mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
[CI] improve embed testing (#18747)
This commit is contained in:
@ -4,6 +4,7 @@ import os
|
||||
import pytest
|
||||
|
||||
from tests.models.language.pooling.mteb_utils import (MTEB_EMBED_TASKS,
|
||||
MTEB_EMBED_TOL,
|
||||
OpenAIClientMtebEncoder,
|
||||
run_mteb_embed_task,
|
||||
run_mteb_embed_task_st)
|
||||
@ -38,4 +39,4 @@ def test_mteb(server):
|
||||
print("SentenceTransformer main score: ", st_main_score)
|
||||
print("Difference: ", st_main_score - vllm_main_score)
|
||||
|
||||
assert st_main_score == pytest.approx(vllm_main_score, rel=1e-4)
|
||||
assert st_main_score == pytest.approx(vllm_main_score, abs=MTEB_EMBED_TOL)
|
||||
|
@ -11,7 +11,8 @@ import requests
|
||||
from vllm.entrypoints.openai.protocol import EmbeddingResponse
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
from ...models.utils import run_embedding_correctness_test
|
||||
from ...models.language.pooling.embed_utils import (
|
||||
run_embedding_correctness_test)
|
||||
from ...utils import RemoteOpenAIServer
|
||||
|
||||
MODEL_NAME = "intfloat/multilingual-e5-small"
|
||||
|
@ -11,7 +11,9 @@ import pytest
|
||||
from vllm.entrypoints.openai.protocol import EmbeddingResponse
|
||||
|
||||
from ...conftest import HfRunner
|
||||
from ...models.utils import EmbedModelInfo, run_embedding_correctness_test
|
||||
from ...models.language.pooling.embed_utils import (
|
||||
run_embedding_correctness_test)
|
||||
from ...models.utils import EmbedModelInfo
|
||||
from ...utils import RemoteOpenAIServer
|
||||
|
||||
MODELS = [
|
||||
|
72
tests/models/language/pooling/embed_utils.py
Normal file
72
tests/models/language/pooling/embed_utils.py
Normal file
@ -0,0 +1,72 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from collections.abc import Sequence
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.conftest import HfRunner
|
||||
from tests.models.utils import (EmbedModelInfo, check_embeddings_close,
|
||||
matryoshka_fy)
|
||||
|
||||
|
||||
def run_embedding_correctness_test(
|
||||
hf_model: "HfRunner",
|
||||
inputs: list[str],
|
||||
vllm_outputs: Sequence[list[float]],
|
||||
dimensions: Optional[int] = None,
|
||||
):
|
||||
hf_outputs = hf_model.encode(inputs)
|
||||
if dimensions:
|
||||
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
|
||||
|
||||
check_embeddings_close(
|
||||
embeddings_0_lst=hf_outputs,
|
||||
embeddings_1_lst=vllm_outputs,
|
||||
name_0="hf",
|
||||
name_1="vllm",
|
||||
tol=1e-2,
|
||||
)
|
||||
|
||||
|
||||
def correctness_test_embed_models(hf_runner,
|
||||
vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts,
|
||||
vllm_extra_kwargs=None,
|
||||
hf_model_callback=None):
|
||||
if not model_info.enable_test:
|
||||
# A model family has many models with the same architecture,
|
||||
# and we don't need to test each one.
|
||||
pytest.skip("Skipping test.")
|
||||
|
||||
# The example_prompts has ending "\n", for example:
|
||||
# "Write a short story about a robot that dreams for the first time.\n"
|
||||
# sentence_transformers will strip the input texts, see:
|
||||
# https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159
|
||||
# This makes the input_ids different between hf_model and vllm_model.
|
||||
# So we need to strip the input texts to avoid test failing.
|
||||
example_prompts = [str(s).strip() for s in example_prompts]
|
||||
|
||||
vllm_extra_kwargs = vllm_extra_kwargs or {}
|
||||
vllm_extra_kwargs["dtype"] = model_info.dtype
|
||||
|
||||
with vllm_runner(model_info.name,
|
||||
task="embed",
|
||||
max_model_len=None,
|
||||
**vllm_extra_kwargs) as vllm_model:
|
||||
vllm_outputs = vllm_model.encode(example_prompts)
|
||||
vllm_dtype = vllm_model.model.llm_engine.model_config.dtype
|
||||
model_dtype = getattr(
|
||||
vllm_model.model.llm_engine.model_config.hf_config, "torch_dtype",
|
||||
vllm_dtype)
|
||||
|
||||
with hf_runner(
|
||||
model_info.name,
|
||||
dtype=model_dtype,
|
||||
is_sentence_transformer=True,
|
||||
) as hf_model:
|
||||
|
||||
if hf_model_callback is not None:
|
||||
hf_model_callback(hf_model)
|
||||
|
||||
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)
|
@ -80,18 +80,19 @@ def run_mteb_embed_task_st(model_name, tasks):
|
||||
def mteb_test_embed_models(hf_runner,
|
||||
vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
vllm_extra_kwargs=None):
|
||||
vllm_extra_kwargs=None,
|
||||
hf_model_callback=None):
|
||||
if not model_info.enable_test:
