[Model][2/N] Improve all pooling task | Support multi-vector retrieval (#25370)

Signed-off-by: wang.yuqi <noooop@126.com>
This commit is contained in:
wang.yuqi
2025-10-15 19:14:41 +08:00
committed by GitHub
parent d4d1a6024f
commit f54f85129e
41 changed files with 786 additions and 399 deletions

View File

@ -26,6 +26,12 @@ python examples/offline_inference/pooling/embed_jina_embeddings_v3.py
python examples/offline_inference/pooling/embed_matryoshka_fy.py
```
## Multi vector retrieval usage
```bash
python examples/offline_inference/pooling/multi_vector_retrieval.py
```
## Named Entity Recognition (NER) usage
```bash

View File

@ -0,0 +1,56 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="BAAI/bge-m3",
runner="pooling",
enforce_eager=True,
)
return parser.parse_args()
def main(args: Namespace):
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM.
# You should pass runner="pooling" for embedding models
llm = LLM(**vars(args))
# Generate embedding. The output is a list of EmbeddingRequestOutputs.
outputs = llm.embed(prompts)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for prompt, output in zip(prompts, outputs):
embeds = output.outputs.embedding
print(len(embeds))
# Generate embedding for each token. The output is a list of PoolingRequestOutput.
outputs = llm.encode(prompts, pooling_task="token_embed")
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for prompt, output in zip(prompts, outputs):
multi_vector = output.outputs.data
print(multi_vector.shape)
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@ -40,7 +40,7 @@ def main():
model_impl="terratorch",
)
pooling_params = PoolingParams(task="encode", softmax=False)
pooling_params = PoolingParams(task="token_classify", activation=False)
pooler_output = llm.encode(
img_prompt,
pooling_params=pooling_params,

View File

@ -18,6 +18,12 @@ python examples/online_serving/pooling/embedding_embed_dtype_client.py
python examples/online_serving/pooling/jinaai_rerank_client.py
```
## Multi vector retrieval usage
```bash
python examples/online_serving/pooling/multi_vector_retrieval_client.py
```
## Named Entity Recognition (NER) usage
```bash

View File

@ -0,0 +1,54 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Example online usage of Pooling API for multi vector retrieval.
Run `vllm serve <model> --runner pooling`
to start up the server in vLLM. e.g.
vllm serve BAAI/bge-m3
"""
import argparse
import requests
import torch
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
headers = {"User-Agent": "Test Client"}
response = requests.post(api_url, headers=headers, json=prompt)
return response
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--model", type=str, default="BAAI/bge-m3")
return parser.parse_args()
def main(args):
api_url = f"http://{args.host}:{args.port}/pooling"
model_name = args.model
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
prompt = {"model": model_name, "input": prompts}
pooling_response = post_http_request(prompt=prompt, api_url=api_url)
for output in pooling_response.json()["data"]:
multi_vector = torch.tensor(output["data"])
print(multi_vector.shape)
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@ -1011,8 +1011,12 @@ class VllmRunner:
req_outputs = self.llm.embed(inputs, *args, **kwargs)
return [req_output.outputs.embedding for req_output in req_outputs]
def encode(self, prompts: list[str]) -> list[list[float]]:
req_outputs = self.llm.encode(prompts)
def token_embed(self, prompts: list[str]) -> list[list[float]]:
req_outputs = self.llm.encode(prompts, pooling_task="token_embed")
return [req_output.outputs.data for req_output in req_outputs]
def token_classify(self, prompts: list[str]) -> list[list[float]]:
req_outputs = self.llm.encode(prompts, pooling_task="token_classify")
return [req_output.outputs.data for req_output in req_outputs]
def reward(self, prompts: list[str]) -> list[list[float]]:

View File

@ -63,7 +63,7 @@ def test_encode_api(llm: LLM):
# chunked prefill does not support all pooling
err_msg = "pooling_task must be one of.+"
with pytest.raises(ValueError, match=err_msg):
llm.encode(prompts, use_tqdm=False)
llm.encode(prompts, pooling_task="token_classify", use_tqdm=False)
def test_score_api(llm: LLM):

View File

@ -35,6 +35,13 @@ def llm():
cleanup_dist_env_and_memory()
@pytest.mark.skip_global_cleanup
def test_encode_api(llm: LLM):
outputs = llm.encode(prompts, pooling_task="token_embed", use_tqdm=False)
multi_vector = outputs[0].outputs.data
assert multi_vector.shape == (11, 384)
def test_pooling_params(llm: LLM):
def get_outputs(normalize):
outputs = llm.embed(

View File

@ -57,20 +57,24 @@ def test_multiple_pooling_params(llm: LLM):
]
# Multiple PoolingParams should be matched with each prompt
outputs = llm.encode(PROMPTS, pooling_params=pooling_params)
outputs = llm.encode(PROMPTS, pooling_params=pooling_params, pooling_task="embed")
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.encode(PROMPTS, pooling_params=pooling_params[:3])
outputs = llm.encode(
PROMPTS, pooling_params=pooling_params[:3], pooling_task="embed"
)
# Single PoolingParams should be applied to every prompt
single_pooling_params = PoolingParams()
outputs = llm.encode(PROMPTS, pooling_params=single_pooling_params)
outputs = llm.encode(
PROMPTS, pooling_params=single_pooling_params, pooling_task="embed"
)
assert len(PROMPTS) == len(outputs)
# pooling_params is None, default params should be applied
outputs = llm.encode(PROMPTS, pooling_params=None)
outputs = llm.encode(PROMPTS, pooling_params=None, pooling_task="embed")
assert len(PROMPTS) == len(outputs)

View File

@ -36,22 +36,23 @@ def llm():
cleanup_dist_env_and_memory()
@pytest.mark.skip_global_cleanup
def test_pooling_params(llm: LLM):
def get_outputs(softmax):
def get_outputs(activation):
outputs = llm.reward(
prompts, pooling_params=PoolingParams(softmax=softmax), use_tqdm=False
prompts, pooling_params=PoolingParams(activation=activation), use_tqdm=False
)
return torch.cat([x.outputs.data for x in outputs])
default = get_outputs(softmax=None)
w_softmax = get_outputs(softmax=True)
wo_softmax = get_outputs(softmax=False)
default = get_outputs(activation=None)
w_activation = get_outputs(activation=True)
wo_activation = get_outputs(activation=False)
assert torch.allclose(default, w_softmax, atol=1e-2), "Default should use softmax."
assert not torch.allclose(w_softmax, wo_softmax, atol=1e-2), (
"wo_softmax should not use softmax."
assert torch.allclose(default, w_activation, atol=1e-2), (
"Default should use activation."
)
assert torch.allclose(softmax(wo_softmax), w_softmax, atol=1e-2), (
"w_softmax should be close to softmax(wo_softmax)."
assert not torch.allclose(w_activation, wo_activation, atol=1e-2), (
"wo_activation should not use activation."
)
assert torch.allclose(softmax(wo_activation), w_activation, atol=1e-2), (
"w_activation should be close to activation(wo_activation)."
)

