mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Migrate AyaVisionImagePixelInputs to TensorSchema for shape validation (#21622)
Signed-off-by: Benji Beck <benjibeck@meta.com>
This commit is contained in:
@ -2,7 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
# Adapted from https://github.com/huggingface/transformers/tree/main/src/transformers/models/aya_vision
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from typing import Literal, Optional, TypedDict, Union, cast
|
||||
from typing import Annotated, Literal, Optional, Union, cast
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -29,6 +29,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
PromptUpdateDetails)
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
||||
from .siglip import SiglipVisionModel
|
||||
@ -37,18 +38,28 @@ from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
|
||||
merge_multimodal_embeddings)
|
||||
|
||||
|
||||
class AyaVisionImagePixelInputs(TypedDict):
|
||||
class AyaVisionImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- np: The total number of patches over each image over each prompt in
|
||||
the batch
|
||||
- c: Number of channels
|
||||
- h: Height of each image patch
|
||||
- w: Width of each image patch
|
||||
- bn: Batch size * number of images
|
||||
"""
|
||||
|
||||
type: Literal["pixel_values"]
|
||||
pixel_values: torch.Tensor
|
||||
"""
|
||||
Shape: `(num_patches_total, num_channels, height, width)`
|
||||
|
||||
`num_patches_total` is the total number of patches over each image over each
|
||||
prompt in the batch.
|
||||
"""
|
||||
pixel_values: Annotated[
|
||||
torch.Tensor,
|
||||
TensorShape("np", 3, "h", "w"),
|
||||
]
|
||||
|
||||
num_patches: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images)`"""
|
||||
num_patches: Annotated[
|
||||
torch.Tensor,
|
||||
TensorShape("bn"),
|
||||
]
|
||||
|
||||
|
||||
class AyaVisionMultiModalProjector(nn.Module):
|
||||
@ -383,21 +394,6 @@ class AyaVisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())
|
||||
]
|
||||
|
||||
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
||||
h = w = self.config.vision_config.image_size
|
||||
expected_dims = (3, h, w)
|
||||
|
||||
def _validate_shape(d: torch.Tensor):
|
||||
if d.shape != expected_dims:
|
||||
raise ValueError(
|
||||
"The expected shape of pixel values per image per batch "
|
||||
f"is {expected_dims}. You supplied {tuple(d.shape)}.")
|
||||
|
||||
for d in data:
|
||||
_validate_shape(d)
|
||||
|
||||
return data
|
||||
|
||||
def _parse_and_validate_image_input(
|
||||
self, **kwargs: object) -> Optional[AyaVisionImagePixelInputs]:
|
||||
pixel_values = kwargs.pop("pixel_values", None)
|
||||
@ -405,22 +401,17 @@ class AyaVisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
image_embeds = kwargs.pop("image_embeds", None)
|
||||
assert image_embeds is None, "Aya Vision does not support image_embeds."
|
||||
|
||||
if not isinstance(pixel_values, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of pixel values. "
|
||||
f"Got type: {type(pixel_values)}")
|
||||
if num_patches is not None and not isinstance(num_patches,
|
||||
(torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of num_patches. "
|
||||
f"Got type: {type(num_patches)}")
|
||||
|
||||
pixel_values = flatten_bn(pixel_values, concat=True)
|
||||
num_patches = flatten_bn(num_patches, concat=True)
|
||||
if pixel_values is None:
|
||||
return None
|
||||
|
||||
return AyaVisionImagePixelInputs(
|
||||
type="pixel_values",
|
||||
pixel_values=self._validate_pixel_values(pixel_values),
|
||||
num_patches=num_patches,
|
||||
)
|
||||
pixel_values=flatten_bn(pixel_values, concat=True),
|
||||
num_patches=flatten_bn(num_patches, concat=True),
|
||||
resolve_bindings={
|
||||
"h": self.config.vision_config.image_size,
|
||||
"w": self.config.vision_config.image_size,
|
||||
})
|
||||
|
||||
def get_language_model(self) -> torch.nn.Module:
|
||||
return self.language_model
|
||||
|
Reference in New Issue
Block a user