|
||||
# A model family has many models with the same architecture,
|
||||
# and we don't need to test each one.
|
||||
pytest.skip("Skipping test.")
|
||||
|
||||
vllm_extra_kwargs = vllm_extra_kwargs or {}
|
||||
vllm_extra_kwargs["dtype"] = model_info.dtype
|
||||
|
||||
with vllm_runner(model_info.name,
|
||||
task="embed",
|
||||
max_model_len=None,
|
||||
dtype=model_info.dtype,
|
||||
**vllm_extra_kwargs) as vllm_model:
|
||||
|
||||
if model_info.architecture:
|
||||
@ -108,10 +109,14 @@ def mteb_test_embed_models(hf_runner,
|
||||
with set_default_torch_dtype(model_dtype) and hf_runner(
|
||||
model_info.name, is_sentence_transformer=True,
|
||||
dtype=model_dtype) as hf_model:
|
||||
|
||||
if hf_model_callback is not None:
|
||||
hf_model_callback(hf_model)
|
||||
|
||||
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
|
||||
|
||||
print("VLLM:", vllm_dtype, vllm_main_score)
|
||||
print("SentenceTransformer:", model_dtype, st_main_score)
|
||||
print("Difference:", st_main_score - vllm_main_score)
|
||||
|
||||
assert st_main_score == pytest.approx(vllm_main_score, rel=MTEB_EMBED_TOL)
|
||||
assert st_main_score == pytest.approx(vllm_main_score, abs=MTEB_EMBED_TOL)
|
||||
|
71
tests/models/language/pooling/test_baai.py
Normal file
71
tests/models/language/pooling/test_baai.py
Normal file
@ -0,0 +1,71 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import pytest
|
||||
|
||||
from .embed_utils import EmbedModelInfo, correctness_test_embed_models
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
########## BertModel
|
||||
EmbedModelInfo("BAAI/bge-base-en",
|
||||
architecture="BertModel",
|
||||
enable_test=True),
|
||||
EmbedModelInfo("BAAI/bge-base-zh",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-small-en",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-small-zh",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-large-en",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-large-zh",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-large-zh-noinstruct",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-base-en-v1.5",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-base-zh-v1.5",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-small-en-v1.5",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-small-zh-v1.5",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-large-en-v1.5",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("BAAI/bge-large-zh-v1.5",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
########## XLMRobertaModel
|
||||
EmbedModelInfo("BAAI/bge-m3",
|
||||
architecture="XLMRobertaModel",
|
||||
enable_test=True),
|
||||
########## Qwen2Model
|
||||
EmbedModelInfo("BAAI/bge-code-v1",
|
||||
architecture="Qwen2Model",
|
||||
dtype="float32",
|
||||
enable_test=True),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_embed_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_embed_models_correctness(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
|
||||
example_prompts)
|
@ -3,7 +3,8 @@ from typing import Any
|
||||
|
||||
import pytest
|
||||
|
||||
from ...utils import EmbedModelInfo, run_embedding_correctness_test
|
||||
from .embed_utils import EmbedModelInfo, correctness_test_embed_models
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
########## BertModel
|
||||
@ -53,9 +54,8 @@ MODELS = [
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
def test_embed_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
|
||||
vllm_extra_kwargs: dict[str, Any] = {}
|
||||
if model_info.architecture == "GteNewModel":
|
||||
@ -66,28 +66,13 @@ def test_models_mteb(hf_runner, vllm_runner,
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_models_correctness(hf_runner, vllm_runner, model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
if not model_info.enable_test:
|
||||
pytest.skip("Skipping test.")