View File

@ -17,6 +17,7 @@ from tests.utils import RemoteOpenAIServer
from vllm.entrypoints.openai.protocol import (
EMBED_DTYPE_TO_TORCH_DTYPE,
EmbeddingResponse,
PoolingResponse,
)
from vllm.transformers_utils.tokenizer import get_tokenizer
@ -509,3 +510,20 @@ async def test_normalize(server: RemoteOpenAIServer, model_name: str):
assert torch.allclose(w_normal, F.normalize(wo_normal, p=2, dim=-1), atol=1e-2), (
"w_normal should be close to normal(wo_normal)."
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_pooling(server: RemoteOpenAIServer, model_name: str):
input_text = ["The chef prepared a delicious meal."]
response = requests.post(
server.url_for("pooling"),
json={"model": model_name, "input": input_text, "encoding_format": "float"},
)
poolings = PoolingResponse.model_validate(response.json())
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 11
assert len(poolings.data[0].data[0]) == 384

View File

@ -7,7 +7,7 @@ import torch
import torch.nn.functional as F
from tests.utils import RemoteOpenAIServer
from vllm.entrypoints.openai.protocol import RerankResponse
from vllm.entrypoints.openai.protocol import PoolingResponse, RerankResponse
MODEL_NAME = "BAAI/bge-reranker-base"
DTYPE = "bfloat16"
@ -159,3 +159,20 @@ async def test_activation(server: RemoteOpenAIServer, model_name: str):
assert torch.allclose(F.sigmoid(wo_activation), w_activation, atol=1e-2), (
"w_activation should be close to activation(wo_activation)."
)
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_pooling(server: RemoteOpenAIServer, model_name: str):
input_text = ["The chef prepared a delicious meal."]
response = requests.post(
server.url_for("pooling"),
json={"model": model_name, "input": input_text, "encoding_format": "float"},
)
poolings = PoolingResponse.model_validate(response.json())
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 11
assert len(poolings.data[0].data[0]) == 1

View File

@ -0,0 +1,45 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from transformers import AutoModel
from tests.models.utils import check_embeddings_close
@pytest.mark.parametrize(
"model",
["BAAI/bge-m3"],
)
@pytest.mark.parametrize("dtype", ["half"])
@torch.inference_mode
def test_embed_models(hf_runner, vllm_runner, example_prompts, model: str, dtype: str):
with vllm_runner(
model,
runner="pooling",
max_model_len=None,
) as vllm_model:
vllm_outputs = vllm_model.token_embed(example_prompts)
with hf_runner(
model,
auto_cls=AutoModel,
) as hf_model:
tokenizer = hf_model.tokenizer
hf_outputs = []
for prompt in example_prompts:
inputs = tokenizer([prompt], return_tensors="pt")
inputs = hf_model.wrap_device(inputs)
output = hf_model.model(**inputs)
embedding = output.last_hidden_state[0].float()
# normal
hf_outputs.append(embedding.cpu())
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs):
check_embeddings_close(
embeddings_0_lst=hf_output,
embeddings_1_lst=vllm_output,
name_0="hf",
name_1="vllm",
tol=1e-2,
)

View File

@ -93,7 +93,7 @@ def test_embed_models_using_normalize(
],
)
@pytest.mark.parametrize("dtype", ["half"])
def test_reward_models_using_softmax(
def test_reward_models_using_activation(
hf_runner,
vllm_runner,
example_prompts,
@ -104,22 +104,64 @@ def test_reward_models_using_softmax(
model,
max_model_len=1024,
dtype=dtype,
pooler_config=PoolerConfig(softmax=False),
pooler_config=PoolerConfig(activation=False),
) as vllm_model:
wo_softmax = vllm_model.encode(example_prompts)
wo_activation = vllm_model.reward(example_prompts)
with vllm_runner(
model, max_model_len=1024, dtype=dtype, pooler_config=PoolerConfig(softmax=True)
model,
max_model_len=1024,
dtype=dtype,
pooler_config=PoolerConfig(activation=True),
) as vllm_model:
w_softmax = vllm_model.encode(example_prompts)
w_activation = vllm_model.reward(example_prompts)
for wo, w in zip(wo_softmax, w_softmax):
for wo, w in zip(wo_activation, w_activation):
wo = torch.tensor(wo)
w = torch.tensor(w)
assert not torch.allclose(wo, w, atol=1e-2), (
"pooler_config softmax is not working"
"pooler_config activation is not working"
)
assert torch.allclose(softmax(wo), w, atol=1e-2), (
"w_softmax should be close to softmax(wo_softmax)."
"w_activation should be close to activation(wo_activation)."
)
@pytest.mark.parametrize(
"model",
[
"intfloat/multilingual-e5-small",
],
)
@pytest.mark.parametrize("dtype", ["half"])
def test_multi_vector_retrieval_models_using_normalize(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
) -> None:
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(normalize=False),
) as vllm_model:
wo_normalize = vllm_model.token_embed(example_prompts)
with vllm_runner(
model,
max_model_len=512,
dtype=dtype,
pooler_config=PoolerConfig(normalize=True),
) as vllm_model:
w_normalize = vllm_model.token_embed(example_prompts)
for wo, w in zip(wo_normalize, w_normalize):
assert not torch.allclose(wo, w, atol=1e-2), (
"pooler_config normalize is not working"
)
assert torch.allclose(F.normalize(wo, p=2, dim=-1), w, atol=1e-2), (
"w_normal should be close to normal(wo_normal)."
)

