Revert "[CI/Build] Add is_quant_method_supported to control quantization test configurations" (#5463)

This commit is contained in:
Simon Mo
2024-06-12 12:03:24 -05:00
committed by GitHub
parent 3dd6853bc8
commit e3c12bf6d2
8 changed files with 68 additions and 30 deletions

View File

@ -4,8 +4,17 @@ Run `pytest tests/models/test_aqlm.py`.
"""
import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
aqlm_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
aqlm_not_supported = (capability <
QUANTIZATION_METHODS["aqlm"].get_min_capability())
# In this test we hardcode prompts and generations for the model so we don't
# need to require the AQLM package as a dependency
@ -58,7 +67,7 @@ ground_truth_generations = [
]
@pytest.mark.skipif(not is_quant_method_supported("aqlm"),
@pytest.mark.skipif(aqlm_not_supported,
reason="AQLM is not supported on this GPU type.")
@pytest.mark.parametrize("model", ["ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf"])
@pytest.mark.parametrize("dtype", ["half"])

View File

@ -8,8 +8,8 @@ import pytest
import torch
from transformers import AutoTokenizer
from tests.quantization.utils import is_quant_method_supported
from vllm import LLM, SamplingParams
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
os.environ["TOKENIZERS_PARALLELISM"] = "true"
@ -67,8 +67,16 @@ EXPECTED_STRS_MAP = {
},
}
fp8_not_supported = True
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
fp8_not_supported = (capability <
QUANTIZATION_METHODS["fp8"].get_min_capability())
@pytest.mark.skipif(fp8_not_supported,
reason="fp8 is not supported on this GPU type.")
@pytest.mark.parametrize("model_name", MODELS)
@pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8"])

View File

@ -11,8 +11,9 @@ Run `pytest tests/models/test_gptq_marlin.py`.
import os
import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.model_executor.layers.rotary_embedding import _ROPE_DICT
from .utils import check_logprobs_close
@ -21,6 +22,14 @@ os.environ["TOKENIZERS_PARALLELISM"] = "true"
MAX_MODEL_LEN = 1024
gptq_marlin_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
gptq_marlin_not_supported = (
capability < QUANTIZATION_METHODS["gptq_marlin"].get_min_capability())
MODELS = [
# act_order==False, group_size=channelwise
("robertgshaw2/zephyr-7b-beta-channelwise-gptq", "main"),
@ -44,7 +53,7 @@ MODELS = [
@pytest.mark.flaky(reruns=3)
@pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"),
@pytest.mark.skipif(gptq_marlin_not_supported,
reason="gptq_marlin is not supported on this GPU type.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half", "bfloat16"])

View File

@ -9,9 +9,18 @@ Run `pytest tests/models/test_marlin_24.py`.
from dataclasses import dataclass
import pytest
import torch
from tests.models.utils import check_logprobs_close
from tests.quantization.utils import is_quant_method_supported
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
marlin_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (
capability < QUANTIZATION_METHODS["marlin"].get_min_capability())
@dataclass
@ -38,7 +47,7 @@ model_pairs = [
@pytest.mark.flaky(reruns=2)
@pytest.mark.skipif(not is_quant_method_supported("gptq_marlin_24"),
@pytest.mark.skipif(marlin_not_supported,
reason="Marlin24 is not supported on this GPU type.")
@pytest.mark.parametrize("model_pair", model_pairs)
@pytest.mark.parametrize("dtype", ["half"])

View File

@ -13,11 +13,20 @@ Run `pytest tests/models/test_marlin.py`.
from dataclasses import dataclass
import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from .utils import check_logprobs_close
marlin_not_supported = True
if torch.cuda.is_available():
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (
capability < QUANTIZATION_METHODS["marlin"].get_min_capability())
@dataclass
class ModelPair:
@ -36,7 +45,7 @@ model_pairs = [
@pytest.mark.flaky(reruns=2)
@pytest.mark.skipif(not is_quant_method_supported("marlin"),
@pytest.mark.skipif(marlin_not_supported,
reason="Marlin is not supported on this GPU type.")
@pytest.mark.parametrize("model_pair", model_pairs)
@pytest.mark.parametrize("dtype", ["half"])

View File

@ -5,12 +5,16 @@ Run `pytest tests/quantization/test_bitsandbytes.py`.
import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from vllm import SamplingParams
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
@pytest.mark.skipif(not is_quant_method_supported("bitsandbytes"),
reason='bitsandbytes is not supported on this GPU type.')
@pytest.mark.skipif(
capability < QUANTIZATION_METHODS['bitsandbytes'].get_min_capability(),
reason='bitsandbytes is not supported on this GPU type.')
def test_load_bnb_model(vllm_runner) -> None:
with vllm_runner('huggyllama/llama-7b',
quantization='bitsandbytes',

View File

@ -5,12 +5,16 @@ Run `pytest tests/quantization/test_fp8.py --forked`.
import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.model_executor.layers.quantization.fp8 import Fp8LinearMethod
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
reason="FP8 is not supported on this GPU type.")
@pytest.mark.skipif(
capability < QUANTIZATION_METHODS["fp8"].get_min_capability(),
reason="FP8 is not supported on this GPU type.")
def test_load_fp16_model(vllm_runner) -> None:
with vllm_runner("facebook/opt-125m", quantization="fp8") as llm:

View File

@ -1,14 +0,0 @@
import torch
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
def is_quant_method_supported(quant_method: str) -> bool:
# Currently, all quantization methods require Nvidia or AMD GPUs
if not torch.cuda.is_available():
return False
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
return (capability <
QUANTIZATION_METHODS[quant_method].get_min_capability())