mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
[MODEL] add Exaone model support (#7819)
This commit is contained in:
@ -51,6 +51,10 @@ Decoder-only Language Models
|
||||
- DeciLM
|
||||
- :code:`Deci/DeciLM-7B`, :code:`Deci/DeciLM-7B-instruct`, etc.
|
||||
-
|
||||
* - :code:`ExaoneForCausalLM`
|
||||
- EXAONE-3
|
||||
- :code:`LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc.
|
||||
- ✅︎
|
||||
* - :code:`FalconForCausalLM`
|
||||
- Falcon
|
||||
- :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc.
|
||||
|
@ -22,6 +22,7 @@ _GENERATION_MODELS = {
|
||||
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
|
||||
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
|
||||
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
|
||||
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
|
||||
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
|
||||
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
|
||||
|
617
vllm/model_executor/models/exaone.py
Normal file
617
vllm/model_executor/models/exaone.py
Normal file
@ -0,0 +1,617 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/blob/main/modeling_exaone.py
|
||||
# Copyright 2024 The LG U+ CTO AI Tech Lab.
|
||||
# Copyright 2021 The LG AI Research EXAONE Lab
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Exaone model compatible with HuggingFace weights."""
|
||||
|
||||
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig, LoRAConfig
|
||||
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
|
||||
get_compressed_tensors_cache_scale)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors, SamplerOutput
|
||||
from vllm.transformers_utils.configs.exaone import ExaoneConfig
|
||||
from vllm.utils import is_hip
|
||||
|
||||
from .interfaces import SupportsLoRA
|
||||
from .utils import PPMissingLayer, is_pp_missing_parameter, make_layers
|
||||
|
||||
|
||||
class ExaoneGatedMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_sizes=[intermediate_size] * 2,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.gate_up_proj",
|
||||
)
|
||||
self.c_proj = RowParallelLinear(
|
||||
input_size=intermediate_size,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.c_proj",
|
||||
)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class ExaoneAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ExaoneConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
||||
self.head_dim = getattr(config, "head_dim",
|
||||
self.hidden_size // self.total_num_heads)
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size=hidden_size,
|
||||
head_size=self.head_dim,
|
||||
total_num_heads=self.total_num_heads,
|
||||
total_num_kv_heads=self.total_num_kv_heads,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
)
|
||||
|
||||
self.out_proj = RowParallelLinear(
|
||||
input_size=self.total_num_heads * self.head_dim,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.out_proj",
|
||||
)
|
||||
|
||||
is_neox_style = True
|
||||
if quant_config is not None and quant_config.get_name() == "gguf":
|
||||
is_neox_style = False
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
is_neox_style=is_neox_style,
|
||||
)
|
||||
self.attn = Attention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output, _ = self.out_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class ExaoneBlockAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ExaoneConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.attention = ExaoneAttention(
|
||||
config=config,
|
||||
hidden_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
num_kv_heads=num_kv_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=bias,
|
||||
cache_config=cache_config,
|
||||
prefix=prefix,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
return self.attention(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
|
||||
class ExaoneDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ExaoneConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
if rope_scaling is not None and getattr(
|
||||
config, "original_max_position_embeddings", None):
|
||||
rope_scaling["original_max_position_embeddings"] = (
|
||||
config.original_max_position_embeddings)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
# Support abacusai/Smaug-72B-v0.1 with attention_bias
|
||||
# Support internlm/internlm-7b with bias
|
||||
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
||||
config, "bias", False)
|
||||
self.attn = ExaoneBlockAttention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=getattr(config, "num_key_value_heads",
|
||||
config.num_attention_heads),
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=attention_bias,
|
||||
cache_config=cache_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
)
|
||||
self.mlp = ExaoneGatedMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.activation_function,
|
||||
quant_config=quant_config,
|
||||
bias=getattr(config, "mlp_bias", False),
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln_1(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.ln_1(hidden_states, residual)
|
||||
hidden_states = self.attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.ln_2(hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class ExaoneModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ExaoneConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
lora_vocab = ((lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0)
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
