptr_lse_acc;
}
ReductionParams reduction_params = ReductionKernel::to_underlying_arguments(reduction_args, workspace);
// Initialize the Params structure
params_ = Params {fmha_params, reduction_params};
return Status::kSuccess;
}
/// Primary run() entry point API that is static allowing users to create and manage their own params.
/// Supplied params struct must be construct by calling Kernel::to_underling_arguments()
static Status
run(Params& params, cudaStream_t stream = nullptr) {
CUTLASS_TRACE_HOST("MLA::run()");
dim3 const block = Kernel::get_block_shape();
dim3 const grid = Kernel::get_grid_shape(params.fmha_params);
// configure smem size and carveout
int smem_size = Kernel::SharedStorageSize;
Status launch_result;
// Use extended launch API only for mainloops that use it
if constexpr(Kernel::ArchTag::kMinComputeCapability >= 90) {
dim3 cluster(cute::size<0>(typename Kernel::ClusterShape{}),
cute::size<1>(typename Kernel::ClusterShape{}),
cute::size<2>(typename Kernel::ClusterShape{}));
void const* kernel = (void const*) device_kernel<Kernel>;
void* kernel_params[] = {&params.fmha_params};
launch_result = ClusterLauncher::launch(grid, cluster, block, smem_size, stream, kernel, kernel_params);
}
else {
launch_result = Status::kSuccess;
device_kernel<Kernel><<<grid, block, smem_size, stream>>>(params.fmha_params);
}
cudaError_t result = cudaGetLastError();
if (cudaSuccess != result or Status::kSuccess != launch_result) {
//return Status::kSuccess;
CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result);
return Status::kErrorInternal;
}
if (params.reduction_params.split_kv > 1) {
// launch reduction kernel
dim3 const block = ReductionKernel::get_block_shape();
dim3 const grid = ReductionKernel::get_grid_shape(params.reduction_params);
device_kernel<ReductionKernel><<<grid, block, 0, stream>>>(params.reduction_params);
cudaError_t result = cudaGetLastError();
if (cudaSuccess == result) {
return Status::kSuccess;
}
else {
CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result);
return Status::kErrorInternal;
}
}
else {
return Status::kSuccess;
}
}
//
// Non-static launch overloads that first create and set the internal params struct of this kernel handle.
//
/// Launches the kernel after first constructing Params internal state from supplied arguments.
Status
run(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (Status::kSuccess == status) {
status = run(params_, stream);
}
return status;
}
/// Launches the kernel after first constructing Params internal state from supplied arguments.
Status
operator()(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
return run(args, workspace, stream);
}
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
Status
run(cudaStream_t stream = nullptr) {
return run(params_, stream);
}
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
Status
operator()(cudaStream_t stream = nullptr) {
return run(params_, stream);
}
};
////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::fmha::device
////////////////////////////////////////////////////////////////////////////////

View File

@ -1,203 +0,0 @@
/***************************************************************************************************
* Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights
*reserved. SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
* by Alcanderian JieXin Liang
*/
// clang-format off
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/arch/arch.h"
#include "cute/tensor.hpp"
namespace cutlass::fmha::kernel {
using namespace cute;
template<
class ElementOut,
class ElementAcc,
class ElementScale,
size_t kNumHeads,
size_t kHeadDimLatent,
int kMaxSplits
>
struct Sm100FmhaMlaReductionKernel {
static const int SharedStorageSize = 0;
static const int MaxThreadsPerBlock = 128;
static const int MinBlocksPerMultiprocessor = 1;
using ArchTag = cutlass::arch::Sm100;
static_assert(kHeadDimLatent % MaxThreadsPerBlock == 0);
struct Arguments {
ElementAcc* ptr_oaccum = nullptr;
ElementOut* ptr_o = nullptr;
ElementAcc* ptr_lseaccum = nullptr;
ElementAcc* ptr_lse = nullptr;
ElementScale scale = 1.f;
int num_batches = 0;
int split_kv = -1;
int dim_k = -1;
int* ptr_seq = nullptr;
int* ptr_split_kv = nullptr;
int tile_shape_s = 128;
};
using Params = Arguments;
static Params to_underlying_arguments(Arguments const& args, void* workspace) {
return {args.ptr_oaccum, args.ptr_o, args.ptr_lseaccum, args.ptr_lse,
args.scale, args.num_batches, args.split_kv, args.dim_k, args.ptr_seq,
args.ptr_split_kv, args.tile_shape_s};
}
static size_t get_workspace_size(Arguments const& /*args*/) {
return 0;
}
static Status initialize_workspace(
Arguments const& /*args*/, void* /*ws*/, cudaStream_t /*stream*/) {
return Status::kSuccess;
}
static dim3 get_grid_shape(Params const& params) {
return dim3(kNumHeads, 1, params.num_batches);
}
static dim3 get_block_shape() {
return dim3(MaxThreadsPerBlock, 1, 1);
}
static bool can_implement(Arguments const& args) {
if (args.num_batches <= 0) return false;
if (args.split_kv <= 0) return false;
return true;
}
CUTLASS_DEVICE void operator() (Params const& params, char* smem_raw) {
if (params.split_kv <= 1) return;
auto blk_coord = make_coord(blockIdx.x, _0{}, blockIdx.z);
__shared__ ElementAcc sLseScale[kMaxSplits];
const size_t offset_lseaccum = get<0>(blk_coord) + kNumHeads * params.split_kv * get<2>(blk_coord);
const size_t offset_lse = get<0>(blk_coord) + kNumHeads * get<2>(blk_coord);
Tensor gLSEaccum = make_tensor(make_gmem_ptr(params.ptr_lseaccum + offset_lseaccum),
make_shape(params.split_kv), Stride<Int<kNumHeads>>{});
Tensor gLSE = make_tensor(make_gmem_ptr(params.ptr_lse + offset_lse),
Shape<_1>{}, Stride<_1>{});
auto dim_k = params.ptr_seq == nullptr ? params.dim_k : params.ptr_seq[get<2>(blk_coord)];
auto local_split_kv = params.ptr_split_kv == nullptr ? params.split_kv : params.ptr_split_kv[get<2>(blk_coord)];
auto k_tile_total = ceil_div(dim_k, params.tile_shape_s);
auto k_tile_per_cta = ceil_div(k_tile_total, local_split_kv);
local_split_kv = ceil_div(k_tile_total, k_tile_per_cta);
int warp_idx = cutlass::canonical_warp_idx_sync();
if (warp_idx == 0) {
constexpr int kNLsePerThread = cute::ceil_div(kMaxSplits, 32);
ElementAcc local_lse[kNLsePerThread];
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kNLsePerThread; ++i) {
const int split = i * 32 + threadIdx.x;
local_lse[i] = split < local_split_kv ? gLSEaccum(split) : -std::numeric_limits<ElementAcc>::infinity();
}
ElementAcc lse_max = -std::numeric_limits<ElementAcc>::infinity();
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kNLsePerThread; ++i) {
lse_max = max(lse_max, local_lse[i]);
}
CUTLASS_PRAGMA_UNROLL
for (int offset = 16; offset >= 1; offset /= 2) {
lse_max = max(lse_max, __shfl_xor_sync(0xffffffff, lse_max, offset));
}
lse_max = lse_max == -std::numeric_limits<ElementAcc>::infinity() ? 0.0f : lse_max; // In case all local LSEs are -inf
lse_max = __shfl_sync(0xffffffff, lse_max, 0);
ElementAcc sum_lse = 0;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kNLsePerThread; ++i) {
sum_lse = sum_lse + expf(local_lse[i] - lse_max);
}
CUTLASS_PRAGMA_UNROLL
for (int offset = 16; offset >= 1; offset /= 2) {
sum_lse = sum_lse + __shfl_xor_sync(0xffffffff, sum_lse, offset);
}
sum_lse = __shfl_sync(0xffffffff, sum_lse, 0);
ElementAcc global_lse = (sum_lse == 0.f || sum_lse != sum_lse) ? std::numeric_limits<ElementAcc>::infinity() : logf(sum_lse) + lse_max;
if (threadIdx.x == 0 and params.ptr_lse != nullptr) {
gLSE(0) = global_lse;
}
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < kNLsePerThread; ++i) {
const int split = i * 32 + threadIdx.x;
if (split < local_split_kv) {
sLseScale[split] = expf(local_lse[i] - global_lse);
}
}
}
__syncthreads();
constexpr int Elements = kHeadDimLatent / MaxThreadsPerBlock;
const size_t offset_oaccum = kHeadDimLatent * params.split_kv * (get<0>(blk_coord) + kNumHeads * get<2>(blk_coord));
Tensor gOaccum = make_tensor(make_gmem_ptr(params.ptr_oaccum + offset_oaccum),
Shape<Int<kHeadDimLatent>>{}, Stride<_1>{});
ElementAcc local_val[Elements] = {0};
for (int split = 0; split < local_split_kv; ++split) {
ElementAcc lse_scale = sLseScale[split];
CUTLASS_PRAGMA_UNROLL
for(int i = 0; i < Elements; ++i) {
local_val[i] += lse_scale * gOaccum(threadIdx.x + MaxThreadsPerBlock * i);
}
gOaccum.data() = gOaccum.data() + kHeadDimLatent;
}
auto ptr_o_local = params.ptr_o + (get<0>(blk_coord) + get<2>(blk_coord) * kNumHeads) * kHeadDimLatent;
Tensor gO = make_tensor(make_gmem_ptr(ptr_o_local), Shape<Int<kHeadDimLatent>>{}, Stride<_1>{});
CUTLASS_PRAGMA_UNROLL
for(int i = 0; i < Elements; ++i) {
gO(threadIdx.x + MaxThreadsPerBlock * i) = static_cast<ElementOut>(local_val[i]);
}
}
};
} // namespace cutlass::fmha::kernel

View File

@ -1,165 +0,0 @@
/***************************************************************************************************
* Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights
*reserved. SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
* by Alcanderian JieXin Liang
*/
// clang-format off
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/fast_math.h"
#include "cutlass/kernel_hardware_info.h"
namespace cutlass::fmha::kernel {
////////////////////////////////////////////////////////////////////////////////
struct Sm100MlaIndividualTileScheduler {
struct Params {
dim3 grid;
};
bool valid_ = true;
CUTLASS_DEVICE
Sm100MlaIndividualTileScheduler(Params const&) {}
template<class ProblemShape, class ClusterShape>
static Params to_underlying_arguments(
ProblemShape const& problem_shape, KernelHardwareInfo hw_info,
ClusterShape const& cluster_shape, int const& split_kv) {
using namespace cute;
dim3 grid(get<0>(cluster_shape), get<3>(problem_shape) /* Batch */, split_kv /*Maximum Split KV*/);
return Params{ grid };
}
static dim3 get_grid_shape(Params const& params) {
return params.grid;
}
CUTLASS_DEVICE
bool is_valid() {
return valid_;
}
CUTLASS_DEVICE
auto get_block_coord() {
using namespace cute;
return make_coord(blockIdx.x, _0{}, blockIdx.y, blockIdx.z);
}
CUTLASS_DEVICE
Sm100MlaIndividualTileScheduler& operator++() {
valid_ = false;
return *this;
}
};
////////////////////////////////////////////////////////////////////////////////
struct Sm100MlaPersistentTileScheduler {
struct Params {
int num_blocks;
FastDivmod divmod_m_block;
FastDivmod divmod_b;
FastDivmod divmod_split_kv;
KernelHardwareInfo hw_info;
};
int block_idx = 0;
Params params;
CUTLASS_DEVICE
Sm100MlaPersistentTileScheduler(Params const& params) : block_idx(blockIdx.x), params(params) {}
template<class ProblemShape, class ClusterShape>
static Params to_underlying_arguments(
ProblemShape const& problem_shape, KernelHardwareInfo hw_info,
ClusterShape const& cluster_shape, int const& split_kv) {
using namespace cute;
// Get SM count if needed, otherwise use user supplied SM count
int sm_count = hw_info.sm_count;
if (sm_count <= 1 || sm_count % size<0>(cluster_shape) != 0) {
CUTLASS_TRACE_HOST(" WARNING: Arguments do not include a valid SM count.\n"
" For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
sm_count = KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
}
CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);
hw_info.sm_count = sm_count;
int num_m_blocks = size<0>(cluster_shape);
int num_blocks = num_m_blocks * get<3>(problem_shape) /* Batch */;
num_blocks *= split_kv; /* Maximum Split KV*/
return Params {
num_blocks,
{ num_m_blocks}, { get<3>(problem_shape) }, {split_kv},
hw_info
};
}
static dim3 get_grid_shape(Params const& params) {
dim3 grid(std::min(params.num_blocks, params.hw_info.sm_count), 1, 1);
return grid;
}
CUTLASS_DEVICE
bool is_valid() {
return block_idx < params.num_blocks;
}
CUTLASS_DEVICE
auto get_block_coord() {
using namespace cute;
int block_decode = block_idx;
int m_block, bidb, n_split_kv;
params.divmod_m_block(block_decode, m_block, block_decode);
params.divmod_b(block_decode, bidb, block_decode);
params.divmod_split_kv(block_decode, n_split_kv, block_decode);
return make_coord(m_block, _0{}, bidb, n_split_kv);
}
CUTLASS_DEVICE
Sm100MlaPersistentTileScheduler& operator++() {
block_idx += gridDim.x;
return *this;
}
};
////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::fmha::kernel

View File

@ -1,283 +0,0 @@
/*
Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
Copyright 2025 SGLang Team. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
/*
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
* by Alcanderian JieXin Liang
*/
#include "core/registration.h"
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cutlass/cutlass.h>
#include <cutlass/kernel_hardware_info.h>
#include <torch/all.h>
#include <cute/tensor.hpp>
#include <iostream>
#include "cutlass_sm100_mla/device/sm100_mla.hpp"
#include "cutlass_sm100_mla/kernel/sm100_mla_tile_scheduler.hpp"
// clang-format off
#if !defined(CUDA_VERSION) || CUDA_VERSION < 12040
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table,
torch::Tensor const& workspace,
int64_t num_kv_splits) {
TORCH_CHECK(false, "CUDA version must be >= 12.4 for cutlass_mla_decode");
}
int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count, int64_t num_kv_splits) {
TORCH_CHECK(false, "CUDA version must be >= 12.4 for cutlass_mla_get_workspace_size");
}
#else
#define CUTLASS_CHECK(status) \
{ \
cutlass::Status error = status; \
TORCH_CHECK(error == cutlass::Status::kSuccess, cutlassGetStatusString(error)); \
}
using namespace cute;
using namespace cutlass::fmha::kernel;
template <bool v>
struct IsPersistent {
static const bool value = v;
};
template <typename T, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
struct MlaSm100 {
using Element = T;
using ElementAcc = float;
using ElementOut = T;
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
using TileShapeH = cute::tuple_element_t<0, TileShape>;
using TileShapeD = cute::tuple_element_t<2, TileShape>;
// H K (D_latent D_rope) B
using ProblemShape = cute::tuple<TileShapeH, int, TileShapeD, int>;
using StrideQ = cute::tuple<int64_t, _1, int64_t>; // H D B
using StrideK = cute::tuple<int64_t, _1, int64_t>; // K D B
using StrideO = StrideK; // H D B
using StrideLSE = cute::tuple<_1, int>; // H B
using TileScheduler =
std::conditional_t<PersistenceOption::value, Sm100MlaPersistentTileScheduler, Sm100MlaIndividualTileScheduler>;
using FmhaKernel = cutlass::fmha::kernel::Sm100FmhaMlaKernelTmaWarpspecialized<
TileShape,
Element,
ElementAcc,
ElementOut,
ElementAcc,
TileScheduler,
/*kIsCpAsync=*/!IsPaged128>;
using Fmha = cutlass::fmha::device::MLA<FmhaKernel>;
};
template <typename T>
typename T::Fmha::Arguments args_from_options(
at::Tensor const& out,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
at::Tensor const& seq_lens,
at::Tensor const& page_table,
double sm_scale,
int64_t num_kv_splits) {
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = q_nope.device().index();
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
int batches = q_nope.sizes()[0];
int page_count_per_seq = page_table.sizes()[1];
int page_count_total = kv_c_and_k_pe_cache.sizes()[0];
int page_size = kv_c_and_k_pe_cache.sizes()[1];
int max_seq_len = page_size * page_count_per_seq;
using TileShapeH = typename T::TileShapeH;
using TileShapeD = typename T::TileShapeD;
auto problem_shape = cute::make_tuple(TileShapeH{}, max_seq_len, TileShapeD{}, batches);
auto [H, K, D, B] = problem_shape;
auto [D_latent, D_rope] = D;
float scale = float(sm_scale);
using StrideQ = typename T::StrideQ;
using StrideK = typename T::StrideK;
using StrideO = typename T::StrideO;
using StrideLSE = typename T::StrideLSE;
StrideQ stride_Q_nope = cute::make_tuple(
static_cast<int64_t>(q_nope.stride(1)), _1{}, static_cast<int64_t>(q_nope.stride(0)));
StrideQ stride_Q_pe = cute::make_tuple(
static_cast<int64_t>(q_pe.stride(1)), _1{}, static_cast<int64_t>(q_pe.stride(0)));
StrideK stride_C = cute::make_tuple(
static_cast<int64_t>(0 + D_latent + D_rope), _1{}, static_cast<int64_t>(page_size * (D_latent + D_rope)));
StrideLSE stride_PT = cute::make_stride(_1{}, page_count_per_seq);
StrideLSE stride_LSE = cute::make_tuple(_1{}, 0 + H);
StrideO stride_O = cute::make_tuple(static_cast<int64_t>(0 + D_latent), _1{}, static_cast<int64_t>(0 + H * D_latent));
using Element = typename T::Element;
using ElementOut = typename T::ElementOut;
using ElementAcc = typename T::ElementAcc;
auto Q_nope_ptr = static_cast<Element*>(q_nope.data_ptr());
auto Q_pe_ptr = static_cast<Element*>(q_pe.data_ptr());
auto C_ptr = static_cast<Element*>(kv_c_and_k_pe_cache.data_ptr());
typename T::Fmha::Arguments arguments{
problem_shape,
{scale,
Q_nope_ptr,
stride_Q_nope,
Q_pe_ptr,
stride_Q_pe,
C_ptr,
stride_C,
C_ptr + D_latent,
stride_C,
static_cast<int*>(seq_lens.data_ptr()),
static_cast<int*>(page_table.data_ptr()),
stride_PT,
page_count_total,
page_size},
{static_cast<ElementOut*>(out.data_ptr()), stride_O, static_cast<ElementAcc*>(nullptr), stride_LSE},
hw_info,
// TODO(trevor-m): Change split_kv back to -1 when
// https://github.com/NVIDIA/cutlass/issues/2274 is fixed. Split_kv=1 will
// perform worse with larger context length and smaller batch sizes.
num_kv_splits, // split_kv
nullptr, // is_var_split_kv
};
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
// split_kv automatically based on batch size and sequence length to balance
// workload across available SMs. Consider using var_split_kv for manual
// control if needed.
T::Fmha::set_split_kv(arguments);
return arguments;
}
template <typename Element, bool IsPaged128, typename PersistenceOption>
void runMla(
at::Tensor const& out,
at::Tensor const& q_nope,
at::Tensor const& q_pe,
at::Tensor const& kv_c_and_k_pe_cache,
at::Tensor const& seq_lens,
at::Tensor const& page_table,
at::Tensor const& workspace,
double sm_scale,
int64_t num_kv_splits,
cudaStream_t stream) {
using MlaSm100Type = MlaSm100<Element, IsPaged128, PersistenceOption>;
typename MlaSm100Type::Fmha fmha;
auto arguments = args_from_options<MlaSm100Type>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
CUTLASS_CHECK(fmha.can_implement(arguments));
CUTLASS_CHECK(fmha.initialize(arguments, workspace.data_ptr(), stream));
CUTLASS_CHECK(fmha.run(arguments, workspace.data_ptr(), stream));
}
#define DISPATCH_BOOL(expr, const_expr, ...) \
[&]() -> bool { \
if (expr) { \
constexpr bool const_expr = true; \
return __VA_ARGS__(); \
} else { \
constexpr bool const_expr = false; \
return __VA_ARGS__(); \
} \
}()
void sm100_cutlass_mla_decode(
torch::Tensor const& out,
torch::Tensor const& q_nope,
torch::Tensor const& q_pe,
torch::Tensor const& kv_c_and_k_pe_cache,
torch::Tensor const& seq_lens,
torch::Tensor const& page_table,
torch::Tensor const& workspace,
double sm_scale,
int64_t num_kv_splits) {
auto in_dtype = q_nope.dtype();
at::cuda::CUDAGuard device_guard{(char)q_nope.get_device()};
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(q_nope.get_device());
const int page_size = kv_c_and_k_pe_cache.sizes()[1];
// NOTE(alcanderian): IsPersistent has bug with manual split_kv.
// Kernel will hang if batch is too large with large num_kv_splits. (for example bs=8, num_kv_splits=8)
// Maybe per batch split kv will fix this.
DISPATCH_BOOL(page_size == 128, IsPaged128, [&] {
DISPATCH_BOOL(num_kv_splits <= 1, NotManualSplitKV, [&] {
if (in_dtype == at::ScalarType::Half) {
runMla<cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
runMla<cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
runMla<cutlass::float_e4m3_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
} else {
TORCH_CHECK(false, "Unsupported input data type of MLA");
}
return true;
});
return true;
});
}
int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count, int64_t num_kv_splits) {
// Workspace size depends on ElementAcc and ElementLSE (same as ElementAcc)
// which are float, so Element type here doesn't matter.
using MlaSm100Type = MlaSm100<cutlass::half_t, true>;
// Get split kv. Requires problem shape and sm_count only.
typename MlaSm100Type::Fmha::Arguments arguments;
using TileShapeH = typename MlaSm100Type::TileShapeH;
using TileShapeD = typename MlaSm100Type::TileShapeD;
arguments.problem_shape =
cute::make_tuple(TileShapeH{}, static_cast<int>(max_seq_len), TileShapeD{}, static_cast<int>(num_batches));
// Assumes device 0 when getting sm_count.
arguments.hw_info.sm_count =
sm_count <= 0 ? cutlass::KernelHardwareInfo::query_device_multiprocessor_count(/*device_id=*/0) : sm_count;
arguments.split_kv = num_kv_splits;
MlaSm100Type::Fmha::set_split_kv(arguments);
return MlaSm100Type::Fmha::get_workspace_size(arguments);
}
#endif
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("sm100_cutlass_mla_decode", &sm100_cutlass_mla_decode);
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CatchAll, m) {
m.impl("sm100_cutlass_mla_get_workspace_size", &sm100_cutlass_mla_get_workspace_size);
}
// clang-format on

View File

@ -18,7 +18,12 @@
*/
#include "attention_kernels.cuh"
#include "cuda_compat.h"
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -182,6 +187,7 @@ void paged_attention_v1(
CALL_V1_LAUNCHER_BLOCK_SIZE)
}
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP

View File

@ -18,7 +18,12 @@
*/
#include "attention_kernels.cuh"
#include "cuda_compat.h"
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -192,6 +197,7 @@ void paged_attention_v2(
CALL_V2_LAUNCHER_BLOCK_SIZE)
}
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP

View File

@ -33,8 +33,6 @@ namespace vec_op {
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
// Number of elements in single ASIMD vector of given Datatype
#define NUM_ELEMENTS_REG(vec) (sizeof(vec) / sizeof(vec[0]))
namespace {
template <typename T, T... indexes, typename F>
@ -88,8 +86,8 @@ struct FP16Vec16 : public Vec<FP16Vec16> {
}
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
int full_blocks = elem_num / 8;
int remainder = elem_num % 8;
if (full_blocks > 0) {
vst1q_f16(reinterpret_cast<__fp16*>(ptr), reg.val[0]);
@ -199,25 +197,6 @@ struct BF16Vec16 : public Vec<BF16Vec16> {
vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(v.val[2]), v.val[3])}) {};
void save(void* ptr) const { *reinterpret_cast<bfloat16x8x2_t*>(ptr) = reg; };
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_bf16(
reinterpret_cast<__bf16*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
bfloat16x8_t temp = reg.val[full_blocks];
bfloat16_t* base = reinterpret_cast<bfloat16_t*>(ptr) + full_blocks * 8;
if (remainder > 0) base[0] = vgetq_lane_bf16(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_bf16(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_bf16(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_bf16(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_bf16(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_bf16(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_bf16(temp, 6);
}
};
};
struct BF16Vec32 : public Vec<BF16Vec32> {
@ -234,25 +213,6 @@ struct BF16Vec32 : public Vec<BF16Vec32> {
: reg({vec8_data.reg, vec8_data.reg, vec8_data.reg, vec8_data.reg}) {};
void save(void* ptr) const { *reinterpret_cast<bfloat16x8x4_t*>(ptr) = reg; };
void save(void* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_bf16(
reinterpret_cast<__bf16*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
bfloat16x8_t temp = reg.val[full_blocks];
bfloat16_t* base = reinterpret_cast<bfloat16_t*>(ptr) + full_blocks * 8;
base[0] = vgetq_lane_bf16(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_bf16(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_bf16(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_bf16(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_bf16(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_bf16(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_bf16(temp, 6);
}
};
};
#endif
@ -412,48 +372,6 @@ struct FP32Vec8 : public Vec<FP32Vec8> {
}
};
struct INT32Vec16 : public Vec<INT32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
int32x4x4_t reg;
int32_t values[VEC_ELEM_NUM];
};
int32x4x4_t reg;
explicit INT32Vec16(const void* ptr) {
reg.val[0] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr));
reg.val[1] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 4);
reg.val[2] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 8);
reg.val[3] = vld1q_s32(reinterpret_cast<const int32_t*>(ptr) + 12);
}
void save(int32_t* ptr) const {
vst1q_s32(ptr, reg.val[0]);
vst1q_s32(ptr + 4, reg.val[1]);
vst1q_s32(ptr + 8, reg.val[2]);
vst1q_s32(ptr + 12, reg.val[3]);
};
void save(int32_t* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_s32(
reinterpret_cast<__int32_t*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
int32x4_t temp = reg.val[full_blocks];
int32_t* base = reinterpret_cast<int32_t*>(ptr) + full_blocks * 4;
if (remainder > 0) base[0] = vgetq_lane_s32(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_s32(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_s32(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_s32(temp, 3);
}
}
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
@ -516,12 +434,7 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
reg.val[2] = vcvt_f32_f16(vget_low_f16(v.reg.val[1]));
reg.val[3] = vcvt_f32_f16(vget_high_f16(v.reg.val[1]));
};
explicit FP32Vec16(const INT32Vec16& v) {
reg.val[0] = vcvtq_f32_s32(v.reg.val[0]);
reg.val[1] = vcvtq_f32_s32(v.reg.val[1]);
reg.val[2] = vcvtq_f32_s32(v.reg.val[2]);
reg.val[3] = vcvtq_f32_s32(v.reg.val[3]);
};
FP32Vec16 operator+(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({vaddq_f32(reg.val[0], b.reg.val[0]),
vaddq_f32(reg.val[1], b.reg.val[1]),
@ -550,85 +463,6 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vdivq_f32(reg.val[3], b.reg.val[3])}));
};
FP32Vec16 clamp(const FP32Vec16& min, const FP32Vec16& max) const {
return FP32Vec16(float32x4x4_t(
{vminq_f32(max.reg.val[0], vmaxq_f32(min.reg.val[0], reg.val[0])),
vminq_f32(max.reg.val[1], vmaxq_f32(min.reg.val[1], reg.val[1])),
vminq_f32(max.reg.val[2], vmaxq_f32(min.reg.val[2], reg.val[2])),
vminq_f32(max.reg.val[3], vmaxq_f32(min.reg.val[3], reg.val[3]))}));
};
FP32Vec16 max(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({vmaxq_f32(b.reg.val[0], reg.val[0]),
vmaxq_f32(b.reg.val[1], reg.val[1]),
vmaxq_f32(b.reg.val[2], reg.val[2]),
vmaxq_f32(b.reg.val[3], reg.val[3])}));
};
FP32Vec16 max(const FP32Vec16& b, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
float32x4x4_t temp;
for (int i = 0; i < full_blocks; i++)
temp.val[i] = vmaxq_f32(b.reg.val[i], reg.val[i]);
if (remainder > 0) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 0),
vgetq_lane_f32(b.reg.val[full_blocks], 0));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 0);
}
if (remainder > 1) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 1),
vgetq_lane_f32(b.reg.val[full_blocks], 1));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 1);
}
if (remainder > 2) {
float max_v = std::max(vgetq_lane_f32(reg.val[full_blocks], 2),
vgetq_lane_f32(b.reg.val[full_blocks], 2));
temp.val[full_blocks] = vsetq_lane_f32(max_v, temp.val[full_blocks], 2);
}
return FP32Vec16(temp);
};
FP32Vec16 min(const FP32Vec16& b) const {
return FP32Vec16(float32x4x4_t({
vminq_f32(b.reg.val[0], reg.val[0]),
vminq_f32(b.reg.val[1], reg.val[1]),
vminq_f32(b.reg.val[2], reg.val[2]),
vminq_f32(b.reg.val[3], reg.val[3]),
}));
};
FP32Vec16 min(const FP32Vec16& b, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
const int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
float32x4x4_t temp;
for (int i = 0; i < full_blocks; i++)
temp.val[i] = vminq_f32(b.reg.val[i], reg.val[i]);
if (remainder > 0) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 0),
vgetq_lane_f32(b.reg.val[full_blocks], 0));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 0);
}
if (remainder > 1) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 1),
vgetq_lane_f32(b.reg.val[full_blocks], 1));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 1);
}
if (remainder > 2) {
float min_v = std::min(vgetq_lane_f32(reg.val[full_blocks], 2),
vgetq_lane_f32(b.reg.val[full_blocks], 2));
temp.val[full_blocks] = vsetq_lane_f32(min_v, temp.val[full_blocks], 2);
}
return FP32Vec16(temp);
};
FP32Vec16 abs() const {
return FP32Vec16(
float32x4x4_t({vabsq_f32(reg.val[0]), vabsq_f32(reg.val[1]),
vabsq_f32(reg.val[2]), vabsq_f32(reg.val[3])}));
}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
@ -639,24 +473,6 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
return answer;
};
float reduce_max() const {
AliasReg ar;
ar.reg = reg;
float max_v = std::numeric_limits<float>::lowest();
unroll_loop<int, VEC_ELEM_NUM>(
[&max_v, &ar](int i) { max_v = std::max(max_v, ar.values[i]); });
return max_v;
}
float reduce_min() const {
AliasReg ar;
ar.reg = reg;
float min_v = std::numeric_limits<float>::max();
unroll_loop<int, VEC_ELEM_NUM>(
[&min_v, &ar](int i) { min_v = std::min(min_v, ar.values[i]); });
return min_v;
}
template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
@ -677,83 +493,6 @@ struct FP32Vec16 : public Vec<FP32Vec16> {
vst1q_f32(ptr + 8, reg.val[2]);
vst1q_f32(ptr + 12, reg.val[3]);
};
void save(float* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg.val[0]);
int remainder = elem_num % NUM_ELEMENTS_REG(reg.val[0]);
for (int i = 0; i < full_blocks; i++)
vst1q_f32(
reinterpret_cast<float32_t*>(ptr) + NUM_ELEMENTS_REG(reg.val[0]) * i,
reg.val[i]);
if (remainder > 0) {
float32x4_t temp = reg.val[full_blocks];
float* base = reinterpret_cast<float32_t*>(ptr) +
full_blocks * NUM_ELEMENTS_REG(reg.val[0]);
if (remainder > 0) base[0] = vgetq_lane_f32(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_f32(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_f32(temp, 2);
}
}
};
struct INT8Vec16 : public Vec<INT8Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
int8x16_t reg;
int8_t values[VEC_ELEM_NUM];
};
int8x16_t reg;
explicit INT8Vec16(const FP32Vec16& vec) {
// Convert each 128-bit float32 vector to int32
int32x4_t part0 =
vcvtq_s32_f32(vec.reg.val[0]); // Convert first 128-bit block
int32x4_t part1 =
vcvtq_s32_f32(vec.reg.val[1]); // Convert second 128-bit block
int32x4_t part2 =
vcvtq_s32_f32(vec.reg.val[2]); // Convert third 128-bit block
int32x4_t part3 =
vcvtq_s32_f32(vec.reg.val[3]); // Convert fourth 128-bit block
// Narrow each 32-bit vector to 8 bits and combine
int8x8_t lower =
vqmovn_s16(vcombine_s16(vqmovn_s32(part0), vqmovn_s32(part1)));
int8x8_t upper =
vqmovn_s16(vcombine_s16(vqmovn_s32(part2), vqmovn_s32(part3)));
reg = vcombine_s8(lower, upper); // Combine to form a single 128-bit vector
}
void save(int8_t* ptr) const { vst1q_s8(ptr, reg); };
void save(int8_t* ptr, const int elem_num) const {
int full_blocks = elem_num / NUM_ELEMENTS_REG(reg);
int remainder = elem_num % NUM_ELEMENTS_REG(reg);
for (int i = 0; i < full_blocks; i++)
vst1q_s8(reinterpret_cast<int8_t*>(ptr) + NUM_ELEMENTS_REG(reg) * i, reg);
if (remainder > 0) {
int8x16_t temp = reg;
int8_t* base =
reinterpret_cast<int8_t*>(ptr) + full_blocks * NUM_ELEMENTS_REG(reg);
if (remainder > 0) base[0] = vgetq_lane_s8(temp, 0);
if (remainder > 1) base[1] = vgetq_lane_s8(temp, 1);
if (remainder > 2) base[2] = vgetq_lane_s8(temp, 2);
if (remainder > 3) base[3] = vgetq_lane_s8(temp, 3);
if (remainder > 4) base[4] = vgetq_lane_s8(temp, 4);
if (remainder > 5) base[5] = vgetq_lane_s8(temp, 5);
if (remainder > 6) base[6] = vgetq_lane_s8(temp, 6);
if (remainder > 7) base[7] = vgetq_lane_s8(temp, 7);
if (remainder > 8) base[8] = vgetq_lane_s8(temp, 8);
if (remainder > 9) base[9] = vgetq_lane_s8(temp, 9);
if (remainder > 10) base[10] = vgetq_lane_s8(temp, 10);
if (remainder > 11) base[11] = vgetq_lane_s8(temp, 11);
if (remainder > 12) base[12] = vgetq_lane_s8(temp, 12);
if (remainder > 13) base[13] = vgetq_lane_s8(temp, 13);
if (remainder > 14) base[14] = vgetq_lane_s8(temp, 14);
}
};
};
template <typename T>

View File

@ -57,7 +57,6 @@ class DNNLPrimitiveHelper {
// Note: Due to the limitation of oneDNN
// (https://github.com/oneapi-src/oneDNN/issues/1636), the quantized bias is
// not supported.
template <typename OutputT, typename BiasT>
static void gemm_s8s8_jit(const int8_t* a, const int8_t* b, OutputT* c,
const BiasT* bias, dnnl_dim_t M, dnnl_dim_t N,
@ -91,27 +90,6 @@ class DNNLPrimitiveHelper {
}
dnnl::matmul::primitive_desc matmul_pd;
// Create memory descriptors with format_tag::any for the primitive. This
// enables the matmul primitive to choose memory layouts for an
// optimized primitive implementation, and these layouts may differ from the
// ones provided by the user.
#ifdef __aarch64__
auto mat_src_md = dnnl::memory::desc({M, K}, dnnl::memory::data_type::s8,
dnnl::memory::format_tag::any);
auto mat_weights_md = dnnl::memory::desc(
{K, N}, dnnl::memory::data_type::s8, dnnl::memory::format_tag::any);
auto mat_dst_md =
dnnl::memory::desc({M, N}, OutputType, dnnl::memory::format_tag::any);
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), mat_src_md,
mat_weights_md, bias_md,
mat_dst_md, attr);
} else {
matmul_pd = dnnl::matmul::primitive_desc(
default_engine(), mat_src_md, mat_weights_md, mat_dst_md, attr);
}
#else
if (bias) {
dnnl::memory::desc bias_md({1, N}, BiasType, {N, 1});
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
@ -120,7 +98,6 @@ class DNNLPrimitiveHelper {
matmul_pd = dnnl::matmul::primitive_desc(default_engine(), a_md, b_md,
c_md, attr);
}
#endif
dnnl::matmul matmul(matmul_pd);
auto& engine = default_engine();
@ -134,34 +111,24 @@ class DNNLPrimitiveHelper {
(void*)b_scales);
auto& stream = default_stream();
auto mat_src_mem = a_m;
auto mat_weights_mem = b_m;
auto mat_dst_mem = c_m;
#ifdef __aarch64__
if (matmul_pd.weights_desc() != b_m.get_desc()) {
mat_weights_mem = dnnl::memory(matmul_pd.weights_desc(), engine);
dnnl::reorder(b_m, mat_weights_mem).execute(stream, b_m, mat_weights_mem);
}
#endif
if constexpr (InputNoScale) {
if (bias) {
dnnl::memory::desc bias_md({N}, BiasType, {1});
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
}
@ -171,19 +138,19 @@ class DNNLPrimitiveHelper {
dnnl::memory bias_m(bias_md, engine, (void*)bias);
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_BIAS, bias_m},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
} else {
matmul.execute(
stream, {
{DNNL_ARG_SRC, mat_src_mem},
{DNNL_ARG_WEIGHTS, mat_weights_mem},
{DNNL_ARG_DST, mat_dst_mem},
{DNNL_ARG_SRC, a_m},
{DNNL_ARG_WEIGHTS, b_m},
{DNNL_ARG_DST, c_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, a_scales_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, b_scales_m},
});
@ -203,4 +170,5 @@ class DNNLPrimitiveHelper {
return stream;
}
};
#endif

View File

@ -36,7 +36,7 @@ struct KernelVecType<c10::Half> {
using cvt_vec_type = vec_op::FP32Vec16;
};
#if defined(__AVX512F__) || defined(__aarch64__)
#ifdef __AVX512F__
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
@ -598,9 +598,8 @@ void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false,
"static_scaled_int8_quant_impl requires AVX512/powerpc64/AArch64 "
"support.")
TORCH_CHECK(
false, "static_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
}
template <typename scalar_t>
@ -608,9 +607,9 @@ void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false,
"dynamic_scaled_int8_quant_impl requires "
"AVX512/powerpc64/AArch64 support.")
TORCH_CHECK(
false,
"dynamic_scaled_int8_quant_impl requires AVX512/powerpc64 support.")
}
template <bool PerChannel, typename scalar_t>
@ -618,8 +617,7 @@ void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(
false, "static_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
TORCH_CHECK(false, "static_quant_epilogue requires AVX512/powerpc64 support.")
}
template <typename scalar_t>
@ -628,9 +626,8 @@ void dynamic_quant_epilogue(const float* input, scalar_t* output,
const int32_t* azp, const int32_t* azp_with_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(
false,
"dynamic_quant_epilogue requires AVX512/powerpc64/AArch64 support.")
TORCH_CHECK(false,
"dynamic_quant_epilogue requires AVX512/powerpc64 support.")
}
#endif
} // namespace

View File

@ -1,238 +0,0 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#pragma once
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/record_function.h>
// clang-format off
#if defined(_OPENMP)
#include <omp.h>
#endif
namespace {
// dispatch bool
#define AT_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \
[&] { \
if (BOOL_V) { \
constexpr bool BOOL_NAME = true; \
return __VA_ARGS__(); \
} else { \
constexpr bool BOOL_NAME = false; \
return __VA_ARGS__(); \
} \
}()
// dispatch: bfloat16, float16, int8_t, fp8_e4m3
#define CPU_DISPATCH_PACKED_TYPES(TYPE, ...) \
[&] { \
switch (TYPE) { \
case at::ScalarType::BFloat16 : { \
using packed_t = at::BFloat16; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Half: { \
using packed_t = at::Half; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Char : { \
using packed_t = int8_t; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Float8_e4m3fn : { \
using packed_t = at::Float8_e4m3fn; \
return __VA_ARGS__(); \
} \
default: \
TORCH_CHECK(false, "Unsupported floating data type.\n"); \
} \
}()
#define UNUSED(x) (void)(x)
#define CHECK_CPU(x) TORCH_CHECK(x.device().type() == at::kCPU, #x " must be a CPU tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimension")
#define CHECK_INPUT(x) \
CHECK_CPU(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_LAST_DIM_CONTIGUOUS_INPUT(x) \
CHECK_CPU(x); \
CHECK_LAST_DIM_CONTIGUOUS(x)
#define CHECK_DIM(d, x) TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")
#define CHECK_EQ(a, b) TORCH_CHECK((a) == (b), "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)
// parallel routines
constexpr int GRAIN_SIZE = 1024;
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline T div_up(T x, T y) { return (x + y - 1) / y; }
template <typename T>
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
#if 0
// onednn partition pattern
T& n_my = n_end;
if (nth <= 1 || n == 0) {
n_start = 0;
n_my = n;
} else {
T n1 = div_up(n, nth);
T n2 = n1 - 1;
T T1 = n - n2 * nth;
n_my = ith < T1 ? n1 : n2;
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
}
n_end += n_start;
#else
// pytorch aten partition pattern
T n_my = div_up(n, nth);
n_start = ith * n_my;
n_end = std::min(n_start + n_my, n);
#endif
}
template <typename func_t>
inline void parallel_for(int n, const func_t& f) {
#if defined(_OPENMP)
#pragma omp parallel
{
int nth = omp_get_num_threads();
int ith = omp_get_thread_num();
int tbegin, tend;
balance211(n, nth, ith, tbegin, tend);
f(tbegin, tend);
}
#else
f(0, n);
#endif
}
// for 1d parallel, use `actual_nth`
// for 2d parallel, use even nths, e.g. 43->42
int inline adjust_num_threads(int m) {
int actual_nth = at::get_num_threads();
if (m == 1) {
return actual_nth;
}
return std::max(1, (actual_nth >> 1) * 2);
}
template <typename func_t>
inline void parallel_2d(int m, int n, const func_t& f) {
// make sure we have even num_threads
int nth = adjust_num_threads(m);
// [NOTE] thread blocking:
//
// 1) prefer square block per thread
// 2) use even number of CPU cores
// 3) use all `num_threads` cores
//
// we have:
// TM * TN = T
// BM / TM = BN / TN
// then:
// TM = ((BM / BN) * T) ^ 0.5
//
float r = float(m) / n;
int nth_m = std::ceil(std::sqrt(r * nth));
int nth_n = 1;
for (; nth_m > 0; --nth_m) {
nth_n = nth / nth_m;
if (nth_m * nth_n == nth) {
break;
}
}
#if defined(_OPENMP)
#pragma omp parallel num_threads(nth)
{
int ith = omp_get_thread_num();
int ith_m = ith / nth_n;
int ith_n = ith % nth_n;
int thread_block_m = div_up(m, nth_m);
int thread_block_n = div_up(n, nth_n);
int begin_m = ith_m * thread_block_m;
int end_m = std::min(m, begin_m + thread_block_m);
int begin_n = ith_n * thread_block_n;
int end_n = std::min(n, begin_n + thread_block_n);
f(begin_m, end_m, begin_n, end_n);
}
#else
f(0, m, 0, n);
#endif
}
template <typename T>
int get_cache_blocks(int BLOCK_SIZE, int K) {
// L2 2MB and ratio of 50%
const int L2_size = 2048 * 1024 >> 1;
return std::max(1, int(L2_size / (BLOCK_SIZE * K * sizeof(T))));
}
// data indexing for dimension collapse
template <typename T>
inline T data_index_init(T offset) {
return offset;
}
template <typename T, typename... Args>
inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
offset = data_index_init(offset, std::forward<Args>(args)...);
x = offset % X;
return offset / X;
}
inline bool data_index_step() {
return true;
}
template <typename T, typename... Args>
inline bool data_index_step(T& x, const T& X, Args&&... args) {
if (data_index_step(std::forward<Args>(args)...)) {
x = ((x + 1) == X) ? 0 : (x + 1);
return x == 0;
}
return false;
}
// forced unroll for perf critical path
#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((__always_inline__)) inline
#else
#define ALWAYS_INLINE inline
#endif
template <int n>
struct Unroll {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
Unroll<n - 1>{}(f, args...);
f(std::integral_constant<int, n - 1>{}, args...);
}
};
template <>
struct Unroll<1> {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
f(std::integral_constant<int, 0>{}, args...);
}
};
} // anonymous namespace

View File

@ -1,464 +0,0 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
namespace {
// packed layout:
// quants {N, K} int8_t
// comp {N} int32_t
template <int BLOCK_N>
inline void s8s8_compensation(int8_t* __restrict__ packed, int K) {
#if defined(CPU_CAPABILITY_AVX512)
constexpr int COLS = BLOCK_N / 16;
__m512i vcomp[COLS];
for (int col = 0; col < COLS; ++col) {
vcomp[col] = _mm512_setzero_si512();
}
const int64_t offset = BLOCK_N * K;
const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80));
for (int k = 0; k < K / 4; ++k) {
for (int col = 0; col < COLS; ++col) {
__m512i vb = _mm512_loadu_si512((const __m512i *)(packed + k * BLOCK_N * 4 + col * 64));
vcomp[col] = _mm512_dpbusd_epi32(vcomp[col], off, vb);
}
}
for (int col = 0; col < COLS; ++col) {
_mm512_storeu_si512((__m512i *)(packed + offset + col * 64), vcomp[col]);
}
#else
TORCH_CHECK(false, "s8s8_compensation not implemented!");
#endif
}
// convert to vnni format
// from [N, K] to [K/2, N, 2] for bfloat16 and float16
template <typename packed_t>
inline void pack_vnni(packed_t* __restrict__ packed, const packed_t* __restrict__ weight, int N, int K) {
const int VNNI_BLK = 2;
for (int n = 0; n < N; ++n) {
for (int k = 0; k < K / VNNI_BLK; ++k) {
for (int d = 0; d < VNNI_BLK; ++d) {
packed[k * N * VNNI_BLK + n * VNNI_BLK + d] = weight[n * K + k * VNNI_BLK + d];
}
}
}
}
template <>
inline void pack_vnni<int8_t>(int8_t* __restrict__ packed, const int8_t* __restrict__ weight, int N, int K) {
constexpr int BLOCK_N = block_size_n();
TORCH_CHECK(N == BLOCK_N);
const int VNNI_BLK = 4;
for (int n = 0; n < N; ++n) {
for (int k = 0; k < K / VNNI_BLK; ++k) {
for (int d = 0; d < VNNI_BLK; ++d) {
packed[k * N * VNNI_BLK + n * VNNI_BLK + d] = weight[n * K + k * VNNI_BLK + d];
}
}
}
s8s8_compensation<BLOCK_N>(packed, K);
}
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ input, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d);
fVec data1 = fVec::loadu(input + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d]);
}
}
template <typename scalar_t>
inline void copy_add_stub(scalar_t* __restrict__ out, const float* __restrict__ input, const float* __restrict__ bias, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d) + fVec::loadu(bias + d);
fVec data1 = fVec::loadu(input + d + fVec::size()) + fVec::loadu(bias + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + bias[d]);
}
}
template <typename scalar_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
static inline void apply(
const scalar_t* __restrict__ A, const scalar_t* __restrict__ B, scalar_t* __restrict__ C,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, has_bias, BLOCK_M, BLOCK_N> {
static inline void apply(
const at::BFloat16* __restrict__ A, const at::BFloat16* __restrict__ B, at::BFloat16* __restrict__ C,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
// prefetch distance
constexpr int PREFETCH_SIZE_K = 0;
__m512bh va;
__m512bh vb[COLS];
__m512 vc[ROWS * COLS];
auto loadc = [&](auto i) {
constexpr int col = i % COLS;
if constexpr (has_bias) {
vc[i] = _mm512_loadu_ps(bias + col * 16);
} else {
vc[i] = _mm512_set1_ps(0.f);
}
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K2 = K >> 1;
const int64_t lda2 = lda >> 1;
const int64_t ldb2 = ldb; // ldb * 2 >> 1;
const float* a_ptr = reinterpret_cast<const float*>(A);
const float* b_ptr = reinterpret_cast<const float*>(B);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = (__m512bh)(_mm512_set1_ps(a_ptr[row * lda2 + k]));
}
if constexpr (row == 0) {
vb[col] = (__m512bh)(_mm512_loadu_si512(b_ptr + k * ldb2 + col * 16));
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb2 + col * 16, _MM_HINT_T0);
}
}
vc[i] = _mm512_dpbf16_ps(vc[i], va, vb[col]);
};
for (int64_t k = 0; k < K2; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// for COLS = 2, 4 use 512bit store
// for COLS = 1, 3 use 256bit store
if constexpr (COLS % 2 == 0) {
if constexpr (col % 2 == 0) {
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(vc[row * COLS + col + 1], vc[row * COLS + col])));
}
} else {
_mm256_storeu_si256(
reinterpret_cast<__m256i*>(C + row * ldc + col * 16),
(__m256i)(_mm512_cvtneps_pbh(vc[i])));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE) \
tinygemm_kernel_nn<scalar_t, has_bias, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 2, C + mb_start * ldc + nb_start, \
has_bias ? bias + nb_start : nullptr, K, lda, ldb, ldc);
template <typename scalar_t, bool has_bias>
struct brgemm {
static inline void apply(
const scalar_t* __restrict__ A, const scalar_t* __restrict__ B, scalar_t* __restrict__ C,
float* __restrict__ Ctmp, const float* __restrict__ bias,
int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int BLOCK_N = block_size_n();
at::native::cpublas::brgemm(
M, N, K, lda, ldb, BLOCK_N, /* add_C */false,
A, B, Ctmp);
// copy from Ctmp to C
for (int64_t m = 0; m < M; ++m) {
if constexpr (has_bias) {
copy_add_stub(C + m * ldc, Ctmp + m * BLOCK_N, bias, N);
} else {
copy_stub(C + m * ldc, Ctmp + m * BLOCK_N, N);
}
}
}
};
template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const scalar_t* __restrict__ B,
scalar_t* __restrict__ C,
float* __restrict__ Ctmp,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg) {
if (brg) {
brgemm<scalar_t, has_bias>::apply(
A, B, C, Ctmp, bias,
M, N, K, lda, ldb, ldc);
return;
}
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
// mb_size = 1
case 0x12: LAUNCH_TINYGEMM_KERNEL_NN(1, 32); break;
case 0x14: LAUNCH_TINYGEMM_KERNEL_NN(1, 64); break;
// mb_size = 2
case 0x22: LAUNCH_TINYGEMM_KERNEL_NN(2, 32); break;
case 0x24: LAUNCH_TINYGEMM_KERNEL_NN(2, 64); break;
// mb_size = 3
case 0x32: LAUNCH_TINYGEMM_KERNEL_NN(3, 32); break;
case 0x34: LAUNCH_TINYGEMM_KERNEL_NN(3, 64); break;
// mb_size = 4
case 0x42: LAUNCH_TINYGEMM_KERNEL_NN(4, 32); break;
case 0x44: LAUNCH_TINYGEMM_KERNEL_NN(4, 64); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
template <typename scalar_t>
void weight_packed_linear_kernel_impl(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ mat1,
const scalar_t* __restrict__ mat2,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t mat1_strideM,
int64_t out_strideM) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
// use avx512-bf16 when a) M is small; b) dtype is bfloat16, otherwise use amx
const bool use_brgemm = (M > 4) || (!std::is_same_v<scalar_t, at::BFloat16>);
// l2 cache block for n
int64_t cache_blocks_nb = get_cache_blocks<scalar_t>(BLOCK_N, K);
// parallel on [MB, NB]
AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
parallel_2d(MB, NB, [&](int64_t begin_mb, int64_t end_mb, int64_t begin_nb, int64_t end_nb) {
// for brgemm, use float32 for accumulate
alignas(64) float Ctmp[BLOCK_M * BLOCK_N];
for (int64_t nbb = begin_nb; nbb < end_nb; nbb += cache_blocks_nb) {
for (int64_t mb = begin_mb; mb < end_mb; ++mb) {
for (int64_t nb = nbb; nb < std::min(nbb + cache_blocks_nb, end_nb); ++nb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(M - mb_start, BLOCK_M);
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(N - nb_start, BLOCK_N);
tinygemm_kernel<scalar_t, has_bias>(
/* A */ mat1 + mb_start * mat1_strideM,
/* B */ mat2 + nb_start * K /* nb * BLOCK_N * K */,
/* C */ out + mb_start * out_strideM + nb_start,
/* Ctmp*/ Ctmp,
/* bias*/ bias + nb_start,
/* M */ mb_size,
/* N */ nb_size,
/* K */ K,
/* lda */ mat1_strideM,
/* ldb */ nb_size,
/* ldc */ out_strideM,
/* brg */ use_brgemm);
}}}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
});
}
} // anonymous namespace
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(const scalar_t* __restrict__ A, const scalar_t* __restrict__ B, scalar_t* __restrict__ C,
float* __restrict__ Ctmp, int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc, bool brg) {
tinygemm_kernel<scalar_t, false>(A, B, C, Ctmp, nullptr, M, N, K, lda, ldb, ldc, brg);
}
#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE) \
template void tinygemm_kernel<TYPE>( \
const TYPE* __restrict__ A, const TYPE* __restrict__ B, TYPE* __restrict__ C, \
float* __restrict__ Ctmp, int64_t M, int64_t N, int64_t K, int64_t lda, \
int64_t ldb, int64_t ldc, bool brg)
INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);
at::Tensor convert_weight_packed(at::Tensor& weight) {
// for 3d moe weights
// weight : [E, OC, IC]
// w1 : [E, 2N, K]
// w2 : [E, K, N]
CHECK_INPUT(weight);
const int64_t ndim = weight.ndimension();
TORCH_CHECK(ndim == 2 || ndim == 3, "expect weight to be 2d or 3d, got ", ndim, "d tensor.");
const auto st = weight.scalar_type();
const int64_t E = ndim == 3 ? weight.size(0) : 1;
const int64_t OC = ndim == 3 ? weight.size(1) : weight.size(0);
const int64_t IC = ndim == 3 ? weight.size(2) : weight.size(1);
// we handle 2 TILE_N at a time.
TORCH_CHECK(OC % TILE_N == 0, "invalid weight out features ", OC);
TORCH_CHECK(IC % TILE_K == 0, "invalid weight input features ", IC);
constexpr int64_t BLOCK_N = block_size_n();
const int64_t NB = div_up(OC, BLOCK_N);
// use phony sizes here [E, OC, IC], for each [E], [OC, IC] -> [IC / 2, OC, 2]
auto packed_weight = at::empty({}, weight.options());
const int64_t stride = OC * IC;
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf || st == at::kChar || st == at::kFloat8_e4m3fn,
"expect weight to be bfloat16, float16, int8 or fp8_e4m3.");
CPU_DISPATCH_PACKED_TYPES(st, [&] {
// adjust most inner dimension size
const int packed_row_size = get_row_size<packed_t>(IC);
auto sizes = weight.sizes().vec();
sizes[ndim - 1] = packed_row_size;
packed_weight.resize_(sizes);
const packed_t* w_data = weight.data_ptr<packed_t>();
packed_t* packed_data = packed_weight.data_ptr<packed_t>();
// parallel on {E, NB}
at::parallel_for(0, E * NB, 0, [&](int64_t begin, int64_t end) {
int64_t e{0}, nb{0};
data_index_init(begin, e, E, nb, NB);
for (int64_t i = begin; i < end; ++i) {
UNUSED(i);
int64_t n = nb * BLOCK_N;
int64_t n_size = std::min(BLOCK_N, OC - n);
pack_vnni<packed_t>(
packed_data + e * OC * packed_row_size + n * packed_row_size,
w_data + e * stride + n * IC,
n_size,
IC);
// move to the next index
data_index_step(e, E, nb, NB);
}
});
});
return packed_weight;
}
// mat1 : [M, K]
// mat2 : [N, K]
// bias : [N]
// out : [M, N]
//
at::Tensor weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2,
const std::optional<at::Tensor>& bias, bool is_vnni) {
RECORD_FUNCTION(
"sgl-kernel::weight_packed_linear", std::vector<c10::IValue>({mat1, mat2, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
CHECK_INPUT(mat2);
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat2.size(1);
CHECK_EQ(mat1.size(1), K);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
auto out = at::empty({M, N}, mat1.options());
// strides
int64_t mat1_strideM = mat1.stride(0);
int64_t out_strideM = out.stride(0);
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
AT_DISPATCH_REDUCED_FLOATING_TYPES(mat1.scalar_type(), "weight_packed_linear_kernel_impl", [&] {
weight_packed_linear_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
mat1.data_ptr<scalar_t>(),
packed_w.data_ptr<scalar_t>(),
bias_data,
M,
N,
K,
mat1_strideM,
out_strideM);
});
return out;
}