View File

@ -19,7 +19,7 @@ def test_bert_models(
dtype: str,
) -> None:
with vllm_runner(model, max_model_len=None, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.encode(example_prompts)
vllm_outputs = vllm_model.token_classify(example_prompts)
with hf_runner(
model, dtype=dtype, auto_cls=AutoModelForTokenClassification
@ -50,7 +50,7 @@ def test_modernbert_models(
dtype: str,
) -> None:
with vllm_runner(model, max_model_len=None, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.encode(example_prompts)
vllm_outputs = vllm_model.token_classify(example_prompts)
with hf_runner(
model, dtype=dtype, auto_cls=AutoModelForTokenClassification

View File

@ -39,7 +39,7 @@ def _run_test(
max_num_seqs=32,
default_torch_num_threads=1,
) as vllm_model:
vllm_model.encode(prompt)
vllm_model.llm.encode(prompt, pooling_task="token_classify")
MODELS = ["mgazz/Prithvi-EO-2.0-300M-TL-Sen1Floods11"]

View File

@ -30,7 +30,7 @@ class MyGemma2Embedding(nn.Module):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": Pooler.for_embed(pooler_config),
}
)

View File

@ -93,7 +93,7 @@ def test_prithvi_mae_plugin_offline(vllm_runner, model_name: str):
out_data_format="b64_json",
)
pooling_params = PoolingParams(task="encode", softmax=False)
pooling_params = PoolingParams(activation=False)
with vllm_runner(
model_name,
@ -108,8 +108,7 @@ def test_prithvi_mae_plugin_offline(vllm_runner, model_name: str):
io_processor_plugin="prithvi_to_tiff",
) as llm_runner:
pooler_output = llm_runner.get_llm().encode(
img_prompt,
pooling_params=pooling_params,
img_prompt, pooling_params=pooling_params, pooling_task="token_classify"
)
output = pooler_output[0].outputs

View File

@ -1,10 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
import pytest
from tests.models.utils import EmbedModelInfo
from vllm import PoolingParams
from vllm.config import ModelConfig
from vllm.config import ModelConfig, PoolerConfig
EMBEDDING_MODELS = [
EmbedModelInfo("intfloat/multilingual-e5-small", is_matryoshka=False),
@ -15,6 +17,15 @@ EMBEDDING_MODELS = [
),
]
classify_parameters = ["activation"]
embed_parameters = ["dimensions", "normalize"]
step_pooling_parameters = ["step_tag_id", "returned_token_ids"]
@dataclass()
class MockModelConfig:
pooler_config: PoolerConfig
def test_task():
pooling_params = PoolingParams()
@ -24,25 +35,27 @@ def test_task():
pooling_params.verify(task="score")
with pytest.raises(ValueError):
pooling_params.verify(task="encode")
pooling_params.verify(task="classify")
def test_embed():
task = "embed"
model_config = MockModelConfig(pooler_config=PoolerConfig(pooling_type="CLS"))
pooling_params = PoolingParams(normalize=None)
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(normalize=True)
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(normalize=False)
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = ["activation", "softmax"]
invalid_parameters = classify_parameters + step_pooling_parameters
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
@ -73,35 +86,71 @@ def test_embed_dimensions(model_info: EmbedModelInfo):
@pytest.mark.parametrize("task", ["score", "classify"])
def test_classify(task):
model_config = MockModelConfig(pooler_config=PoolerConfig(pooling_type="CLS"))
pooling_params = PoolingParams(activation=None)
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(activation=True)
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(activation=False)
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = ["dimensions", "normalize", "softmax"]
invalid_parameters = embed_parameters + step_pooling_parameters
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
def test_encode():
task = "encode"
pooling_params = PoolingParams(softmax=None)
pooling_params.verify(task=task)
@pytest.mark.parametrize("pooling_type", ["ALL", "STEP"])
def test_token_embed(pooling_type: str):
task = "token_embed"
model_config = MockModelConfig(
pooler_config=PoolerConfig(pooling_type=pooling_type)
)
pooling_params = PoolingParams(softmax=True)
pooling_params.verify(task=task)
pooling_params = PoolingParams(normalize=None)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(softmax=False)
pooling_params.verify(task=task)
pooling_params = PoolingParams(normalize=True)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(normalize=False)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = classify_parameters
if pooling_type != "STEP":
invalid_parameters = classify_parameters + step_pooling_parameters
invalid_parameters = ["dimensions", "normalize", "activation"]
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task)
pooling_params.verify(task=task, model_config=model_config)
@pytest.mark.parametrize("pooling_type", ["ALL", "STEP"])
def test_token_classify(pooling_type: str):
task = "token_classify"
model_config = MockModelConfig(
pooler_config=PoolerConfig(pooling_type=pooling_type)
)
pooling_params = PoolingParams(activation=None)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(activation=True)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(activation=False)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = embed_parameters
if pooling_type != "STEP":
invalid_parameters = embed_parameters + step_pooling_parameters
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task, model_config=model_config)

View File

@ -951,7 +951,7 @@ class LLM:
truncate_prompt_tokens: int | None = None,
use_tqdm: bool | Callable[..., tqdm] = True,
lora_request: list[LoRARequest] | LoRARequest | None = None,
pooling_task: PoolingTask = "encode",
pooling_task: PoolingTask | None = None,
tokenization_kwargs: dict[str, Any] | None = None,
) -> list[PoolingRequestOutput]:
"""Apply pooling to the hidden states corresponding to the input
@ -986,25 +986,24 @@ class LLM:
instead pass them via the `inputs` parameter.
"""
if self.supported_tasks == ["encode"] and pooling_task is None:
pooling_task = "encode"
error_str = (
"pooling_task required for `LLM.encode`\n"
"Please use one of the more specific methods or set the "
"pooling_task when using `LLM.encode`:\n"
" - For embeddings, use `LLM.embed(...)` "
'or `pooling_task="embed"`.\n'
" - For classification logits, use `LLM.classify(...)` "
'or `pooling_task="classify"`.\n'
" - For similarity scores, use `LLM.score(...)`.\n"
" - For rewards, use `LLM.reward(...)` "
'or `pooling_task="token_classify"`\n'
" - For token classification, "
'use `pooling_task="token_classify"`\n'
' - For multi-vector retrieval, use `pooling_task="token_embed"`'
)
if pooling_task is None:
pooling_task = "embed" if "embed" in self.supported_tasks else "encode"
logger.warning_once(
"`LLM.encode` is currently using `pooling_task = %s`.\n"
"Please use one of the more specific methods or set the "
"task directly when using `LLM.encode`:\n"
" - For embeddings, use `LLM.embed(...)` "
'or `pooling_task="embed"`.\n'
" - For classification logits, use `LLM.classify(...)` "
'or `pooling_task="classify"`.\n'
" - For rewards, use `LLM.reward(...)` "
'or `pooling_task="reward"`\n'
" - For similarity scores, use `LLM.score(...)`.",
pooling_task,
)
raise ValueError(error_str)
model_config = self.model_config
runner_type = model_config.runner_type
@ -1206,7 +1205,7 @@ class LLM:
lora_request=lora_request,
pooling_params=pooling_params,
truncate_prompt_tokens=truncate_prompt_tokens,
pooling_task="encode",
pooling_task="token_classify",
)
def _embedding_score(

