mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Frontend][1/N] Improve all pooling task | Support FP16 Embedding Base64 (Still uses fp32 by default). (#26414)
Signed-off-by: wang.yuqi <noooop@126.com> Co-authored-by: Maximilien de Bayser <maxdebayser@gmail.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
@ -6,6 +6,12 @@
|
||||
python examples/online_serving/pooling/cohere_rerank_client.py
|
||||
```
|
||||
|
||||
## Embedding embed_dtype usage
|
||||
|
||||
```bash
|
||||
python examples/online_serving/pooling/embedding_embed_dtype_client.py
|
||||
```
|
||||
|
||||
## Jinaai rerank usage
|
||||
|
||||
```bash
|
||||
|
@ -0,0 +1,59 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""Example Python client for embedding API using vLLM API server
|
||||
NOTE:
|
||||
start a supported embeddings model server with `vllm serve`, e.g.
|
||||
vllm serve intfloat/e5-small
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import base64
|
||||
|
||||
import requests
|
||||
import torch
|
||||
|
||||
from vllm.entrypoints.openai.protocol import EMBED_DTYPE_TO_TORCH_DTYPE
|
||||
|
||||
|
||||
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
|
||||
headers = {"User-Agent": "Test Client"}
|
||||
response = requests.post(api_url, headers=headers, json=prompt)
|
||||
return response
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=8000)
|
||||
parser.add_argument("--model", type=str, default="intfloat/e5-small")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main(args):
|
||||
api_url = f"http://{args.host}:{args.port}/v1/embeddings"
|
||||
model_name = args.model
|
||||
|
||||
for embed_dtype, torch_dtype in EMBED_DTYPE_TO_TORCH_DTYPE.items():
|
||||
prompt = {
|
||||
"model": model_name,
|
||||
"input": "vLLM is great!",
|
||||
"encoding_format": "base64",
|
||||
"embed_dtype": embed_dtype,
|
||||
}
|
||||
response = post_http_request(prompt=prompt, api_url=api_url)
|
||||
|
||||
embedding = []
|
||||
for data in response.json()["data"]:
|
||||
embedding.append(
|
||||
torch.frombuffer(
|
||||
base64.b64decode(data["embedding"]), dtype=torch_dtype
|
||||
).to(torch.float32)
|
||||
)
|
||||
embedding = torch.cat(embedding)
|
||||
print(embed_dtype, embedding.shape)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
main(args)
|
@ -14,7 +14,10 @@ import torch.nn.functional as F
|
||||
from tests.models.language.pooling.embed_utils import run_embedding_correctness_test
|
||||
from tests.models.utils import check_embeddings_close
|
||||
from tests.utils import RemoteOpenAIServer
|
||||
from vllm.entrypoints.openai.protocol import EmbeddingResponse
|
||||
from vllm.entrypoints.openai.protocol import (
|
||||
EMBED_DTYPE_TO_TORCH_DTYPE,
|
||||
EmbeddingResponse,
|
||||
)
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
MODEL_NAME = "intfloat/multilingual-e5-small"
|
||||
@ -244,6 +247,75 @@ async def test_batch_base64_embedding(
|
||||
run_embedding_correctness_test(hf_model, input_texts, default_data)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_base64_embed_dtype(
|
||||
hf_model, server: RemoteOpenAIServer, client: openai.AsyncOpenAI, model_name: str
|
||||
):
|
||||
input_texts = [
|
||||
"The best thing about vLLM is that it supports many different models",
|
||||
]
|
||||
|
||||
responses_float = await client.embeddings.create(
|
||||
input=input_texts, model=model_name, encoding_format="float"
|
||||
)
|
||||
float_data = [d.embedding for d in responses_float.data]
|
||||
|
||||
for embed_dtype, torch_dtype in EMBED_DTYPE_TO_TORCH_DTYPE.items():
|
||||
responses_base64 = requests.post(
|
||||
server.url_for("/v1/embeddings"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_texts,
|
||||
"encoding_format": "base64",
|
||||
"embed_dtype": embed_dtype,
|
||||
},
|
||||
)
|
||||
|
||||
base64_data = []
|
||||
for data in responses_base64.json()["data"]:
|
||||
base64_data.append(
|
