mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
Migrate InternVLImageInputs and InternVLVideoInputs to TensorSchema (#21684)
Signed-off-by: Benji Beck <benjibeck@meta.com>
This commit is contained in:
@ -9,7 +9,7 @@
|
||||
# --------------------------------------------------------
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from typing import Any, Literal, Optional, TypedDict, TypeVar, Union
|
||||
from typing import Annotated, Any, Literal, Optional, TypeVar, Union
|
||||
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
@ -37,6 +37,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
|
||||
SupportsMultiModal, SupportsPP)
|
||||
@ -51,54 +52,60 @@ IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
||||
IMAGENET_STD = (0.229, 0.224, 0.225)
|
||||
|
||||
|
||||
class InternVLImagePixelInputs(TypedDict):
|
||||
class InternVLImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- bnp: Batch size * number of images * (1 + num_patches)
|
||||
- c: Number of channels (3)
|
||||
- h: Height of each image patch
|
||||
- w: Width of each image patch
|
||||
"""
|
||||
type: Literal["pixel_values"]
|
||||
pixel_values_flat: torch.Tensor
|
||||
pixel_values_flat: Annotated[torch.Tensor, TensorShape("bnp", 3, "h", "w")]
|
||||
num_patches: Annotated[torch.Tensor, TensorShape("bn")]
|
||||
|
||||
|
||||
class InternVLImageEmbeddingInputs(TensorSchema):
|
||||
"""
|
||||
Shape:
|
||||
`(batch_size * num_images * (1 + num_patches), num_channels, height, width)`
|
||||
Dimensions:
|
||||
- n: Number of images
|
||||
- f: Total image feature size
|
||||
- h: Hidden size (must match the hidden size of language model backbone)
|
||||
"""
|
||||
|
||||
num_patches: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images)`"""
|
||||
|
||||
|
||||
class InternVLImageEmbeddingInputs(TypedDict):
|
||||
type: Literal["image_embeds"]
|
||||
data: Union[torch.Tensor, list[torch.Tensor]]
|
||||
"""
|
||||
A tensor of shape `(num_images, total_image_feature_size, hidden_size)`
|
||||
or a list of tensors of shape `(total_image_feature_size, hidden_size)`
|
||||
|
||||
`hidden_size` must match the hidden size of language model backbone.
|
||||
"""
|
||||
data: Annotated[Union[torch.Tensor, list[torch.Tensor]],
|
||||
TensorShape("n", "f", "h")]
|
||||
|
||||
|
||||
InternVLImageInputs = Union[InternVLImagePixelInputs,
|
||||
InternVLImageEmbeddingInputs]
|
||||
|
||||
|
||||
class InternVLVideoPixelInputs(TypedDict):
|
||||
class InternVLVideoPixelInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- bvf: Batch size * number of videos * num_frames
|
||||
- bn: Batch size * number of images
|
||||
- c: Number of channels (3)
|
||||
- h: Height of each video frame
|
||||
- w: Width of each video frame
|
||||
"""
|
||||
type: Literal["pixel_values_videos"]
|
||||
pixel_values_flat: torch.Tensor
|
||||
pixel_values_flat: Annotated[torch.Tensor, TensorShape("bvf", 3, "h", "w")]
|
||||
num_patches: Annotated[torch.Tensor, TensorShape("bn")]
|
||||
|
||||
|
||||
class InternVLVideoEmbeddingInputs(TensorSchema):
|
||||
"""
|
||||
Shape:
|
||||
`(batch_size * num_video * num_frames, num_channels, height, width)`
|
||||
Dimensions:
|
||||
- n: Number of videos
|
||||
- f: Total video feature size
|
||||
- h: Hidden size (must match the hidden size of language model backbone)
|
||||
"""
|
||||
|
||||
num_patches: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images)`"""
|
||||
|
||||
|
||||
class InternVLVideoEmbeddingInputs(TypedDict):
|
||||
type: Literal["video_embeds"]
|
||||
data: Union[torch.Tensor, list[torch.Tensor]]
|
||||
"""
|
||||
A tensor of shape `(num_videos, total_video_feature_size, hidden_size)`
|
||||
or a list of tensors of shape `(total_video_feature_size, hidden_size)`
|
||||
|
||||
`hidden_size` must match the hidden size of language model backbone.