View File

@ -1,266 +0,0 @@
#pragma once
#include <ATen/native/CPUBlas.h>
// clang-format off
// amx-bf16
#define TILE_M 16
#define TILE_N 16
#define TILE_K 32
// block size for AMX gemm
constexpr int block_size_m() { return 2 * TILE_M; }
constexpr int block_size_n() { return 2 * TILE_N; }
// define threshold using brgemm (intel AMX)
template <typename T> inline bool can_use_brgemm(int M);
template <> inline bool can_use_brgemm<at::BFloat16>(int M) { return M > 4; }
template <> inline bool can_use_brgemm<at::Half>(int M) { return true; }
// TODO: add u8s8 brgemm, this requires PyTorch 2.7
template <> inline bool can_use_brgemm<int8_t>(int M) { return false; }
template <> inline bool can_use_brgemm<at::Float8_e4m3fn>(int M) { return M > 4; }
template <> inline bool can_use_brgemm<at::quint4x2>(int M) { return M > 4; }
// work around compiler internal error
#define BLOCK_K 128 // 4 * TILE_K
// adjust leading dimension size for K
template <typename T>
inline int64_t get_row_size(int64_t K) {
return K;
}
template <>
inline int64_t get_row_size<int8_t>(int64_t K) {
return K + sizeof(int32_t);
}
inline int64_t get_row_size(int64_t K, bool use_int8_w8a8) {
return use_int8_w8a8 ? K + sizeof(int32_t) : K;
}
// pack weight to vnni format
at::Tensor convert_weight_packed(at::Tensor& weight);
// moe implementations for int8 w8a8
template <typename scalar_t>
void fused_experts_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
uint8_t* __restrict__ A_tmp,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// moe implementations for fp8 w8a16
template <typename scalar_t>
void fused_experts_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
scalar_t* __restrict__ A_tmp,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// moe implementations for int4 w4a16
template <typename scalar_t>
void fused_experts_int4_w4a16_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
scalar_t* __restrict__ A_tmp,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::quint4x2* __restrict__ packed_w1,
const at::quint4x2* __restrict__ packed_w2,
const uint8_t* __restrict__ w1z,
const uint8_t* __restrict__ w2z,
const scalar_t* __restrict__ w1s,
const scalar_t* __restrict__ w2s,
int group_size,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// shared expert implementation for int8 w8a8
template <typename scalar_t>
void shared_expert_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K);
template <typename scalar_t>
void shared_expert_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K);
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const scalar_t* __restrict__ B,
scalar_t* __restrict__ C,
float* __restrict__ Ctmp,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg);
template <typename scalar_t>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B,
scalar_t* __restrict__ C,
int32_t* __restrict__ Ctmp,
const float* __restrict__ As,
const float* __restrict__ Bs,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg);
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ scale,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg,
int64_t block_size_K);
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::quint4x2* __restrict__ B,
scalar_t* __restrict__ C,
const uint8_t* __restrict__ Bz,
const scalar_t* __restrict__ Bs,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
int64_t M,
int64_t N,
int64_t K,
int group_size,
int64_t lda,
int64_t ldb,
int64_t ldc,
int64_t strideBz,
int64_t strideBs,
bool brg);
// TODO: debug print, remove me later
inline void print_16x32i(const __m512i x) {
int32_t a[16];
_mm512_storeu_si512((__m512i *)a, x);
for (int i = 0; i < 16; i++){
std::cout << a[i] << " ";
}
std::cout << std::endl;
}
inline void print_16x32(const __m512 x) {
float a[16];
_mm512_storeu_ps((__m512 *)a, x);
for (int i = 0; i < 16; i++){
std::cout << a[i] << " ";
}
std::cout << std::endl;
}
inline void print_32x8u(const __m256i x) {
uint8_t a[32];
_mm256_storeu_si256((__m256i *)a, x);
for (int i = 0; i < 32; ++i) {
std::cout << int32_t(a[i]) << " ";
}
std::cout << std::endl;
}

View File

@ -1,530 +0,0 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
// we use 4x32 for BLOCK_M
#define BLOCK_SIZE_M_SCALE 4
namespace {
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ input, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d);
fVec data1 = fVec::loadu(input + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d]);
}
}
template <typename scalar_t>
inline void copy_add_stub(scalar_t* __restrict__ out, const float* __restrict__ input, const float* __restrict__ bias, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d) + fVec::loadu(bias + d);
fVec data1 = fVec::loadu(input + d + fVec::size()) + fVec::loadu(bias + d + fVec::size());
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + bias[d]);
}
}
inline void unpack_B(
at::BFloat16* __restrict__ Btmp,
const at::Float8_e4m3fn* __restrict__ packed_B,
int N,
int K,
int ldb,
int ldb_tmp,
float scale) {
#if defined(CPU_CAPABILITY_AVX512)
// [K/2, N, 2]
const int K2 = K >> 1;
const int ldb2 = ldb; // ldb * 2 >> 1;
const uint16_t* b_ptr = reinterpret_cast<const uint16_t*>(packed_B);
const __m512 vd = _mm512_set1_ps(scale);
constexpr int BLOCK_N = block_size_n();
static_assert(BLOCK_N == 32);
// prefetch distance
constexpr int PREFETCH_SIZE_K = 64;
#pragma GCC unroll 4
for (int k = 0; k < K2; ++k) {
__m512i b8 = _mm512_loadu_si512(b_ptr + k * ldb2);
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb2, _MM_HINT_T0);
}
__m256i b8_0 = _mm512_extracti32x8_epi32(b8, 0);
__m256i b8_1 = _mm512_extracti32x8_epi32(b8, 1);
__m512bh bf16_0 = CVT_FP8_TO_BF16(b8_0);
__m512bh bf16_1 = CVT_FP8_TO_BF16(b8_1);
// Apply scale
__m512 f0_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 0));
__m512 f0_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 1));
__m512 f1_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 0));
__m512 f1_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 1));
f0_lo = _mm512_mul_ps(f0_lo, vd);
f0_hi = _mm512_mul_ps(f0_hi, vd);
f1_lo = _mm512_mul_ps(f1_lo, vd);
f1_hi = _mm512_mul_ps(f1_hi, vd);
bf16_0 = _mm512_cvtne2ps_pbh(f0_hi, f0_lo);
bf16_1 = _mm512_cvtne2ps_pbh(f1_hi, f1_lo);
_mm512_storeu_si512(Btmp + k * ldb_tmp * 2 + 0, (__m512i)bf16_0);
_mm512_storeu_si512(Btmp + k * ldb_tmp * 2 + 32, (__m512i)bf16_1);
}
#else
TORCH_CHECK(false, "unpack_B: scalar path not implemented!");
#endif
}
template <typename scalar_t, typename packed_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
static inline void apply(
const scalar_t* __restrict__ A, const packed_t* __restrict__ B, scalar_t* __restrict__ C,
const float* __restrict__ bias, const float* __restrict__ scale, int K, int lda, int ldb, int ldc, int64_t block_size_K) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, at::Float8_e4m3fn, has_bias, BLOCK_M, BLOCK_N> {
static inline void apply(
const at::BFloat16* __restrict__ A, const at::Float8_e4m3fn* __restrict__ B, at::BFloat16* __restrict__ C,
const float* __restrict__ bias, const float* __restrict__ scale, int K, int lda, int ldb, int ldc, int64_t block_size_K) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
const int KB = div_up(K, BLOCK_K);
// prefetch distance
constexpr int PREFETCH_SIZE_K = 64;
constexpr int PREFETCH_SIZE_KB = 1;
__m512bh va;
__m512bh vb[COLS];
__m512 vc[ROWS * COLS];
__m512 vsum[ROWS * COLS];
// block quant scale
__m512 vscale;
auto loadc = [&](auto i) {
constexpr int col = i % COLS;
if constexpr (has_bias) {
vc[i] = _mm512_loadu_ps(bias + col * 16);
} else {
vc[i] = _mm512_setzero_ps();
}
};
Unroll<ROWS * COLS>{}(loadc);
const int lda2 = lda >> 1;
const int ldb2 = ldb; // ldb * 2 >> 1;
const float* a_ptr = reinterpret_cast<const float*>(A);
const uint16_t* b_ptr = reinterpret_cast<const uint16_t*>(B);
auto compute = [&](auto i, int k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = (__m512bh)(_mm512_set1_ps(a_ptr[row * lda2 + k]));
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(a_ptr + row * lda2 + k + PREFETCH_SIZE_K, _MM_HINT_T0);
}
}
if constexpr (row == 0) {
if constexpr (col % 2 == 0) {
__m512i b8 = _mm512_loadu_si512(b_ptr + k * ldb2 + col * 16);
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb2 + col * 16, _MM_HINT_T0);
}
vb[col + 0] = CVT_FP8_TO_BF16(_mm512_extracti32x8_epi32(b8, 0));
vb[col + 1] = CVT_FP8_TO_BF16(_mm512_extracti32x8_epi32(b8, 1));
}
}
vsum[i] = _mm512_dpbf16_ps(vsum[i], va, vb[col]);
};
constexpr int BLOCK_K2 = BLOCK_K >> 1;
for (int kb = 0; kb < KB; ++kb) {
int kb_start = kb * BLOCK_K2;
int kb_end = std::min(K, kb_start + BLOCK_K2);
// 1. load scale vector
vscale = _mm512_set1_ps(scale[kb]);
if constexpr (PREFETCH_SIZE_KB > 0) {
_mm_prefetch(scale + kb + PREFETCH_SIZE_KB, _MM_HINT_T0);
}
// 2. zero vsum for each block
Unroll<ROWS * COLS>{}([&](auto i) {
vsum[i] = _mm512_setzero_ps();
});
// 3. accumulate across each block
for (int k = kb_start; k < kb_end; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
// 4. apply scale
Unroll<ROWS * COLS>{}([&](auto i) {
vc[i] = _mm512_fmadd_ps(vsum[i], vscale, vc[i]);
});
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// for COLS = 2,4 use 512bit store
if constexpr (col % 2 == 0) {
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(vc[row * COLS + col + 1], vc[row * COLS + col])));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE) \
tinygemm_kernel_nn<scalar_t, at::Float8_e4m3fn, has_bias, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 2, C + mb_start * ldc + nb_start, \
has_bias ? bias + nb_start : nullptr, scale, K, lda, ldb, ldc, block_size_K);
template <typename scalar_t, typename packed_t, bool has_bias>
struct brgemm {
static inline void apply(
const scalar_t* __restrict__ A,
const packed_t* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ bias,
const float* __restrict__ scale,
int M,
int N,
int K,
int lda,
int ldb,
int ldc) {
TORCH_CHECK(false, "struct brgemm: primary template not implemented!");
}
};
template <bool has_bias>
struct brgemm<at::BFloat16, at::Float8_e4m3fn, has_bias> {
static inline void apply(
const at::BFloat16* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
at::BFloat16* __restrict__ C,
at::BFloat16* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ bias,
const float* __restrict__ scale,
int M,
int N,
int K,
int lda,
int ldb,
int ldc) {
constexpr int BLOCK_N = block_size_n();
// [K, BLOCK_N] -> [K / 2, BLOCK_N * 2]
const int ldb_tmp = BLOCK_N;
for (int k = 0; k < K; k += BLOCK_K) {
int kb_size = std::min(BLOCK_K, K - k);
int idx = k >> 7; // k / BLOCK_K where BLOCK_K = 128
unpack_B(Btmp + k * ldb_tmp, B + k * ldb, N, kb_size, ldb, ldb_tmp, scale[idx]);
}
at::native::cpublas::brgemm(
M, N, K, lda, ldb_tmp, BLOCK_N, /* add_C */ false, A, Btmp, Ctmp);
// copy from Ctmp to C
for (int m = 0; m < M; ++m) {
if constexpr (has_bias) {
copy_add_stub(C + m * ldc, Ctmp + m * BLOCK_N, bias, N);
} else {
copy_stub(C + m * ldc, Ctmp + m * BLOCK_N, N);
}
}
}
};
template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ scale,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg,
int64_t block_size_K) {
if (brg) {
brgemm<scalar_t, at::Float8_e4m3fn, has_bias>::apply(
A, B, C, Btmp, Ctmp, bias, scale, M, N, K, lda, ldb, ldc);
return;
}
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
case 0x12: LAUNCH_TINYGEMM_KERNEL_NN(1, 32); break;
case 0x22: LAUNCH_TINYGEMM_KERNEL_NN(2, 32); break;
case 0x32: LAUNCH_TINYGEMM_KERNEL_NN(3, 32); break;
case 0x42: LAUNCH_TINYGEMM_KERNEL_NN(4, 32); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
template <typename scalar_t>
void fp8_scaled_mm_kernel_impl(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ mat1,
const at::Float8_e4m3fn* __restrict__ mat2,
const float* __restrict__ scales2,
const float* __restrict__ bias,
scalar_t* __restrict__ buffer,
int64_t M,
int64_t N,
int64_t K,
int64_t mat1_strideM,
int64_t out_strideM,
int64_t block_size_N,
int64_t block_size_K,
int64_t buffer_size_per_thread) {
constexpr int64_t BLOCK_M = block_size_m() * BLOCK_SIZE_M_SCALE;
constexpr int64_t BLOCK_N = block_size_n();
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
const int64_t scale_size_K = div_up(K, block_size_K);
const int64_t blocks_n_per_group = block_size_N / BLOCK_N;
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(M);
// parallel on [MB, NB]
AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
int64_t mb{0}, nb{0};
data_index_init(begin, mb, MB, nb, NB);
int tid = at::get_thread_num();
scalar_t* __restrict__ Btmp = buffer + tid * buffer_size_per_thread;
float* __restrict__ Ctmp = (float*)((void*)(Btmp + BLOCK_N * K));
for (int64_t i = begin; i < end; ++i) {
UNUSED(i);
const float* scale_ptr = scales2 + (nb / blocks_n_per_group) * scale_size_K;
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(M - mb_start, BLOCK_M);
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(N - nb_start, BLOCK_N);
tinygemm_kernel<scalar_t, has_bias>(
/* A */ mat1 + mb_start * mat1_strideM,
/* B */ mat2 + nb_start * K, // nb * BLOCK_N * K
/* C */ out + mb_start * out_strideM + nb_start,
/* Btmp */ Btmp,
/* Ctmp */ Ctmp,
/* scale */ scale_ptr,
/* bias */ bias + nb_start,
/* M */ mb_size,
/* N */ nb_size,
/* K */ K,
/* lda */ mat1_strideM,
/* ldb */ nb_size,
/* ldc */ out_strideM,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
// move to the next index
data_index_step(mb, MB, nb, NB);
}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
});
}
} // anonymous namespace
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ scale,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg,
int64_t block_size_K) {
tinygemm_kernel<scalar_t, false>(A, B, C, Btmp, Ctmp, scale, nullptr, M, N, K, lda, ldb, ldc, brg, block_size_K);
}
#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE) \
template void tinygemm_kernel<TYPE>( \
const TYPE* __restrict__ A, \
const at::Float8_e4m3fn* __restrict__ B, \
TYPE* __restrict__ C, \
TYPE* __restrict__ Btmp, \
float* __restrict__ Ctmp, \
const float* __restrict__ scale, \
int64_t M, \
int64_t N, \
int64_t K, \
int64_t lda, \
int64_t ldb, \
int64_t ldc, \
bool brg, \
int64_t block_size_K)
INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);
at::Tensor fp8_scaled_mm_cpu(at::Tensor& mat1, at::Tensor& mat2, at::Tensor& scales2,
std::vector<int64_t> block_size, std::optional<at::Tensor>& bias,
at::ScalarType out_dtype, bool is_vnni) {
RECORD_FUNCTION("sgl-kernel::fp8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales2, block_size, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
CHECK_INPUT(mat2);
CHECK_INPUT(scales2);
TORCH_CHECK(scales2.scalar_type() == at::kFloat,
"fp8_scaled_mm_cpu: expect scales2 to be float32.");
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat2.size(1);
CHECK_EQ(mat1.size(1), K);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
TORCH_CHECK(block_size.size() == 2,
"fp8_scaled_mm_cpu: expect block_size.size() to be 2.");
int64_t block_size_N = block_size[0];
int64_t block_size_K = block_size[1];
constexpr int64_t BLOCK_M = block_size_m() * BLOCK_SIZE_M_SCALE;
constexpr int64_t BLOCK_N = block_size_n();
TORCH_CHECK(block_size_N % BLOCK_N == 0, "fp8_scaled_mm_cpu: expect block_size_N to be multiples of BLOCK_N");
TORCH_CHECK(block_size_K == BLOCK_K, "fp8_scaled_mm_cpu: expect block_size_K equals to BLOCK_K");
CHECK_EQ(scales2.size(0), div_up(N, block_size_N));
CHECK_EQ(scales2.size(1), div_up(K, block_size_K));
const auto st = mat1.scalar_type();
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf,
"fp8_scaled_mm_cpu: expect A to be bfloat16 or half.");
TORCH_CHECK(st == out_dtype,
"fp8_scaled_mm_cpu: expect A has same dtype with out_dtype.");
TORCH_CHECK(mat2.scalar_type() == at::kFloat8_e4m3fn,
"fp8_scaled_mm_cpu: expect mat2 to be fp8_e4m3.");
TORCH_CHECK(scales2.scalar_type() == at::kFloat,
"fp8_scaled_mm_cpu: expect scales to be float32.");
auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));
// strides
int64_t mat1_strideM = mat1.stride(0);
int64_t out_strideM = out.stride(0);
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
// Btmp : [T, BLOCK_N * K]
// Ctmp : [T, BLOCK_M * BLOCK_N]
int num_threads = at::get_num_threads();
int64_t size_per_thread = BLOCK_N * K + BLOCK_M * BLOCK_N * 2;
auto buffer = at::empty({num_threads, size_per_thread}, mat1.options());
AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "fp8_scaled_mm_kernel_impl", [&] {
fp8_scaled_mm_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
mat1.data_ptr<scalar_t>(),
packed_w.data_ptr<at::Float8_e4m3fn>(),
scales2.data_ptr<float>(),
bias_data,
buffer.data_ptr<scalar_t>(),
M,
N,
K,
mat1_strideM,
out_strideM,
block_size_N,
block_size_K,
size_per_thread);
});
return out;
}