||||
torch.frombuffer(base64.b64decode(data["embedding"]), dtype=torch_dtype)
|
||||
.to(torch.float32)
|
||||
.tolist()
|
||||
)
|
||||
|
||||
check_embeddings_close(
|
||||
embeddings_0_lst=float_data,
|
||||
embeddings_1_lst=base64_data,
|
||||
name_0="float_data",
|
||||
name_1="base64_data",
|
||||
tol=1e-2,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_base64_embed_dtype_not_supported(
|
||||
hf_model, server: RemoteOpenAIServer, model_name: str
|
||||
):
|
||||
input_texts = [
|
||||
"The best thing about vLLM is that it supports many different models",
|
||||
]
|
||||
|
||||
bad_embed_dtype = "bad_embed_dtype"
|
||||
|
||||
responses_base64 = requests.post(
|
||||
server.url_for("/v1/embeddings"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_texts,
|
||||
"encoding_format": "base64",
|
||||
"embed_dtype": bad_embed_dtype,
|
||||
},
|
||||
)
|
||||
|
||||
assert responses_base64.status_code == 400
|
||||
assert responses_base64.json()["error"]["message"].startswith(
|
||||
f"embed_dtype={bad_embed_dtype!r} is not supported."
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_single_embedding_truncation(client: openai.AsyncOpenAI, model_name: str):
|
||||
|
@ -6,10 +6,11 @@ import base64
|
||||
import numpy as np
|
||||
import pytest
|
||||
import requests
|
||||
import torch
|
||||
|
||||
from tests.models.utils import check_embeddings_close
|
||||
from tests.utils import RemoteOpenAIServer
|
||||
from vllm.entrypoints.openai.protocol import PoolingResponse
|
||||
from vllm.entrypoints.openai.protocol import EMBED_DTYPE_TO_TORCH_DTYPE, PoolingResponse
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
MODEL_NAME = "internlm/internlm2-1_8b-reward"
|
||||
@ -248,6 +249,80 @@ async def test_batch_base64_pooling(server: RemoteOpenAIServer, model_name: str)
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_base64_embed_dtype(server: RemoteOpenAIServer, model_name: str):
|
||||
input_texts = [
|
||||
"The best thing about vLLM is that it supports many different models",
|
||||
]
|
||||
|
||||
url = server.url_for("pooling")
|
||||
float_response = requests.post(
|
||||
url,
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_texts,
|
||||
"encoding_format": "float",
|
||||
},
|
||||
)
|
||||
responses_float = PoolingResponse.model_validate(float_response.json())
|
||||
float_data = [np.array(d.data).squeeze(-1).tolist() for d in responses_float.data]
|
||||
|
||||
for embed_dtype, torch_dtype in EMBED_DTYPE_TO_TORCH_DTYPE.items():
|
||||
responses_base64 = requests.post(
|
||||
url,
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_texts,
|
||||
"encoding_format": "base64",
|
||||
"embed_dtype": embed_dtype,
|
||||
},
|
||||
)
|
||||
|
||||
base64_data = []
|
||||
for data in responses_base64.json()["data"]:
|
||||
base64_data.append(
|
||||
torch.frombuffer(base64.b64decode(data["data"]), dtype=torch_dtype)
|
||||
.to(torch.float32)
|
||||
.tolist()
|
||||
)
|
||||
|
||||
check_embeddings_close(
|
||||
embeddings_0_lst=float_data,
|
||||
embeddings_1_lst=base64_data,
|
||||
name_0="float_data",
|
||||
name_1="base64_data",
|
||||
tol=1e-2,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
async def test_base64_embed_dtype_not_supported(
|
||||
server: RemoteOpenAIServer, model_name: str
|
||||
):
|
||||
input_texts = [
|
||||
"The best thing about vLLM is that it supports many different models",
|
||||
]
|
||||
|
||||
bad_embed_dtype = "bad_embed_dtype"
|
||||
|
||||
responses_base64 = requests.post(
|
||||
server.url_for("pooling"),
|
||||
json={
|
||||
"model": model_name,
|
||||
"input": input_texts,
|
||||
"encoding_format": "base64",
|
||||
"embed_dtype": bad_embed_dtype,
|
||||
},
|
||||
)
|
||||
|
||||
assert responses_base64.status_code == 400
|
||||
assert responses_base64.json()["error"]["message"].startswith(
|
||||
f"embed_dtype={bad_embed_dtype!r} is not supported."