|
||||
"""
|
||||
data: Annotated[Union[torch.Tensor, list[torch.Tensor]],
|
||||
TensorShape("n", "f", "h")]
|
||||
|
||||
|
||||
InternVLVideoInputs = Union[InternVLVideoPixelInputs,
|
||||
@ -1151,26 +1158,6 @@ class InternVLChatModel(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
vit_embeds = self.mlp1(vit_embeds)
|
||||
return vit_embeds
|
||||
|
||||
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
h = w = self.config.vision_config.image_size
|
||||
expected_dims = (3, h, w)
|
||||
|
||||
def _validate_shape(d: torch.Tensor):
|
||||
actual_dims = tuple(d.shape)
|
||||
|
||||
if actual_dims != expected_dims:
|
||||
expected_expr = str(expected_dims)
|
||||
raise ValueError(
|
||||
"The expected shape of pixel values per image per batch "
|
||||
f" per patch is {expected_expr}. "
|
||||
f"You supplied {tuple(d.shape)}.")
|
||||
|
||||
for d in data:
|
||||
_validate_shape(d)
|
||||
|
||||
return data
|
||||
|
||||
def _parse_and_validate_image_input(
|
||||
self, **kwargs: object) -> Optional[InternVLImageInputs]:
|
||||
pixel_values_flat = kwargs.pop("pixel_values_flat", None)
|
||||
@ -1205,12 +1192,14 @@ class InternVLChatModel(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
|
||||
pixel_values_flat = flatten_bn(pixel_values_flat, concat=True)
|
||||
image_num_patches = flatten_bn(image_num_patches, concat=True)
|
||||
expected_h = expected_w = self.config.vision_config.image_size
|
||||
resolve_bindings = {"h": expected_h, "w": expected_w}
|
||||
|
||||
return InternVLImagePixelInputs(
|
||||
type="pixel_values",
|
||||
pixel_values_flat=self._validate_pixel_values(
|
||||
pixel_values_flat),
|
||||
pixel_values_flat=pixel_values_flat,
|
||||
num_patches=image_num_patches,
|
||||
resolve_bindings=resolve_bindings,
|
||||
)
|
||||
|
||||
raise AssertionError("This line should be unreachable.")
|
||||
@ -1225,11 +1214,7 @@ class InternVLChatModel(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
return None
|
||||
|
||||
if video_embeds is not None:
|
||||
if not isinstance(video_embeds, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of video embeddings. "
|
||||
f"Got type: {type(video_embeds)}")
|
||||
|
||||
return InternVLImageEmbeddingInputs(
|
||||
return InternVLVideoEmbeddingInputs(
|
||||
type="video_embeds",
|
||||
data=flatten_bn(video_embeds),
|
||||
)
|
||||
@ -1250,12 +1235,14 @@ class InternVLChatModel(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
pixel_values_flat_video = flatten_bn(pixel_values_flat_video,
|
||||
concat=True)
|
||||
video_num_patches = flatten_bn(video_num_patches, concat=True)
|
||||
expected_h = expected_w = self.config.vision_config.image_size
|
||||
resolve_bindings = {"h": expected_h, "w": expected_w}
|
||||
|
||||
return InternVLVideoPixelInputs(
|
||||
type="pixel_values_videos",
|
||||
pixel_values_flat=self._validate_pixel_values(
|
||||
pixel_values_flat_video),
|
||||
pixel_values_flat=pixel_values_flat_video,
|
||||
num_patches=video_num_patches,
|
||||
resolve_bindings=resolve_bindings,
|
||||
)
|
||||
|
||||
raise AssertionError("This line should be unreachable.")
|
||||
|
Reference in New Issue
Block a user