View File

@ -1,440 +0,0 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
namespace {
template <typename scalar_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, scalar_t* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, has_bias, BLOCK_M, BLOCK_N> {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, at::BFloat16* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
const float* __restrict__ bias, int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
static_assert(COLS % 2 == 0);
// prefetch distance
constexpr int PREFETCH_SIZE_K = 0;
__m512i va;
__m512i vb[COLS];
__m512i vc[ROWS * COLS];
__m512i vcomp[COLS];
__m512 vd0;
__m512 vd1[COLS];
// oops! 4x4 spills but luckily we use 4x2
__m512 vbias[COLS];
// [NOTE]: s8s8 igemm compensation in avx512-vnni
//
// avx512-vnni has no s8s8, so we need to change s8s8 to u8s8 with compensate:
//
// a * b = (a + 128) * b - 128 * b
// s s u s u s
//
// 1) 128 * b is pre-computed when packing B to vnni formats
// 2) a + 128 is fused when dynamically quantize A
//
auto loadc = [&](auto i) {
vc[i] = _mm512_set1_epi32(0);
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K4 = K >> 2;
const int64_t lda4 = lda >> 2;
const int64_t ldb4 = ldb; // ldb * 4 >> 2;
const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
const int32_t* b_ptr = reinterpret_cast<const int32_t*>(B);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
}
if constexpr (row == 0) {
vb[col] = _mm512_loadu_si512(b_ptr + k * ldb4 + col * 16);
if constexpr (PREFETCH_SIZE_K > 0) {
_mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb4 + col * 16, _MM_HINT_T0);
}
}
vc[i] = _mm512_dpbusd_epi32(vc[i], va, vb[col]);
};
for (int64_t k = 0; k < K4; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// load a scale
if constexpr(col == 0) {
vd0 = _mm512_set1_ps(As[row]);
}
// load b scale and vcomp per 2 vectors
// also load bias if any
if constexpr (row == 0) {
if constexpr (col % 2 == 0) {
vd1[col + 0] = _mm512_loadu_ps(Bs + col * 16);
vd1[col + 1] = _mm512_loadu_ps(Bs + col * 16 + 16);
vcomp[col + 0] = _mm512_loadu_si512(Bcomp + col * 16);
vcomp[col + 1] = _mm512_loadu_si512(Bcomp + col * 16 + 16);
if constexpr (has_bias) {
vbias[col + 0] = _mm512_loadu_ps(bias + col * 16);
vbias[col + 1] = _mm512_loadu_ps(bias + col * 16 + 16);
}
}
}
// for COLS = 2, 4 use 512bit store
if constexpr (col % 2 == 0) {
__m512 vc0 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[row * COLS + col + 0], vcomp[col + 0]));
__m512 vc1 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[row * COLS + col + 1], vcomp[col + 1]));
if constexpr (has_bias) {
vc0 = _mm512_fmadd_ps(_mm512_mul_ps(vc0, vd0), vd1[col + 0], vbias[col + 0]);
vc1 = _mm512_fmadd_ps(_mm512_mul_ps(vc1, vd0), vd1[col + 1], vbias[col + 1]);
} else {
vc0 = _mm512_mul_ps(_mm512_mul_ps(vc0, vd0), vd1[col + 0]);
vc1 = _mm512_mul_ps(_mm512_mul_ps(vc1, vd0), vd1[col + 1]);
}
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(vc1, vc0)));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE) \
tinygemm_kernel_nn<scalar_t, has_bias, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 4, C + mb_start * ldc + nb_start, \
As + mb_start, Bs + nb_start, Bcomp + nb_start, \
has_bias ? bias + nb_start : nullptr, K, lda, ldb, ldc);
template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B,
scalar_t* __restrict__ C,
int32_t* __restrict__ Ctmp,
const float* __restrict__ As,
const float* __restrict__ Bs,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg) {
// B compensation
const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * K);
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int64_t mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
// mb_size = 1
case 0x12: LAUNCH_TINYGEMM_KERNEL_NN(1, 32); break;
case 0x14: LAUNCH_TINYGEMM_KERNEL_NN(1, 64); break;
// mb_size = 2
case 0x22: LAUNCH_TINYGEMM_KERNEL_NN(2, 32); break;
case 0x24: LAUNCH_TINYGEMM_KERNEL_NN(2, 64); break;
// mb_size = 3
case 0x32: LAUNCH_TINYGEMM_KERNEL_NN(3, 32); break;
case 0x34: LAUNCH_TINYGEMM_KERNEL_NN(3, 64); break;
// mb_size = 4
case 0x42: LAUNCH_TINYGEMM_KERNEL_NN(4, 32); break;
case 0x44: LAUNCH_TINYGEMM_KERNEL_NN(4, 64); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
template<typename scalar_t>
void int8_scaled_mm_kernel_impl(
scalar_t* __restrict__ out,
const uint8_t* __restrict__ mat1,
const int8_t* __restrict__ mat2,
const float* __restrict__ scales1,
const float* __restrict__ scales2,
const float* __restrict__ bias,
int64_t M,
int64_t N,
int64_t K) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
// TODO: brgemm u8s8 depends on PyTorch 2.7 release.
const bool use_brgemm = false;
// K + 4 after compensation
const int64_t packed_row_size = get_row_size<int8_t>(K);
AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
int64_t mb{0}, nb{0};
data_index_init(begin, mb, MB, nb, NB);
// for brgemm, use int32_t for accumulate
alignas(64) int32_t Ctmp[BLOCK_M * BLOCK_N];
for (int i = begin; i < end; ++i) {
UNUSED(i);
int mb_start = mb * BLOCK_M;
int mb_size = std::min(M - mb_start, BLOCK_M);
int nb_start = nb * BLOCK_N;
int nb_size = std::min(N - nb_start, BLOCK_N);
tinygemm_kernel<scalar_t, has_bias>(
/* A */ mat1 + mb_start * K,
/* B */ mat2 + nb_start * packed_row_size /* nb * BLOCK_N * (K + 4) */,
/* C */ out + mb_start * N + nb_start,
/* Ctmp*/ Ctmp,
/* As */ scales1 + mb_start,
/* Bs */ scales2 + nb_start,
/* bias*/ bias + nb_start,
/* M */ mb_size,
/* N */ nb_size,
/* K */ K,
/* lda */ K,
/* ldb */ nb_size,
/* ldc */ N,
/* brg */ use_brgemm);
// move to the next index
data_index_step(mb, MB, nb, NB);
}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
});
}
} // anonymous namespace
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(const uint8_t* __restrict__ A, const int8_t* __restrict__ B, scalar_t* __restrict__ C,
int32_t* __restrict__ Ctmp, const float* __restrict__ As, const float* __restrict__ Bs,
int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc, bool brg) {
tinygemm_kernel<scalar_t, false>(A, B, C, Ctmp, As, Bs, nullptr, M, N, K, lda, ldb, ldc, brg);
}
#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE) \
template void tinygemm_kernel<TYPE>( \
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, TYPE* __restrict__ C, \
int32_t* __restrict__ Ctmp, const float* __restrict__ As, const float* __restrict__ Bs, \
int64_t M, int64_t N, int64_t K, int64_t lda, int64_t ldb, int64_t ldc, bool brg)
INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);
std::tuple<at::Tensor, at::Tensor> per_token_quant_int8_cpu(at::Tensor& A) {
RECORD_FUNCTION("sgl-kernel::per_token_quant_int8_cpu", std::vector<c10::IValue>({A}));
CHECK_LAST_DIM_CONTIGUOUS_INPUT(A);
CHECK_DIM(2, A);
int64_t M = A.size(0);
int64_t K = A.size(1);
int64_t lda = A.stride(0);
const auto st = A.scalar_type();
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf,
"per_token_quant_int8: expect A to be bfloat16 or half.");
auto Aq = at::empty({M, K}, A.options().dtype(at::kByte));
auto As = at::empty({M}, A.options().dtype(at::kFloat));
AT_DISPATCH_REDUCED_FLOATING_TYPES(st, "per_token_quant_int8", [&] {
uint8_t* __restrict__ Aq_data = Aq.data_ptr<uint8_t>();
float* __restrict__ As_data = As.data_ptr<float>();
const scalar_t* __restrict__ A_data = A.data_ptr<scalar_t>();
at::parallel_for(0, M, 0, [&] (int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_data + m * K,
As_data[m],
A_data + m * lda,
K);
}
});
});
return std::make_tuple(Aq, As);
}
// weight : static, per-channel, symmetric
// activation : dynamic, per-token, symmetric
//
// mat1 : [M, K]
// mat2 : [N, K]
// scales1 : [M]
// scales2 : [N]
// bias : [N]
// out : [M, N]
//
at::Tensor int8_scaled_mm_cpu(at::Tensor& mat1, at::Tensor& mat2,
at::Tensor& scales1, at::Tensor& scales2,
std::optional<at::Tensor>& bias, at::ScalarType out_dtype, bool is_vnni) {
RECORD_FUNCTION("sgl-kernel::int8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales1, scales2, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_INPUT(mat1);
CHECK_INPUT(mat2);
CHECK_INPUT(scales1);
CHECK_INPUT(scales2);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat1.size(1);
// see [NOTE]: s8s8 igemm compensation in avx512-vnni
CHECK_EQ(mat2.size(1), (int64_t)(is_vnni ? K + sizeof(int32_t) : K));
CHECK_EQ(scales1.numel(), M);
CHECK_EQ(scales2.numel(), N);
TORCH_CHECK(mat1.scalar_type() == at::kByte, "int8_scaled_mm: expect mat1 to be uint8.");
TORCH_CHECK(mat2.scalar_type() == at::kChar, "int8_scaled_mm: expect mat2 to be int8.");
TORCH_CHECK(scales1.scalar_type() == at::kFloat && scales2.scalar_type() == at::kFloat,
"int8_scaled_mm: expect scales to be float32.");
auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "int8_scaled_mm_kernel_impl", [&] {
int8_scaled_mm_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
mat1.data_ptr<uint8_t>(),
packed_w.data_ptr<int8_t>(),
scales1.data_ptr<float>(),
scales2.data_ptr<float>(),
bias_data,
M,
N,
K);
});
return out;
}
// fused `per_token_quant_int8_cpu` and `int8_scaled_mm_cpu`
at::Tensor int8_scaled_mm_with_quant(at::Tensor& mat1, at::Tensor& mat2, at::Tensor& scales2,
const std::optional<at::Tensor>& bias, at::ScalarType out_dtype, bool is_vnni) {
RECORD_FUNCTION("sgl-kernel::int8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales2, bias}));
auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
CHECK_INPUT(mat2);
CHECK_INPUT(scales2);
CHECK_DIM(2, mat1);
CHECK_DIM(2, mat2);
int64_t M = mat1.size(0);
int64_t N = mat2.size(0);
int64_t K = mat1.size(1);
int64_t lda = mat1.stride(0);
// see [NOTE]: s8s8 igemm compensation in avx512-vnni
CHECK_EQ(mat2.size(1), (int64_t)(is_vnni ? K + sizeof(int32_t) : K));
CHECK_EQ(scales2.numel(), N);
const auto st = mat1.scalar_type();
TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf,
"int8_scaled_mm_with_quant: expect A to be bfloat16 or half.");
TORCH_CHECK(st == out_dtype,
"int8_scaled_mm_with_quant: expect A has same dtype with out_dtype.");
TORCH_CHECK(mat2.scalar_type() == at::kChar,
"int8_scaled_mm_with_quant: expect mat2 to be int8.");
TORCH_CHECK(scales2.scalar_type() == at::kFloat,
"int8_scaled_mm_with_quant: expect scales to be float32.");
const int64_t buffer_size = M * K + M * sizeof(float);
auto buffer = at::empty({buffer_size}, mat1.options().dtype(at::kByte));
auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));
const bool has_bias = bias.has_value();
const float* bias_data = nullptr;
if (has_bias) {
CHECK_EQ(bias.value().size(0), N);
bias_data = bias.value().data_ptr<float>();
}
AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "int8_scaled_mm_with_quant_kernel_impl", [&] {
uint8_t* __restrict__ Aq_data = buffer.data_ptr<uint8_t>();
float* __restrict__ As_data = (float*)((void*)(Aq_data + M * K));
const scalar_t* __restrict__ A_data = mat1.data_ptr<scalar_t>();
at::parallel_for(0, M, 0, [&] (int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_data + m * K,
As_data[m],
A_data + m * lda,
K);
}
});
int8_scaled_mm_kernel_impl<scalar_t>(
out.data_ptr<scalar_t>(),
Aq_data,
packed_w.data_ptr<int8_t>(),
As_data,
scales2.data_ptr<float>(),
bias_data,
M,
N,
K);
});
return out;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,502 +0,0 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "gemm.h"
#include "vec.h"
// clang-format off
namespace {
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t size) {
using Vec = at::vec::Vectorized<scalar_t>;
// no remainder
#pragma GCC unroll 4
for (int64_t d = 0; d < size; d += Vec::size()) {
Vec data = Vec::loadu(input + d);
data.store(out + d);
}
}
template <typename scalar_t>
inline void copy_mul_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, float weight, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec weight_vec = fVec(weight);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
bVec x = bVec::loadu(input + d);
fVec x0, x1;
std::tie(x0, x1) = at::vec::convert_to_float(x);
x0 = x0 * weight_vec;
x1 = x1 * weight_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] * weight);
}
}
// acc from [topk, K] to [K]
template <typename scalar_t>
inline void sum_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t topk, int64_t K) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
if (topk == 1) {
// do copy for topk = 1
copy_stub(out, input, K);
} else {
// do sum for topk != 1
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= K - kVecSize; d += kVecSize) {
fVec sum_fvec0 = fVec(0.f);
fVec sum_fvec1 = fVec(0.f);
for (int t = 0; t < topk; ++t) {
bVec x_bvec = bVec::loadu(input + t * K + d);
fVec x_fvec0, x_fvec1;
std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);
sum_fvec0 += x_fvec0;
sum_fvec1 += x_fvec1;
}
bVec out_bvec = convert_from_float_ext<scalar_t>(sum_fvec0, sum_fvec1);
out_bvec.store(out + d);
}
for (; d < K; ++d) {
float sum_val = 0.f;
for (int t = 0; t < topk; ++t) {
sum_val += static_cast<float>(input[t * K + d]);
}
out[d] = static_cast<scalar_t>(sum_val);
}
}
}
// out = input + input2 * scale
template <typename scalar_t>
inline void add_mul_stub(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ input,
const scalar_t* __restrict__ input2,
float scale,
int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec s_vec = fVec(scale);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
bVec x_bvec = bVec::loadu(input + d);
fVec x0, x1;
std::tie(x0, x1) = at::vec::convert_to_float(x_bvec);
bVec y_bvec = bVec::loadu(input2 + d);
fVec y0, y1;
std::tie(y0, y1) = at::vec::convert_to_float(y_bvec);
x0 = x0 + y0 * s_vec;
x1 = x1 + y1 * s_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + float(input2[d]) * scale);
}
}
template <typename scalar_t>
inline void silu_and_mul_stub(
scalar_t* __restrict__ out,
const scalar_t* __restrict__ input,
const scalar_t* __restrict__ input2,
int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
const fVec one = fVec(1.f);
// no remainder
#pragma GCC unroll 4
for (int64_t d = 0; d < size; d += bVec::size()) {
bVec x = bVec::loadu(input + d);
fVec x0, x1;
std::tie(x0, x1) = at::vec::convert_to_float(x);
bVec y = bVec::loadu(input2 + d);
fVec y0, y1;
std::tie(y0, y1) = at::vec::convert_to_float(y);
x0 = x0 / (one + x0.neg().exp_u20());
x1 = x1 / (one + x1.neg().exp_u20());
x0 = x0 * y0;
x1 = x1 * y1;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
}
} // anonymous namespace
template <typename scalar_t>
void fused_experts_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
scalar_t* __restrict__ A_tmp,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 1: intermediate_cache0 = hidden_states @ w1
const int64_t MB = div_up(num_tokens_post_pad, BLOCK_M);
const int64_t NB = div_up(2 * N, BLOCK_N);
int64_t scale_size_N = div_up(2 * N, block_size_N);
int64_t scale_size_K = div_up(K, block_size_K);
int64_t blocks_n_per_group = block_size_N / BLOCK_N;
const int64_t stride_e = 2 * N * K;
const int64_t stride_n = K;
// here we only parallel on half of 2N to fuse silu_and_mul with gemm
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
scalar_t* __restrict__ A = A_tmp + tid * BLOCK_M * K;
bool is_brgemm_used = false;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
int64_t n_size = std::min(2 * N - nb * BLOCK_N, BLOCK_N);
// B shape [K, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const at::Float8_e4m3fn* __restrict__ B = packed_w1 + expert_id * stride_e + nb * BLOCK_N * stride_n;
const float* __restrict__ Bs = w1s + expert_id * scale_size_N * scale_size_K + (nb / blocks_n_per_group) * scale_size_K;
// 1.a load A
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
int64_t m_size = offsets[mb + 1] - offsets[mb];
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(m_size);
is_brgemm_used = is_brgemm_used || use_brgemm;
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m] / topk;
copy_stub(A + m * K, input + index * K, K);
}
const int64_t offset = offsets[mb];
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ ic0 + offset * 2 * N + nb * BLOCK_N,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ 2 * N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
}
if (is_brgemm_used) {
at::native::cpublas::brgemm_release();
}
});
// stage 1.5: intermediate_cache1 = silu(intermediate_cache0)
at::parallel_for(0, M * topk, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
silu_and_mul_stub(
ic1 + m * N,
ic0 + m * 2 * N,
ic0 + m * 2 * N + N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [E, K, N] as [E, OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(OC, BLOCK_N);
scale_size_N = div_up(K, block_size_N);
scale_size_K = div_up(N, block_size_K);
const int64_t stride_e2 = OC * IC;
const int64_t stride_oc = IC;
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
int tid = at::get_thread_num();
alignas(64) scalar_t C[BLOCK_M * BLOCK_K];
bool is_brgemm_used = false;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = offsets[mb + 1] - offsets[mb];
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(m_size);
is_brgemm_used = is_brgemm_used || use_brgemm;
// A ptr from ic1 of [M * topk, N] in sorted order
// so as to avoid copy A to tmp buffer again
const scalar_t* __restrict__ A = ic1 + offsets[mb] * N;
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
// B shape [IC, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const at::Float8_e4m3fn* __restrict__ B = packed_w2 + expert_id * stride_e2 + nb * BLOCK_N * stride_oc;
const float* __restrict__ Bs = w2s + expert_id * scale_size_N * scale_size_K + (nb / blocks_n_per_group) * scale_size_K;
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ C,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
// 2.b copy from C to ic2 in original order
// and also mul topk_weights in float32
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m];
float weight = topk_weights[index];
copy_mul_stub(ic2 + index * K + nb * BLOCK_N, C + m * BLOCK_N, weight, n_size);
}
}
if (is_brgemm_used) {
at::native::cpublas::brgemm_release();
}
});
// stage 3: out = intermediate_cache2.sum(dim=1)
// from [M, topk, K] to [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
sum_stub(output + m * K, ic2 + m * topk * K, topk, K);
}
});
}
#define INSTANTIATE_MOE_FP8_TEMPLATE(TYPE) \
template void fused_experts_fp8_kernel_impl<TYPE>( \
TYPE* __restrict__ output, \
TYPE* __restrict__ ic0, \
TYPE* __restrict__ ic1, \
TYPE* __restrict__ ic2, \
TYPE* __restrict__ A_tmp, \
TYPE* __restrict__ B_tmp, \
float* __restrict__ C_tmp, \
const TYPE* __restrict__ input, \
const at::Float8_e4m3fn* __restrict__ packed_w1, \
const at::Float8_e4m3fn* __restrict__ packed_w2, \
const float* __restrict__ w1s, \
const float* __restrict__ w2s, \
int64_t block_size_N, \
int64_t block_size_K, \
const float* __restrict__ topk_weights, \
const int32_t* __restrict__ sorted_ids, \
const int32_t* __restrict__ expert_ids, \
const int32_t* __restrict__ offsets, \
int64_t M, \
int64_t N, \
int64_t K, \
int64_t E, \
int64_t topk, \
int64_t num_tokens_post_pad)
INSTANTIATE_MOE_FP8_TEMPLATE(at::BFloat16);
INSTANTIATE_MOE_FP8_TEMPLATE(at::Half);
template <typename scalar_t>
void shared_expert_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K) {
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 1: intermediate_cache0 = hidden_states @ w1
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(2 * N, BLOCK_N);
int64_t scale_size_K = div_up(K, block_size_K);
int64_t blocks_n_per_group = block_size_N / BLOCK_N;
const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(M);
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
int tid = at::get_thread_num();
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
int64_t n_size = std::min(2 * N - nb * BLOCK_N, BLOCK_N);
tinygemm_kernel<scalar_t>(
/* A */ input + mb * BLOCK_M * K,
/* B */ packed_w1 + nb * BLOCK_N * K,
/* C */ ic0 + mb * BLOCK_M * 2 * N + nb * BLOCK_N,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ w1s + (nb / blocks_n_per_group) * scale_size_K,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ 2 * N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
}
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
});
// stage 1.5: intermediate_cache1 = silu(intermediate_cache0)
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
silu_and_mul_stub(
ic1 + m * N,
ic0 + m * 2 * N,
ic0 + m * 2 * N + N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [K, N] as [OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(K, BLOCK_N);
scale_size_K = div_up(N, block_size_K);
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
int tid = at::get_thread_num();
alignas(64) scalar_t C[BLOCK_M * BLOCK_K];
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
// 2.a gemm: C = A @ B
tinygemm_kernel<scalar_t>(
/* A */ ic1 + mb * BLOCK_M * N,
/* B */ packed_w2 + nb * BLOCK_N * N,
/* C */ C,
/* Btmp */ B_tmp + tid * BLOCK_N * std::max(K, N),
/* Ctmp */ C_tmp + tid * 2 * BLOCK_M * BLOCK_N,
/* scale */ w2s + (nb / blocks_n_per_group) * scale_size_K,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N,
/* brg */ use_brgemm,
/* block_size_K */ block_size_K);
// 2.b copy from C to output and add fused_experts_out
scalar_t* __restrict__ out = output + mb * BLOCK_M * K + nb * BLOCK_N;
const scalar_t* __restrict__ fused_out = fused_experts_out + mb * BLOCK_M * K + nb * BLOCK_N;
for (int64_t m = 0; m < m_size; ++m) {
add_mul_stub(out + m * K, C + m * BLOCK_N, fused_out + m * K, routed_scaling_factor, n_size);
}
}
});
if (use_brgemm) {
at::native::cpublas::brgemm_release();
}
}
#define INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(TYPE) \
template void shared_expert_fp8_kernel_impl<TYPE>( \
TYPE* __restrict__ output, \
TYPE* __restrict__ ic0, \
TYPE* __restrict__ ic1, \
TYPE* __restrict__ B_tmp, \
float* __restrict__ C_tmp, \
const TYPE* __restrict__ input, \
const at::Float8_e4m3fn* __restrict__ packed_w1, \
const at::Float8_e4m3fn* __restrict__ packed_w2, \
const float* __restrict__ w1s, \
const float* __restrict__ w2s, \
int64_t block_size_N, \
int64_t block_size_K, \
const TYPE* __restrict__ fused_experts_out, \
float routed_scaling_factor, \
int64_t M, \
int64_t N, \
int64_t K)
INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(at::BFloat16);
INSTANTIATE_SHARED_EXPERT_FP8_TEMPLATE(at::Half);