View File

@ -1748,16 +1748,19 @@ async def init_app_state(
else None
)
state.openai_serving_pooling = (
OpenAIServingPooling(
engine_client,
state.openai_serving_models,
request_logger=request_logger,
chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format,
trust_request_chat_template=args.trust_request_chat_template,
log_error_stack=args.log_error_stack,
(
OpenAIServingPooling(
engine_client,
state.openai_serving_models,
supported_tasks=supported_tasks,
request_logger=request_logger,
chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format,
trust_request_chat_template=args.trust_request_chat_template,
log_error_stack=args.log_error_stack,
)
)
if "encode" in supported_tasks
if ("token_embed" in supported_tasks or "token_classify" in supported_tasks)
else None
)
state.openai_serving_embedding = (

View File

@ -1682,7 +1682,7 @@ class IOProcessorRequest(OpenAIBaseModel, Generic[T]):
When using plugins IOProcessor plugins, the actual input is processed
by the plugin itself. Hence, we use a generic type for the request data
"""
softmax: bool = True
activation: bool = False
embed_dtype: str = Field(
default="float32",
@ -1693,7 +1693,7 @@ class IOProcessorRequest(OpenAIBaseModel, Generic[T]):
)
def to_pooling_params(self):
return PoolingParams(task="encode", softmax=self.softmax)
return PoolingParams(task="token_classify", activation=self.activation)
class IOProcessorResponse(OpenAIBaseModel, Generic[T]):

View File

@ -35,6 +35,7 @@ from vllm.entrypoints.renderer import RenderConfig
from vllm.entrypoints.utils import _validate_truncation_size
from vllm.logger import init_logger
from vllm.outputs import PoolingOutput, PoolingRequestOutput
from vllm.tasks import SupportedTask
from vllm.utils import merge_async_iterators
logger = init_logger(__name__)
@ -62,6 +63,7 @@ class OpenAIServingPooling(OpenAIServing):
engine_client: EngineClient,
models: OpenAIServingModels,
*,
supported_tasks: tuple[SupportedTask, ...],
request_logger: RequestLogger | None,
chat_template: str | None,
chat_template_content_format: ChatTemplateContentFormatOption,
@ -75,6 +77,7 @@ class OpenAIServingPooling(OpenAIServing):
log_error_stack=log_error_stack,
)
self.supported_tasks = supported_tasks
self.chat_template = chat_template
self.chat_template_content_format: Final = chat_template_content_format
self.trust_request_chat_template = trust_request_chat_template
@ -178,8 +181,17 @@ class OpenAIServingPooling(OpenAIServing):
try:
pooling_params = request.to_pooling_params()
if "token_embed" in self.supported_tasks:
pooling_task = "token_embed"
elif "token_classify" in self.supported_tasks:
pooling_task = "token_classify"
else:
return self.create_error_response(
f"pooling_task must be one of {self.supported_tasks}."
)
try:
pooling_params.verify("encode", self.model_config)
pooling_params.verify(pooling_task, self.model_config)
except ValueError as e:
return self.create_error_response(str(e))