self.wte = config.vocab_size
|
||||
if get_pp_group().is_first_rank or (config.tie_word_embeddings
|
||||
and get_pp_group().is_last_rank):
|
||||
self.wte = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
else:
|
||||
self.wte = PPMissingLayer()
|
||||
self.start_layer, self.end_layer, self.h = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: ExaoneDecoderLayer(
|
||||
config=config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=prefix,
|
||||
),
|
||||
prefix=f"{prefix}.h",
|
||||
)
|
||||
if get_pp_group().is_last_rank:
|
||||
self.ln_f = RMSNorm(config.hidden_size,
|
||||
eps=config.layer_norm_epsilon)
|
||||
else:
|
||||
self.ln_f = PPMissingLayer()
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.wte(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor],
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors],
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.h[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i - self.start_layer],
|
||||
attn_metadata,
|
||||
residual,
|
||||
)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
|
||||
hidden_states, _ = self.ln_f(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ExaoneForCausalLM(nn.Module, SupportsLoRA):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"c_fc_0",
|
||||
"c_fc_1",
|
||||
],
|
||||
}
|
||||
|
||||
# LoRA specific attributes
|
||||
supported_lora_modules = [
|
||||
"qkv_proj",
|
||||
"out_proj",
|
||||
"gate_up_proj",
|
||||
"c_proj",
|
||||
"wte",
|
||||
"lm_head",
|
||||
]
|
||||
embedding_modules = {
|
||||
"wte": "input_embeddings",
|
||||
"lm_head": "output_embeddings",
|
||||
}
|
||||
embedding_padding_modules = ["lm_head"]
|
||||
bitsandbytes_stacked_params_mapping = {
|
||||
# shard_name, weight_name, index
|
||||
"q_proj": ("qkv_proj", 0),
|
||||
"k_proj": ("qkv_proj", 1),
|
||||
"v_proj": ("qkv_proj", 2),
|
||||
"c_fc_0": ("gate_up_proj", 0),
|
||||
"c_fc_1": ("gate_up_proj", 1),
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ExaoneConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
|
||||
self.transformer = ExaoneModel(
|
||||
config,
|
||||
cache_config,
|
||||
quant_config,
|
||||
lora_config=lora_config,
|
||||
prefix="model",
|
||||
)
|
||||
if get_pp_group().is_last_rank:
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
||||
# We need bigger padding if using lora for kernel
|
||||
# compatibility
|
||||
if not lora_config else lora_config.lora_vocab_padding_size,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.transformer.wte.weight
|
||||
|
||||
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size,
|
||||
logit_scale)
|
||||
self.sampler = Sampler()
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
model_output = self.transformer(input_ids, positions, kv_caches,
|
||||
attn_metadata, intermediate_tensors)
|
||||
return model_output
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
self, batch_size: int, dtype: torch.dtype,
|
||||
device: torch.device) -> IntermediateTensors:
|
||||
return IntermediateTensors({
|
||||
"hidden_states":
|
||||
torch.zeros(
|
||||
(batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
"residual":
|
||||
torch.zeros(
|
||||
(batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
})
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
(".qkv_proj", ".q_proj", "q"),
|
||||
(".qkv_proj", ".k_proj", "k"),
|
||||
(".qkv_proj", ".v_proj", "v"),
|
||||
(".gate_up_proj", ".c_fc_0", 0),
|
||||
(".gate_up_proj", ".c_fc_1", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if ("rotary_emb.cos_cached" in name
|
||||
or "rotary_emb.sin_cached" in name):
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
# With tie_word_embeddings, we can skip lm_head.weight
|
||||
# The weight might appear unnecessarily in the files if the model is
|
||||
# processed with quantization, LoRA, fine-tuning, etc.
|
||||
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
||||
continue
|
||||
if scale_name := get_compressed_tensors_cache_scale(name):
|
||||
# Loading kv cache scales for compressed-tensors quantization
|
||||
param = params_dict[scale_name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
loaded_weight = loaded_weight[0]
|
||||
weight_loader(param, loaded_weight)
|
||||
continue
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
|
||||
# If this function is called, it should always initialize KV cache scale
|
||||
# factors (or else raise an exception). Thus, handled exceptions should
|
||||
# make sure to leave KV cache scale factors in a known good (dummy) state
|
||||
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
for layer_idx, scaling_factor in kv_cache_scales_loader(
|
||||
quantization_param_path,
|
||||
tp_rank,
|
||||
tp_size,
|
||||
self.config.num_hidden_layers,
|
||||
self.config.__class__.model_type,
|
||||
):
|
||||
if not isinstance(self.transformer.h[layer_idx], nn.Identity):
|
||||
layer_self_attn = self.transformer.h[layer_idx].attn
|
||||
|
||||
if is_hip():
|
||||
# The scaling factor convention we are assuming is
|
||||
# quantized_value * scaling_factor ~= true_value
|
||||
# which is consistent with the practice of setting
|
||||
# scaling_factor = tensor_amax / FPtype_max
|
||||
scaling_factor *= 2
|
||||
if hasattr(layer_self_attn, "kv_scale"):
|
||||
layer_self_attn.attn._kv_scale = scaling_factor
|
||||
else:
|
||||
raise RuntimeError("Self attention has no KV cache scaling "
|
||||
"factor attribute!")
