[Bugfix]: Clean up chunked prefill logging when using whisper (#25075)

Signed-off-by: simondanielsson <simon.danielsson99@hotmail.com>
This commit is contained in:
Simon Danielsson
2025-09-30 10:17:49 +02:00
committed by GitHub
parent 2e1b8bc2b6
commit e23cacda35
4 changed files with 75 additions and 8 deletions

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses
from typing import Optional
from unittest.mock import Mock
@ -1900,3 +1901,52 @@ def test_priority_scheduling_preemption_when_out_of_kv():
assert output.scheduled_cached_reqs.req_ids[0] == request_high.request_id
assert len(scheduler.waiting) == 1
assert len(scheduler.running) == 1
@pytest.mark.parametrize(
("enable_chunked_prefill", "is_encoder_decoder", "expect_enabled"),
[
(True, False, True),
(False, False, False),
# Encoder-decoder models should always have it disabled
(False, True, False),
(True, True, False),
])
def test_chunked_prefill_disabled_for_encoder_decoder(
enable_chunked_prefill: bool, is_encoder_decoder: bool,
expect_enabled: bool) -> None:
"""Validate that chunked prefill is appropriately disabled for
encoder-decoder models."""
scheduler_config = SchedulerConfig(
enable_chunked_prefill=enable_chunked_prefill,
is_encoder_decoder=is_encoder_decoder,
)
# `is_encoder_decoder` should only be used during construction
# of the config, and otherwise stored in the model config.
assert "is_encoder_decoder" not in vars(scheduler_config)
assert "is_encoder_decoder" not in [
f.name for f in dataclasses.fields(scheduler_config)
]
_validate_chunked_prefill_settings_for_encoder_decoder(
scheduler_config, is_encoder_decoder, expect_enabled)
# Ensure it is retained in VllmConfig, even after its post-init.
vllm_config = VllmConfig(scheduler_config=scheduler_config)
_validate_chunked_prefill_settings_for_encoder_decoder(
vllm_config.scheduler_config, is_encoder_decoder, expect_enabled)
def _validate_chunked_prefill_settings_for_encoder_decoder(
scheduler_config: SchedulerConfig, is_encoder_decoder: bool,
expect_enabled: bool) -> None:
"""Validate chunked prefill settings in the scheduler config for
encoder-decoder models."""
assert scheduler_config.chunked_prefill_enabled is expect_enabled
assert scheduler_config.enable_chunked_prefill is expect_enabled
if is_encoder_decoder:
# Encoder-decoder models should automatically disable chunked multimodal
# inputs as well
assert scheduler_config.disable_chunked_mm_input is not expect_enabled
if is_encoder_decoder and not expect_enabled:
assert scheduler_config.long_prefill_token_threshold == 0

View File

@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import hashlib
from dataclasses import field
from dataclasses import InitVar, field
from typing import Any, Literal, Union
from pydantic import SkipValidation, model_validator
@ -84,6 +84,13 @@ class SchedulerConfig:
is_multimodal_model: bool = False
"""True if the model is multimodal."""
is_encoder_decoder: InitVar[bool] = False
"""True if the model is an encoder-decoder model.
Note: This is stored in the ModelConfig, and is used only here to
disable chunked prefill and prefix caching for encoder-decoder models.
"""
# TODO (ywang96): Make this configurable.
max_num_encoder_input_tokens: int = field(init=False)
"""Multimodal encoder compute budget, only used in V1.
@ -161,13 +168,23 @@ class SchedulerConfig:
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self) -> None:
def __post_init__(self, is_encoder_decoder: bool) -> None:
if self.max_model_len is None:
self.max_model_len = 8192
if self.max_num_seqs is None:
self.max_num_seqs = 128
if is_encoder_decoder:
# Chunked prefill should be disabled for encoder-decoder models.
self.disable_chunked_mm_input = True
self.chunked_prefill_enabled = False
self.enable_chunked_prefill = False
self.long_prefill_token_threshold = 0
logger.info(
"Encoder-decoder models do not support chunked prefill nor"
" prefix caching; disabling both.")
if self.max_num_batched_tokens is None:
if self.enable_chunked_prefill:
self.max_num_batched_tokens = DEFAULT_MAX_NUM_BATCHED_TOKENS

View File

@ -386,10 +386,6 @@ class VllmConfig:
"Encoder-decoder model detected: setting "
"`max_num_encoder_input_tokens` to encoder length (%s)",
self.scheduler_config.max_num_encoder_input_tokens)
self.scheduler_config.disable_chunked_mm_input = True
disable_chunked_prefill_reasons.append(
"Encoder-decoder models do not support chunked prefill nor"
" prefix caching; disabling both.")
if (self.model_config.architecture
== "WhisperForConditionalGeneration"
and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD")
@ -400,7 +396,10 @@ class VllmConfig:
"try setting 'VLLM_WORKER_MULTIPROC_METHOD' "
"to 'spawn'.")
if disable_chunked_prefill_reasons:
# Disable prefix caching only if chunked prefill is explicitly disabled
# (and not merely unset)
if (self.scheduler_config.chunked_prefill_enabled is False
or disable_chunked_prefill_reasons):
for reason in disable_chunked_prefill_reasons:
logger.info(reason)
self.scheduler_config.chunked_prefill_enabled = False

View File

@ -1367,6 +1367,7 @@ class EngineArgs:
enable_chunked_prefill=self.enable_chunked_prefill,
disable_chunked_mm_input=self.disable_chunked_mm_input,
is_multimodal_model=model_config.is_multimodal_model,
is_encoder_decoder=model_config.is_encoder_decoder,
send_delta_data=(envs.VLLM_USE_RAY_SPMD_WORKER
and parallel_config.use_ray),
policy=self.scheduling_policy,