mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Kernel] Lazy import FlashInfer (#26977)
This commit is contained in:
@ -5,20 +5,13 @@ import torch
|
||||
from torch import Generator
|
||||
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.v1.sample.ops.topk_topp_sampler import (
|
||||
apply_top_k_top_p,
|
||||
is_flashinfer_available,
|
||||
)
|
||||
from vllm.v1.sample.ops.topk_topp_sampler import apply_top_k_top_p
|
||||
|
||||
DEVICE = current_platform.device_type
|
||||
|
||||
BATCH_SIZE = 1024
|
||||
VOCAB_SIZE = 128 * 1024
|
||||
|
||||
FLASHINFER_ENABLED = current_platform.is_cuda() and is_flashinfer_available
|
||||
if is_flashinfer_available:
|
||||
from flashinfer.sampling import top_k_renorm_probs, top_p_renorm_probs
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def reset_default_device():
|
||||
@ -65,6 +58,14 @@ def test_flashinfer_sampler():
|
||||
sampling results due to randomness), so we will compare the probability
|
||||
renormed consequently by top-k and then top-p of FlashInfer implementation.
|
||||
"""
|
||||
try:
|
||||
from flashinfer.sampling import top_k_renorm_probs, top_p_renorm_probs
|
||||
|
||||
is_flashinfer_available = True
|
||||
except ImportError:
|
||||
is_flashinfer_available = False
|
||||
|
||||
FLASHINFER_ENABLED = current_platform.is_cuda() and is_flashinfer_available
|
||||
|
||||
if not FLASHINFER_ENABLED:
|
||||
pytest.skip("FlashInfer not installed or not available on this platform.")
|
||||
|
@ -13,13 +13,6 @@ from vllm.platforms import CpuArchEnum, current_platform
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
try:
|
||||
import flashinfer.sampling
|
||||
|
||||
is_flashinfer_available = True
|
||||
except ImportError:
|
||||
is_flashinfer_available = False
|
||||
|
||||
|
||||
class TopKTopPSampler(nn.Module):
|
||||
"""
|
||||
@ -38,32 +31,18 @@ class TopKTopPSampler(nn.Module):
|
||||
logprobs_mode not in ("processed_logits", "processed_logprobs")
|
||||
and current_platform.is_cuda()
|
||||
):
|
||||
if is_flashinfer_available:
|
||||
flashinfer_version = flashinfer.__version__
|
||||
if version.parse(flashinfer_version) < version.parse("0.2.3"):
|
||||
logger.warning_once(
|
||||
"FlashInfer version >= 0.2.3 required. "
|
||||
"Falling back to default sampling implementation."
|
||||
)
|
||||
self.forward = self.forward_native
|
||||
elif envs.VLLM_USE_FLASHINFER_SAMPLER:
|
||||
# Users must opt in explicitly via VLLM_USE_FLASHINFER_SAMPLER=1.
|
||||
logger.info_once("Using FlashInfer for top-p & top-k sampling.")
|
||||
self.forward = self.forward_cuda
|
||||
else:
|
||||
logger.debug_once(
|
||||
"FlashInfer top-p/top-k sampling is available but disabled "
|
||||
"by default. Set VLLM_USE_FLASHINFER_SAMPLER=1 to opt in "
|
||||
"after verifying accuracy for your workloads."
|
||||
)
|
||||
self.forward = self.forward_native
|
||||
if envs.VLLM_USE_FLASHINFER_SAMPLER:
|
||||
# Users must opt in explicitly via VLLM_USE_FLASHINFER_SAMPLER=1.
|
||||
logger.info_once("Using FlashInfer for top-p & top-k sampling.")
|
||||
self.forward = self.forward_cuda
|
||||
else:
|
||||
logger.warning_once(
|
||||
"FlashInfer is not available. Falling back to the PyTorch-"
|
||||
"native implementation of top-p & top-k sampling. For the "
|
||||
"best performance, please install FlashInfer."
|
||||
logger.debug_once(
|
||||
"FlashInfer top-p/top-k sampling is available but disabled "
|
||||
"by default. Set VLLM_USE_FLASHINFER_SAMPLER=1 to opt in "
|
||||
"after verifying accuracy for your workloads."
|
||||
)
|
||||
self.forward = self.forward_native
|
||||
|
||||
elif current_platform.is_cpu():
|
||||
arch = current_platform.get_cpu_architecture()
|
||||
# Fall back to native implementation for POWERPC and RISCV.
|
||||
@ -278,6 +257,13 @@ def flashinfer_sample(
|
||||
does not. Call this function at the end of the forward pass to minimize
|
||||
the synchronization overhead.
|
||||
"""
|
||||
import flashinfer
|
||||
|
||||
if version.parse(flashinfer.__version__) < version.parse("0.2.3"):
|
||||
raise ImportError(
|
||||
"FlashInfer version >= 0.2.3 required for top-k and top-p sampling. "
|
||||
)
|
||||
|
||||
assert not (k is None and p is None)
|
||||
if k is None:
|
||||
# Top-p only.
|
||||
|
Reference in New Issue
Block a user