|
||||
|
||||
# ST will strip the input texts, see test_embedding.py
|
||||
example_prompts = [str(s).strip() for s in example_prompts]
|
||||
def test_embed_models_correctness(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
|
||||
vllm_extra_kwargs: dict[str, Any] = {}
|
||||
if model_info.architecture == "GteNewModel":
|
||||
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
|
||||
|
||||
with vllm_runner(model_info.name,
|
||||
task="embed",
|
||||
dtype=model_info.dtype,
|
||||
max_model_len=None,
|
||||
**vllm_extra_kwargs) as vllm_model:
|
||||
vllm_outputs = vllm_model.encode(example_prompts)
|
||||
|
||||
with hf_runner(
|
||||
model_info.name,
|
||||
dtype=model_info.dtype,
|
||||
is_sentence_transformer=True,
|
||||
) as hf_model:
|
||||
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)
|
||||
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
|
||||
example_prompts, vllm_extra_kwargs)
|
||||
|
@ -1,9 +1,13 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm import PoolingParams
|
||||
|
||||
from ...utils import check_embeddings_close, matryoshka_fy
|
||||
from .embed_utils import (EmbedModelInfo, check_embeddings_close,
|
||||
correctness_test_embed_models, matryoshka_fy)
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
|
||||
SCORING_MODELS = [
|
||||
"jinaai/jina-reranker-v2-base-multilingual", # Roberta
|
||||
@ -25,16 +29,10 @@ TEXTS_2 = [
|
||||
]
|
||||
|
||||
EMBEDDING_MODELS = [
|
||||
"jinaai/jina-embeddings-v3",
|
||||
]
|
||||
|
||||
EMBEDDING_PROMPTS = [
|
||||
"Follow the white rabbit.", # English
|
||||
"Sigue al conejo blanco.", # Spanish
|
||||
"Suis le lapin blanc.", # French
|
||||
"跟着白兔走。", # Chinese
|
||||
"اتبع الأرنب الأبيض.", # Arabic
|
||||
"Folge dem weißen Kaninchen.", # German
|
||||
EmbedModelInfo("jinaai/jina-embeddings-v3",
|
||||
architecture="XLMRobertaModel",
|
||||
is_matryoshka=True,
|
||||
dtype="float32")
|
||||
]
|
||||
|
||||
|
||||
@ -80,73 +78,66 @@ def test_llm_1_to_N(vllm_runner, hf_runner, model_name, dtype: str):
|
||||
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", params=EMBEDDING_MODELS)
|
||||
def emb_model_name(request):
|
||||
yield request.param
|
||||
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
|
||||
def test_embed_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
|
||||
def hf_model_callback(model):
|
||||
model.encode = partial(model.encode, task="text-matching")
|
||||
|
||||
mteb_test_embed_models(hf_runner,
|
||||
vllm_runner,
|
||||
model_info,
|
||||
hf_model_callback=hf_model_callback)
|
||||
|
||||
|
||||
def test_is_matryoshka(vllm_runner, emb_model_name):
|
||||
with vllm_runner(emb_model_name, task="embed",
|
||||
max_model_len=None) as vllm_model:
|
||||
assert vllm_model.model.llm_engine.model_config.is_matryoshka
|
||||
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
|
||||
def test_embed_models_correctness(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
|
||||
def hf_model_callback(model):
|
||||
model.encode = partial(model.encode, task="text-matching")
|
||||
|
||||
correctness_test_embed_models(hf_runner,
|
||||
vllm_runner,
|
||||
model_info,
|
||||
example_prompts,
|
||||
hf_model_callback=hf_model_callback)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", EMBEDDING_MODELS)
|
||||
@pytest.mark.parametrize("dtype", ["half"])
|
||||
def test_embeddings(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
model,
|
||||
dtype: str,
|
||||
monkeypatch,
|
||||
) -> None:
|
||||
|
||||
example_prompts = EMBEDDING_PROMPTS
|
||||
|
||||
with hf_runner(
|
||||
model,
|
||||
dtype=dtype,
|
||||
is_sentence_transformer=True,
|
||||
) as hf_model:
|
||||
hf_outputs = hf_model.encode(example_prompts, task="text-matching")
|
||||
|
||||
with vllm_runner(model, task="embed", dtype=dtype,
|
||||
max_model_len=None) as vllm_model:
|
||||
vllm_outputs = vllm_model.encode(example_prompts)
|
||||
|
||||
check_embeddings_close(
|
||||
embeddings_0_lst=hf_outputs,