View File

@ -1,769 +0,0 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#include "common.h"
#include "vec.h"
#include "gemm.h"
// clang-format off
namespace {
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t size) {
using Vec = at::vec::Vectorized<scalar_t>;
// no remainder
#pragma GCC unroll 4
for (int64_t d = 0; d < size; d += Vec::size()) {
Vec data = Vec::loadu(input + d);
data.store(out + d);
}
}
template <>
inline void copy_stub<uint8_t>(uint8_t* __restrict__ out, const uint8_t* __restrict__ input, int64_t size) {
// size might be 64x + 32
std::memcpy(out, input, size * sizeof(uint8_t));
}
template <typename scalar_t>
inline void copy_mul_stub(scalar_t* __restrict__ out, const float* __restrict__ input, float weight, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec weight_vec = fVec(weight);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec data0 = fVec::loadu(input + d) * weight_vec;
fVec data1 = fVec::loadu(input + d + fVec::size()) * weight_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] * weight);
}
}
// acc from [topk, K] to [K]
template <typename scalar_t>
inline void sum_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ input, int64_t topk, int64_t K) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
if (topk == 1) {
// do copy for topk = 1
copy_stub(out, input, K);
} else {
// do sum for topk != 1
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= K - kVecSize; d += kVecSize) {
fVec sum_fvec0 = fVec(0.f);
fVec sum_fvec1 = fVec(0.f);
for (int t = 0; t < topk; ++t) {
bVec x_bvec = bVec::loadu(input + t * K + d);
fVec x_fvec0, x_fvec1;
std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);
sum_fvec0 += x_fvec0;
sum_fvec1 += x_fvec1;
}
bVec out_bvec = convert_from_float_ext<scalar_t>(sum_fvec0, sum_fvec1);
out_bvec.store(out + d);
}
for (; d < K; ++d) {
float sum_val = 0.f;
for (int t = 0; t < topk; ++t) {
sum_val += static_cast<float>(input[t * K + d]);
}
out[d] = static_cast<scalar_t>(sum_val);
}
}
}
// out = input + input2 * scale
template <typename scalar_t>
inline void add_mul_stub(scalar_t* __restrict__ out, const float* __restrict__ input,
const scalar_t* __restrict__ input2, float scale, int64_t size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec s_vec = fVec(scale);
int64_t d;
#pragma GCC unroll 4
for (d = 0; d <= size - kVecSize; d += kVecSize) {
fVec x0 = fVec::loadu(input + d);
fVec x1 = fVec::loadu(input + d + fVec::size());
bVec y_bvec = bVec::loadu(input2 + d);
fVec y0, y1;
std::tie(y0, y1) = at::vec::convert_to_float(y_bvec);
x0 = x0 + y0 * s_vec;
x1 = x1 + y1 * s_vec;
bVec out_vec = convert_from_float_ext<scalar_t>(x0, x1);
out_vec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(input[d] + float(input2[d]) * scale);
}
}
/// gemm for w13
template <typename scalar_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B0, const int8_t* __restrict__ B1, scalar_t* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs0, const float* __restrict__ Bs1,
const int32_t* __restrict__ Bcomp0, const int32_t* __restrict__ Bcomp1,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni<at::BFloat16, BLOCK_M, BLOCK_N> {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B0, const int8_t* __restrict__ B1, at::BFloat16* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs0, const float* __restrict__ Bs1,
const int32_t* __restrict__ Bcomp0, const int32_t* __restrict__ Bcomp1,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
static_assert(COLS % 2 == 0);
__m512i va;
__m512i vb0[COLS];
__m512i vb1[COLS];
__m512i vc0[ROWS * COLS];
__m512i vc1[ROWS * COLS];
__m512i vcomp0[COLS];
__m512i vcomp1[COLS];
__m512 was;
__m512 vbs0[COLS];
__m512 vbs1[COLS];
auto loadc = [&](auto i) {
vc0[i] = _mm512_set1_epi32(0);
vc1[i] = _mm512_set1_epi32(0);
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K4 = K >> 2;
const int64_t lda4 = lda >> 2;
const int64_t ldb4 = ldb; // ldb * 4 >> 2;
const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
const int32_t* b0_ptr = reinterpret_cast<const int32_t*>(B0);
const int32_t* b1_ptr = reinterpret_cast<const int32_t*>(B1);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
}
if constexpr (row == 0) {
vb0[col] = _mm512_loadu_si512(b0_ptr + k * ldb4 + col * 16);
vb1[col] = _mm512_loadu_si512(b1_ptr + k * ldb4 + col * 16);
}
vc0[i] = _mm512_dpbusd_epi32(vc0[i], va, vb0[col]);
vc1[i] = _mm512_dpbusd_epi32(vc1[i], va, vb1[col]);
};
for (int64_t k = 0; k < K4; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto scalec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// load a scale
if constexpr(col == 0) {
was = _mm512_set1_ps(As[row]);
}
// load b scale and vcomp
if constexpr (row == 0) {
vbs0[col] = _mm512_loadu_ps(Bs0 + col * 16);
vbs1[col] = _mm512_loadu_ps(Bs1 + col * 16);
vcomp0[col] = _mm512_loadu_si512(Bcomp0 + col * 16);
vcomp1[col] = _mm512_loadu_si512(Bcomp1 + col * 16);
}
__m512 c0 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc0[i], vcomp0[col]));
__m512 c1 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc1[i], vcomp1[col]));
vc0[i] = _mm512_castps_si512(_mm512_mul_ps(_mm512_mul_ps(c0, was), vbs0[col]));
vc1[i] = _mm512_castps_si512(_mm512_mul_ps(_mm512_mul_ps(c1, was), vbs1[col]));
};
Unroll<ROWS * COLS>{}(scalec);
using Vec = at::vec::Vectorized<float>;
const Vec one = Vec(1.f);
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// for COLS = 2, 4 use 512bit store
if constexpr (col % 2 == 0) {
Vec x0 = _mm512_castsi512_ps(vc0[row * COLS + col + 0]);
Vec x1 = _mm512_castsi512_ps(vc0[row * COLS + col + 1]);
Vec y0 = _mm512_castsi512_ps(vc1[row * COLS + col + 0]);
Vec y1 = _mm512_castsi512_ps(vc1[row * COLS + col + 1]);
// silu
x0 = x0 / (one + x0.neg().exp_u20());
x1 = x1 / (one + x1.neg().exp_u20());
// mul
x0 = x0 * y0;
x1 = x1 * y1;
_mm512_storeu_si512(
reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
(__m512i)(_mm512_cvtne2ps_pbh(__m512(x1), __m512(x0))));
}
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_VNNI(MB_SIZE, NB_SIZE) \
tinygemm_kernel_vnni<scalar_t, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B0 + nb_start * 4, B1 + nb_start * 4, \
C + mb_start * ldc + nb_start, As + mb_start, \
Bs0 + nb_start, Bs1 + nb_start, Bcomp0 + nb_start, Bcomp1 + nb_start,\
K, lda, ldb, ldc);
template <typename scalar_t>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B0,
const int8_t* __restrict__ B1,
scalar_t* __restrict__ C,
const float* __restrict__ As,
const float* __restrict__ Bs0,
const float* __restrict__ Bs1,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc) {
const int32_t* Bcomp0 = reinterpret_cast<const int32_t*>(B0 + block_size_n() * K);
const int32_t* Bcomp1 = reinterpret_cast<const int32_t*>(B1 + block_size_n() * K);
// pattern: 1-(2+2)-(8+8)
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 32;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
case 0x12: LAUNCH_TINYGEMM_KERNEL_VNNI(1, 32); break;
case 0x22: LAUNCH_TINYGEMM_KERNEL_VNNI(2, 32); break;
case 0x32: LAUNCH_TINYGEMM_KERNEL_VNNI(3, 32); break;
case 0x42: LAUNCH_TINYGEMM_KERNEL_VNNI(4, 32); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
/// gemm for w2
template <typename scalar_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni2 {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, float* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
}
};
#if defined(CPU_CAPABILITY_AVX512)
template <int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_vnni2<at::BFloat16, BLOCK_M, BLOCK_N> {
static inline void apply(
const uint8_t* __restrict__ A, const int8_t* __restrict__ B, float* __restrict__ C,
const float* __restrict__ As, const float* __restrict__ Bs, const int32_t* __restrict__ Bcomp,
int64_t K, int64_t lda, int64_t ldb, int64_t ldc) {
constexpr int ROWS = BLOCK_M;
constexpr int COLS = BLOCK_N / 16;
static_assert(COLS % 2 == 0);
__m512i va;
__m512i vb[COLS];
__m512i vc[ROWS * COLS];
__m512i vcomp[COLS];
__m512 was;
__m512 vbs[COLS];
auto loadc = [&](auto i) {
vc[i] = _mm512_set1_epi32(0);
};
Unroll<ROWS * COLS>{}(loadc);
const int64_t K4 = K >> 2;
const int64_t lda4 = lda >> 2;
const int64_t ldb4 = ldb; // ldb * 4 >> 2;
const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
const int32_t* b_ptr = reinterpret_cast<const int32_t*>(B);
auto compute = [&](auto i, int64_t k) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
if constexpr (col == 0) {
va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
}
if constexpr (row == 0) {
vb[col] = _mm512_loadu_si512(b_ptr + k * ldb4 + col * 16);
}
vc[i] = _mm512_dpbusd_epi32(vc[i], va, vb[col]);
};
for (int64_t k = 0; k < K4; ++k) {
Unroll<ROWS * COLS>{}(compute, k);
}
auto storec = [&](auto i) {
constexpr int row = i / COLS;
constexpr int col = i % COLS;
// load a scale
if constexpr(col == 0) {
was = _mm512_set1_ps(As[row]);
}
// load b scale and vcomp per 2 vectors
// also load bias if any
if constexpr (row == 0) {
if constexpr (col % 2 == 0) {
vbs[col + 0] = _mm512_loadu_ps(Bs + col * 16);
vbs[col + 1] = _mm512_loadu_ps(Bs + col * 16 + 16);
vcomp[col + 0] = _mm512_loadu_si512(Bcomp + col * 16);
vcomp[col + 1] = _mm512_loadu_si512(Bcomp + col * 16 + 16);
}
}
__m512 x = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[i], vcomp[col]));
x = _mm512_mul_ps(_mm512_mul_ps(x, was), vbs[col]);
_mm512_storeu_ps(reinterpret_cast<__m512*>(C + row * ldc + col * 16), x);
};
Unroll<ROWS * COLS>{}(storec);
}
};
#endif
#define LAUNCH_TINYGEMM_KERNEL_VNNI2(MB_SIZE, NB_SIZE) \
tinygemm_kernel_vnni2<scalar_t, MB_SIZE, NB_SIZE>::apply( \
A + mb_start * lda, B + nb_start * 4, C + mb_start * ldc + nb_start, \
As + mb_start, Bs + nb_start, Bcomp + nb_start, \
K, lda, ldb, ldc);
template <typename scalar_t>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B,
float* __restrict__ C,
const float* __restrict__ As,
const float* __restrict__ Bs,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc) {
// B compensation
const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * K);
// pattern: 1-4-16
constexpr int64_t BLOCK_M = 4;
constexpr int64_t BLOCK_N = 64;
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
for (int64_t mb = 0; mb < MB; ++mb) {
int64_t mb_start = mb * BLOCK_M;
int64_t mb_size = std::min(BLOCK_M, M - mb_start);
for (int64_t nb = 0; nb < NB; ++nb) {
int64_t nb_start = nb * BLOCK_N;
int64_t nb_size = std::min(BLOCK_N, N - nb_start);
switch(mb_size << 4 | nb_size >> 4) {
case 0x12: LAUNCH_TINYGEMM_KERNEL_VNNI2(1, 32); break;
case 0x22: LAUNCH_TINYGEMM_KERNEL_VNNI2(2, 32); break;
case 0x32: LAUNCH_TINYGEMM_KERNEL_VNNI2(3, 32); break;
case 0x42: LAUNCH_TINYGEMM_KERNEL_VNNI2(4, 32); break;
default: TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
}
}
}
}
} // anonymous namespace
template <typename scalar_t>
void fused_experts_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
uint8_t* __restrict__ A_tmp,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad) {
// handle 2 tiles per block
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 0: quantize input to uint8, [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * K,
As_tmp[m],
input + m * K,
K);
}
});
// stage 1: intermediate_cache1 = silu(hidden_states @ w1)
const int64_t MB = div_up(num_tokens_post_pad, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
// strides for w1: [E, 2N, K]
TORCH_CHECK(N % BLOCK_N == 0, "Fixme when N is not multiples of ", BLOCK_N);
// K and N are packed for int8
const int64_t packed_K = get_row_size<int8_t>(K);
const int64_t packed_N = get_row_size<int8_t>(N);
const int64_t stride_e = 2 * N * packed_K;
const int64_t stride_n = packed_K;
// here we only parallel on half of 2N to fuse silu_and_mul with gemm
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
uint8_t* __restrict__ A = A_tmp + tid * BLOCK_M * K;
alignas(64) float As[BLOCK_M];
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
// nb0 from top half and nb1 from bottom half
int64_t nb0 = nb, nb1 = nb + NB;
int64_t n_size = std::min(N - nb0 * BLOCK_N, BLOCK_N);
// B shape [K, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const int8_t* __restrict__ B0 = packed_w1 + expert_id * stride_e + nb0 * BLOCK_N * stride_n;
const int8_t* __restrict__ B1 = packed_w1 + expert_id * stride_e + nb1 * BLOCK_N * stride_n;
const float* __restrict__ Bs0 = w1s + expert_id * 2 * N + nb0 * BLOCK_N;
const float* __restrict__ Bs1 = w1s + expert_id * 2 * N + nb1 * BLOCK_N;
// 1.a load A
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
int64_t m_size = offsets[mb + 1] - offsets[mb];
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m] / topk;
copy_stub(A + m * K, Aq_tmp + index * K, K);
As[m] = As_tmp[index];
}
// fused 1.b: silu_and_mul(A @ B0, A @ B1)
const int64_t offset = offsets[mb];
tinygemm_kernel(
/* A */ A,
/* B0 */ B0,
/* B1 */ B1,
/* C */ ic1 + offset * N + nb * BLOCK_N,
/* As */ As,
/* Bs0 */ Bs0,
/* Bs1 */ Bs1,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ N);
}
});
// stage 1.5: quantize ic1 to uint8, [M * topk, N]
at::parallel_for(0, M * topk, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * N,
As_tmp[m],
ic1 + m * N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [E, K, N] as [E, OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(OC, BLOCK_N);
const int64_t stride_e2 = OC * packed_N;
const int64_t stride_oc = packed_N;
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
// we won't be using C1 for gemm2
float* __restrict__ C = C_tmp + tid * 2 * BLOCK_M * BLOCK_N;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = offsets[mb + 1] - offsets[mb];
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
// A ptr from ic1 of [M * topk, N] in sorted order
// so as to avoid copy A to tmp buffer again
const uint8_t* __restrict__ A = Aq_tmp + offsets[mb] * N;
const float* __restrict__ As = As_tmp + offsets[mb];
const int32_t* A_ids = sorted_ids + mb * BLOCK_M;
// B shape [IC, n_size] in vnni format
int32_t expert_id = expert_ids[mb];
const int8_t* __restrict__ B = packed_w2 + expert_id * stride_e2 + nb * BLOCK_N * stride_oc;
const float* __restrict__ Bs = w2s + expert_id * K + nb * BLOCK_N;
// 2.a gemm: C = A @ B
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ C,
/* As */ As,
/* Bs */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N);
// 2.b copy from C to ic2 in original order
// and also mul topk_weights in float32
for (int64_t m = 0; m < m_size; ++m) {
int32_t index = A_ids[m];
float weight = topk_weights[index];
copy_mul_stub(ic2 + index * K + nb * BLOCK_N, C + m * BLOCK_N, weight, n_size);
}
}
});
// stage 3: out = intermediate_cache2.sum(dim=1)
// from [M, topk, K] to [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
sum_stub(output + m * K, ic2 + m * topk * K, topk, K);
}
});
}
#define INSTANTIATE_MOE_INT8_TEMPLATE(TYPE) \
template void fused_experts_int8_kernel_impl<TYPE> ( \
TYPE* __restrict__ output, TYPE* __restrict__ ic1, \
TYPE* __restrict__ ic2, uint8_t* __restrict__ A_tmp, \
float* __restrict__ C_tmp, uint8_t* __restrict__ Aq_tmp, \
float* __restrict__ As_tmp, const TYPE* __restrict__ input, \
const int8_t* __restrict__ packed_w1, const int8_t* __restrict__ packed_w2, \
const float* __restrict__ w1s, const float* __restrict__ w2s, \
const float* __restrict__ topk_weights, const int32_t* __restrict__ sorted_ids, \
const int32_t* __restrict__ expert_ids, const int32_t* __restrict__ offsets, \
int64_t M, int64_t N, int64_t K, int64_t E, int64_t topk, int64_t num_tokens_post_pad)
INSTANTIATE_MOE_INT8_TEMPLATE(at::BFloat16);
INSTANTIATE_MOE_INT8_TEMPLATE(at::Half);
template <typename scalar_t>
void shared_expert_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K) {
// handle 2 tiles per block
constexpr int64_t BLOCK_M = block_size_m();
constexpr int64_t BLOCK_N = block_size_n();
// stage 0: quantize input to uint8, [M, K]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * K,
As_tmp[m],
input + m * K,
K);
}
});
// stage 1: intermediate_cache1 = silu(hidden_states @ w1)
const int64_t MB = div_up(M, BLOCK_M);
const int64_t NB = div_up(N, BLOCK_N);
TORCH_CHECK(N % BLOCK_N == 0, "Fixme when N is not multiples of ", BLOCK_N);
// K and N are packed for int8
const int64_t packed_K = get_row_size<int8_t>(K);
const int64_t packed_N = get_row_size<int8_t>(N);
const int64_t stride_n = packed_K;
// here we only parallel on half of 2N to fuse silu_and_mul with gemm
at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB;
int64_t nb = i % NB;
// nb0 from top half and nb1 from bottom half
int64_t nb0 = nb, nb1 = nb + NB;
int64_t n_size = std::min(N - nb0 * BLOCK_N, BLOCK_N);
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
// A shape [m_size, K]
const uint8_t* A = Aq_tmp + mb * BLOCK_M * K;
const float* As = As_tmp + mb * BLOCK_M;
// B shape [K, n_size] in vnni format
const int8_t* __restrict__ B0 = packed_w1 + nb0 * BLOCK_N * stride_n;
const int8_t* __restrict__ B1 = packed_w1 + nb1 * BLOCK_N * stride_n;
const float* __restrict__ Bs0 = w1s + nb0 * BLOCK_N;
const float* __restrict__ Bs1 = w1s + nb1 * BLOCK_N;
// fused 1.b: silu_and_mul(A @ B0, A @ B1)
tinygemm_kernel(
/* A */ A,
/* B0 */ B0,
/* B1 */ B1,
/* C */ ic1 + mb * BLOCK_M * N + nb * BLOCK_N,
/* As */ As,
/* Bs0 */ Bs0,
/* Bs1 */ Bs1,
/* M */ m_size,
/* N */ n_size,
/* K */ K,
/* lda */ K,
/* ldb */ n_size,
/* ldc */ N);
}
});
// stage 1.5: quantize ic1 to uint8, [M * topk, N]
at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
for (int64_t m = begin; m < end; ++m) {
quantize_row_int8<scalar_t>(
Aq_tmp + m * N,
As_tmp[m],
ic1 + m * N,
N);
}
});
// stage 2: intermediate_cache2 = intermediate_cache1 @ w2
// w2 : [K, N] as [OC, IC]
const int64_t OC = K; // rename K as OC
const int64_t IC = N; // rename N as IC
const int64_t MB2 = MB;
const int64_t NB2 = div_up(OC, BLOCK_N);
const int64_t stride_oc = packed_N;
// parallel on [MB2, NB2]
at::parallel_for(0, MB2 * NB2, 0, [&](int64_t begin, int64_t end) {
// get local pointers
int tid = at::get_thread_num();
// we won't be using C1 for gemm2
float* __restrict__ C = C_tmp + tid * 2 * BLOCK_M * BLOCK_N;
for (int64_t i = begin; i < end; ++i) {
int64_t mb = i / NB2;
int64_t nb = i % NB2;
int64_t m_size = std::min(M - mb * BLOCK_M, BLOCK_M);
int64_t n_size = std::min(OC - nb * BLOCK_N, BLOCK_N);
// A shape [m_size, IC]
const uint8_t* __restrict__ A = Aq_tmp + mb * BLOCK_M * N;
const float* __restrict__ As = As_tmp + mb * BLOCK_M;
// B shape [IC, n_size] in vnni format
const int8_t* __restrict__ B = packed_w2 + nb * BLOCK_N * stride_oc;
const float* __restrict__ Bs = w2s + nb * BLOCK_N;
// 2.a gemm: C = A @ B
tinygemm_kernel<scalar_t>(
/* A */ A,
/* B */ B,
/* C */ C,
/* As */ As,
/* Bs */ Bs,
/* M */ m_size,
/* N */ n_size,
/* K */ IC,
/* lda */ IC,
/* ldb */ n_size,
/* ldc */ BLOCK_N);
// 2.b copy from C to output and add fused_experts_out
scalar_t* __restrict__ out = output + mb * BLOCK_M * K + nb * BLOCK_N;
const scalar_t* __restrict__ fused_out = fused_experts_out + mb * BLOCK_M * K + nb * BLOCK_N;
for (int64_t m = 0; m < m_size; ++m) {
add_mul_stub(out + m * K, C + m * BLOCK_N, fused_out + m * K, routed_scaling_factor, n_size);
}
}
});
}
#define INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(TYPE) \
template void shared_expert_int8_kernel_impl<TYPE> ( \
TYPE* __restrict__ output, TYPE* __restrict__ ic1, \
float* __restrict__ C_tmp, uint8_t* __restrict__ Aq_tmp, \
float* __restrict__ As_tmp, const TYPE* __restrict__ input, \
const int8_t* __restrict__ packed_w1, const int8_t* __restrict__ packed_w2, \
const float* __restrict__ w1s, const float* __restrict__ w2s, \
const TYPE* __restrict__ fused_experts_out, float routed_scaling_factor, \
int64_t M, int64_t N, int64_t K)
INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(at::BFloat16);
INSTANTIATE_SHARED_EXPERT_INT8_TEMPLATE(at::Half);

View File

@ -1,308 +0,0 @@
// Adapted from
// https://github.com/sgl-project/sglang/tree/main/sgl-kernel/csrc/cpu
#pragma once
// clang-format off
#if defined(__AVX512F__) && defined(__AVX512BF16__) && defined(__AMX_BF16__)
#define CPU_CAPABILITY_AVX512
#endif
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
namespace {
using namespace at::vec;
template <typename scalar_t,
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
inline Vectorized<scalar_t> convert_from_float_ext(const Vectorized<float>& a, const Vectorized<float>& b) {
return at::vec::convert_from_float<scalar_t>(a, b);
}
#if defined(CPU_CAPABILITY_AVX512)
// `at::vec::convert_from_float<>` from PyTorch doesn't have avx512-bf16 intrinsics
// use native instruction for bfloat16->float32 conversion
template <>
inline Vectorized<at::BFloat16> convert_from_float_ext<at::BFloat16>(const Vectorized<float>& a, const Vectorized<float>& b) {
return (__m512i)(_mm512_cvtne2ps_pbh(__m512(b), __m512(a)));
}
#define CVT_BF16_TO_FP32(a) \
_mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(a), 16))
#define CVT_FP16_TO_FP32(a) \
_mm512_cvtps_ph(a, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))
// this doesn't handle NaN.
inline __m512bh cvt_e4m3_bf16_intrinsic_no_nan(__m256i fp8_vec) {
const __m512i x = _mm512_cvtepu8_epi16(fp8_vec);
const __m512i mant = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x07)), 4);
const __m512i raw_exp = _mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x78)), 3);
const __m512i exp = _mm512_slli_epi16(_mm512_add_epi16(raw_exp, _mm512_set1_epi16(120)), 7);
const __m512i nonsign = _mm512_or_si512(exp, mant);
const __m512i sign = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x80)), 8);
const __m512i combined = _mm512_or_si512(nonsign, sign);
const __mmask32 is_nonzero = _mm512_cmpneq_epi16_mask(x, _mm512_setzero_si512());
return (__m512bh)_mm512_maskz_mov_epi16(is_nonzero, combined);
}
inline __m512bh cvt_e4m3_bf16_intrinsic_without_denorm(__m256i fp8_vec) {
// The following conversion is without denorm behavior, that is to say,
// Max subnorm : S.0000.111 = 0.875 2**(6)
// Min subnorm : S.0000.001 = 2**(9)
// 0.0019 ~ 0.0137 cannot be converted correctly.
__m512i x = _mm512_cvtepu8_epi16(fp8_vec);
auto mask = _mm512_cmpneq_epi16_mask(
_mm512_and_si512(x, _mm512_set1_epi16(127)),
_mm512_setzero_si512()); // mask = x & 0x7f
auto mask_nan = _mm512_cmpneq_epi16_mask(
_mm512_and_si512(x, _mm512_set1_epi16(127)),
_mm512_set1_epi16(127)); // mask_nan = x & 0x7f
auto mantissa = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(7)), 4); // mantissa = (x & 7) << 4
auto exponent = _mm512_add_epi16(
_mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(120)), 3),
_mm512_set1_epi16(120)); // exponent = (((x >> 3) & 15) + 120)
auto nonsign = _mm512_maskz_mov_epi16(mask, _mm512_or_si512(mantissa, _mm512_slli_epi16(exponent, 7)));
nonsign = _mm512_mask_mov_epi16(_mm512_set1_epi16(0x7fff), mask_nan, nonsign); // deal with Nan
return (__m512bh)(_mm512_or_si512(
nonsign,
_mm512_slli_epi16(
_mm512_and_si512(x, _mm512_set1_epi16(128)),
8))); // add sign (x & 128) << 8
}
inline __m512bh cvt_e4m3_bf16_intrinsic_with_denorm(__m256i fp8_vec) {
__m512i x = _mm512_cvtepu8_epi16(fp8_vec);
__m512i lg2mant = _mm512_mask_mov_epi16(
_mm512_mask_mov_epi16(
_mm512_setzero_si512(), _mm512_test_epi16_mask(x, _mm512_set1_epi16(2)), _mm512_set1_epi16(1)),
_mm512_test_epi16_mask(x, _mm512_set1_epi16(4)),
_mm512_set1_epi16(2));
return (__m512bh)(_mm512_or_si512(
_mm512_maskz_mov_epi16(
_mm512_cmpneq_epi16_mask(_mm512_and_si512(x, _mm512_set1_epi16(127)), _mm512_setzero_si512()),
_mm512_mask_blend_epi16(
_mm512_test_epi16_mask(x, _mm512_set1_epi16(120)),
_mm512_or_si512(
_mm512_and_si512(
_mm512_sllv_epi16(
_mm512_and_si512(x, _mm512_set1_epi16(3)), _mm512_sub_epi16(_mm512_set1_epi16(7), lg2mant)),
_mm512_set1_epi16(0x007f)),
_mm512_slli_epi16(_mm512_add_epi16(lg2mant, _mm512_set1_epi16(118)), 7)),
_mm512_or_si512(
_mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(7)), 4),
_mm512_slli_epi16(
_mm512_add_epi16(
_mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(120)), 3), _mm512_set1_epi16(120)),
7)))),
_mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(128)), 8)));
}
inline __m512bh CVT_FP8_TO_BF16(__m256i a) {
#ifdef SGLANG_CPU_FP8_CVT_FTZ
return cvt_e4m3_bf16_intrinsic_no_nan(a);
#else
return cvt_e4m3_bf16_intrinsic_with_denorm(a);
#endif
}
#endif
// vector to scalar reduction
#if defined(CPU_CAPABILITY_AVX512) && 0
inline float vec_reduce_sum(const Vectorized<float>& a) {
return _mm512_reduce_add_ps(__m512(a));
}
inline float vec_reduce_max(const Vectorized<float>& a) {
return _mm512_reduce_max_ps(__m512(a));
}
#else
inline float vec_reduce_sum(const Vectorized<float>& a) {
return vec_reduce_all([](Vectorized<float>& x, Vectorized<float>& y) { return x + y; }, a);
}
inline float vec_reduce_max(const Vectorized<float>& a) {
return vec_reduce_all([](Vectorized<float>& x, Vectorized<float>& y) { return maximum(x, y); }, a);
}
#endif
// https://github.com/InternLM/lmdeploy/blob/086481ed84b59bee3b8e4274e5fc69620040c048/lmdeploy/pytorch/kernels/cuda/w8a8_triton_kernels.py#L282
template <typename scalar_t>
inline void quantize_row_int8(uint8_t* __restrict__ Aq, float& As,
const scalar_t* __restrict__ A, int64_t K, float eps = 1e-7) {
float amax = 0.f; // absolute max
for (int64_t k = 0; k < K; ++k) {
const float val = static_cast<float>(A[k]);
amax = std::max(amax, std::abs(val));
}
amax = std::max(amax, eps);
const float scale = amax / 127;
const float inv_scale = 127 / amax;
for (int64_t k = 0; k < K; ++k) {
const float val = static_cast<float>(A[k]) * inv_scale;
Aq[k] = (uint8_t)(std::round(val)) + 128;
}
As = scale;
}
#if defined(CPU_CAPABILITY_AVX512)
template <>
inline void quantize_row_int8<at::BFloat16>(uint8_t* __restrict__ Aq, float& As,
const at::BFloat16* __restrict__ A, int64_t K, float eps) {
const __m512 signBit = _mm512_set1_ps(-0.0f);
const __m512i off = _mm512_set1_epi32(128);
// K is 32x, no remainder
float amax = 0.f;
__m512 vamax0 = _mm512_set1_ps(0.f);
__m512 vamax1 = _mm512_set1_ps(0.f);
for (int64_t k = 0; k < K; k += 32) {
__m512i va = _mm512_loadu_si512((void*)(A + k));
__m512 va0 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 0));
__m512 va1 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 1));
vamax0 = _mm512_max_ps(vamax0, _mm512_andnot_ps(signBit, va0));
vamax1 = _mm512_max_ps(vamax1, _mm512_andnot_ps(signBit, va1));
}
amax = _mm512_reduce_max_ps(_mm512_max_ps(vamax0, vamax1));
amax = std::max(amax, eps);
const float scale = amax / 127;
const float inv_scale = 127 / amax;
const __m512 vd = _mm512_set1_ps(inv_scale);
for (int64_t k = 0; k < K; k += 32) {
__m512i va = _mm512_loadu_si512((void*)(A + k));
__m512 va0 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 0));
__m512 va1 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 1));
va0 = _mm512_mul_ps(va0, vd);
va1 = _mm512_mul_ps(va1, vd);
va0 = _mm512_roundscale_ps(va0, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
va1 = _mm512_roundscale_ps(va1, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
__m128i i0 = _mm512_cvtepi32_epi8(_mm512_add_epi32(_mm512_cvtps_epi32(va0), off));
__m128i i1 = _mm512_cvtepi32_epi8(_mm512_add_epi32(_mm512_cvtps_epi32(va1), off));
_mm256_storeu_si256(reinterpret_cast<__m256i*>(Aq + k), _mm256_set_m128i(i1, i0));
}
As = scale;
}
#endif
// transpose utils
// taken from my PR in ggml: https://github.com/ggml-org/llama.cpp/pull/8998
#if defined(CPU_CAPABILITY_AVX512)
inline void transpose_16x16_32bit(__m512i * v) {
__m512i v1[16];
v1[0] = _mm512_unpacklo_epi32(v[0], v[1]);
v1[1] = _mm512_unpackhi_epi32(v[0], v[1]);
v1[2] = _mm512_unpacklo_epi32(v[2], v[3]);
v1[3] = _mm512_unpackhi_epi32(v[2], v[3]);
v1[4] = _mm512_unpacklo_epi32(v[4], v[5]);
v1[5] = _mm512_unpackhi_epi32(v[4], v[5]);
v1[6] = _mm512_unpacklo_epi32(v[6], v[7]);
v1[7] = _mm512_unpackhi_epi32(v[6], v[7]);
v1[8] = _mm512_unpacklo_epi32(v[8], v[9]);
v1[9] = _mm512_unpackhi_epi32(v[8], v[9]);
v1[10] = _mm512_unpacklo_epi32(v[10], v[11]);
v1[11] = _mm512_unpackhi_epi32(v[10], v[11]);
v1[12] = _mm512_unpacklo_epi32(v[12], v[13]);
v1[13] = _mm512_unpackhi_epi32(v[12], v[13]);
v1[14] = _mm512_unpacklo_epi32(v[14], v[15]);
v1[15] = _mm512_unpackhi_epi32(v[14], v[15]);
v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]);
v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]);
v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]);
v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]);
v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]);
v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]);
v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]);
v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]);
v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]);
v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]);
v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]);
v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]);
v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]);
v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]);
v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]);
v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]);
v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88);
v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88);
v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88);
v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88);
v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd);
v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd);
v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd);
v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd);
v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88);
v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88);
v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88);
v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88);
v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd);
v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd);
v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd);
v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd);
v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88);
v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88);
v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88);
v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88);
v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88);
v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88);
v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88);
v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88);
v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd);
v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd);
v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd);
v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd);
v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd);
v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd);
v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd);
v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd);
}
// remove warning : ignoring attributes on template argument __m512i [-Wignored-attributes]
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-attributes"
// transpose from [2, 32] to [32, 2]
inline std::tuple<__m512i, __m512i> transpose_2x32_16bit(__m512i r0, __m512i r1) {
// r0: {a0, a1, ..., a31}
// r1: {b0, b1, ..., b31}
//
// d0: {a0, b0, ..., a15, b15}
// d1: {a16, b16, ..., a31, b31}
//
__m512i d0 = _mm512_unpacklo_epi16(r0, r1);
__m512i d1 = _mm512_unpackhi_epi16(r0, r1);
r0 = _mm512_shuffle_i32x4(d0, d1, 0x88);
r1 = _mm512_shuffle_i32x4(d0, d1, 0xdd);
d0 = _mm512_shuffle_i32x4(r0, r1, 0x88);
d1 = _mm512_shuffle_i32x4(r0, r1, 0xdd);
return std::make_tuple(d0, d1);
}
#pragma GCC diagnostic pop
#endif
// TODO: debug print, remove me later
template<typename scalar_t>
void print_array(scalar_t* ptr, int size) {
for (int d = 0; d < size; ++d) {
if (d % 16 == 0) { std::cout << std::endl; }
std::cout << ptr[d] << " ";
}
std::cout << std::endl;
}
} // anonymous namespace

