[CI/Build] Remove sparseml requirement from testing (#7037)

This commit is contained in:
Michael Goin
2024-08-01 15:00:51 -04:00
committed by GitHub
parent 2dd34371a6
commit fb3db61688
4 changed files with 1 additions and 58 deletions

View File

@ -14,7 +14,6 @@ peft
requests
ray
sentence-transformers # required for embedding
sparseml==1.8.0 # required for compressed-tensors
compressed-tensors==0.4.0 # required for compressed-tensors
timm # required for internvl test

View File

@ -152,7 +152,6 @@ class HfRunner:
model_kwargs: Optional[Dict[str, Any]] = None,
is_embedding_model: bool = False,
is_vision_model: bool = False,
is_sparseml_model: bool = False,
) -> None:
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
@ -169,9 +168,6 @@ class HfRunner:
else:
if is_vision_model:
auto_cls = AutoModelForVision2Seq
elif is_sparseml_model:
from sparseml.transformers import SparseAutoModelForCausalLM
auto_cls = SparseAutoModelForCausalLM
else:
auto_cls = AutoModelForCausalLM

View File

@ -1,52 +0,0 @@
"""Compares vllm vs sparseml for compressed-tensors
Note: vllm and sparseml do not have bitwise correctness,
so in this test, we just confirm that the top selected
tokens of the are in the top 5 selections of each other.
"""
import pytest
from tests.quantization.utils import is_quant_method_supported
from .utils import check_logprobs_close
MODELS = [
# No bias
"nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test",
# Bias
"neuralmagic/Qwen2-1.5B-Instruct-quantized.w8a8"
]
MAX_TOKENS = 32
NUM_LOGPROBS = 5
@pytest.mark.skipif(
not is_quant_method_supported("compressed-tensors"),
reason="compressed-tensors is not supported on this machine type.")
@pytest.mark.parametrize("model_name", MODELS)
def test_models(
vllm_runner,
hf_runner,
example_prompts,
model_name,
) -> None:
# Run sparseml.
with hf_runner(model_name=model_name,
is_sparseml_model=True) as sparseml_model:
sparseml_outputs = sparseml_model.generate_greedy_logprobs_limit(
example_prompts, MAX_TOKENS, NUM_LOGPROBS)
# Run vllm.
with vllm_runner(model_name=model_name) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, MAX_TOKENS, NUM_LOGPROBS)
check_logprobs_close(
outputs_0_lst=sparseml_outputs,
outputs_1_lst=vllm_outputs,
name_0="sparseml",
name_1="vllm",
)

View File

@ -1,4 +1,4 @@
"""Test model set-up and weight loading for sparseml-quantized models.
"""Test model set-up and weight loading for llmcompressor-quantized models.
Run `pytest tests/quantization/test_compressed_tensors.py`.
"""