|
||||
embeddings_1_lst=vllm_outputs,
|
||||
name_0="hf",
|
||||
name_1="vllm",
|
||||
tol=1e-2,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", EMBEDDING_MODELS)
|
||||
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
|
||||
@pytest.mark.parametrize("dtype", ["half"])
|
||||
@pytest.mark.parametrize("dimensions", [16, 32])
|
||||
def test_matryoshka(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
model,
|
||||
model_info,
|
||||
dtype: str,
|
||||
dimensions: int,
|
||||
example_prompts,
|
||||
monkeypatch,
|
||||
) -> None:
|
||||
if not model_info.is_matryoshka:
|
||||
pytest.skip("Model is not matryoshka")
|
||||
|
||||
example_prompts = EMBEDDING_PROMPTS
|
||||
# ST will strip the input texts, see test_embedding.py
|
||||
example_prompts = [str(s).strip() for s in example_prompts]
|
||||
|
||||
with hf_runner(
|
||||
model,
|
||||
model_info.name,
|
||||
dtype=dtype,
|
||||
is_sentence_transformer=True,
|
||||
) as hf_model:
|
||||
hf_outputs = hf_model.encode(example_prompts, task="text-matching")
|
||||
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
|
||||
|
||||
with vllm_runner(model, task="embed", dtype=dtype,
|
||||
with vllm_runner(model_info.name,
|
||||
task="embed",
|
||||
dtype=dtype,
|
||||
max_model_len=None) as vllm_model:
|
||||
assert vllm_model.model.llm_engine.model_config.is_matryoshka
|
||||
|
||||
matryoshka_dimensions = (
|
||||
vllm_model.model.llm_engine.model_config.matryoshka_dimensions)
|
||||
assert matryoshka_dimensions is not None
|
||||
|
@ -2,7 +2,8 @@
|
||||
|
||||
import pytest
|
||||
|
||||
from ...utils import EmbedModelInfo, run_embedding_correctness_test
|
||||
from .embed_utils import EmbedModelInfo, correctness_test_embed_models
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
EmbedModelInfo("nomic-ai/nomic-embed-text-v1",
|
||||
@ -13,6 +14,9 @@ MODELS = [
|
||||
architecture="NomicBertModel",
|
||||
dtype="float32",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("nomic-ai/CodeRankEmbed",
|
||||
architecture="NomicBertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("nomic-ai/nomic-embed-text-v2-moe",
|
||||
architecture="NomicBertModel",
|
||||
dtype="float32",
|
||||
@ -21,30 +25,14 @@ MODELS = [
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
def test_embed_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_models_correctness(hf_runner, vllm_runner, model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
if not model_info.enable_test:
|
||||
pytest.skip("Skipping test.")
|
||||
|
||||
# ST will strip the input texts, see test_embedding.py
|
||||
example_prompts = [str(s).strip() for s in example_prompts]
|
||||
|
||||
with vllm_runner(model_info.name,
|
||||
task="embed",
|
||||
dtype=model_info.dtype,
|
||||
max_model_len=None) as vllm_model:
|
||||
vllm_outputs = vllm_model.encode(example_prompts)
|
||||
|
||||
with hf_runner(
|
||||
model_info.name,
|
||||
dtype=model_info.dtype,
|
||||
is_sentence_transformer=True,
|
||||
) as hf_model:
|
||||
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)
|
||||
def test_embed_models_correctness(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
|
||||
example_prompts)
|
||||
|
@ -2,7 +2,8 @@
|
||||
|
||||
import pytest
|
||||
|
||||
from ...utils import EmbedModelInfo, run_embedding_correctness_test
|
||||
from .embed_utils import EmbedModelInfo, correctness_test_embed_models
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
EmbedModelInfo("Snowflake/snowflake-arctic-embed-xs",
|
||||
@ -41,37 +42,14 @@ MODELS = [
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_models_mteb(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
) -> None:
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
def test_embed_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_models_correctness(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts,
|
||||
) -> None:
|
||||
if not model_info.enable_test:
|
||||
pytest.skip("Skipping test.")