View File

@ -64,66 +64,6 @@ class PoolingParamsUpdate:
params.requires_token_ids = self.requires_token_ids
class Pooler(nn.Module, ABC):
"""The interface required for all poolers used in pooling models in vLLM."""
@staticmethod
def for_encode(pooler_config: PoolerConfig):
if pooler_config.pooling_type == "STEP":
return StepPooler()
resolved_config = ResolvedPoolingConfig(
task="encode", pooling_type=PoolingType.ALL
)
return SimplePooler.from_config(resolved_config)
@staticmethod
def for_embed(pooler_config: PoolerConfig):
resolved_config = ResolvedPoolingConfig.from_config(
task="embed",
pooler_config=pooler_config,
)
return SimplePooler.from_config(resolved_config)
@staticmethod
def for_classify(
pooler_config: PoolerConfig,
classifier: ClassifierFn | None,
):
resolved_config = ResolvedPoolingConfig.from_config(
task="classify",
pooler_config=pooler_config,
)
pooling = PoolingMethod.from_pooling_type(resolved_config.pooling_type)
return ClassifierPooler(
pooling=pooling,
classifier=classifier,
)
@abstractmethod
def get_supported_tasks(self) -> Set[PoolingTask]:
"""Determine which pooling tasks are supported."""
raise NotImplementedError
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
"""
Construct the updated pooling parameters to use for a supported task.
"""
return PoolingParamsUpdate()
@abstractmethod
def forward(
self,
hidden_states: list[torch.Tensor] | torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
raise NotImplementedError
def get_prompt_lens(
hidden_states: torch.Tensor | list[torch.Tensor],
pooling_metadata: PoolingMetadata,
@ -237,7 +177,7 @@ class PoolingMethod(nn.Module, ABC):
class CLSPool(PoolingMethod):
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"encode", "embed", "classify", "score"}
return {"token_embed", "token_classify", "embed", "classify", "score"}
def forward_all(
self,
@ -253,7 +193,7 @@ class CLSPool(PoolingMethod):
class LastPool(PoolingMethod):
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"encode", "embed", "classify", "score"}
return {"token_embed", "token_classify", "embed", "classify", "score"}
def forward_all(
self,
@ -265,7 +205,7 @@ class LastPool(PoolingMethod):
class AllPool(PoolingMethod):
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"encode"}
return {"token_embed", "token_classify"}
def forward_all(
self,
@ -284,7 +224,7 @@ class AllPool(PoolingMethod):
class MeanPool(PoolingMethod):
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"encode", "embed", "classify", "score"}
return {"token_embed", "token_classify", "embed", "classify", "score"}
def forward_all(
self,
@ -398,6 +338,82 @@ class LambdaPoolerActivation(PoolerActivation):
return self.fn(pooled_data)
class Pooler(nn.Module, ABC):
"""The interface required for all poolers used in pooling models in vLLM."""
@staticmethod
def for_token_embed(pooler_config: PoolerConfig):
head = TokenEmbeddingPoolerHead()
if pooler_config.pooling_type == "STEP":
return StepPooler(head=head)
return AllPooler(head=head)
@staticmethod
def for_token_classify(
pooler_config: PoolerConfig,
classifier: ClassifierFn | None = None,
act_fn: PoolerActivation | str | None = None,
):
head = TokenClassifierPoolerHead(classifier=classifier, act_fn=act_fn)
if pooler_config.pooling_type == "STEP":
return StepPooler(head=head)
return AllPooler(head=head)
@staticmethod
def for_embed(pooler_config: PoolerConfig):
resolved_config = ResolvedPoolingConfig.from_config(
task="embed",
pooler_config=pooler_config,
)
pooling = PoolingMethod.from_pooling_type(resolved_config.pooling_type)
head = EmbeddingPoolerHead()
return SimplePooler(pooling=pooling, head=head)
@staticmethod
def for_classify(
pooler_config: PoolerConfig,
classifier: ClassifierFn | None,
act_fn: PoolerActivation | str | None = None,
):
resolved_config = ResolvedPoolingConfig.from_config(
task="classify",
pooler_config=pooler_config,
)
pooling = PoolingMethod.from_pooling_type(resolved_config.pooling_type)
return ClassifierPooler(
pooling=pooling,
classifier=classifier,
act_fn=act_fn,
)
@abstractmethod
def get_supported_tasks(self) -> Set[PoolingTask]:
"""Determine which pooling tasks are supported."""
raise NotImplementedError
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
"""
Construct the updated pooling parameters to use for a supported task.
"""
return PoolingParamsUpdate()
@abstractmethod
def forward(
self,
hidden_states: list[torch.Tensor] | torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
raise NotImplementedError
class PoolerHead(nn.Module):
def __init__(self, activation: PoolerActivation) -> None:
super().__init__()
@ -416,7 +432,6 @@ class EmbeddingPoolerHead(PoolerHead):
super().__init__(activation=PoolerNormalize())
# Load ST projector if available
vllm_config = get_current_vllm_config()
self.projector: nn.Module | None = (
_load_st_projector(vllm_config.model_config) if vllm_config else None
@ -471,39 +486,6 @@ class EmbeddingPoolerHead(PoolerHead):
return pooled_data
class RewardPoolerHead(PoolerHead):
def __init__(self) -> None:
super().__init__(activation=PoolerClassify(static_num_labels=False))
vllm_config = get_current_vllm_config()
self.head_dtype = vllm_config.model_config.head_dtype
def forward(
self,
pooled_data: list[torch.Tensor] | torch.Tensor,
pooling_metadata: PoolingMetadata,
):
if isinstance(pooled_data, list):
pooled_data = [p.to(self.head_dtype) for p in pooled_data]
else:
pooled_data = pooled_data.to(self.head_dtype)
pooling_params = get_pooling_params(pooling_metadata)
# for softmax
flags = [p.softmax for p in pooling_params]
if len(set(flags)) == 1:
if flags[0]:
pooled_data = self.activation(pooled_data)
else:
pooled_data = [
self.activation(vecs) if f else vecs
for vecs, f in zip(pooled_data, flags)
]
return pooled_data
class SimplePooler(Pooler):
"""A layer that pools specific information from hidden states.
@ -513,20 +495,6 @@ class SimplePooler(Pooler):
3. Returns structured results as `PoolerOutput`.
"""
@classmethod
def from_config(
cls,
pooler_config: ResolvedPoolingConfig,
) -> "SimplePooler":
pooling = PoolingMethod.from_pooling_type(pooler_config.pooling_type)
if pooler_config.task == "embed":
head = EmbeddingPoolerHead()
elif pooler_config.task == "encode":
head = RewardPoolerHead()
else:
raise NotImplementedError(f"Unknown task: {pooler_config.task}")
return cls(pooling, head)
def __init__(self, pooling: PoolingMethod, head: PoolerHead) -> None:
super().__init__()
@ -549,58 +517,6 @@ class SimplePooler(Pooler):
return pooled_data
class StepPooler(Pooler):
def __init__(
self,
) -> None:
super().__init__()
self.pooling = AllPool()
self.head = RewardPoolerHead()
def extract_states(
self,
hidden_states: torch.Tensor | list[torch.Tensor],
pooling_metadata: PoolingMetadata,
) -> list[torch.Tensor] | torch.Tensor:
pooled_data_lst = self.pooling(hidden_states, pooling_metadata)
prompt_token_ids = get_prompt_token_ids(pooling_metadata)
pooled_data = list[torch.Tensor]()
pooling_params = get_pooling_params(pooling_metadata)
for data, token_id, pooling_param in zip(
pooled_data_lst, prompt_token_ids, pooling_params
):
step_tag_id = pooling_param.step_tag_id
returned_token_ids = pooling_param.returned_token_ids
if returned_token_ids is not None and len(returned_token_ids) > 0:
data = data[:, returned_token_ids]
if step_tag_id is not None:
data = data[token_id == step_tag_id]
pooled_data.append(data)
return pooled_data
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"encode"}
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
return PoolingParamsUpdate(requires_token_ids=True)
def forward(
self,
hidden_states: torch.Tensor | list[torch.Tensor],
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
pooled_data = self.extract_states(hidden_states, pooling_metadata)
pooled_data = self.head(pooled_data, pooling_metadata)
return pooled_data
class ClassifierPooler(Pooler):
"""A pooling layer for classification tasks.
@ -611,26 +527,46 @@ class ClassifierPooler(Pooler):
"""
@staticmethod
def act_fn_for_seq_cls(config: ModelConfig):
return get_classification_activation_function(config.hf_config)
def act_fn_for_seq_cls(model_config: ModelConfig):
return get_classification_activation_function(model_config.hf_config)
@staticmethod
def act_fn_for_cross_encoder(config: ModelConfig):
return get_cross_encoder_activation_function(config.hf_config)
def act_fn_for_cross_encoder(model_config: ModelConfig):
return get_cross_encoder_activation_function(model_config.hf_config)
@staticmethod
def resolve_act_fn(
model_config: ModelConfig,
static_num_labels: bool = True,
act_fn: PoolerActivation | str | None = None,
):
if isinstance(act_fn, str):
if act_fn == "classify":
return ClassifierPooler.act_fn_for_seq_cls(model_config)
elif act_fn == "score":
return ClassifierPooler.act_fn_for_cross_encoder(model_config)
else:
raise ValueError(f"act_fn [{act_fn=}] not supported.")
elif act_fn is None:
return PoolerClassify(static_num_labels=static_num_labels)
else:
assert callable(act_fn)
return act_fn
def __init__(
self,
pooling: PoolingFn,
classifier: ClassifierFn | None,
act_fn: PoolerActivation | None = None,
act_fn: PoolerActivation | str | None = None,
) -> None:
super().__init__()
vllm_config = get_current_vllm_config()
self.pooling = pooling
self.classifier = classifier
self.act_fn = act_fn or PoolerClassify()
self.act_fn = self.resolve_act_fn(
vllm_config.model_config, static_num_labels=True, act_fn=act_fn
)
self.logit_bias: float | None = (
vllm_config.model_config.pooler_config.logit_bias
)
@ -672,6 +608,150 @@ class ClassifierPooler(Pooler):
return scores
class TokenEmbeddingPoolerHead(EmbeddingPoolerHead):
def forward(
self, pooled_data: torch.Tensor, pooling_param: PoolingParams
) -> torch.Tensor:
pooled_data = pooled_data.to(self.head_dtype)
# pooled_data shape: [n_tokens, hidden_dimension]
# Apply ST projector
if self.projector is not None:
pooled_data = self.projector(pooled_data)
# pooled_data shape: [n_tokens, embedding_dimension]
# for matryoshka representation
pooled_data = pooled_data[..., : pooling_param.dimensions]
# for normalize
if pooling_param.normalize:
pooled_data = self.activation(pooled_data)
# pooled_data shape: [n_tokens, embedding_dimension]
return pooled_data
class TokenClassifierPoolerHead(nn.Module):
def __init__(
self,
classifier: ClassifierFn | None,
act_fn: PoolerActivation | str | None = None,
) -> None:
super().__init__()
vllm_config = get_current_vllm_config()
self.classifier = classifier
self.act_fn = ClassifierPooler.resolve_act_fn(
vllm_config.model_config, static_num_labels=False, act_fn=act_fn
)
self.logit_bias: float | None = (
vllm_config.model_config.pooler_config.logit_bias
)
self.head_dtype = vllm_config.model_config.head_dtype
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"token_classify"}
def forward(
self,
hidden_states: torch.Tensor,
pooling_param: PoolingParams,
) -> torch.Tensor:
hidden_states = hidden_states.to(self.head_dtype)
# hidden_states shape: [n_token, hidden_size]
if self.classifier is not None:
scores = self.classifier(hidden_states)
else:
scores = hidden_states
# scores shape: [n_token, num_labels]
if self.logit_bias is not None:
scores -= self.logit_bias
if pooling_param.activation:
scores = self.act_fn(scores)
# scores shape: [n_token, num_labels]
return scores
class AllPooler(Pooler):
def __init__(self, head: nn.Module | PoolerHead) -> None:
super().__init__()
self.pooling = AllPool()
self.head = head
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"token_embed", "token_classify"}
def forward(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
pooled_data = self.pooling(hidden_states, pooling_metadata)
pooling_params = get_pooling_params(pooling_metadata)
assert len(pooled_data) == len(pooling_params)
pooled_data = [self.head(d, p) for d, p in zip(pooled_data, pooling_params)]
return pooled_data
class StepPooler(Pooler):
def __init__(self, head: nn.Module | PoolerHead) -> None:
super().__init__()
self.pooling = AllPool()
self.head = head
def extract_states(
self,
hidden_states: torch.Tensor | list[torch.Tensor],
pooling_metadata: PoolingMetadata,
) -> torch.Tensor | list[torch.Tensor]:
pooled_data_lst = self.pooling(hidden_states, pooling_metadata)
prompt_token_ids = get_prompt_token_ids(pooling_metadata)
pooled_data = list[torch.Tensor]()
pooling_params = get_pooling_params(pooling_metadata)
for data, token_id, pooling_param in zip(
pooled_data_lst, prompt_token_ids, pooling_params
):
step_tag_id = pooling_param.step_tag_id
returned_token_ids = pooling_param.returned_token_ids
if returned_token_ids is not None and len(returned_token_ids) > 0:
data = data[:, returned_token_ids]
if step_tag_id is not None:
data = data[token_id == step_tag_id]
pooled_data.append(data)
return pooled_data
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"token_embed", "token_classify"}
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
return PoolingParamsUpdate(requires_token_ids=True)
def forward(
self,
hidden_states: torch.Tensor | list[torch.Tensor],
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
pooled_data = self.extract_states(hidden_states, pooling_metadata)
pooling_params = get_pooling_params(pooling_metadata)
assert len(pooled_data) == len(pooling_params)
pooled_data = [self.head(d, p) for d, p in zip(pooled_data, pooling_params)]
return pooled_data
class DispatchPooler(Pooler):
"""Dispatches calls to a sub-pooler based on the pooling task."""