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_invocations(server: RemoteOpenAIServer):
|
||||
input_texts = [
|
||||
|
@ -83,6 +83,18 @@ from vllm.sampling_params import (
|
||||
)
|
||||
from vllm.utils import random_uuid, resolve_obj_by_qualname
|
||||
|
||||
EMBED_DTYPE_TO_TORCH_DTYPE = {
|
||||
"float32": torch.float32,
|
||||
"float16": torch.float16,
|
||||
"bfloat16": torch.bfloat16,
|
||||
# I'm not sure if other platforms' CPUs support the fp8 data format.
|
||||
# EMBED_DTYPE only uses the fp8 data representation,
|
||||
# does not use fp8 computation, and only occurs on the CPU.
|
||||
# Apologize for any possible break.
|
||||
"fp8_e4m3": torch.float8_e4m3fn,
|
||||
"fp8_e5m2": torch.float8_e5m2,
|
||||
}
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
_LONG_INFO = torch.iinfo(torch.long)
|
||||
@ -1517,8 +1529,17 @@ class EmbeddingCompletionRequest(OpenAIBaseModel):
|
||||
"through out the inference process and return in response."
|
||||
),
|
||||
)
|
||||
normalize: bool | None = None
|
||||
|
||||
normalize: bool | None = Field(
|
||||
default=None,
|
||||
description="Whether to normalize the embeddings outputs. Default is True.",
|
||||
)
|
||||
embed_dtype: str = Field(
|
||||
default="float32",
|
||||
description=(
|
||||
"What dtype to use for base64 encoding. Default to using "
|
||||
"float32 for base64 encoding to match the OpenAI python client behavior."
|
||||
),
|
||||
)
|
||||
# --8<-- [end:embedding-extra-params]
|
||||
|
||||
def to_pooling_params(self):
|
||||
@ -1594,7 +1615,17 @@ class EmbeddingChatRequest(OpenAIBaseModel):
|
||||
"through out the inference process and return in response."
|
||||
),
|
||||
)
|
||||
normalize: bool | None = None
|
||||
normalize: bool | None = Field(
|
||||
default=None,
|
||||
description="Whether to normalize the embeddings outputs. Default is True.",
|
||||
)
|
||||
embed_dtype: str = Field(
|
||||
default="float32",
|
||||
description=(
|
||||
"Which dtype to use for base64 encoding. Defaults to float32 "
|
||||
"to match OpenAI API."
|
||||
),
|
||||
)
|
||||
# --8<-- [end:chat-embedding-extra-params]
|
||||
|
||||
@model_validator(mode="before")
|
||||
@ -1639,6 +1670,14 @@ class IOProcessorRequest(OpenAIBaseModel, Generic[T]):
|
||||
"""
|
||||
softmax: bool = True
|
||||
|
||||
embed_dtype: str = Field(
|
||||
default="float32",
|
||||
description=(
|
||||
"What dtype to use for base64 encoding. Default to using "
|
||||
"float32 for base64 encoding to match the OpenAI python client behavior."