View File

@ -7,10 +7,9 @@
namespace {
#define MAX_SHM_RANK_NUM 8
#define PER_THREAD_SHM_BUFFER_BYTES (2 * 1024 * 1024)
static_assert(PER_THREAD_SHM_BUFFER_BYTES % 2 == 0);
#define PER_THREAD_SHM_BUFFER_OFFSET (PER_THREAD_SHM_BUFFER_BYTES >> 1)
#define MIN_THREAD_PROCESS_SIZE (256)
#define MAX_THREAD_NUM 12
#define PER_THREAD_SHM_BUFFER_BYTES (4 * 1024 * 1024)
#define MIN_THREAD_PROCESS_SIZE (8 * 1024)
#define MAX_P2P_SEND_TENSOR_NUM 8
template <typename scalar_t>
@ -33,10 +32,10 @@ struct KernelVecType<c10::Half> {
using scalar_vec_t = vec_op::FP16Vec16;
};
enum class ThreadSHMStat : char { THREAD_READY = 0, SHM_DATA_READY, DONE };
struct ThreadSHMContext {
volatile char _curr_thread_stamp;
volatile char _ready_thread_stamp;
char _padding1[6];
volatile ThreadSHMStat thread_stats[MAX_SHM_RANK_NUM];
int thread_id;
int thread_num;
int rank;
@ -45,19 +44,14 @@ struct ThreadSHMContext {
int swizzled_ranks[MAX_SHM_RANK_NUM];
void* thread_shm_ptrs[MAX_SHM_RANK_NUM];
ThreadSHMContext* shm_contexts[MAX_SHM_RANK_NUM];
size_t _thread_buffer_mask;
char _padding2[56];
ThreadSHMContext(const int thread_id, const int thread_num, const int rank,
const int group_size, void* thread_shm_ptr)
: _curr_thread_stamp(1),
_ready_thread_stamp(0),
thread_id(thread_id),
: thread_id(thread_id),
thread_num(thread_num),
rank(rank),
group_size(group_size),
_spinning_count(0),
_thread_buffer_mask(0) {
_spinning_count(0) {
static_assert(sizeof(ThreadSHMContext) % 64 == 0);
TORCH_CHECK(group_size <= MAX_SHM_RANK_NUM);
TORCH_CHECK((size_t)this % 64 == 0);
@ -66,6 +60,7 @@ struct ThreadSHMContext {
shm_contexts[i] = nullptr;
thread_shm_ptrs[i] = nullptr;
swizzled_ranks[i] = (i + rank) % group_size;
thread_stats[i] = ThreadSHMStat::DONE;
}
set_context(rank, this, thread_shm_ptr);
}
@ -82,66 +77,59 @@ struct ThreadSHMContext {
template <typename T>
T* get_thread_shm_ptr(int rank) {
return reinterpret_cast<T*>(
reinterpret_cast<int8_t*>(thread_shm_ptrs[rank]) +
(PER_THREAD_SHM_BUFFER_OFFSET & _thread_buffer_mask));
}
void next_buffer() { _thread_buffer_mask ^= 0xFFFFFFFFFFFFFFFF; }
char get_curr_stamp() const { return _curr_thread_stamp; }
char get_ready_stamp() const { return _ready_thread_stamp; }
void next_stamp() {
_mm_mfence();
_curr_thread_stamp += 1;
}
void commit_ready_stamp() {
_mm_mfence();
_ready_thread_stamp = _curr_thread_stamp;
return reinterpret_cast<T*>(thread_shm_ptrs[rank]);
}
int get_swizzled_rank(int idx) { return swizzled_ranks[idx]; }
template <typename Cond>
void wait_for_all(Cond&& cond) {
for (int idx = 1; idx < group_size; ++idx) {
void wait_for_all(ThreadSHMStat prev_stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
wait_for_one(rank, std::forward<Cond>(cond));
while (thread_stats[rank] == prev_stat) {
++_spinning_count;
_mm_pause();
}
}
vec_op::mem_barrier();
}
template <typename Cond>
void wait_for_one(int rank, Cond&& cond) {
ThreadSHMContext* rank_ctx = shm_contexts[rank];
for (;;) {
char local_curr_stamp = get_curr_stamp();
char local_ready_stamp = get_ready_stamp();
char rank_curr_stamp = rank_ctx->get_curr_stamp();
char rank_ready_stamp = rank_ctx->get_ready_stamp();
if (cond(local_curr_stamp, local_ready_stamp, rank_curr_stamp,
rank_ready_stamp)) {
break;
}
void wait_for_one(int rank, ThreadSHMStat prev_stat) {
while (thread_stats[rank] == prev_stat) {
++_spinning_count;
_mm_pause();
}
vec_op::mem_barrier();
}
static bool check_no_buffer_conflict(char local_curr_stamp,
char local_ready_stamp,
char rank_curr_stamp,
char rank_ready_stamp) {
char temp = rank_curr_stamp + 2;
return local_curr_stamp != temp;
void set_thread_stat(ThreadSHMStat stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
shm_contexts[rank]->thread_stats[this->rank] = stat;
}
}
static bool check_stamp_ready(char local_curr_stamp, char local_ready_stamp,
char rank_curr_stamp, char rank_ready_stamp) {
char temp = local_curr_stamp + 1;
return (local_curr_stamp == rank_ready_stamp) || (temp == rank_ready_stamp);
void set_thread_stat(int target_rank, ThreadSHMStat stat) {
for (int idx = 0; idx < group_size; ++idx) {
int rank = get_swizzled_rank(idx);
shm_contexts[rank]->thread_stats[target_rank] = stat;
}
}
// barrier for all ranks in the group, used for all2all ops
// DONE -> THREAD_READY -> SHM_DATA_READY -> DONE -> ...
void barrier(ThreadSHMStat next_stat) {
if (next_stat == ThreadSHMStat::THREAD_READY) {
set_thread_stat(ThreadSHMStat::THREAD_READY);
wait_for_all(ThreadSHMStat::DONE);
} else if (next_stat == ThreadSHMStat::SHM_DATA_READY) {
set_thread_stat(ThreadSHMStat::SHM_DATA_READY);
wait_for_all(ThreadSHMStat::THREAD_READY);
} else if (next_stat == ThreadSHMStat::DONE) {
set_thread_stat(ThreadSHMStat::DONE);
wait_for_all(ThreadSHMStat::SHM_DATA_READY);
} else {
TORCH_CHECK(false, "Invalid next_stat to barrier.");
}
}
std::string to_string() const {
@ -176,7 +164,7 @@ class SHMManager {
const int group_size)
: _rank(rank),
_group_size(group_size),
_thread_num(torch::get_num_threads()),
_thread_num(std::min(torch::get_num_threads(), MAX_THREAD_NUM)),
_shm_names({""}),
_shared_mem_ptrs({nullptr}),
_shm_ctx(nullptr) {
@ -338,8 +326,7 @@ void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
(total_units_num + thread_num - 1) / thread_num;
int64_t per_unit_elem_num = MIN_THREAD_PROCESS_SIZE / sizeof(scalar_t);
int64_t max_per_thread_iteration_elem_num =
(PER_THREAD_SHM_BUFFER_BYTES >> 1) /
sizeof(scalar_t); // Note: double buffer
PER_THREAD_SHM_BUFFER_BYTES / sizeof(scalar_t);
int64_t per_thread_elem_num = per_unit_elem_num * per_thread_units_num;
#pragma omp parallel for schedule(static, 1)
@ -349,13 +336,10 @@ void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
int64_t curr_elem_num =
std::min(max_per_thread_iteration_elem_num, end - offset);
ThreadSHMContext* thread_ctx = ctx + i;
bool fast_mode = ((end - offset) <= max_per_thread_iteration_elem_num);
while (curr_elem_num > 0) {
inner_func(thread_ctx, offset, curr_elem_num, fast_mode);
inner_func(thread_ctx, offset, curr_elem_num);
thread_ctx->next_stamp();
thread_ctx->next_buffer();
offset += max_per_thread_iteration_elem_num;
curr_elem_num = std::min(max_per_thread_iteration_elem_num, end - offset);
}
@ -413,7 +397,7 @@ void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
shm_cc_ops::shm_cc_loop<scalar_t>(
ctx, elem_num,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num, bool fast_mode) {
int64_t data_elem_num) {
int rank = thread_ctx->rank;
scalar_t* thread_shm_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
@ -426,17 +410,16 @@ void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
thread_ctx->get_swizzled_rank(idx + 1));
});
if (!fast_mode) {
thread_ctx->wait_for_all(ThreadSHMContext::check_no_buffer_conflict);
}
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, thread_data_ptr,
thread_data_elem_num);
thread_ctx->commit_ready_stamp();
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
int64_t aligned_data_elem_num =
(data_elem_num / vec_elem_num) * vec_elem_num;
int64_t i = 0;
thread_ctx->wait_for_all(ThreadSHMContext::check_stamp_ready);
#pragma GCC unroll 4
for (; i < aligned_data_elem_num; i += vec_elem_num) {
vec_t local_data(thread_data_ptr + i); // load from cache
@ -464,6 +447,8 @@ void all_reduce_sum_impl(ThreadSHMContext* ctx, scalar_t* data,
reduced_data.save(thread_data_ptr + i,
data_elem_num - aligned_data_elem_num);
}
thread_ctx->barrier(ThreadSHMStat::DONE);
});
return;
@ -503,18 +488,18 @@ void shm_gather_impl(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num,
shm_cc_ops::shm_cc_loop<scalar_t>(
ctx, elem_num,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num, bool fast_mode) {
int64_t data_elem_num) {
int rank = thread_ctx->rank;
scalar_t* thread_shm_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(rank);
if (!fast_mode) {
thread_ctx->wait_for_all(ThreadSHMContext::check_no_buffer_conflict);
}
thread_ctx->barrier(ThreadSHMStat::THREAD_READY);
shm_cc_ops::memcpy_to_shm(thread_shm_ptr, data + data_offset,
data_elem_num * sizeof(scalar_t));
thread_ctx->barrier(ThreadSHMStat::SHM_DATA_READY);
shm_cc_ops::memcpy(thread_shm_ptr, data + data_offset,
data_elem_num * sizeof(scalar_t));
thread_ctx->commit_ready_stamp();
if (rank == dst) {
shm_cc_ops::memcpy(outputs[rank] + data_offset, data + data_offset,
data_elem_num * sizeof(scalar_t));
@ -523,12 +508,12 @@ void shm_gather_impl(ThreadSHMContext* ctx, scalar_t* data, size_t elem_num,
scalar_t* src_ptr =
thread_ctx->get_thread_shm_ptr<scalar_t>(src_rank); // shm
scalar_t* dst_ptr = outputs[src_rank] + data_offset;
thread_ctx->wait_for_one(src_rank,
ThreadSHMContext::check_stamp_ready);
shm_cc_ops::memcpy(dst_ptr, src_ptr,
data_elem_num * sizeof(scalar_t));
shm_cc_ops::memcpy_from_shm(dst_ptr, src_ptr,
data_elem_num * sizeof(scalar_t));
}
}
thread_ctx->barrier(ThreadSHMStat::DONE);
});
return;
@ -614,7 +599,7 @@ struct TensorListMeta {
int8_t _padding[40];
};
void shm_send_tensor_list_impl(ThreadSHMContext* ctx, int64_t dst,
void shm_send_tensor_list_impl(ThreadSHMContext* ctx,
const std::vector<torch::Tensor>& tensor_list) {
CPU_KERNEL_GUARD_IN(shm_send_tensor_list_impl)
std::vector<torch::Tensor> tensor_list_with_metadata;
@ -635,11 +620,12 @@ void shm_send_tensor_list_impl(ThreadSHMContext* ctx, int64_t dst,
shm_cc_ops::shm_cc_loop<int8_t>(
ctx, metadata->total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num, bool fast_mode) {
int64_t data_elem_num) {
int rank = thread_ctx->rank;
// Wait until the receiver set the stat to DONE
thread_ctx->wait_for_one(rank, ThreadSHMStat::SHM_DATA_READY);
int64_t curr_shm_offset = 0;
thread_ctx->wait_for_one(dst,
ThreadSHMContext::check_no_buffer_conflict);
while (curr_shm_offset < data_elem_num) {
MemPiece frag = metadata->get_data(data_offset + curr_shm_offset);
frag.size = std::min(frag.size, data_elem_num - curr_shm_offset);
@ -648,7 +634,8 @@ void shm_send_tensor_list_impl(ThreadSHMContext* ctx, int64_t dst,
frag.ptr, frag.size);
curr_shm_offset += frag.size;
}
thread_ctx->commit_ready_stamp();
thread_ctx->set_thread_stat(rank, ThreadSHMStat::SHM_DATA_READY);
});
}
@ -659,7 +646,8 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
torch::Tensor metadata_tensor =
torch::empty({sizeof(TensorListMeta)}, options);
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
// Wait until the sender set the stat of the thread 0 to SHM_DATA_READY
ctx->wait_for_one(src, ThreadSHMStat::DONE);
shm_cc_ops::memcpy(metadata_tensor.data_ptr(),
ctx->get_thread_shm_ptr<void>(src),
sizeof(TensorListMeta));
@ -676,8 +664,9 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
shm_cc_ops::shm_cc_loop<int8_t>(
ctx, metadata.total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num, bool fast_mode) {
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
int64_t data_elem_num) {
// Wait until the sender set the stat to SHM_DATA_READY
thread_ctx->wait_for_one(src, ThreadSHMStat::DONE);
int64_t curr_shm_offset = 0;
while (curr_shm_offset < data_elem_num) {
MemPiece frag = metadata.get_data(data_offset + curr_shm_offset);
@ -688,6 +677,8 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
frag.size);
curr_shm_offset += frag.size;
}
thread_ctx->set_thread_stat(src, ThreadSHMStat::DONE);
});
std::vector<torch::Tensor> tensor_list;
@ -765,8 +756,7 @@ void shm_send_tensor_list(int64_t handle,
int64_t dst) {
CPU_KERNEL_GUARD_IN(shm_send_tensor_list)
shm_send_tensor_list_impl(
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), dst,
tensor_list);
SHMManager::get_singleton_instance(handle)->get_shm_ctx(), tensor_list);
CPU_KERNEL_GUARD_OUT(shm_send_tensor_list)
}
@ -788,4 +778,4 @@ std::string join_shm_manager(int64_t handle, const std::string& name) {
TORCH_CHECK(shm_manager);
shm_manager->join(name);
return shm_manager->get_shm_ctx()->to_string();
}
}

View File

@ -50,27 +50,6 @@ void shm_send_tensor_list(int64_t handle,
std::vector<torch::Tensor> shm_recv_tensor_list(int64_t handle, int64_t src);
at::Tensor weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2,
const std::optional<at::Tensor>& bias,
bool is_vnni);
at::Tensor convert_weight_packed(at::Tensor& weight);
at::Tensor fused_experts_cpu(
at::Tensor& hidden_states, at::Tensor& w1, at::Tensor& w2,
at::Tensor& topk_weights, at::Tensor& topk_ids, bool inplace,
bool use_int8_w8a8, bool use_fp8_w8a16,
const std::optional<at::Tensor>& w1_scale,
const std::optional<at::Tensor>& w2_scale,
const std::optional<std::vector<int64_t>> block_size,
const std::optional<at::Tensor>& a1_scale,
const std::optional<at::Tensor>& a2_scale, bool is_vnni);
at::Tensor int8_scaled_mm_with_quant(at::Tensor& mat1, at::Tensor& mat2,
at::Tensor& scales2,
const std::optional<at::Tensor>& bias,
at::ScalarType out_dtype, bool is_vnni);
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops
@ -151,21 +130,17 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
// Quantization
#if defined(__AVX512F__) || defined(__aarch64__)
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
#ifdef __AVX512F__
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale,"
"Tensor? azp) -> ()",
{stride_tag});
"Tensor? azp) -> ()");
ops.impl("static_scaled_int8_quant", torch::kCPU, &static_scaled_int8_quant);
// Compute int8 quantized tensor and scaling factor
ops.def(
"dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale, "
"Tensor!? azp) -> ()",
{stride_tag});
"Tensor!? azp) -> ()");
ops.impl("dynamic_scaled_int8_quant", torch::kCPU,
&dynamic_scaled_int8_quant);
// W8A8 GEMM, supporting symmetric per-tensor or per-row/column
@ -173,8 +148,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()",
{stride_tag});
" Tensor b_scales, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm", torch::kCPU, &int8_scaled_mm);
// w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
@ -182,8 +156,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()",
{stride_tag});
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCPU, &int8_scaled_mm_azp);
#elif defined(__powerpc64__)
// Compute int8 quantized tensor for given scaling factor.
@ -236,28 +209,6 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("shm_recv_tensor_list(int handle, int src) -> Tensor[](a)",
&shm_recv_tensor_list);
#endif
// sgl-kernels
#if defined(__AVX512BF16__) && defined(__AVX512F__) && defined(__AVX512VNNI__)
ops.def(
"weight_packed_linear(Tensor(a0!) mat1, Tensor(a1!) mat2, Tensor(a2!)? "
"bias, bool is_vnni) -> Tensor");
ops.impl("weight_packed_linear", torch::kCPU, &weight_packed_linear);
ops.def("convert_weight_packed(Tensor! weight) -> Tensor");
ops.impl("convert_weight_packed", torch::kCPU, &convert_weight_packed);
ops.def(
"fused_experts_cpu(Tensor! hidden_states, Tensor w1, Tensor w2, Tensor "
"topk_weights, Tensor topk_ids, bool inplace, bool use_int8_w8a8, bool "
"use_fp8_w8a16, Tensor? w1_scale, Tensor? w2_scale, SymInt[]? "
"block_size, Tensor? a1_scale, Tensor? a2_scale, bool is_vnni) -> "
"Tensor");
ops.impl("fused_experts_cpu", torch::kCPU, &fused_experts_cpu);
ops.def(
"int8_scaled_mm_with_quant(Tensor mat1, Tensor mat2, Tensor scales2, "
"Tensor? bias, ScalarType out_dtype, bool is_vnni) -> Tensor");
ops.impl("int8_scaled_mm_with_quant", torch::kCPU,
&int8_scaled_mm_with_quant);
#endif
}
TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {

View File

@ -4,10 +4,10 @@
#include <hip/hip_runtime.h>
#endif
#if defined(USE_ROCM) && defined(__GFX9__)
#define WARP_SIZE 64
#else
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#ifndef USE_ROCM

View File

@ -1,114 +0,0 @@
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/all.h>
#ifdef USE_ROCM
#include "quickreduce/quick_reduce.h"
quickreduce::fptr_t init_custom_qr(int64_t rank, int64_t world_size,
std::optional<int64_t> qr_max_size) {
if (world_size > 8)
throw std::invalid_argument("world size > 8 is not supported");
if (world_size == 6)
throw std::invalid_argument("world size == 6 is not supported");
if (world_size % 2 != 0)
throw std::invalid_argument("Odd num gpus is not supported for now");
if (rank < 0 || rank >= world_size)
throw std::invalid_argument("invalid rank passed in");
quickreduce::DeviceComms* fptr = new quickreduce::DeviceComms();
fptr->init(world_size, rank, qr_max_size);
return (quickreduce::fptr_t)fptr;
}
void qr_destroy(quickreduce::fptr_t _fa) {
if (_fa) {
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
fa->destroy();
delete fa;
}
}
torch::Tensor qr_get_handle(quickreduce::fptr_t _fa) {
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
hipIpcMemHandle_t handle = fa->get_handle();
auto options =
torch::TensorOptions().dtype(torch::kUInt8).device(torch::kCPU);
auto data_handle =
torch::empty({static_cast<int64_t>(sizeof(hipIpcMemHandle_t))}, options);
std::memcpy(data_handle.data_ptr(), &handle, sizeof(hipIpcMemHandle_t));
return data_handle;
}
void qr_open_handles(quickreduce::fptr_t _fa,
const std::vector<torch::Tensor>& handles) {
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
std::vector<hipIpcMemHandle_t> ipc_handles;
ipc_handles.reserve(handles.size());
for (auto& handle : handles) {
// Ensure the tensor is on the same device as the current device.
hipIpcMemHandle_t ipc_handle;
std::memcpy(&ipc_handle, handle.data_ptr(), sizeof(hipIpcMemHandle_t));
ipc_handles.push_back(ipc_handle);
}
fa->open_ipc_handles(ipc_handles);
}
void qr_all_reduce(quickreduce::fptr_t _fa, torch::Tensor& inp,
torch::Tensor& out, int64_t quant_level, bool cast_bf2half) {
auto fa = reinterpret_cast<quickreduce::DeviceComms*>(_fa);
const at::cuda::OptionalCUDAGuard device_guard(device_of(inp));
auto stream = at::cuda::getCurrentHIPStreamMasqueradingAsCUDA();
TORCH_CHECK_EQ(inp.scalar_type(), out.scalar_type());
TORCH_CHECK_EQ(inp.numel(), out.numel());
TORCH_CHECK_LE(out.numel(), fa->kMaxProblemSize);
if (out.scalar_type() == at::ScalarType::Half) {
fa->allreduce<half, false>(reinterpret_cast<half*>(inp.data_ptr()),
reinterpret_cast<half*>(out.data_ptr()),
out.numel(), quant_level, stream);
} else if (out.scalar_type() == at::ScalarType::BFloat16) {
if (cast_bf2half) {
fa->allreduce<half, true>(reinterpret_cast<half*>(inp.data_ptr()),
reinterpret_cast<half*>(out.data_ptr()),
out.numel(), quant_level, stream);
} else {
fa->allreduce<quickreduce::nv_bfloat16, false>(
reinterpret_cast<quickreduce::nv_bfloat16*>(inp.data_ptr()),
reinterpret_cast<quickreduce::nv_bfloat16*>(out.data_ptr()),
out.numel(), quant_level, stream);
}
} else {
throw std::runtime_error(
"quick allreduce only supports float16 and bfloat16");
}
}
int64_t qr_max_size() {
// The default is 2GB (2,147,483,648 bytes)
return static_cast<int64_t>(std::numeric_limits<int32_t>::max()) + 1;
}
#define INSTANTIATE_FOR_WORLDSIZE(T, Codec, cast_bf2half) \
template struct quickreduce::AllReduceTwoshot<T, Codec<T, 2>, \
cast_bf2half>; \
template struct quickreduce::AllReduceTwoshot<T, Codec<T, 4>, \
cast_bf2half>; \
template struct quickreduce::AllReduceTwoshot<T, Codec<T, 8>, cast_bf2half>;
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecFP, false)
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ4, false)
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ6, false)
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ8, false)
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecFP, true)
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ4, true)
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ6, true)
INSTANTIATE_FOR_WORLDSIZE(quickreduce::nv_bfloat16, quickreduce::CodecQ8, true)
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecFP, false)
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecQ4, false)
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecQ6, false)
INSTANTIATE_FOR_WORLDSIZE(half, quickreduce::CodecQ8, false)
#endif // USE_ROCM

View File

@ -153,7 +153,7 @@ struct ScaledEpilogueBias
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -210,7 +210,7 @@ struct ScaledEpilogueBiasAzp
EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -288,7 +288,7 @@ struct ScaledEpilogueBiasAzpToken
EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:

View File

@ -195,7 +195,7 @@ struct ScaledEpilogueBias
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -238,7 +238,7 @@ struct ScaledEpilogueColumnBias
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -295,7 +295,7 @@ struct ScaledEpilogueBiasAzp
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAzp>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
@ -371,7 +371,7 @@ struct ScaledEpilogueBiasAzpToken
cutlass::epilogue::fusion::Sm90EVT<ComputeScaleB, ScaleB, EVTComputeAcc>;
using ComputeScaleBiasA = cutlass::epilogue::fusion::Sm90Compute<
cutlass::homogeneous_multiply_add, ElementD, float,
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:

View File

@ -45,6 +45,7 @@
#include "cute/algorithm/functional.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cute/algorithm/gemm.hpp"
#include "cute/tensor_predicate.hpp"
#include "cute/numeric/arithmetic_tuple.hpp"
#include "cutlass_extensions/gemm/dispatch_policy.hpp"

