mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[VLM] Remove input processor from clip and siglip (#13165)
This commit is contained in:
@ -1,156 +1,24 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Minimal implementation of CLIPVisionModel intended to be only used
|
||||
within a vision language model."""
|
||||
from typing import Iterable, List, Optional, Set, Tuple, Union
|
||||
from typing import Iterable, Optional, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image
|
||||
from transformers import CLIPVisionConfig
|
||||
|
||||
from vllm.attention.layer import MultiHeadAttention
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.distributed import divide, get_tensor_model_parallel_world_size
|
||||
from vllm.inputs import DecoderOnlyInputs, token_inputs
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.multimodal.utils import (cached_get_tokenizer,
|
||||
consecutive_placeholder_ranges,
|
||||
repeat_and_pad_placeholder_tokens)
|
||||
from vllm.sequence import SequenceData
|
||||
|
||||
from .vision import VisionEncoderInfo, resolve_visual_encoder_outputs
|
||||
|
||||
|
||||
def get_clip_patch_grid_length(*, image_size: int, patch_size: int) -> int:
|
||||
assert image_size % patch_size == 0
|
||||
return image_size // patch_size
|
||||
|
||||
|
||||
def get_clip_num_patches(*, image_size: int, patch_size: int) -> int:
|
||||
grid_length = get_clip_patch_grid_length(image_size=image_size,
|
||||
patch_size=patch_size)
|
||||
return grid_length * grid_length
|
||||
|
||||
|
||||
def get_clip_image_feature_size(hf_config: CLIPVisionConfig) -> int:
|
||||
return get_clip_num_patches(image_size=hf_config.image_size,
|
||||
patch_size=hf_config.patch_size) + 1
|
||||
|
||||
|
||||
def get_max_clip_image_tokens(hf_config: CLIPVisionConfig) -> int:
|
||||
return get_clip_image_feature_size(hf_config)
|
||||
|
||||
|
||||
def dummy_seq_data_for_clip(hf_config: CLIPVisionConfig,
|
||||
seq_len: int,
|
||||
num_images: int,
|
||||
*,
|
||||
image_token_id: int,
|
||||
image_feature_size_override: Optional[int] = None,
|
||||
mm_key: str = "image"):
|
||||
if image_feature_size_override is None:
|
||||
image_feature_size = get_clip_image_feature_size(hf_config)
|
||||
else:
|
||||
image_feature_size = image_feature_size_override
|
||||
|
||||
return SequenceData.from_prompt_token_counts(
|
||||
(image_token_id, image_feature_size * num_images),
|
||||
(0, seq_len - image_feature_size * num_images),
|
||||
), {
|
||||
mm_key:
|
||||
consecutive_placeholder_ranges(num_items=num_images,
|
||||
item_size=image_feature_size)
|
||||
}
|
||||
|
||||
|
||||
def dummy_image_for_clip(
|
||||
hf_config: CLIPVisionConfig,
|
||||
num_images: int,
|
||||
*,
|
||||
image_width_override: Optional[int] = None,
|
||||
image_height_override: Optional[int] = None,
|
||||
):
|
||||
width = height = hf_config.image_size
|
||||
if image_width_override is not None:
|
||||
width = image_width_override
|
||||
if image_height_override is not None:
|
||||
height = image_height_override
|
||||
|
||||
image = Image.new("RGB", (width, height), color=0)
|
||||
return {"image": image if num_images == 1 else [image] * num_images}
|
||||
|
||||
|
||||
def dummy_video_for_clip(
|
||||
hf_config: CLIPVisionConfig,
|
||||
num_frames: int,
|
||||
num_videos: int = 1,
|
||||
*,
|
||||
image_width_override: Optional[int] = None,
|
||||
image_height_override: Optional[int] = None,
|
||||
):
|
||||
pil_frame = dummy_image_for_clip(
|
||||
hf_config,
|
||||
num_images=1,
|
||||
image_width_override=image_width_override,
|
||||
image_height_override=image_height_override)
|
||||
np_frame = np.array(pil_frame["image"])
|
||||
mm_data_per_video = np.repeat([np_frame], num_frames, axis=0)
|
||||
video_data = [mm_data_per_video] * num_videos
|
||||
mm_data = {"video": video_data}
|
||||
return mm_data
|
||||
|
||||
|
||||
def input_processor_for_clip(
|
||||
model_config: ModelConfig,
|
||||
hf_config: CLIPVisionConfig,
|
||||
inputs: DecoderOnlyInputs,
|
||||
*,
|
||||
image_token_id: int,
|
||||
image_feature_size_override: Optional[Union[int, List[int]]] = None,
|
||||
):
|
||||
multi_modal_data = inputs.get("multi_modal_data")
|
||||
if multi_modal_data is None or "image" not in multi_modal_data:
|
||||
return inputs
|
||||
|
||||
if "multi_modal_placeholders" in inputs and "image" in inputs[
|
||||
"multi_modal_placeholders"]:
|
||||
# The inputs already have placeholders.
|
||||
return inputs
|
||||
|
||||
tokenizer = cached_get_tokenizer(model_config.tokenizer)
|
||||
|
||||
if image_feature_size_override is None:
|
||||
image_data = multi_modal_data["image"]
|
||||
if isinstance(image_data, Image.Image):
|
||||
image_feature_size = get_clip_image_feature_size(hf_config)
|
||||
elif isinstance(image_data, torch.Tensor):
|
||||
num_images, image_feature_size, hidden_size = image_data.shape
|
||||
else:
|
||||
raise TypeError(f"Invalid image type: {type(image_data)}")
|
||||
else:
|
||||
image_feature_size = image_feature_size_override
|
||||
|
||||
new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens(
|
||||
tokenizer,
|
||||
inputs.get("prompt"),
|
||||
inputs["prompt_token_ids"],
|
||||
placeholder_token_id=image_token_id,
|
||||
repeat_count=image_feature_size,
|
||||
)
|
||||
|
||||
# NOTE: Create a defensive copy of the original inputs
|
||||
return token_inputs(prompt_token_ids=new_token_ids,
|
||||
prompt=new_prompt,
|
||||
multi_modal_data=multi_modal_data,
|
||||
multi_modal_placeholders={"image": ranges})
|
||||
|
||||
|
||||
class CLIPEncoderInfo(VisionEncoderInfo[CLIPVisionConfig]):
|
||||
|
||||
def get_num_image_tokens(
|
||||
@ -159,10 +27,10 @@ class CLIPEncoderInfo(VisionEncoderInfo[CLIPVisionConfig]):
|
||||
image_width: int,
|
||||
image_height: int,
|
||||
) -> int:
|
||||
return get_clip_image_feature_size(self.vision_config)
|
||||
return self.get_patch_grid_length()**2 + 1
|
||||
|
||||
def get_max_image_tokens(self) -> int:
|
||||
return get_max_clip_image_tokens(self.vision_config)
|
||||
return self.get_patch_grid_length()**2 + 1
|
||||
|
||||
def get_image_size(self) -> int:
|
||||
return self.vision_config.image_size
|
||||
@ -171,10 +39,9 @@ class CLIPEncoderInfo(VisionEncoderInfo[CLIPVisionConfig]):
|
||||
return self.vision_config.patch_size
|
||||
|
||||
def get_patch_grid_length(self) -> int:
|
||||
return get_clip_patch_grid_length(
|
||||
image_size=self.vision_config.image_size,
|
||||
patch_size=self.vision_config.patch_size,
|
||||
)
|
||||
image_size, patch_size = self.get_image_size(), self.get_patch_size()
|
||||
assert image_size % patch_size == 0
|
||||
return image_size // patch_size
|
||||
|
||||
|
||||
# Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/clip/modeling_clip.py#L164 # noqa
|
||||
@ -186,6 +53,7 @@ class CLIPVisionEmbeddings(nn.Module):
|
||||
self.embed_dim = config.hidden_size
|
||||
self.image_size = config.image_size
|
||||
self.patch_size = config.patch_size
|
||||
assert self.image_size % self.patch_size == 0
|
||||
|
||||
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
||||
|
||||
@ -197,8 +65,7 @@ class CLIPVisionEmbeddings(nn.Module):
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.num_patches = get_clip_num_patches(image_size=self.image_size,
|
||||
patch_size=self.patch_size)
|
||||
self.num_patches = (self.image_size // self.patch_size)**2
|
||||
self.num_positions = self.num_patches + 1
|
||||
self.position_embedding = nn.Embedding(self.num_positions,
|
||||
self.embed_dim)
|
||||
|
@ -3,18 +3,15 @@
|
||||
within a vision language model."""