|
||||
),
|
||||
)
|
||||
|
||||
def to_pooling_params(self):
|
||||
return PoolingParams(task="encode", softmax=self.softmax)
|
||||
|
||||
|
@ -1,19 +1,18 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import base64
|
||||
from collections.abc import AsyncGenerator, Mapping
|
||||
from typing import Any, Final, Literal, cast
|
||||
from typing import Any, Final, cast
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from fastapi import Request
|
||||
from typing_extensions import assert_never, override
|
||||
from typing_extensions import override
|
||||
|
||||
from vllm.engine.protocol import EngineClient
|
||||
from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption
|
||||
from vllm.entrypoints.logger import RequestLogger
|
||||
from vllm.entrypoints.openai.protocol import (
|
||||
EMBED_DTYPE_TO_TORCH_DTYPE,
|
||||
EmbeddingChatRequest,
|
||||
EmbeddingCompletionRequest,
|
||||
EmbeddingRequest,
|
||||
@ -29,11 +28,11 @@ from vllm.entrypoints.openai.serving_engine import (
|
||||
TextTokensPrompt,
|
||||
)
|
||||
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
||||
from vllm.entrypoints.openai.utils import encoding_pooling_output
|
||||
from vllm.entrypoints.renderer import RenderConfig
|
||||
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
|
||||
from vllm.logger import init_logger
|
||||
from vllm.outputs import (
|
||||
EmbeddingOutput,
|
||||
EmbeddingRequestOutput,
|
||||
PoolingOutput,
|
||||
PoolingRequestOutput,
|
||||
@ -45,21 +44,6 @@ from vllm.utils import chunk_list
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
def _get_embedding(
|
||||
output: EmbeddingOutput,
|
||||
encoding_format: Literal["float", "base64"],
|
||||
) -> list[float] | str:
|
||||
if encoding_format == "float":
|
||||
return output.embedding
|
||||
elif encoding_format == "base64":
|
||||
# Force to use float32 for base64 encoding
|
||||
# to match the OpenAI python client behavior
|
||||
embedding_bytes = np.array(output.embedding, dtype="float32").tobytes()
|
||||
return base64.b64encode(embedding_bytes).decode("utf-8")
|
||||
|
||||
assert_never(encoding_format)
|
||||
|
||||
|
||||
class EmbeddingMixin(OpenAIServing):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
@ -83,6 +67,12 @@ class EmbeddingMixin(OpenAIServing):
|
||||
) -> ErrorResponse | None:
|
||||
ctx = cast(EmbeddingServeContext, ctx)
|
||||
try:
|
||||
if ctx.request.embed_dtype not in EMBED_DTYPE_TO_TORCH_DTYPE:
|
||||
return self.create_error_response(
|
||||
f"embed_dtype={ctx.request.embed_dtype!r} is not supported. "
|
||||
f"Supported types: {EMBED_DTYPE_TO_TORCH_DTYPE.keys()}"
|
||||
)
|
||||
|
||||
ctx.lora_request = self._maybe_get_adapters(ctx.request)
|
||||
|
||||
tokenizer = await self.engine_client.get_tokenizer()
|
||||
@ -137,12 +127,10 @@ class EmbeddingMixin(OpenAIServing):
|
||||
final_res_batch_checked = cast(list[PoolingRequestOutput], ctx.final_res_batch)
|
||||
|
||||
for idx, final_res in enumerate(final_res_batch_checked):
|
||||
embedding_res = EmbeddingRequestOutput.from_base(final_res)
|
||||
|
||||
item = EmbeddingResponseData(
|
||||
index=idx,
|
||||
embedding=_get_embedding(
|
||||
embedding_res.outputs, ctx.request.encoding_format
|
||||
embedding=encoding_pooling_output(
|
||||
final_res, ctx.request.encoding_format, ctx.request.embed_dtype
|
||||
),
|
||||
)
|
||||
prompt_token_ids = final_res.prompt_token_ids
|