|
@ -11,11 +11,11 @@ from transformers.models.auto.modeling_auto import (
|
||||
from vllm.envs import VLLM_USE_MODELSCOPE
|
||||
from vllm.logger import init_logger
|
||||
from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
|
||||
EAGLEConfig, InternVLChatConfig,
|
||||
JAISConfig, MedusaConfig,
|
||||
MLPSpeculatorConfig, MPTConfig,
|
||||
NemotronConfig, RWConfig,
|
||||
UltravoxConfig)
|
||||
EAGLEConfig, ExaoneConfig,
|
||||
InternVLChatConfig, JAISConfig,
|
||||
MedusaConfig, MLPSpeculatorConfig,
|
||||
MPTConfig, NemotronConfig,
|
||||
RWConfig, UltravoxConfig)
|
||||
|
||||
if VLLM_USE_MODELSCOPE:
|
||||
from modelscope import AutoConfig
|
||||
@ -34,6 +34,7 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
|
||||
"mlp_speculator": MLPSpeculatorConfig,
|
||||
"medusa": MedusaConfig,
|
||||
"eagle": EAGLEConfig,
|
||||
"exaone": ExaoneConfig,
|
||||
"internvl_chat": InternVLChatConfig,
|
||||
"nemotron": NemotronConfig,
|
||||
"ultravox": UltravoxConfig,
|
||||
|
@ -1,6 +1,7 @@
|
||||
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
||||
from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
||||
from vllm.transformers_utils.configs.eagle import EAGLEConfig
|
||||
from vllm.transformers_utils.configs.exaone import ExaoneConfig
|
||||
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
|
||||
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
|
||||
# `FalconConfig` class from the official HuggingFace transformers library.
|
||||
@ -22,6 +23,7 @@ __all__ = [
|
||||
"JAISConfig",
|
||||
"MedusaConfig",
|
||||
"EAGLEConfig",
|
||||
"ExaoneConfig",
|
||||
"MLPSpeculatorConfig",
|
||||
"NemotronConfig",
|
||||
"UltravoxConfig",
|
||||
|
190
vllm/transformers_utils/configs/exaone.py
Normal file
190
vllm/transformers_utils/configs/exaone.py
Normal file
@ -0,0 +1,190 @@
|
||||
# coding=utf-8
|
||||
# Copied from
|
||||
# https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/blob/main/configuration_exaone.py
|
||||
# Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Exaone model configuration"""
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP: Dict[str, str] = {}
|
||||
|
||||
|
||||
class ExaoneConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a :class:
|
||||
`~transformers.ExaoneModel`. It is used to instantiate a GPT Lingvo model
|
||||
according to the specified arguments, defining the model architecture.
|
||||
Instantiating a configuration with the defaults will yield a similar
|
||||
configuration to that of the Exaone
|
||||
|
||||
Configuration objects inherit from :class:`~transformers.PretrainedConfig`
|
||||
and can be used to control the model outputs. Read the documentation from :
|
||||
class:`~transformers.PretrainedConfig` for more information.
|
||||
|
||||
Args:
|
||||
vocab_size (:obj:`int`, `optional`, defaults to 50257):
|
||||
Vocabulary size of the GPT Lingvo model. Defines the number of
|
||||
different tokens that can be represented by the :obj:`inputs_ids`
|
||||
passed when calling :class:`~transformers.ExaoneModel`. Vocabulary
|
||||
size of the model.
|
||||
Defines the different tokens that can be represented by the
|
||||
`inputs_ids` passed to the forward method of :class:
|
||||
`~transformers.EXAONEModel`.
|
||||
hidden_size (:obj:`int`, `optional`, defaults to 2048):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
num_layers (:obj:`int`, `optional`, defaults to 24):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the
|
||||
Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to
|
||||
implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi
|
||||
Head Attention (MHA), if `num_key_value_heads=1 the model will use
|
||||
Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint,
|
||||
each group key and value head should be constructed by meanpooling
|
||||
all the original heads within that group. For more details checkout
|
||||
[this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not
|
||||
specified, will default to `num_attention_heads`.
