[Frontend] Re-enable custom roles in Chat Completions API (#4758)

This commit is contained in:
Cyrus Leung
2024-05-16 05:58:46 +08:00
committed by GitHub
parent 361c461a12
commit fc0d9dfc3a
3 changed files with 108 additions and 26 deletions

View File

@ -783,6 +783,36 @@ async def test_complex_message_content(server, client: openai.AsyncOpenAI):
assert content == "2"
async def test_custom_role(server, client: openai.AsyncOpenAI):
# Not sure how the model handles custom roles so we just check that
# both string and complex message content are handled in the same way
resp1 = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "my-custom-role",
"content": "what is 1+1?",
}], # type: ignore
temperature=0,
seed=0)
resp2 = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "my-custom-role",
"content": [{
"type": "text",
"text": "what is 1+1?"
}]
}], # type: ignore
temperature=0,
seed=0)
content1 = resp1.choices[0].message.content
content2 = resp2.choices[0].message.content
assert content1 == content2
async def test_guided_grammar(server, client: openai.AsyncOpenAI):
simple_sql_grammar = """
start: select_statement

View File

@ -3,16 +3,50 @@
import time
from typing import Any, Dict, List, Literal, Optional, Union
import openai.types.chat
import torch
from openai.types.chat import ChatCompletionMessageParam
from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing_extensions import Annotated
# pydantic needs the TypedDict from typing_extensions
from typing_extensions import Annotated, Required, TypedDict
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
from vllm.utils import random_uuid
class CustomChatCompletionContentPartParam(TypedDict, total=False):
__pydantic_config__ = ConfigDict(extra="allow") # type: ignore
type: Required[str]
"""The type of the content part."""
ChatCompletionContentPartParam = Union[
openai.types.chat.ChatCompletionContentPartParam,
CustomChatCompletionContentPartParam]
class CustomChatCompletionMessageParam(TypedDict, total=False):
"""Enables custom roles in the Chat Completion API."""
role: Required[str]
"""The role of the message's author."""
content: Union[str, List[ChatCompletionContentPartParam]]
"""The contents of the message."""
name: str
"""An optional name for the participant.
Provides the model information to differentiate between participants of the
same role.
"""
ChatCompletionMessageParam = Union[
openai.types.chat.ChatCompletionMessageParam,
CustomChatCompletionMessageParam]
class OpenAIBaseModel(BaseModel):
# OpenAI API does not allow extra fields
model_config = ConfigDict(extra="forbid")

View File

@ -1,15 +1,16 @@
import codecs
import time
from typing import (AsyncGenerator, AsyncIterator, Awaitable, Iterable, List,
Optional, Tuple, TypedDict, Union, final)
from dataclasses import dataclass
from typing import (AsyncGenerator, AsyncIterator, Iterable, List, Optional,
TypedDict, Union, cast, final)
from fastapi import Request
from openai.types.chat import (ChatCompletionContentPartParam,
ChatCompletionRole)
from openai.types.chat import ChatCompletionContentPartTextParam
from vllm.config import ModelConfig
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
ChatCompletionContentPartParam, ChatCompletionMessageParam,
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
@ -31,6 +32,11 @@ class ConversationMessage(TypedDict):
content: str
@dataclass(frozen=True)
class ChatMessageParseResult:
messages: List[ConversationMessage]
class OpenAIServingChat(OpenAIServing):
def __init__(self,
@ -77,27 +83,40 @@ class OpenAIServingChat(OpenAIServing):
logger.warning(
"No chat template provided. Chat API will not work.")
def _parse_chat_message_content(
def _parse_chat_message_content_parts(
self,
role: ChatCompletionRole,
content: Optional[Union[str,
Iterable[ChatCompletionContentPartParam]]],
) -> Tuple[List[ConversationMessage], List[Awaitable[object]]]:
if content is None:
return [], []
if isinstance(content, str):
return [ConversationMessage(role=role, content=content)], []
role: str,
parts: Iterable[ChatCompletionContentPartParam],
) -> ChatMessageParseResult:
texts: List[str] = []
for _, part in enumerate(content):
if part["type"] == "text":
text = part["text"]
for _, part in enumerate(parts):
part_type = part["type"]
if part_type == "text":
text = cast(ChatCompletionContentPartTextParam, part)["text"]
texts.append(text)
else:
raise NotImplementedError(f"Unknown part type: {part['type']}")
raise NotImplementedError(f"Unknown part type: {part_type}")
return [ConversationMessage(role=role, content="\n".join(texts))], []
messages = [ConversationMessage(role=role, content="\n".join(texts))]
return ChatMessageParseResult(messages=messages)
def _parse_chat_message_content(
self,
message: ChatCompletionMessageParam,
) -> ChatMessageParseResult:
role = message["role"]
content = message.get("content")
if content is None:
return ChatMessageParseResult(messages=[])
if isinstance(content, str):
messages = [ConversationMessage(role=role, content=content)]
return ChatMessageParseResult(messages=messages)
return self._parse_chat_message_content_parts(role, content)
async def create_chat_completion(
self, request: ChatCompletionRequest, raw_request: Request
@ -119,11 +138,10 @@ class OpenAIServingChat(OpenAIServing):
try:
conversation: List[ConversationMessage] = []
for m in request.messages:
messages, _ = self._parse_chat_message_content(
m["role"], m["content"])
for msg in request.messages:
parsed_msg = self._parse_chat_message_content(msg)
conversation.extend(messages)
conversation.extend(parsed_msg.messages)
prompt = self.tokenizer.apply_chat_template(
conversation=conversation,
@ -387,4 +405,4 @@ class OpenAIServingChat(OpenAIServing):
usage=usage,
)
return response
return response