|
||||
|
||||
import math
|
||||
from typing import Iterable, List, Optional, Set, Tuple, Union
|
||||
from typing import Iterable, Optional, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch import nn
|
||||
from transformers import SiglipVisionConfig
|
||||
|
||||
from vllm.attention.layer import MultiHeadAttention
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.distributed import divide, get_tensor_model_parallel_world_size
|
||||
from vllm.inputs import DecoderOnlyInputs, token_inputs
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
@ -23,9 +20,7 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.multimodal.utils import (cached_get_tokenizer,
|
||||
consecutive_placeholder_ranges,
|
||||
repeat_and_pad_placeholder_tokens)
|
||||
from vllm.multimodal.utils import consecutive_placeholder_ranges
|
||||
from vllm.sequence import SequenceData
|
||||
|
||||
from .vision import VisionEncoderInfo, resolve_visual_encoder_outputs
|
||||
@ -93,71 +88,6 @@ def dummy_image_for_siglip(
|
||||
return {"image": image if num_images == 1 else [image] * num_images}
|
||||
|
||||
|
||||
def dummy_video_for_siglip(
|
||||
hf_config: SiglipVisionConfig,
|
||||
num_frames: int,
|
||||
num_videos: int = 1,
|
||||
*,
|
||||
image_width_override: Optional[int] = None,
|
||||
image_height_override: Optional[int] = None,
|
||||
):
|
||||
pil_frame = dummy_image_for_siglip(
|
||||
hf_config,
|
||||
num_images=1,
|
||||
image_width_override=image_width_override,
|
||||
image_height_override=image_height_override)
|
||||
np_frame = np.array(pil_frame["image"])
|
||||
mm_data_per_video = np.repeat([np_frame], num_frames, axis=0)
|
||||
video_data = [mm_data_per_video] * num_videos
|
||||
mm_data = {"video": video_data}
|
||||
return mm_data
|
||||
|
||||
|
||||
def input_processor_for_siglip(
|
||||
model_config: ModelConfig,
|
||||
hf_config: SiglipVisionConfig,
|
||||
inputs: DecoderOnlyInputs,
|
||||
*,
|
||||
image_token_id: int,
|
||||
image_feature_size_override: Optional[Union[int, List[int]]] = None,
|
||||
):
|
||||
multi_modal_data = inputs.get("multi_modal_data")
|
||||
if multi_modal_data is None or "image" not in multi_modal_data:
|
||||
return inputs
|
||||
|
||||
if "multi_modal_placeholders" in inputs and "image" in inputs[
|
||||
"multi_modal_placeholders"]:
|
||||
# The inputs already have placeholders.
|
||||
return inputs
|
||||
|
||||
tokenizer = cached_get_tokenizer(model_config.tokenizer)
|
||||
|
||||
if image_feature_size_override is None:
|
||||
image_data = multi_modal_data["image"]
|
||||
if isinstance(image_data, Image.Image):
|
||||
image_feature_size = get_siglip_image_feature_size(hf_config)
|
||||
elif isinstance(image_data, torch.Tensor):
|
||||
num_images, image_feature_size, hidden_size = image_data.shape
|
||||
else:
|
||||
raise TypeError(f"Invalid image type: {type(image_data)}")
|
||||
else:
|
||||
image_feature_size = image_feature_size_override
|
||||
|
||||
new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens(
|
||||
tokenizer,
|
||||
inputs.get("prompt"),
|
||||
inputs["prompt_token_ids"],
|
||||
placeholder_token_id=image_token_id,
|
||||
repeat_count=image_feature_size,
|
||||
)
|
||||
|
||||
# NOTE: Create a defensive copy of the original inputs
|
||||
return token_inputs(prompt_token_ids=new_token_ids,
|
||||
prompt=new_prompt,
|
||||
multi_modal_data=multi_modal_data,
|
||||
multi_modal_placeholders={"image": ranges})
|
||||
|
||||
|
||||
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):
|
||||
|
||||
def get_num_image_tokens(
|
||||
|
Reference in New Issue
Block a user