View File

@ -250,7 +250,7 @@ def as_embedding_model(cls: _T) -> _T:
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": Pooler.for_embed(pooler_config),
},
)
@ -279,11 +279,8 @@ def as_seq_cls_model(cls: _T) -> _T:
# Lazy import
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.pooler import (
ClassifierPooler,
DispatchPooler,
Pooler,
PoolingMethod,
PoolingType,
)
from vllm.model_executor.models.interfaces import SupportsCrossEncoding
from vllm.sequence import IntermediateTensors
@ -302,42 +299,29 @@ def as_seq_cls_model(cls: _T) -> _T:
model_config.hidden_size,
config.num_labels,
bias=False,
params_dtype=torch.float32,
params_dtype=vllm_config.model_config.head_dtype,
quant_config=quant_config,
return_bias=False,
prefix=maybe_prefix(prefix, "score"),
)
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
pooling_type_str = pooler_config.pooling_type
assert pooling_type_str is not None
pooling_type = PoolingType[pooling_type_str]
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"classify": ClassifierPooler(
pooling=PoolingMethod.from_pooling_type(pooling_type),
classifier=self._classifier,
act_fn=ClassifierPooler.act_fn_for_seq_cls(
vllm_config.model_config
),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.score
),
"score": ClassifierPooler(
pooling=PoolingMethod.from_pooling_type(pooling_type),
classifier=self._classifier,
act_fn=ClassifierPooler.act_fn_for_cross_encoder(
vllm_config.model_config
),
"classify": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="classify"
),
"score": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="score"
),
}
)
def _classifier(self, x: torch.Tensor):
x, _ = self.score(x.float())
return x
def forward(
self,
input_ids: torch.Tensor,
@ -393,7 +377,11 @@ def as_reward_model(cls: _T) -> _T:
assert pooler_config is not None
self.pooler = DispatchPooler(
{"encode": Pooler.for_encode(pooler_config)},
{
"token_classify": Pooler.for_token_classify(
pooler_config=pooler_config
)
}
)
ModelForReward.__name__ = _get_pooling_model_name(cls.__name__, "ForReward")