View File

@ -0,0 +1,660 @@
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d_fwd.cu
// and https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d_update.cu
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "causal_conv1d.h"
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#ifdef USE_ROCM
namespace cub = hipcub;
#endif
#include "static_switch.h"
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
if (ITYPE == at::ScalarType::Half) { \
using input_t = at::Half; \
using weight_t = at::Half; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::BFloat16) { \
using input_t = at::BFloat16; \
using weight_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::Float) { \
using input_t = float; \
using weight_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
}
template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);
template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream);
void set_conv_params_fwd(ConvParamsBase &params,
// sizes
const size_t batch,
const size_t dim,
const size_t seqlen,
const size_t width,
// device pointers
const at::Tensor x,
const at::Tensor weight,
const at::Tensor out,
const std::optional<at::Tensor>& bias,
bool silu_activation,
int64_t pad_slot_id,
const std::optional<at::Tensor>& query_start_loc = std::nullopt,
const std::optional<at::Tensor>& cache_indices = std::nullopt,
const std::optional<at::Tensor>& has_initial_state = std::nullopt) {
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.dim = dim;
params.seqlen = seqlen;
params.width = width;
params.pad_slot_id = pad_slot_id;
params.silu_activation = silu_activation;
// Set the pointers and strides.
params.x_ptr = x.data_ptr();
params.weight_ptr = weight.data_ptr();
params.bias_ptr = bias.has_value() ? bias.value().data_ptr() : nullptr;
params.out_ptr = out.data_ptr();
// All stride are in elements, not bytes.
params.query_start_loc_ptr = query_start_loc.has_value() ? query_start_loc.value().data_ptr() : nullptr;
params.cache_indices_ptr = cache_indices.has_value() ? cache_indices.value().data_ptr() : nullptr;
params.has_initial_state_ptr = has_initial_state.has_value() ? has_initial_state.value().data_ptr() : nullptr;
const bool varlen = params.query_start_loc_ptr != nullptr;
params.x_batch_stride = x.stride(varlen ? 1 : 0);
params.x_c_stride = x.stride(varlen ? 0 : 1);
params.x_l_stride = x.stride(varlen ? 1 : -1);
params.weight_c_stride = weight.stride(0);
params.weight_width_stride = weight.stride(1);
params.out_batch_stride = out.stride(varlen ? 1 : 0);
params.out_c_stride = out.stride(varlen ? 0 : 1);
params.out_l_stride = out.stride(varlen ? 1 : -1);
}
void causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
const std::optional<at::Tensor> &bias_,
const std::optional<at::Tensor> &conv_states,
const std::optional<at::Tensor> &query_start_loc,
const std::optional<at::Tensor> &cache_indices,
const std::optional<at::Tensor> &has_initial_state,
bool silu_activation,
// used to identify padding entries if cache_indices provided
// in case of padding, the kernel will return early
int64_t pad_slot_id) {
auto input_type = x.scalar_type();
auto weight_type = weight.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
TORCH_CHECK(x.is_cuda());
TORCH_CHECK(weight.is_cuda());
const bool varlen = query_start_loc.has_value() ? true : false;
const auto sizes = x.sizes();
const int batch_size = varlen ? query_start_loc.value().sizes()[0] - 1 : sizes[0];
const int dim = varlen ? sizes[0] : sizes[1];
const int seqlen = varlen ? sizes[1] : sizes[2];
const int width = weight.size(-1);
if (varlen){
CHECK_SHAPE(x, dim, seqlen);
}
else {
CHECK_SHAPE(x, batch_size, dim, seqlen);
}
CHECK_SHAPE(weight, dim, width);
if (bias_.has_value()) {
auto bias = bias_.value();
TORCH_CHECK(bias.scalar_type() == weight_type);
TORCH_CHECK(bias.is_cuda());
TORCH_CHECK(bias.stride(-1) == 1);
CHECK_SHAPE(bias, dim);
}
if (has_initial_state.has_value()) {
auto has_initial_state_ = has_initial_state.value();
TORCH_CHECK(has_initial_state_.scalar_type() == at::ScalarType::Bool);
TORCH_CHECK(has_initial_state_.is_cuda());
CHECK_SHAPE(has_initial_state_, batch_size);
}
if (query_start_loc.has_value()) {
auto query_start_loc_ = query_start_loc.value();
TORCH_CHECK(query_start_loc_.scalar_type() == at::ScalarType::Int);
TORCH_CHECK(query_start_loc_.is_cuda());
}
if (cache_indices.has_value()) {
auto cache_indices_ = cache_indices.value();
TORCH_CHECK(cache_indices_.scalar_type() == at::ScalarType::Int);
TORCH_CHECK(cache_indices_.is_cuda());
CHECK_SHAPE(cache_indices_, batch_size);
}
at::Tensor out = x;
ConvParamsBase params;
set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
bias_,
silu_activation,
pad_slot_id,
query_start_loc,
cache_indices,
has_initial_state
);
if (conv_states.has_value()) {
auto conv_states_ = conv_states.value();
TORCH_CHECK(conv_states_.scalar_type() == input_type);
TORCH_CHECK(conv_states_.is_cuda());
params.conv_states_ptr = conv_states_.data_ptr();
params.conv_states_batch_stride = conv_states_.stride(0);
params.conv_states_c_stride = conv_states_.stride(1);
params.conv_states_l_stride = conv_states_.stride(2);
} else {
params.conv_states_ptr = nullptr;
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
});
}
void causal_conv1d_update(const at::Tensor &x,
const at::Tensor &conv_state,
const at::Tensor &weight,
const std::optional<at::Tensor> &bias_,
bool silu_activation,
const std::optional<at::Tensor> &cache_seqlens_,
const std::optional<at::Tensor> &conv_state_indices_,
// used to identify padding entries if cache_indices provided
// in case of padding, the kernel will return early
int64_t pad_slot_id) {
auto input_type = x.scalar_type();
auto weight_type = weight.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == input_type, "weight type must equal to input type, other variations are disabled due to binary size limitations");
TORCH_CHECK(conv_state.scalar_type() == input_type);
TORCH_CHECK(x.is_cuda());
TORCH_CHECK(conv_state.is_cuda());
TORCH_CHECK(weight.is_cuda());
const auto sizes = x.sizes();
const int batch_size = sizes[0];
const int dim = sizes[1];
const int seqlen = sizes[2];
const int width = weight.size(-1);
const int conv_state_len = conv_state.size(2);
TORCH_CHECK(conv_state_len >= width - 1);
CHECK_SHAPE(x, batch_size, dim, seqlen);
CHECK_SHAPE(weight, dim, width);
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
if (bias_.has_value()) {
auto bias = bias_.value();
TORCH_CHECK(bias.scalar_type() == weight_type);
TORCH_CHECK(bias.is_cuda());
TORCH_CHECK(bias.stride(-1) == 1);
CHECK_SHAPE(bias, dim);
}
at::Tensor out = x;
ConvParamsBase params;
set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
bias_,
silu_activation,
pad_slot_id);
params.conv_state_ptr = conv_state.data_ptr();
params.conv_state_len = conv_state_len;
// All stride are in elements, not bytes.
params.conv_state_batch_stride = conv_state.stride(0);
params.conv_state_c_stride = conv_state.stride(1);
params.conv_state_l_stride = conv_state.stride(2);
if (cache_seqlens_.has_value()) {
auto cache_seqlens = cache_seqlens_.value();
TORCH_CHECK(cache_seqlens.scalar_type() == torch::kInt32);
TORCH_CHECK(cache_seqlens.is_cuda());
TORCH_CHECK(cache_seqlens.stride(-1) == 1);
CHECK_SHAPE(cache_seqlens, batch_size);
params.cache_seqlens = cache_seqlens.data_ptr<int32_t>();
} else {
params.cache_seqlens = nullptr;
}
if (conv_state_indices_.has_value()) {
auto conv_state_indices = conv_state_indices_.value();
TORCH_CHECK(conv_state_indices.scalar_type() == torch::kInt32)
TORCH_CHECK(conv_state_indices.is_cuda());
TORCH_CHECK(conv_state_indices.stride(0) == 1)
CHECK_SHAPE(conv_state_indices, batch_size);
int conv_state_entries = conv_state.size(0);
CHECK_SHAPE(conv_state, conv_state_entries, dim, conv_state_len);
params.conv_state_indices_ptr = conv_state_indices.data_ptr<int32_t>();
} else {
CHECK_SHAPE(conv_state, batch_size, dim, conv_state_len);
params.conv_state_indices_ptr = nullptr;
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
});
}
template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_fwd_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
static_assert(kWidth <= kNElts);
static constexpr bool kIsVecLoad = kIsVecLoad_;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
static constexpr int kSmemIOSize = kIsVecLoad
? 0
: custom_max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_fwd_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNElts = Ktraits::kNElts;
constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
using input_t = typename Ktraits::input_t;
using vec_t = typename Ktraits::vec_t;
using weight_t = typename Ktraits::weight_t;
// Shared memory.
extern __shared__ char smem_[];
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
const bool kVarlen = params.query_start_loc_ptr != nullptr;
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y;
const int *query_start_loc = kVarlen ? reinterpret_cast<int *>(params.query_start_loc_ptr) : nullptr;
const int sequence_start_index = kVarlen ? query_start_loc[batch_id] : batch_id;
const int seqlen = kVarlen ? query_start_loc[batch_id + 1] - sequence_start_index : params.seqlen;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + sequence_start_index * params.x_batch_stride
+ channel_id * params.x_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + sequence_start_index * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
bool has_initial_state = params.has_initial_state_ptr == nullptr ? false
: reinterpret_cast<bool *>(params.has_initial_state_ptr)[batch_id];
int* cache_indices = params.cache_indices_ptr == nullptr ? nullptr
: reinterpret_cast<int *>(params.cache_indices_ptr);
int cache_index = cache_indices == nullptr ? batch_id : cache_indices[batch_id];
// cache_index == params.pad_slot_id is defined as padding, so we exit early
if (cache_index == params.pad_slot_id){
return;
}
input_t *conv_states = params.conv_states_ptr == nullptr ? nullptr
: reinterpret_cast<input_t *>(params.conv_states_ptr) + cache_index * params.conv_states_batch_stride + channel_id * params.conv_states_c_stride;
// Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
if (tidx == 0) {
input_t initial_state[kNElts] = {0};
if (has_initial_state) {
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){ initial_state[kNElts - 1 - (kWidth - 2) + w ] = conv_states[w]; }
}
smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(initial_state)[0];
}
float weight_vals[kWidth];
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
constexpr int kChunkSize = kNThreads * kNElts;
const int n_chunks = (seqlen + kChunkSize - 1) / kChunkSize;
for (int chunk = 0; chunk < n_chunks; ++chunk) {
input_t x_vals_load[2 * kNElts] = {0};
if constexpr(kIsVecLoad) {
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (seqlen - chunk * kChunkSize) / kNElts);
} else {
__syncthreads();
typename Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), seqlen - chunk * kChunkSize);
}
x += kChunkSize;
__syncthreads();
// Thread kNThreads - 1 don't write yet, so that thread 0 can read
// the last elements of the previous chunk.
if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
__syncthreads();
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
__syncthreads();
// Now thread kNThreads - 1 can write the last elements of the current chunk.
if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
float x_vals[2 * kNElts];
#pragma unroll
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
float out_vals[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = bias_val;
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
}
}
if (params.silu_activation) {
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
}
}
input_t out_vals_store[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
if constexpr(kIsVecLoad) {
typename Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (seqlen - chunk * kChunkSize) / kNElts);
} else {
typename Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, seqlen - chunk * kChunkSize);
}
out += kChunkSize;
int final_state_position = ((seqlen - (kWidth - 1)) - (n_chunks - 1) * kChunkSize);
// in case the final state is separated between the last "smem_exchange" and
// and the one before it (chunk = n_chunks - 1 and chunk = n_chunks - 2),
// (which occurs when `final_state_position` is a non-positive index)
// we load the correct data from smem_exchange from both chunks, the last chunk iteration and the one before it
if (conv_states != nullptr && final_state_position < 0 && seqlen > kWidth){
input_t vals_load[kNElts] = {0};
if ((chunk == n_chunks - 2) && (tidx == kNThreads - 1)){
// chunk = n_chunks - 2, a segment of the final state sits in the last index
reinterpret_cast<vec_t *>(vals_load)[0] = smem_exchange[kNThreads - 1];
#pragma unroll
for (int w = 0; w < -final_state_position; ++w){
conv_states[w] = vals_load[kNElts + final_state_position + w];
}
}
if ((chunk == n_chunks - 1) && tidx == 0){
// chunk = n_chunks - 1, the second segment of the final state first positions
reinterpret_cast<vec_t *>(vals_load)[0] = smem_exchange[0];
for (int w = -final_state_position; w < kWidth - 1; ++w){
conv_states[w] = vals_load[w + final_state_position];
}
return;
}
}
}
// Final state is stored in the smem_exchange last token slot,
// in case seqlen < kWidth, we would need to take the final state from the
// initial state which is stored in conv_states
// in case seqlen > kWidth, we would need to load the last kWidth - 1 data
// and load it into conv_state accordingly
int last_thread = ((seqlen - (kWidth - 1)) - (n_chunks - 1) * kChunkSize) / kNElts;
if (conv_states != nullptr && tidx == last_thread) {
input_t x_vals_load[kNElts * 2] = {0};
// in case we are on the first kWidth tokens
if (last_thread == 0 && seqlen < kWidth){
// Need to take the initial state
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[0];
const int offset = seqlen - (kWidth - 1);
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){
// pad the existing state
if ((w - seqlen) >= 0 && has_initial_state) { conv_states[w - seqlen] = conv_states[w]; }
else if ((w - seqlen) >= 0 && !has_initial_state) { conv_states[w - seqlen] = input_t(0.0f); }
}
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){
if (offset + w >= 0)
conv_states[w] = x_vals_load[offset + w ];
}
}
else {
// in case the final state is in between the threads data
const int offset = ((seqlen - (kWidth - 1)) % (kNElts));
if ((offset + kWidth - 2) >= kNElts && (last_thread + 1 < kNThreads)){
// In case last_thread == kNThreads - 1, accessing last_thread + 1 will result in a
// illegal access error on H100.
// Therefore, we access last_thread + 1, only if the final state data sits there
reinterpret_cast<vec_t *>(x_vals_load)[1] = smem_exchange[last_thread + 1];
}
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[last_thread];
#pragma unroll
for (int w = 0; w < kWidth - 1; ++w){
conv_states[w] = x_vals_load[offset + w ];
}
}
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
const bool kVarlen = params.query_start_loc_ptr != nullptr;
BOOL_SWITCH(params.seqlen % kNElts == 0 && !kVarlen, kIsVecLoad, [&] {
using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
constexpr int kSmemSize = Ktraits::kSmemSize;
dim3 grid(params.batch, params.dim);
auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
std::cerr << "Warning (causal_conv1d fwd launch): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl;
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template<int kNThreads_, int kWidth_, typename input_t_, typename weight_t_>
struct Causal_conv1d_update_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
};
template<typename Ktraits, bool kIsCircularBuffer>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_update_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y * kNThreads + tidx;
if (channel_id >= params.dim) return;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ channel_id * params.x_c_stride;
// If params.conv_state_batch_indices is set, then the conv state is gathered from the conv state tensor
// along the batch axis. Otherwise, the conv state coordinate is the same as the batch id.
const int conv_state_batch_coord = params.conv_state_indices_ptr == nullptr
? batch_id
: params.conv_state_indices_ptr[batch_id];
// conv_state_batch_coord == params.pad_slot_id is defined as padding so we exit early
if (conv_state_batch_coord == params.pad_slot_id){
return;
}
input_t *conv_state = reinterpret_cast<input_t *>(params.conv_state_ptr)
+ conv_state_batch_coord * params.conv_state_batch_stride
+ channel_id * params.conv_state_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
int state_len = params.conv_state_len;
int advance_len = params.seqlen;
int cache_seqlen = kIsCircularBuffer ? params.cache_seqlens[batch_id] % state_len : 0;
int update_idx = cache_seqlen - (kWidth - 1);
update_idx = update_idx < 0 ? update_idx + state_len : update_idx;
float weight_vals[kWidth] = {0};
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
float x_vals[kWidth] = {0};
if constexpr (!kIsCircularBuffer) {
#pragma unroll 2
for (int i = 0; i < state_len - advance_len - (kWidth - 1); ++i) {
conv_state[i * params.conv_state_l_stride] = conv_state[(i + advance_len) * params.conv_state_l_stride];
}
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i) {
input_t state_val = conv_state[(state_len - (kWidth - 1) + i) * params.conv_state_l_stride];
if (i < advance_len + (kWidth - 1) && state_len - advance_len - (kWidth - 1) + i >= 0) {
conv_state[(state_len - advance_len - (kWidth - 1) + i) * params.conv_state_l_stride] = state_val;
}
x_vals[i] = float(state_val);
}
} else {
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i, update_idx = update_idx + 1 >= state_len ? update_idx + 1 - state_len : update_idx + 1) {
input_t state_val = conv_state[update_idx * params.conv_state_l_stride];
x_vals[i] = float(state_val);
}
}
#pragma unroll 2
for (int i = 0; i < params.seqlen; ++i) {
input_t x_val = x[i * params.x_l_stride];
if constexpr (!kIsCircularBuffer) {
if (i < advance_len && state_len - advance_len + i >= 0) {
conv_state[(state_len - advance_len + i) * params.conv_state_l_stride] = x_val;
}
} else {
conv_state[update_idx * params.conv_state_l_stride] = x_val;
++update_idx;
update_idx = update_idx >= state_len ? update_idx - state_len : update_idx;
}
x_vals[kWidth - 1] = float(x_val);
float out_val = bias_val;
#pragma unroll
for (int j = 0; j < kWidth; ++j) { out_val += weight_vals[j] * x_vals[j]; }
if (params.silu_activation) { out_val = out_val / (1 + expf(-out_val)); }
out[i * params.out_l_stride] = input_t(out_val);
// Shift the input buffer by 1
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i) { x_vals[i] = x_vals[i + 1]; }
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_update_launch(ConvParamsBase &params, cudaStream_t stream) {
using Ktraits = Causal_conv1d_update_kernel_traits<kNThreads, kWidth, input_t, weight_t>;
dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
auto kernel = params.cache_seqlens == nullptr
? &causal_conv1d_update_kernel<Ktraits, false>
: &causal_conv1d_update_kernel<Ktraits, true>;
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_update_launch<64, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_update_launch<64, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_update_launch<64, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_update_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);

View File

@ -0,0 +1,159 @@
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d.h
#pragma once
#include <cuda_bf16.h>
#include <cuda_fp16.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
struct ConvParamsBase {
using index_t = uint32_t;
int batch, dim, seqlen, width;
int64_t pad_slot_id;
bool silu_activation;
index_t x_batch_stride;
index_t x_c_stride;
index_t x_l_stride;
index_t weight_c_stride;
index_t weight_width_stride;
index_t out_batch_stride;
index_t out_c_stride;
index_t out_l_stride;
int conv_state_len;
index_t conv_state_batch_stride;
index_t conv_state_c_stride;
index_t conv_state_l_stride;
// Common data pointers.
void *__restrict__ x_ptr;
void *__restrict__ weight_ptr;
void *__restrict__ bias_ptr;
void *__restrict__ out_ptr;
void *__restrict__ conv_state_ptr;
void *__restrict__ query_start_loc_ptr;
void *__restrict__ has_initial_state_ptr;
void *__restrict__ cache_indices_ptr;
int32_t *__restrict__ cache_seqlens;
// For the continuous batching case. Makes it so that the mamba state for
// the current batch doesn't need to be a contiguous tensor.
int32_t *__restrict__ conv_state_indices_ptr;
void *__restrict__ seq_idx_ptr;
// No __restrict__ since initial_states could be the same as final_states.
void * initial_states_ptr;
index_t initial_states_batch_stride;
index_t initial_states_l_stride;
index_t initial_states_c_stride;
void * final_states_ptr;
index_t final_states_batch_stride;
index_t final_states_l_stride;
index_t final_states_c_stride;
void * conv_states_ptr;
index_t conv_states_batch_stride;
index_t conv_states_l_stride;
index_t conv_states_c_stride;
};
#ifndef USE_ROCM
#include <cuda_bf16.h>
template<typename T>
__device__ inline T shuffle_xor(T val, int offset) {
return __shfl_xor_sync(uint32_t(-1), val, offset);
}
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return std::max(ilist);
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return std::min(a, b);
}
#else
#include <hip/hip_bf16.h>
template<typename T>
__device__ inline T shuffle_xor(T val, int offset) {
return __shfl_xor(val, offset);
}
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return *std::max_element(ilist.begin(), ilist.end());
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return a < b ? a : b;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int BYTES> struct BytesToType {};
template<> struct BytesToType<16> {
using Type = uint4;
static_assert(sizeof(Type) == 16);
};
template<> struct BytesToType<8> {
using Type = uint64_t;
static_assert(sizeof(Type) == 8);
};
template<> struct BytesToType<4> {
using Type = uint32_t;
static_assert(sizeof(Type) == 4);
};
template<> struct BytesToType<2> {
using Type = uint16_t;
static_assert(sizeof(Type) == 2);
};
template<> struct BytesToType<1> {
using Type = uint8_t;
static_assert(sizeof(Type) == 1);
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct SumOp {
__device__ inline T operator()(T const & x, T const & y) { return x + y; }
};
template<int THREADS>
struct Allreduce {
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
constexpr int OFFSET = THREADS / 2;
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
return Allreduce<OFFSET>::run(x, op);
}
};
template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
return x;
}
};

View File

@ -0,0 +1,28 @@
// Inspired by
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/static_switch.h
#pragma once
/// @param COND - a boolean expression to switch by
/// @param CONST_NAME - a name given for the constexpr bool variable.
/// @param ... - code to execute for true and false
///
/// Usage:
/// ```
/// BOOL_SWITCH(flag, BoolConst, [&] {
/// some_function<BoolConst>(...);
/// });
/// ```
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
[&] { \
if (COND) { \
static constexpr bool CONST_NAME = true; \
return __VA_ARGS__(); \
} else { \
static constexpr bool CONST_NAME = false; \
return __VA_ARGS__(); \
} \
}()

View File

@ -7,11 +7,7 @@
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#ifdef USE_ROCM
#include <c10/hip/HIPException.h> // For C10_HIP_CHECK and C10_HIP_KERNEL_LAUNCH_CHECK
#else
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#endif
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#ifndef USE_ROCM
#include <cub/block/block_load.cuh>
@ -316,25 +312,19 @@ void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
// kIsVariableB, kIsVariableC and kHasZ are all set to True to reduce binary size
constexpr bool kIsVariableB = true;
constexpr bool kIsVariableC = true;
constexpr bool kHasZ = true;
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
BOOL_SWITCH(params.query_start_loc_ptr != nullptr , kVarlen, [&] {
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t>;
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
dim3 grid(params.batch, params.dim / kNRows);
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
#ifdef USE_ROCM
C10_HIP_CHECK(hipFuncSetAttribute(
reinterpret_cast<const void*>(kernel), hipFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
#else
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
#endif
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
BOOL_SWITCH(params.query_start_loc_ptr != nullptr , kVarlen, [&] {
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t>;
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
dim3 grid(params.batch, params.dim / kNRows);
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
}
@ -622,20 +612,19 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
at::Tensor z, out_z;
const bool has_z = z_.has_value();
if (has_z) {
z = z_.value();
TORCH_CHECK(z.scalar_type() == input_type);
TORCH_CHECK(z.is_cuda());
TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
if (varlen){
CHECK_SHAPE(z, dim, seqlen);
} else {
CHECK_SHAPE(z, batch_size, dim, seqlen);
}
out_z = z;
TORCH_CHECK(has_z, "has_z = False is disabled in favor of reduced binary size")
z = z_.value();
TORCH_CHECK(z.scalar_type() == input_type);
TORCH_CHECK(z.is_cuda());
TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
if (varlen){
CHECK_SHAPE(z, dim, seqlen);
} else {
CHECK_SHAPE(z, batch_size, dim, seqlen);
}
out_z = z;
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
at::Tensor out = delta;
TORCH_CHECK(ssm_states.scalar_type() == input_type);
@ -658,9 +647,12 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
);
const at::cuda::OptionalCUDAGuard device_guard(device_of(u));
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)u.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
});
}

View File

@ -1255,6 +1255,8 @@ __global__ void Marlin(
if constexpr (has_zp && !is_zp_float) {
if (is_new_zp) {
if constexpr (group_blocks == -1) is_first_matmul_in_slice = false;
FragB frag_zp_0;
FragB frag_zp_1;
int zp_quant_0, zp_quant_1;
if constexpr (w_type.size_bits() == 4) {

View File

@ -239,7 +239,7 @@ void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
torch::Tensor& output) // [num_tokens, hidden_size]
{
const int hidden_size = input.size(-1);
const auto num_tokens = output.numel() / hidden_size;
const int num_tokens = output.numel() / hidden_size;
const int topk = input.size(1);
dim3 grid(num_tokens);

View File

@ -492,7 +492,7 @@ void topk_softmax(
torch::Tensor& gating_output) // [num_tokens, num_experts]
{
const int num_experts = gating_output.size(-1);
const auto num_tokens = gating_output.numel() / num_experts;
const int num_tokens = gating_output.numel() / num_experts;
const int topk = topk_weights.size(-1);
const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0);

View File

@ -326,6 +326,22 @@ void selective_scan_fwd(const torch::Tensor& u, const torch::Tensor& delta,
const std::optional<torch::Tensor>& has_initial_state,
const torch::Tensor& ssm_states, int64_t pad_slot_id);
void causal_conv1d_update(const at::Tensor& x, const at::Tensor& conv_state,
const at::Tensor& weight,
const std::optional<at::Tensor>& bias_,
bool silu_activation,
const std::optional<at::Tensor>& cache_seqlens_,
const std::optional<at::Tensor>& conv_state_indices_,
int64_t pad_slot_id);
void causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight,
const std::optional<at::Tensor>& bias_,
const std::optional<at::Tensor>& conv_states,
const std::optional<at::Tensor>& query_start_loc,
const std::optional<at::Tensor>& cache_indices,
const std::optional<at::Tensor>& has_initial_state,
bool silu_activation, int64_t pad_slot_id);
using fptr_t = int64_t;
fptr_t init_custom_ar(const std::vector<int64_t>& fake_ipc_ptrs,
torch::Tensor& rank_data, int64_t rank,
@ -344,14 +360,3 @@ std::tuple<int64_t, torch::Tensor> allocate_shared_buffer_and_handle(
int64_t size);
int64_t open_mem_handle(torch::Tensor& mem_handle);
void free_shared_buffer(int64_t buffer);
#ifdef USE_ROCM
fptr_t init_custom_qr(int64_t rank, int64_t world_size,
std::optional<int64_t> qr_max_size = std::nullopt);
void qr_destroy(fptr_t _fa);
torch::Tensor qr_get_handle(fptr_t _fa);
void qr_open_handles(fptr_t _fa, const std::vector<torch::Tensor>& handles);
void qr_all_reduce(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out,
int64_t quant_level, bool cast_bf2half = false);
int64_t qr_max_size();
#endif

View File

@ -162,11 +162,10 @@ __global__ void dynamic_scaled_int8_quant_kernel(
// calculate for absmax
float thread_max = 0.f;
vectorize_read_with_alignment<16>(
row_in, hidden_size, tid, stride, [&] __device__(const scalar_t& src) {
const float v = fabsf(static_cast<float>(src));
thread_max = fmaxf(thread_max, v);
});
for (int i = tid; i < hidden_size; i += stride) {
const auto v = fabsf(static_cast<float>(row_in[i]));
thread_max = fmaxf(thread_max, v);
}
using BlockReduce = cub::BlockReduce<float, 256>;
__shared__ typename BlockReduce::TempStorage tmp;
float block_max = BlockReduce(tmp).Reduce(thread_max, cub::Max{}, blockDim.x);
@ -233,10 +232,9 @@ __global__ void dynamic_scaled_int8_azp_quant_kernel(
// 1. calculate min & max
MinMax thread_mm;
vectorize_read_with_alignment<16>(row_in, hidden_size, tid, stride,
[&] __device__(const scalar_t& src) {
thread_mm += static_cast<float>(src);
});
for (int i = tid; i < hidden_size; i += stride) {
thread_mm += static_cast<float>(row_in[i]);
}
using BlockReduce = cub::BlockReduce<MinMax, 256>;
__shared__ typename BlockReduce::TempStorage tmp;

View File

@ -51,8 +51,7 @@ struct cutlass_3x_gemm {
// These are the minimum alignments needed for the kernels to compile
static constexpr int AlignmentAB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentCD =
128 / cutlass::sizeof_bits<ElementD>::value;
static constexpr int AlignmentCD = 4;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
@ -145,65 +144,4 @@ struct cutlass_3x_gemm_sm100 {
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue, void>;
};
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
struct cutlass_3x_gemm_sm120 {
using ElementAB = ElementAB_;
using LayoutA = cutlass::layout::RowMajor;
static constexpr int AlignmentA =
128 / cutlass::sizeof_bits<ElementAB>::value;
using LayoutB = cutlass::layout::ColumnMajor;
static constexpr int AlignmentB =
128 / cutlass::sizeof_bits<ElementAB>::value;
using ElementC = void;
using LayoutC = cutlass::layout::RowMajor;
static constexpr int AlignmentC =
128 / cutlass::sizeof_bits<ElementD_>::value;
using ElementD = ElementD_;
using LayoutD = cutlass::layout::RowMajor;
static constexpr int AlignmentD = AlignmentC;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using Epilogue = Epilogue_<ElementAcc, ElementD, TileShape>;
// MMA type
using ElementAccumulator = float;
// Epilogue types
using ElementBias = cutlass::half_t;
using ElementCompute = float;
using ElementAux = ElementD;
using LayoutAux = LayoutD;
using ElementAmax = float;
using EVTCompute = typename Epilogue::EVTCompute;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm120, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementCompute, ElementC, LayoutC, AlignmentC,
ElementD, LayoutD, AlignmentD, EpilogueSchedule,
EVTCompute>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm120, cutlass::arch::OpClassTensorOp, ElementAB,
LayoutA, AlignmentA, ElementAB, LayoutB, AlignmentB,
ElementAccumulator, TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue, void>;
};
} // namespace vllm

View File

@ -36,12 +36,6 @@ void cutlass_scaled_mm_sm100_fp8(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
void cutlass_scaled_mm_sm120_fp8(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
void cutlass_scaled_mm_blockwise_sm100_fp8(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,

View File

@ -29,12 +29,26 @@ struct sm100_fp8_config_default {
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M256 {
// M in (64, 256]
// M in (128, 256]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using ClusterShape = Shape<_2, _2, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_2, _4, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
@ -43,26 +57,12 @@ struct sm100_fp8_config_M256 {
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M64 {
// M in (16, 64]
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_64, _64, _128>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M16 {
// M in [1, 16]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_64, _64, _128>;
using ClusterShape = Shape<_1, _4, _1>;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_3x_gemm_sm100<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
@ -82,27 +82,27 @@ inline void cutlass_gemm_sm100_fp8_dispatch(torch::Tensor& out,
using Cutlass3xGemmDefault =
typename sm100_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM16 =
typename sm100_fp8_config_M16<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm100_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm100_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM256 =
typename sm100_fp8_config_M256<InType, OutType, Epilogue>::Cutlass3xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(16), next_pow_2(m)); // next power of 2
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
if (mp2 <= 16) {
// m in [1, 16]
return cutlass_gemm_caller<Cutlass3xGemmM16>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 64) {
// m in (16, 64]
if (mp2 <= 64) {
// m in [1, 64]
return cutlass_gemm_caller<Cutlass3xGemmM64>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_gemm_caller<Cutlass3xGemmM128>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 256) {
// m in (64, 256]
// m in (128, 256]
return cutlass_gemm_caller<Cutlass3xGemmM256>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {

View File

@ -1,24 +0,0 @@
#include "scaled_mm_kernels.hpp"
#include "scaled_mm_sm120_fp8_dispatch.cuh"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
namespace vllm {
void cutlass_scaled_mm_sm120_fp8(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm120_fp8_epilogue<c3x::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias);
} else {
return cutlass_scaled_mm_sm120_fp8_epilogue<c3x::ScaledEpilogue>(
out, a, b, a_scales, b_scales);
}
}
} // namespace vllm

View File

@ -1,67 +0,0 @@
#pragma once
#include "scaled_mm.cuh"
#include "cutlass_gemm_caller.cuh"
/**
* This file defines Gemm kernel configurations for SM120 (fp8) based on the
* Gemm shape.
*/
namespace vllm {
using c3x::cutlass_gemm_caller;
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm120_fp8_config_default {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _1, _1>; // Only work with Shape<_1, _1, _1>
using Cutlass3xGemm =
cutlass_3x_gemm_sm120<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
inline void cutlass_gemm_sm120_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
using Cutlass3xGemmDefault =
typename sm120_fp8_config_default<InType, OutType,
Epilogue>::Cutlass3xGemm;
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
template <template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_mm_sm120_fp8_epilogue(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_args) {
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm120_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::bfloat16_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm120_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
}
}
} // namespace vllm