|
||||
rotary_pct (`float`, *optional*, defaults to 0.25):
|
||||
percentage of hidden dimensions to allocate to rotary embeddings
|
||||
intermediate_size (:obj:`int`, `optional`, defaults to 8192):
|
||||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in
|
||||
the Transformer encoder.
|
||||
activation_function (:obj:`str` or :obj:`function`, `optional`,
|
||||
defaults to :obj:`"gelu_new"`):
|
||||
The non-linear activation function (function or string) in the
|
||||
encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`,
|
||||
:obj:`"selu"` and :obj:`"gelu_new"` are supported.
|
||||
embed_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
||||
The dropout probabilitiy for all fully connected layers in the
|
||||
embeddings, encoder, and pooler.
|
||||
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
max_position_embeddings (:obj:`int`, `optional`, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
Typically set this to something large just in case
|
||||
(e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
|
||||
The vocabulary size of the :obj:`token_type_ids` passed when calling
|
||||
:class:`~transformers.EXAONEModel`.
|
||||
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for
|
||||
initializing all weight matrices.
|
||||
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
|
||||
The epsilon used by the layer normalization layers.
|
||||
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not the model should return the last key/values
|
||||
attentions (not used by all models).
|
||||
Only relevant if ``config.is_decoder=True``.
|
||||
gradient_checkpointing (:obj:`bool`, `optional`,
|
||||
defaults to :obj:`False`):
|
||||
If True, use gradient checkpointing to save memory at the expense
|
||||
of slower backward pass.
|
||||
Example::
|
||||
|
||||
>>> from transformers import ExoneModel, ExaoneConfig
|
||||
|
||||
>>> # Initializing a EXAONE configuration
|
||||
>>> configuration = ExaoneConfig()
|
||||
|
||||
>>> # Initializing a model from configuration
|
||||
>>> model = ExoneModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
"""
|
||||
|
||||
model_type = "exaone"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
attribute_map = {"num_hidden_layers": "num_layers"}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=102400,
|
||||
max_position_embeddings=2048,
|
||||
hidden_size=2048,
|
||||
num_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
intermediate_size=None,
|
||||
activation_function="silu",
|
||||
rotary_pct=0.25,
|
||||
resid_dropout=0.0,
|
||||
embed_dropout=0.0,
|
||||
attention_dropout=0.0,
|
||||
layer_norm_epsilon=1e-6,
|
||||
initializer_range=0.02,
|
||||
use_cache=True,
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=True,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_hidden_layers = num_layers
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
if intermediate_size:
|
||||
self.intermediate_size = intermediate_size
|
||||
else:
|
||||
self.intermediate_size = hidden_size * 4
|
||||
self.activation_function = activation_function
|
||||
self.resid_dropout = resid_dropout
|
||||
self.embed_dropout = embed_dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.use_cache = use_cache
|
||||
self.rotary_pct = rotary_pct
|
||||
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
|
||||
self.use_logit_cap = kwargs.pop("use_logit_cap", False)
|
||||
self.ln_no_scale = kwargs.pop("ln_no_scale", False)
|
||||
self.use_gated = kwargs.pop("use_gated", False)
|
||||
self.use_emb_norm = kwargs.pop("use_emb_norm", False)
|
||||
self.use_rotary_pos = kwargs.pop("use_rotary_pos", False)
|
||||
self.rotary_type = kwargs.pop("rotary_type", None)
|
||||
self.scaling_factor = kwargs.pop("scaling_factor", 1)
|
||||
self.use_absolute_pos = kwargs.pop("use_absolute_pos", True)
|
||||
self.use_extra_logit = kwargs.pop("use_extra_logit", True)
|
||||
self.rotary_expand_length = kwargs.pop("rotary_expand_length", None)
|
||||
self.rotary_base = kwargs.pop("rotary_base", 10000.0)
|
||||
self.use_qkv_fuse = kwargs.pop("use_qkv_fuse", False)
|
||||
self.rescale_before_lm_head = kwargs.pop("rescale_before_lm_head",
|
||||
(rotary_pct == 0.25))
|
||||
if self.use_rotary_pos:
|
||||
self.use_absolute_pos = False
|
Reference in New Issue
Block a user