||||
|
@ -17,6 +17,7 @@ from vllm.engine.protocol import EngineClient
|
||||
from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption
|
||||
from vllm.entrypoints.logger import RequestLogger
|
||||
from vllm.entrypoints.openai.protocol import (
|
||||
EMBED_DTYPE_TO_TORCH_DTYPE,
|
||||
ErrorResponse,
|
||||
IOProcessorRequest,
|
||||
IOProcessorResponse,
|
||||
@ -29,6 +30,7 @@ from vllm.entrypoints.openai.protocol import (
|
||||
)
|
||||
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
||||
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
||||
from vllm.entrypoints.openai.utils import encoding_pooling_output
|
||||
from vllm.entrypoints.renderer import RenderConfig
|
||||
from vllm.entrypoints.utils import _validate_truncation_size
|
||||
from vllm.logger import init_logger
|
||||
@ -90,6 +92,12 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
if error_check_ret is not None:
|
||||
return error_check_ret
|
||||
|
||||
if request.embed_dtype not in EMBED_DTYPE_TO_TORCH_DTYPE:
|
||||
return self.create_error_response(
|
||||
f"embed_dtype={request.embed_dtype!r} is not supported. "
|
||||
f"Supported types: {EMBED_DTYPE_TO_TORCH_DTYPE.keys()}"
|
||||
)
|
||||
|
||||
model_name = self.models.model_name()
|
||||
|
||||
request_id = f"pool-{self._base_request_id(raw_request)}"
|
||||
@ -235,6 +243,7 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
created_time,
|
||||
model_name,
|
||||
request.encoding_format,
|
||||
request.embed_dtype,
|
||||
)
|
||||
except asyncio.CancelledError:
|
||||
return self.create_error_response("Client disconnected")
|
||||
@ -251,6 +260,7 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
encoding_format: Literal["float", "base64"],
|
||||
embed_dtype: str,
|
||||
) -> PoolingResponse:
|
||||
items: list[PoolingResponseData] = []
|
||||
num_prompt_tokens = 0
|
||||
@ -258,7 +268,7 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
for idx, final_res in enumerate(final_res_batch):
|
||||
item = PoolingResponseData(
|
||||
index=idx,
|
||||
data=_get_data(final_res.outputs, encoding_format),
|
||||
data=encoding_pooling_output(final_res, encoding_format, embed_dtype),
|
||||
)
|
||||
prompt_token_ids = final_res.prompt_token_ids
|
||||
|
||||
|
33
vllm/entrypoints/openai/utils.py
Normal file
33
vllm/entrypoints/openai/utils.py
Normal file
@ -0,0 +1,33 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import base64
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from typing_extensions import assert_never
|
||||
|
||||
from vllm import PoolingRequestOutput
|
||||
from vllm.entrypoints.openai.protocol import EMBED_DTYPE_TO_TORCH_DTYPE
|
||||
|
||||
|
||||
def encoding_pooling_output(
|
||||
output: PoolingRequestOutput,
|
||||
encoding_format: Literal["float", "base64"],
|
||||
embed_dtype: str,
|
||||
) -> list[float] | str:
|
||||
if encoding_format == "float":
|
||||
return output.outputs.data.tolist()
|
||||
elif encoding_format == "base64":
|
||||
assert embed_dtype in EMBED_DTYPE_TO_TORCH_DTYPE
|
||||
torch_dtype = EMBED_DTYPE_TO_TORCH_DTYPE[embed_dtype]
|
||||
embedding_bytes = (
|
||||
output.outputs.data.to(torch_dtype)
|
||||
.flatten()
|
||||
.contiguous()
|
||||
.view(torch.uint8)
|
||||
.numpy()
|
||||
.tobytes()
|
||||
)
|
||||
return base64.b64encode(embedding_bytes).decode("utf-8")
|
||||
|
||||
assert_never(encoding_format)
|
Reference in New Issue
Block a user