View File

@ -1,373 +0,0 @@
#include "core/registration.h"
#include <torch/all.h>
#include <cutlass/arch/arch.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/gett.hpp"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include <cassert>
using namespace cute;
template <typename ElementAB, typename ElementC, typename ElementAccumulator,
typename LayoutSFA, typename LayoutSFB, typename ScaleConfig>
__global__ void get_ggemm_starts(
int32_t* expert_offsets, ElementAB** a_offsets, ElementAB** b_offsets,
ElementC** out_offsets, ElementAccumulator** a_scale_offsets,
ElementAccumulator** b_scale_offsets, ElementAB* a_base_as_int,
ElementAB* b_base_as_int, ElementC* out_base_as_int,
ElementAccumulator* a_scale_base_as_int,
ElementAccumulator* b_scale_base_as_int, LayoutSFA* layout_sfa_base_as_int,
LayoutSFB* layout_sfb_base_as_int, int* problem_sizes) {
int expert_id = threadIdx.x;
if (expert_id >= gridDim.x * blockDim.x) {
return;
}
int m = problem_sizes[expert_id * 3];
int n = problem_sizes[expert_id * 3 + 1];
int k = problem_sizes[expert_id * 3 + 2];
int32_t expert_offset = expert_offsets[expert_id];
int a_stride = expert_offset * k;
int b_stride = expert_id * k * n;
int a_scale_stride = expert_offset * k / 128;
int b_scale_stride = expert_id * k * n / 128 / 128;
a_offsets[expert_id] = a_base_as_int + a_stride;
b_offsets[expert_id] = b_base_as_int + b_stride;
out_offsets[expert_id] = out_base_as_int + expert_offset * n;
a_scale_offsets[expert_id] = a_scale_base_as_int + a_scale_stride;
b_scale_offsets[expert_id] = b_scale_base_as_int + b_scale_stride;
LayoutSFA* layout_sfa_ptr = layout_sfa_base_as_int + expert_id;
LayoutSFB* layout_sfb_ptr = layout_sfb_base_as_int + expert_id;
*layout_sfa_ptr =
ScaleConfig::tile_atom_to_shape_SFA(cute::make_shape(m, n, k, 1));
*layout_sfb_ptr =
ScaleConfig::tile_atom_to_shape_SFB(cute::make_shape(m, n, k, 1));
}
#define __CALL_GET_STARTS_KERNEL(TENSOR_C_TYPE, C_TYPE, LayoutSFA, LayoutSFB, \
ScaleConfig) \
else if (out_tensors.dtype() == TENSOR_C_TYPE) { \
get_ggemm_starts<cutlass::float_e4m3_t, C_TYPE, float, LayoutSFA, \
LayoutSFB, ScaleConfig><<<1, num_experts, 0, stream>>>( \
static_cast<int32_t*>(expert_offsets.data_ptr()), \
static_cast<cutlass::float_e4m3_t**>(a_ptrs.data_ptr()), \
static_cast<cutlass::float_e4m3_t**>(b_ptrs.data_ptr()), \
static_cast<C_TYPE**>(out_ptrs.data_ptr()), \
static_cast<float**>(a_scales_ptrs.data_ptr()), \
static_cast<float**>(b_scales_ptrs.data_ptr()), \
static_cast<cutlass::float_e4m3_t*>(a_tensors.data_ptr()), \
static_cast<cutlass::float_e4m3_t*>(b_tensors.data_ptr()), \
static_cast<C_TYPE*>(out_tensors.data_ptr()), \
static_cast<float*>(a_scales.data_ptr()), \
static_cast<float*>(b_scales.data_ptr()), \
reinterpret_cast<LayoutSFA*>(layout_sfa.data_ptr()), \
reinterpret_cast<LayoutSFB*>(layout_sfb.data_ptr()), \
static_cast<int*>(problem_sizes.data_ptr())); \
}
template <typename LayoutSFA, typename LayoutSFB, typename ScaleConfig>
void run_get_ggemm_starts(
torch::Tensor const& expert_offsets, torch::Tensor& a_ptrs,
torch::Tensor& b_ptrs, torch::Tensor& out_ptrs,
torch::Tensor& a_scales_ptrs, torch::Tensor& b_scales_ptrs,
torch::Tensor const& a_tensors, torch::Tensor const& b_tensors,
torch::Tensor out_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& layout_sfa,
torch::Tensor const& layout_sfb, torch::Tensor const& problem_sizes) {
TORCH_CHECK(a_tensors.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
TORCH_CHECK(out_tensors.size(1) % 128 == 0 or out_tensors.size(0) % 128 == 0);
TORCH_CHECK(a_tensors.size(1) % 128 == 0 or a_tensors.size(0) % 128 == 0);
int num_experts = (int)expert_offsets.size(0);
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
if (false) {
}
__CALL_GET_STARTS_KERNEL(torch::kBFloat16, cutlass::bfloat16_t, LayoutSFA,
LayoutSFB, ScaleConfig)
__CALL_GET_STARTS_KERNEL(torch::kFloat16, cutlass::half_t, LayoutSFA,
LayoutSFB, ScaleConfig)
else {
TORCH_CHECK(false, "Unsupported output tensor type");
}
}
template <typename OutType, typename ScheduleConfig, typename LayoutD>
void run_blockwise_scaled_group_mm(
torch::Tensor& out_ptrs, const torch::Tensor& a_ptrs,
const torch::Tensor& b_ptrs, const torch::Tensor& a_scales_ptrs,
const torch::Tensor& b_scales_ptrs, const torch::Tensor& stride_a,
const torch::Tensor& stride_b, const torch::Tensor& stride_c,
const torch::Tensor& layout_sfa, const torch::Tensor& layout_sfb,
const torch::Tensor& problem_sizes, const torch::Tensor& expert_offsets) {
using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int, int, int>>;
// Types
using ElementA = cutlass::float_e4m3_t;
using ElementB = cutlass::float_e4m3_t;
using ElementC = OutType;
using ElementD = ElementC;
using ElementAccumulator = float;
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = LayoutD;
// Alignments
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
using ArchTag = cutlass::arch::Sm100;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag, OperatorClass, typename ScheduleConfig::MmaTileShape,
typename ScheduleConfig::ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto, ElementAccumulator,
ElementAccumulator, void, LayoutC*, AlignmentC, ElementD, LayoutC*,
AlignmentC, typename ScheduleConfig::EpilogueSchedule>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass, ElementA,
cute::tuple<LayoutA*, typename ScheduleConfig::LayoutSFA*>,
AlignmentA, ElementB,
cute::tuple<LayoutB*, typename ScheduleConfig::LayoutSFB*>,
AlignmentB, ElementAccumulator, typename ScheduleConfig::MmaTileShape,
typename ScheduleConfig::ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
typename ScheduleConfig::KernelSchedule>::CollectiveOp;
using GemmKernel =
cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop,
CollectiveEpilogue, void>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using StrideA = typename Gemm::GemmKernel::InternalStrideA;
using StrideB = typename Gemm::GemmKernel::InternalStrideB;
using StrideC = typename Gemm::GemmKernel::InternalStrideC;
using StrideD = typename Gemm::GemmKernel::InternalStrideD;
using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
int num_experts = (int)expert_offsets.size(0);
Gemm gemm_op;
// Mainloop Arguments
typename GemmKernel::MainloopArguments mainloop_args{
static_cast<const ElementA**>(a_ptrs.data_ptr()),
static_cast<StrideA*>(stride_a.data_ptr()),
static_cast<const ElementB**>(b_ptrs.data_ptr()),
static_cast<StrideB*>(stride_b.data_ptr()),
static_cast<const ElementAccumulator**>(a_scales_ptrs.data_ptr()),
reinterpret_cast<typename ScheduleConfig::LayoutSFA*>(
layout_sfa.data_ptr()),
static_cast<const ElementAccumulator**>(b_scales_ptrs.data_ptr()),
reinterpret_cast<typename ScheduleConfig::LayoutSFB*>(
layout_sfb.data_ptr())};
int device_id = a_ptrs.device().index();
static const cutlass::KernelHardwareInfo hw_info{
device_id, cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
device_id)};
// Epilogue Arguments
typename GemmKernel::EpilogueArguments epilogue_args{
{}, // epilogue.thread
nullptr,
static_cast<StrideC*>(stride_c.data_ptr()),
static_cast<ElementD**>(out_ptrs.data_ptr()),
static_cast<StrideC*>(stride_c.data_ptr())};
UnderlyingProblemShape* problem_sizes_as_shapes =
static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());
// Gemm Arguments
typename GemmKernel::Arguments args{
cutlass::gemm::GemmUniversalMode::kGrouped,
{num_experts, problem_sizes_as_shapes, nullptr},
mainloop_args,
epilogue_args,
hw_info};
at::cuda::CUDAGuard device_guard{(char)a_ptrs.device().index()};
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(a_ptrs.get_device());
auto can_implement_status = gemm_op.can_implement(args);
TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess,
"Failed to implement GEMM");
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a_ptrs.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto status = gemm_op.initialize(args, workspace.data_ptr(), stream);
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");
status = gemm_op.run(stream);
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}
template <typename OutType>
void blockwise_scaled_group_mm_dispatch_shape(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
const torch::Tensor& scales_a, const torch::Tensor& scales_b,
const torch::Tensor& problem_sizes, const torch::Tensor& expert_offsets) {
struct MmaConfig {
using ElementA = cutlass::float_e4m3_t;
using KernelSchedule =
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise1SmSm100;
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
1, 128, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
using LayoutC = cutlass::layout::RowMajor;
using MmaTileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _1, _1>;
};
int num_experts = (int)expert_offsets.size(0);
auto a_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto b_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto out_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto a_scales_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto b_scales_ptrs = torch::empty(
{num_experts},
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto layout_sfa = torch::empty(
{num_experts, 5},
torch::TensorOptions().dtype(torch::kInt32).device(a.device()));
auto layout_sfb = torch::empty(
{num_experts, 5},
torch::TensorOptions().dtype(torch::kInt32).device(a.device()));
auto stride_a = torch::full(
{num_experts}, a.size(1),
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto stride_b = torch::full(
{num_experts}, a.size(1),
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
auto stride_c = torch::full(
{num_experts}, output.size(1),
torch::TensorOptions().dtype(torch::kInt64).device(a.device()));
torch::TensorOptions options_int =
torch::TensorOptions().dtype(torch::kInt64).device(a.device());
run_get_ggemm_starts<typename MmaConfig::LayoutSFA,
typename MmaConfig::LayoutSFB,
typename MmaConfig::ScaleConfig>(
expert_offsets, a_ptrs, b_ptrs, out_ptrs, a_scales_ptrs, b_scales_ptrs, a,
b, output, scales_a, scales_b, layout_sfa, layout_sfb, problem_sizes);
run_blockwise_scaled_group_mm<OutType, MmaConfig,
typename MmaConfig::LayoutC>(
out_ptrs, a_ptrs, b_ptrs, a_scales_ptrs, b_scales_ptrs, stride_a,
stride_b, stride_c, layout_sfa, layout_sfb, problem_sizes,
expert_offsets);
}
void cutlass_blockwise_scaled_grouped_mm(
torch::Tensor& output, const torch::Tensor& a, const torch::Tensor& b,
const torch::Tensor& scales_a, const torch::Tensor& scales_b,
const torch::Tensor& problem_sizes, const torch::Tensor& expert_offsets) {
TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be 2D tensor");
TORCH_CHECK(problem_sizes.size(1) == 3,
"problem_sizes must have shape (num_experts, 3)");
TORCH_CHECK(problem_sizes.size(0) == expert_offsets.size(0),
"Number of experts in problem_sizes must match expert_offsets");
TORCH_CHECK(problem_sizes.dtype() == torch::kInt32,
"problem_sizes must be int32");
TORCH_CHECK(a.scalar_type() == torch::kFloat8_e4m3fn,
"a must be kFloat8_e4m3fn");
TORCH_CHECK(b.scalar_type() == torch::kFloat8_e4m3fn,
"b must be kFloat8_e4m3fn");
TORCH_CHECK(output.scalar_type() == torch::kBFloat16 ||
output.scalar_type() == torch::kHalf,
"output must be bfloat16 or half");
TORCH_CHECK(scales_a.scalar_type() == torch::kFloat32,
"scales_a must be float32");
TORCH_CHECK(scales_b.scalar_type() == torch::kFloat32,
"scales_b must be float32");
TORCH_CHECK(expert_offsets.scalar_type() == torch::kInt32,
"expert_offsets must be int32");
TORCH_CHECK(output.dim() == 2, "output must be 2D tensor");
TORCH_CHECK(a.dim() == 2, "a must be 2D tensor");
TORCH_CHECK(b.dim() == 3, "b must be 3D tensor");
TORCH_CHECK(scales_a.dim() == 2, "scales_a must be 2D tensor");
TORCH_CHECK(scales_b.dim() == 3, "scales_b must be 3D tensor");
TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be 2D tensor");
TORCH_CHECK(problem_sizes.size(1) == 3,
"problem_sizes must have shape (num_experts, 3)");
TORCH_CHECK(problem_sizes.size(0) == expert_offsets.size(0),
"Number of experts in problem_sizes must match expert_offsets");
TORCH_CHECK(problem_sizes.dtype() == torch::kInt32,
"problem_sizes must be int32");
TORCH_CHECK(expert_offsets.dim() == 1, "expert_offsets must be 1D tensor");
#if defined(ENABLE_CUTLASS_MOE_SM100) && ENABLE_CUTLASS_MOE_SM100
if (output.scalar_type() == torch::kBFloat16) {
blockwise_scaled_group_mm_dispatch_shape<cutlass::bfloat16_t>(
output, a, b, scales_a, scales_b, problem_sizes, expert_offsets);
} else if (output.scalar_type() == torch::kFloat16) {
blockwise_scaled_group_mm_dispatch_shape<cutlass::half_t>(
output, a, b, scales_a, scales_b, problem_sizes, expert_offsets);
} else {
TORCH_CHECK(false, "Unsupported output tensor type");
}
#endif
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
m.impl("cutlass_blockwise_scaled_grouped_mm",
&cutlass_blockwise_scaled_grouped_mm);
}

View File

@ -7,7 +7,7 @@
constexpr uint64_t THREADS_PER_EXPERT = 512;
__global__ void compute_problem_sizes(const int32_t* __restrict__ topk_ids,
__global__ void compute_problem_sizes(const uint32_t* __restrict__ topk_ids,
int32_t* problem_sizes1,
int32_t* problem_sizes2,
int32_t* atomic_buffer,
@ -62,7 +62,7 @@ __global__ void compute_expert_blockscale_offsets(
}
}
__global__ void compute_arg_sorts(const int32_t* __restrict__ topk_ids,
__global__ void compute_arg_sorts(const uint32_t* __restrict__ topk_ids,
const int32_t* __restrict__ expert_offsets,
int32_t* input_permutation,
int32_t* output_permutation,
@ -103,7 +103,7 @@ void get_cutlass_moe_mm_data_caller(
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
compute_problem_sizes<<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<const uint32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n, k);
@ -120,7 +120,7 @@ void get_cutlass_moe_mm_data_caller(
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
}
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<const uint32_t*>(topk_ids.data_ptr()),
static_cast<const int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(input_permutation.data_ptr()),
static_cast<int32_t*>(output_permutation.data_ptr()),

View File

@ -1,34 +0,0 @@
#include <cudaTypedefs.h>
#include "c3x/scaled_mm_kernels.hpp"
#include "cuda_utils.h"
/*
This file defines quantized GEMM operations using the CUTLASS 3.x API, for
NVIDIA GPUs with sm120 (Blackwell Geforce).
*/
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
void cutlass_scaled_mm_sm120(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
int M = a.size(0), N = b.size(1), K = a.size(1);
TORCH_CHECK(
(a_scales.numel() == 1 || a_scales.numel() == a.size(0)) &&
(b_scales.numel() == 1 || b_scales.numel() == b.size(1)),
"Currently, block scaled fp8 gemm is not implemented for Blackwell");
// Standard per-tensor/per-token/per-channel scaling
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn,
"Currently, only fp8 gemm is implemented for Blackwell");
vllm::cutlass_scaled_mm_sm120_fp8(c, a, b, a_scales, b_scales, bias);
}
#endif

View File

@ -41,14 +41,6 @@ void cutlass_moe_mm_sm90(
#endif
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
void cutlass_scaled_mm_sm120(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
std::optional<torch::Tensor> const& bias);
#endif
#if defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM100
void cutlass_scaled_mm_sm100(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
@ -176,15 +168,8 @@ void cutlass_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
at::cuda::OptionalCUDAGuard const device_guard(device_of(a));
int32_t version_num = get_sm_version_num();
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
if (version_num >= 120) {
cutlass_scaled_mm_sm120(c, a, b, a_scales, b_scales, bias);
return;
}
#endif
#if defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM100
if (version_num >= 100 && version_num < 120) {
if (version_num >= 100) {
cutlass_scaled_mm_sm100(c, a, b, a_scales, b_scales, bias);
return;
}
@ -256,7 +241,7 @@ void get_cutlass_moe_mm_data(
// mm to run it for.
int32_t version_num = get_sm_version_num();
#if (defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90) || \
(defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100)
(defined ENABLE_SCALED_MM_SM100 && ENABLE_SCALED_MM_SM90)
get_cutlass_moe_mm_data_caller(topk_ids, expert_offsets, problem_sizes1,
problem_sizes2, input_permutation,
output_permutation, num_experts, n, k,
@ -267,7 +252,7 @@ void get_cutlass_moe_mm_data(
false,
"No compiled get_cutlass_moe_mm_data: no cutlass_scaled_mm kernel for "
"CUDA device capability: ",
version_num, ". Required capability: 90 or 100");
version_num, ". Required capability: 90");
}
void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
@ -280,8 +265,7 @@ void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
// This function currently gets compiled only if we have a valid cutlass moe
// mm to run it for.
int32_t version_num = get_sm_version_num();
#if (defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90) || \
(defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100)
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
get_cutlass_pplx_moe_mm_data_caller(expert_offsets, problem_sizes1,
problem_sizes2, expert_num_tokens,
num_local_experts, padded_m, n, k);
@ -291,7 +275,7 @@ void get_cutlass_pplx_moe_mm_data(torch::Tensor& expert_offsets,
false,
"No compiled get_cutlass_pplx_moe_mm_data: no cutlass_scaled_mm kernel "
"for CUDA device capability: ",
version_num, ". Required capability: 90 or 100");
version_num, ". Required capability: 90");
}
void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a,

View File

@ -335,10 +335,8 @@ void run_fp4_blockwise_scaled_group_mm(
TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}
#if defined ENABLE_NVFP4 && ENABLE_NVFP4
constexpr auto FLOAT4_E2M1X2 = at::ScalarType::Byte;
constexpr auto SF_DTYPE = at::ScalarType::Float8_e4m3fn;
#endif
#define CHECK_TYPE(x, st, m) \
TORCH_CHECK(x.scalar_type() == st, ": Inconsistency of Tensor type:", m)

View File

@ -561,7 +561,7 @@ void scaled_fp4_experts_quant_sm100a(
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
auto in_dtype = input.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(input.get_device());
if (in_dtype == at::ScalarType::Half) {
@ -579,4 +579,4 @@ void scaled_fp4_experts_quant_sm100a(
} else {
TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
}
}
}

View File

@ -347,7 +347,7 @@ void scaled_fp4_quant_sm100a(torch::Tensor const& output,
auto input_sf_ptr = static_cast<float const*>(input_sf.data_ptr());
auto sf_out = static_cast<int32_t*>(output_sf.data_ptr());
auto output_ptr = static_cast<int64_t*>(output.data_ptr());
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
// We don't support e8m0 scales at this moment.

View File

@ -30,40 +30,35 @@
#include "cutlass/util/packed_stride.hpp"
#include "core/math.hpp"
using namespace cute;
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
// Kernel Perf config
template <typename T>
struct KernelTraits;
// Configuration for M in (256, inf)
struct sm100_fp4_config_default {
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_256, _256, _256>;
using ClusterShape = Shape<_2, _1, _1>;
using PerSmTileShape_MNK = Shape<_128, _256, _256>;
};
// Configuration for M in (16, 256]
struct sm100_fp4_config_M256 {
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_256, _128, _256>;
using ClusterShape = Shape<_2, _1, _1>;
using PerSmTileShape_MNK = Shape<_128, _128, _256>;
};
// Configuration for M in [1, 16]
struct sm100_fp4_config_M16 {
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
using TileShape = Shape<_128, _128, _256>;
template <>
struct KernelTraits<float> {
using MmaTileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using PerSmTileShape_MNK = Shape<_128, _128, _256>;
};
template <typename Config, typename OutType>
template <>
struct KernelTraits<cutlass::half_t> {
using MmaTileShape = Shape<_256, _256, _256>;
using ClusterShape = Shape<_4, _4, _1>;
using PerSmTileShape_MNK = Shape<_128, _256, _256>;
};
template <>
struct KernelTraits<cutlass::bfloat16_t> {
using MmaTileShape = Shape<_256, _256, _256>;
using ClusterShape = Shape<_4, _4, _1>;
using PerSmTileShape_MNK = Shape<_128, _256, _256>;
};
template <typename T>
struct Fp4GemmSm100 {
// A matrix configuration
using ElementA = cutlass::nv_float4_t<cutlass::float_e2m1_t>;
@ -76,22 +71,21 @@ struct Fp4GemmSm100 {
static constexpr int AlignmentB = 32;
// C/D matrix configuration
using ElementD = OutType;
using ElementC = OutType;
using ElementD = T;
using ElementC = T;
using LayoutCTag = cutlass::layout::RowMajor;
using LayoutDTag = cutlass::layout::RowMajor;
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
// Kernel functional config
using ElementAccumulator = float;
using ArchTag = cutlass::arch::Sm100;
using OperatorClass = cutlass::arch::OpClassBlockScaledTensorOp;
// Use config's tile shapes
using MmaTileShape = typename Config::TileShape;
using ClusterShape = typename Config::ClusterShape;
using PerSmTileShape_MNK = typename Config::PerSmTileShape_MNK;
// Kernel Perf config
using MmaTileShape = typename KernelTraits<T>::MmaTileShape;
using ClusterShape = typename KernelTraits<T>::ClusterShape;
using PerSmTileShape_MNK = typename KernelTraits<T>::PerSmTileShape_MNK;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
@ -125,22 +119,22 @@ struct Fp4GemmSm100 {
using LayoutD = decltype(cute::make_layout(make_shape(0, 0, 0), StrideD{}));
};
template <typename Config>
typename Config::Gemm::Arguments args_from_options(
template <typename T>
typename T::Gemm::Arguments args_from_options(
at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
at::Tensor const& A_sf, at::Tensor const& B_sf, at::Tensor const& alpha,
int64_t M, int64_t N, int64_t K) {
using ElementA = typename Config::Gemm::ElementA;
using ElementB = typename Config::Gemm::ElementB;
using ElementA = typename T::Gemm::ElementA;
using ElementB = typename T::Gemm::ElementB;
using ElementSFA = cutlass::float_ue4m3_t;
using ElementSFB = cutlass::float_ue4m3_t;
using ElementD = typename Config::Gemm::ElementD;
using ElementD = typename T::Gemm::ElementD;
using ElementCompute = float;
using StrideA = typename Config::StrideA;
using StrideB = typename Config::StrideB;
using StrideD = typename Config::StrideD;
using Sm100BlkScaledConfig = typename Config::Gemm::GemmKernel::
CollectiveMainloop::Sm1xxBlkScaledConfig;
using StrideA = typename T::StrideA;
using StrideB = typename T::StrideB;
using StrideD = typename T::StrideD;
using Sm100BlkScaledConfig =
typename T::Gemm::GemmKernel::CollectiveMainloop::Sm1xxBlkScaledConfig;
int m = static_cast<int>(M);
int n = static_cast<int>(N);
@ -154,7 +148,7 @@ typename Config::Gemm::Arguments args_from_options(
auto layout_SFB = Sm100BlkScaledConfig::tile_atom_to_shape_SFB(
cute::make_shape(m, n, k, 1));
typename Config::Gemm::Arguments arguments{
typename T::Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
{m, n, k, 1},
{// Mainloop arguments
@ -173,17 +167,17 @@ typename Config::Gemm::Arguments args_from_options(
return arguments;
}
template <typename Config>
template <typename T>
void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
at::Tensor const& A_sf, at::Tensor const& B_sf,
at::Tensor const& alpha, int64_t m, int64_t n, int64_t k,
cudaStream_t stream) {
typename Config::Gemm gemm;
typename Fp4GemmSm100<T>::Gemm gemm;
auto arguments =
args_from_options<Config>(D, A, B, A_sf, B_sf, alpha, m, n, k);
args_from_options<Fp4GemmSm100<T>>(D, A, B, A_sf, B_sf, alpha, m, n, k);
size_t workspace_size = Config::Gemm::get_workspace_size(arguments);
size_t workspace_size = Fp4GemmSm100<T>::Gemm::get_workspace_size(arguments);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(A.device());
auto workspace = torch::empty(workspace_size, workspace_options);
@ -194,40 +188,12 @@ void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
CUTLASS_CHECK(gemm.run(arguments, workspace.data_ptr(), stream));
}
// Dispatch function to select appropriate config based on M
template <typename OutType>
void cutlass_fp4_gemm_dispatch(torch::Tensor& D, torch::Tensor const& A,
torch::Tensor const& B,
torch::Tensor const& A_sf,
torch::Tensor const& B_sf,
torch::Tensor const& alpha, int64_t m, int64_t n,
int64_t k, cudaStream_t stream) {
uint32_t const mp2 = std::max(static_cast<uint32_t>(16), next_pow_2(m));
if (mp2 <= 16) {
// m in [1, 16]
runGemm<Fp4GemmSm100<sm100_fp4_config_M16, OutType>>(
D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
} else if (mp2 <= 256) {
// m in (16, 256]
runGemm<Fp4GemmSm100<sm100_fp4_config_M256, OutType>>(
D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
} else {
// m in (256, inf)
runGemm<Fp4GemmSm100<sm100_fp4_config_default, OutType>>(
D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
}
}
#else
template <typename OutType>
void cutlass_fp4_gemm_dispatch(torch::Tensor& D, torch::Tensor const& A,
torch::Tensor const& B,
torch::Tensor const& A_sf,
torch::Tensor const& B_sf,
torch::Tensor const& alpha, int64_t m, int64_t n,
int64_t k, cudaStream_t stream) {
template <typename T>
void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
at::Tensor const& A_sf, at::Tensor const& B_sf,
at::Tensor const& alpha, int64_t m, int64_t n, int64_t k,
cudaStream_t stream) {
TORCH_CHECK(false,
"Unsupported CUTLASS version. Set VLLM_CUTLASS_SRC_DIR to "
"a CUTLASS 3.8 source directory to enable support.");
@ -301,17 +267,16 @@ void cutlass_scaled_fp4_mm_sm100a(torch::Tensor& D, torch::Tensor const& A,
B_sf.sizes()[1], ")");
auto out_dtype = D.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
at::cuda::CUDAGuard device_guard{(char)A.get_device()};
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(A.get_device());
if (out_dtype == at::ScalarType::Half) {
cutlass_fp4_gemm_dispatch<cutlass::half_t>(D, A, B, A_sf, B_sf, alpha, m, n,
k, stream);
runGemm<cutlass::half_t>(D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
} else if (out_dtype == at::ScalarType::BFloat16) {
cutlass_fp4_gemm_dispatch<cutlass::bfloat16_t>(D, A, B, A_sf, B_sf, alpha,
m, n, k, stream);
runGemm<cutlass::bfloat16_t>(D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
} else if (out_dtype == at::ScalarType::Float) {
runGemm<float>(D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
} else {
TORCH_CHECK(false, "Unsupported output data type of nvfp4 mm (", out_dtype,
")");
TORCH_CHECK(false, "Unsupported output data type of nvfp4 mm");
}
}

View File

@ -1113,6 +1113,8 @@ __global__ void Marlin(
if constexpr (has_zp && !is_zp_float) {
if (is_new_zp) {
if constexpr (group_blocks == -1) is_first_matmul_in_slice = false;
FragB frag_zp_0;
FragB frag_zp_1;
int zp_quant_0, zp_quant_1;
if constexpr (w_type.size_bits() == 4) {

Some files were not shown because too many files have changed in this diff Show More