|
||||
|
||||
# ST will strip the input texts, see test_embedding.py
|
||||
example_prompts = [str(s).strip() for s in example_prompts]
|
||||
|
||||
with vllm_runner(model_info.name,
|
||||
task="embed",
|
||||
dtype=model_info.dtype,
|
||||
max_model_len=None) as vllm_model:
|
||||
vllm_outputs = vllm_model.encode(example_prompts)
|
||||
|
||||
with hf_runner(
|
||||
model_info.name,
|
||||
dtype=model_info.dtype,
|
||||
is_sentence_transformer=True,
|
||||
) as hf_model:
|
||||
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)
|
||||
def test_embed_models_correctness(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
|
||||
example_prompts)
|
||||
|
@ -283,7 +283,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
|
||||
"MistralModel": _HfExamplesInfo("intfloat/e5-mistral-7b-instruct"),
|
||||
"ModernBertModel": _HfExamplesInfo("Alibaba-NLP/gte-modernbert-base",
|
||||
trust_remote_code=True),
|
||||
"NomicBertModel": _HfExamplesInfo("Snowflake/snowflake-arctic-embed-m-long", # noqa: E501
|
||||
"NomicBertModel": _HfExamplesInfo("nomic-ai/nomic-embed-text-v2-moe",
|
||||
trust_remote_code=True),
|
||||
"Qwen2Model": _HfExamplesInfo("ssmits/Qwen2-7B-Instruct-embed-base"),
|
||||
"Qwen2ForRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-RM-72B"),
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
import warnings
|
||||
from collections.abc import Sequence
|
||||
from typing import TYPE_CHECKING, Any, NamedTuple, Optional, Union
|
||||
from typing import Any, NamedTuple, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@ -13,9 +13,6 @@ from vllm.sequence import Logprob, PromptLogprobs, SampleLogprobs
|
||||
|
||||
from .registry import HF_EXAMPLE_MODELS
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..conftest import HfRunner
|
||||
|
||||
TokensText = tuple[list[int], str]
|
||||
|
||||
|
||||
@ -337,22 +334,3 @@ class EmbedModelInfo(NamedTuple):
|
||||
architecture: str = ""
|
||||
dtype: str = "auto"
|
||||
enable_test: bool = True
|
||||
|
||||
|
||||
def run_embedding_correctness_test(
|
||||
hf_model: "HfRunner",
|
||||
inputs: list[str],
|
||||
vllm_outputs: Sequence[list[float]],
|
||||
dimensions: Optional[int] = None,
|
||||
):
|
||||
hf_outputs = hf_model.encode(inputs)
|
||||
if dimensions:
|
||||
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
|
||||
|
||||
check_embeddings_close(
|
||||
embeddings_0_lst=hf_outputs,
|
||||
embeddings_1_lst=vllm_outputs,
|
||||
name_0="hf",
|
||||
name_1="vllm",
|
||||
tol=1e-2,
|
||||
)
|
||||
|
@ -572,13 +572,7 @@ class ModelConfig:
|
||||
sliding_window = None
|
||||
|
||||
self.original_max_model_len = self.max_model_len
|
||||
self.max_model_len = _get_and_verify_max_len(
|
||||
hf_config=self.hf_text_config,
|
||||
max_model_len=self.max_model_len,
|
||||
disable_sliding_window=self.disable_sliding_window,
|
||||
sliding_window_len=self.get_hf_config_sliding_window(),
|
||||
spec_target_max_model_len=self.spec_target_max_model_len,
|
||||
encoder_config=self.encoder_config)
|
||||
self.max_model_len = self.get_and_verify_max_len(self.max_model_len)
|
||||
self.served_model_name = get_served_model_name(self.model,
|
||||
self.served_model_name)
|
||||
self.multimodal_config = self._init_multimodal_config()
|
||||
@ -1382,6 +1376,16 @@ class ModelConfig:
|
||||
def matryoshka_dimensions(self):
|
||||
return getattr(self.hf_config, "matryoshka_dimensions", None)
|
||||
|
||||
def get_and_verify_max_len(self, max_model_len: int):
|
||||
max_model_len = _get_and_verify_max_len(
|
||||
hf_config=self.hf_text_config,
|
||||
max_model_len=max_model_len,
|
||||
disable_sliding_window=self.disable_sliding_window,
|
||||
sliding_window_len=self.get_hf_config_sliding_window(),
|
||||
spec_target_max_model_len=self.spec_target_max_model_len,
|
||||
encoder_config=self.encoder_config)
|
||||
return max_model_len
|
||||
|
||||
|
||||
BlockSize = Literal[1, 8, 16, 32, 64, 128]
|
||||
CacheDType = Literal["auto", "fp8", "fp8_e4m3", "fp8_e5m2"]
|
||||
@ -4469,13 +4473,7 @@ class VllmConfig:
|
||||
|
||||
def recalculate_max_model_len(self, max_model_len: int):
|
||||
model_config = self.model_config
|
||||
max_model_len = _get_and_verify_max_len(
|
||||
hf_config=model_config.hf_text_config,
|
||||
max_model_len=max_model_len,
|
||||
disable_sliding_window=model_config.disable_sliding_window,
|
||||
sliding_window_len=model_config.get_hf_config_sliding_window(),
|
||||
spec_target_max_model_len=model_config.spec_target_max_model_len,
|
||||
encoder_config=model_config.encoder_config)
|
||||
max_model_len = model_config.get_and_verify_max_len(max_model_len)
|
||||
self.model_config.max_model_len = max_model_len
|
||||
self.scheduler_config.max_model_len = max_model_len
|
||||
self.compute_hash()
|
||||
|
Reference in New Issue
Block a user