mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
[Misc] Update fbgemmfp8 to use vLLMParameters (#7972)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
This commit is contained in:
@ -26,7 +26,7 @@ WEIGHT_LOADER_V2_SUPPORTED = [
|
||||
"CompressedTensorsLinearMethod", "AWQMarlinLinearMethod",
|
||||
"AWQLinearMethod", "GPTQMarlinLinearMethod", "Fp8LinearMethod",
|
||||
"MarlinLinearMethod", "QQQLinearMethod", "GPTQMarlin24LinearMethod",
|
||||
"TPUInt8LinearMethod", "GPTQLinearMethod"
|
||||
"TPUInt8LinearMethod", "GPTQLinearMethod", "FBGEMMFp8LinearMethod"
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -15,8 +15,9 @@ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
is_layer_skipped)
|
||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
apply_fp8_linear, create_per_channel_scale_param)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
apply_fp8_linear)
|
||||
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
|
||||
ModelWeightParameter)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
logger = init_logger(__name__)
|
||||
@ -85,6 +86,7 @@ class FBGEMMFp8LinearMethod(LinearMethodBase):
|
||||
params_dtype: torch.dtype,
|
||||
**extra_weight_attrs,
|
||||
):
|
||||
weight_loader = extra_weight_attrs.get("weight_loader")
|
||||
del input_size, output_size
|
||||
output_size_per_partition = sum(output_partition_sizes)
|
||||
|
||||
@ -95,20 +97,21 @@ class FBGEMMFp8LinearMethod(LinearMethodBase):
|
||||
layer.orig_dtype = params_dtype
|
||||
|
||||
# WEIGHT
|
||||
weight = Parameter(torch.empty(output_size_per_partition,
|
||||
input_size_per_partition,
|
||||
dtype=torch.float8_e4m3fn),
|
||||
requires_grad=False)
|
||||
weight = ModelWeightParameter(data=torch.empty(
|
||||
output_size_per_partition,
|
||||
input_size_per_partition,
|
||||
dtype=torch.float8_e4m3fn),
|
||||
input_dim=1,
|
||||
output_dim=0,
|
||||
weight_loader=weight_loader)
|
||||
layer.register_parameter("weight", weight)
|
||||
set_weight_attrs(weight, {
|
||||
"input_dim": 1,
|
||||
"output_dim": 0,
|
||||
**extra_weight_attrs,
|
||||
})
|
||||
|
||||
# WEIGHT SCALE
|
||||
weight_scale = create_per_channel_scale_param(output_partition_sizes,
|
||||
**extra_weight_attrs)
|
||||
weight_scale = ChannelQuantScaleParameter(data=torch.empty(
|
||||
(sum(output_partition_sizes), 1), dtype=torch.float32),
|
||||
output_dim=0,
|
||||
weight_loader=weight_loader)
|
||||
weight_scale[:] = torch.finfo(torch.float32).min
|
||||
layer.register_parameter("weight_scale", weight_scale)
|
||||
|
||||
# INPUT SCALE UPPER BOUND
|
||||
@ -118,6 +121,11 @@ class FBGEMMFp8LinearMethod(LinearMethodBase):
|
||||
layer.input_scale_ub = input_scale_ub
|
||||
|
||||
def process_weights_after_loading(self, layer: Module) -> None:
|
||||
# required by torch.compile
|
||||
layer.weight_scale = Parameter(layer.weight_scale.data,
|
||||
requires_grad=False)
|
||||
layer.weight = Parameter(layer.weight.data, requires_grad=False)
|
||||
|
||||
weight = layer.weight
|
||||
layer.weight = Parameter(weight.t(), requires_grad=False)
|
||||
|
||||
|
||||
@ -1,10 +1,8 @@
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch.nn import Parameter
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import is_hip
|
||||
|
||||
@ -38,31 +36,6 @@ def all_close_1d(x: torch.Tensor) -> bool:
|
||||
return all(torch.allclose(x[0], x[i]) for i in range(x.shape[0]))
|
||||
|
||||
|
||||
def create_per_tensor_scale_param(
|
||||
output_partition_sizes: List[int],
|
||||
**extra_weight_attrs,
|
||||
) -> Parameter:
|
||||
scale = Parameter(torch.empty(len(output_partition_sizes),
|
||||
dtype=torch.float32),
|
||||
requires_grad=False)
|
||||
scale[:] = torch.finfo(torch.float32).min
|
||||
set_weight_attrs(scale, {
|
||||
"needs_scalar_to_array": True,
|
||||
**extra_weight_attrs
|
||||
})
|
||||
return scale
|
||||
|
||||
|
||||
def create_per_channel_scale_param(output_partition_sizes: List[int],
|
||||
**extra_weight_attrs) -> Parameter:
|
||||
scale = Parameter(torch.empty((sum(output_partition_sizes), 1),
|
||||
dtype=torch.float32),
|
||||
requires_grad=False)
|
||||
scale[:] = torch.finfo(torch.float32).min
|
||||
set_weight_attrs(scale, {"output_dim": 0, **extra_weight_attrs})
|
||||
return scale
|
||||
|
||||
|
||||
def convert_to_channelwise(
|
||||
weight_scale: torch.Tensor,
|
||||
logical_widths: List[int]) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
Reference in New Issue
Block a user