View File

@ -521,7 +521,7 @@ class BertEmbeddingModel(nn.Module, SupportsQuant):
def _build_pooler(self, pooler_config: PoolerConfig) -> Pooler:
return DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": Pooler.for_embed(pooler_config),
}
)
@ -724,7 +724,7 @@ class BertSpladeSparseEmbeddingModel(BertEmbeddingModel):
return DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": SPLADESparsePooler(
mlm_head=self.mlm_head,
cls_token_id=cls_id,
@ -821,20 +821,16 @@ class BertForSequenceClassification(nn.Module, SupportsCrossEncoding, SupportsQu
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.classifier
),
"classify": ClassifierPooler(
pooling=self.bert.pooler,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_seq_cls(
vllm_config.model_config
),
act_fn="classify",
),
"score": ClassifierPooler(
pooling=self.bert.pooler,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_cross_encoder(
vllm_config.model_config
),
pooling=self.bert.pooler, classifier=self.classifier, act_fn="score"
),
}
)
@ -891,7 +887,9 @@ class BertForTokenClassification(nn.Module):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config=pooler_config
),
}
)

View File

@ -695,20 +695,16 @@ class GteNewForSequenceClassification(nn.Module, SupportsCrossEncoding):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.classifier
),
"classify": ClassifierPooler(
pooling=self.new.pooler,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_seq_cls(
vllm_config.model_config
),
act_fn="classify",
),
"score": ClassifierPooler(
pooling=self.new.pooler,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_cross_encoder(
vllm_config.model_config
),
pooling=self.new.pooler, classifier=self.classifier, act_fn="score"
),
}
)

View File

@ -837,7 +837,7 @@ class CLIPEmbeddingModel(nn.Module, SupportsMultiModal, SupportsQuant):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": Pooler.for_embed(pooler_config),
}
)

View File

@ -353,8 +353,15 @@ class GPT2ForSequenceClassification(nn.Module, SupportsCrossEncoding):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"classify": Pooler.for_classify(pooler_config, classifier=self.score),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.score
),
"classify": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="classify"
),
"score": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="score"
),
}
)

View File

@ -239,7 +239,7 @@ class GritLM(LlamaForCausalLM):
if pooler_config is not None:
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": GritLMPooler(vllm_config.model_config),
}
)

View File

@ -444,7 +444,7 @@ class InternLM2ForRewardModel(InternLM2ForCausalLM):
assert pooler_config is not None
self.pooler = DispatchPooler(
{"encode": Pooler.for_encode(pooler_config)},
{"token_classify": Pooler.for_token_classify(pooler_config)}
)
def forward(

View File

@ -604,10 +604,14 @@ class JambaForSequenceClassification(JambaForCausalLM):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.score
),
"classify": Pooler.for_classify(
pooler_config,
classifier=self.score,
pooler_config, classifier=self.score, act_fn="classify"
),
"score": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="score"
),
}
)

View File

@ -97,9 +97,15 @@ class JinaVLForSequenceClassification(
self.score = JinaVLScorer(vllm_config.model_config)
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"classify": Pooler.for_classify(pooler_config, classifier=self.score),
"score": Pooler.for_classify(pooler_config, classifier=self.score),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.score
),
"classify": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="classify"
),
"score": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="score"
),
}
)

View File

@ -322,20 +322,14 @@ class ModernBertForSequenceClassification(nn.Module, SupportsCrossEncoding):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.classifier
),
"classify": ClassifierPooler(
pooling=self.pooling,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_seq_cls(
vllm_config.model_config
),
pooling=self.pooling, classifier=self.classifier, act_fn="classify"
),
"score": ClassifierPooler(
pooling=self.pooling,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_cross_encoder(
vllm_config.model_config
),
pooling=self.pooling, classifier=self.classifier, act_fn="score"
),
}
)
@ -421,7 +415,9 @@ class ModernBertForTokenClassification(nn.Module):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config=pooler_config
),
}
)

View File

@ -107,7 +107,7 @@ class Qwen2ForRewardModel(Qwen2RewardBaseModel):
assert pooler_config is not None
self.pooler = DispatchPooler(
{"encode": Pooler.for_encode(pooler_config)},
{"token_classify": Pooler.for_token_classify(pooler_config)}
)
@ -120,4 +120,6 @@ class Qwen2ForProcessRewardModel(Qwen2RewardBaseModel):
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler({"encode": Pooler.for_encode(pooler_config)})
self.pooler = DispatchPooler(
{"token_classify": Pooler.for_token_classify(pooler_config)}
)

View File

@ -105,15 +105,7 @@ class RobertaClassificationHead(nn.Module):
@default_pooling_type("CLS")
class RobertaEmbeddingModel(BertEmbeddingModel):
"""A model that uses Roberta to provide embedding functionalities.
This class encapsulates the BertModel and provides an interface for
embedding operations and customized pooling functions.
Attributes:
model: An instance of BertModel used for forward operations.
_pooler: An instance of Pooler used for pooling operations.
"""
"""A model that uses Roberta to provide embedding functionalities."""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
@ -212,20 +204,14 @@ class RobertaForSequenceClassification(nn.Module, SupportsCrossEncoding):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config=pooler_config, classifier=self.classifier
),
"classify": ClassifierPooler(
pooling=CLSPool(),
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_seq_cls(
vllm_config.model_config
),
pooling=CLSPool(), classifier=self.classifier, act_fn="classify"
),
"score": ClassifierPooler(
pooling=CLSPool(),
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_cross_encoder(
vllm_config.model_config
),
pooling=CLSPool(), classifier=self.classifier, act_fn="score"
),
}
)

View File

@ -250,7 +250,7 @@ class Terratorch(nn.Module, IsAttentionFree, SupportsMultiModal):
assert pooler_config is not None
self.pooler = DispatchPooler(
{"encode": Pooler.for_encode(pooler_config)},
{"token_classify": Pooler.for_token_classify(pooler_config)}
)
def get_input_embeddings(

View File

@ -135,7 +135,7 @@ class TransformersEmbeddingModel(TransformersPoolingBase):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": Pooler.for_embed(pooler_config),
}
)
@ -190,20 +190,14 @@ class TransformersForSequenceClassification(TransformersPoolingBase):
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.classifier
),
"classify": ClassifierPooler(
pooling=CLSPool(),
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_seq_cls(
vllm_config.model_config
),
pooling=CLSPool(), classifier=self.classifier, act_fn="classify"
),
"score": ClassifierPooler(
pooling=CLSPool(),
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_cross_encoder(
vllm_config.model_config
),
pooling=CLSPool(), classifier=self.classifier, act_fn="score"
),
}
)

View File

@ -10,7 +10,7 @@ from vllm.sampling_params import RequestOutputKind
from vllm.tasks import PoolingTask
if TYPE_CHECKING:
from vllm.config import ModelConfig
from vllm.config import ModelConfig, PoolerConfig
class PoolingParams(
@ -30,7 +30,6 @@ class PoolingParams(
if model support matryoshka representation.
activation: Whether to apply activation function to
the classification outputs.
softmax: Whether to apply softmax to the reward outputs.
"""
# --8<-- [start:common-pooling-params]
@ -48,32 +47,19 @@ class PoolingParams(
activation: bool | None = None
# --8<-- [end:classification-pooling-params]
## for reward models
softmax: bool | None = None
## for step pooling models
step_tag_id: int | None = None
returned_token_ids: list[int] | None = None
## Internal use only
task: PoolingTask | None = None
"""Internal use only."""
requires_token_ids: bool = False
"""Internal use only."""
extra_kwargs: dict[str, Any] | None = None
"""Internal use only."""
output_kind: RequestOutputKind = RequestOutputKind.FINAL_ONLY
@property
def all_parameters(self) -> list[str]:
return [
"dimensions",
"normalize",
"activation",
"softmax",
"step_tag_id",
"returned_token_ids",
]
return ["dimensions", "normalize", "activation"]
@property
def valid_parameters(self):
@ -81,7 +67,8 @@ class PoolingParams(
"embed": ["dimensions", "normalize"],
"classify": ["activation"],
"score": ["activation"],
"encode": ["softmax", "step_tag_id", "returned_token_ids"],
"token_embed": ["dimensions", "normalize"],
"token_classify": ["activation"],
}
def clone(self) -> "PoolingParams":
@ -100,7 +87,6 @@ class PoolingParams(
# NOTE: Task validation needs to done against the model instance,
# which is not available in model config. So, it's not included
# in this method
self._merge_default_parameters(model_config)
self._set_default_parameters(model_config)
self._verify_valid_parameters()
@ -125,8 +111,34 @@ class PoolingParams(
if getattr(self, k, None) is None:
setattr(self, k, getattr(pooler_config, k))
self._verify_step_pooling(pooler_config, valid_parameters)
def _verify_step_pooling(
self, pooler_config: "PoolerConfig", valid_parameters: list[str]
):
step_pooling_parameters = ["step_tag_id", "returned_token_ids"]
if pooler_config.pooling_type != "STEP":
invalid_parameters = []
for k in step_pooling_parameters:
if getattr(self, k, None) is not None:
invalid_parameters.append(k)
if invalid_parameters:
raise ValueError(
f"Task {self.task} only supports {valid_parameters} "
f"parameters, does not support "
f"{invalid_parameters} parameters"
)
else:
for k in step_pooling_parameters:
if getattr(pooler_config, k, None) is None:
continue
if getattr(self, k, None) is None:
setattr(self, k, getattr(pooler_config, k))
def _set_default_parameters(self, model_config: Optional["ModelConfig"]):
if self.task == "embed":
if self.task in ["embed", "token_embed"]:
if self.normalize is None:
self.normalize = True
@ -150,13 +162,9 @@ class PoolingParams(
elif self.dimensions < 1:
raise ValueError("Dimensions must be greater than 0")
elif self.task in ["classify", "score"]:
elif self.task in ["classify", "score", "token_classify"]:
if self.activation is None:
self.activation = True
elif self.task == "encode":
if self.softmax is None:
self.softmax = True
else:
raise ValueError(f"Unknown pooling task: {self.task}")
@ -185,7 +193,6 @@ class PoolingParams(
f"normalize={self.normalize}, "
f"dimensions={self.dimensions}, "
f"activation={self.activation}, "
f"softmax={self.softmax}, "
f"step_tag_id={self.step_tag_id}, "
f"returned_token_ids={self.returned_token_ids}, "
f"requires_token_ids={self.requires_token_ids}, "

View File

@ -5,7 +5,7 @@ from typing import Literal, get_args
GenerationTask = Literal["generate", "transcription"]
GENERATION_TASKS = get_args(GenerationTask)
PoolingTask = Literal["encode", "embed", "classify", "score"]
PoolingTask = Literal["embed", "classify", "score", "token_embed", "token_classify"]
POOLING_TASKS = get_args(PoolingTask)
SupportedTask = Literal[GenerationTask, PoolingTask]

View File

@ -1926,15 +1926,16 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
supported_tasks = list(model.pooler.get_supported_tasks())
if (
self.scheduler_config.chunked_prefill_enabled
and "encode" in supported_tasks
):
supported_tasks.remove("encode")
if self.scheduler_config.chunked_prefill_enabled:
if "token_embed" in supported_tasks:
supported_tasks.remove("token_embed")
if "token_classify" in supported_tasks:
supported_tasks.remove("token_classify")
logger.debug_once(
"Chunked prefill is not supported with "
"encode task which using ALL pooling. "
"token_embed and token_classify tasks "
"which using ALL pooling. "
"Please turn off chunked prefill by "
"`--no-enable-chunked-prefill` before using it."
)