mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Minor] Remove unnecessary error message (#27115)
Signed-off-by: Zhuohan Li <zhuohan123@gmail.com>
This commit is contained in:
@ -34,7 +34,7 @@ from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
||||
from vllm.model_executor.models.vision import get_vit_attn_backend
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import GiB_bytes, direct_register_custom_op
|
||||
from vllm.utils import direct_register_custom_op
|
||||
|
||||
FP8_DTYPE = current_platform.fp8_dtype()
|
||||
logger = init_logger(__name__)
|
||||
@ -281,25 +281,10 @@ class Attention(nn.Module, AttentionLayerBase):
|
||||
)
|
||||
]
|
||||
|
||||
try:
|
||||
self.q_range = torch.tensor(envs.Q_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32)
|
||||
except torch.cuda.OutOfMemoryError as e:
|
||||
logger.error("Failed to initialize attention q/k/v range constants: %s", e)
|
||||
if torch.cuda.is_available():
|
||||
logger.debug("CUDA device: %s", torch.cuda.current_device())
|
||||
logger.debug(
|
||||
"Allocated: %.2f GiB", torch.cuda.memory_allocated() / GiB_bytes
|
||||
)
|
||||
logger.debug(
|
||||
"Reserved: %.2f GiB", torch.cuda.memory_reserved() / GiB_bytes
|
||||
)
|
||||
raise RuntimeError(
|
||||
"Failed to initialize q/k/v range constants. "
|
||||
"This may be caused by insufficient memory to allocate "
|
||||
"kv cache."
|
||||
) from e
|
||||
# Initialize q/k/v range constants.
|
||||
self.q_range = torch.tensor(envs.Q_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32)
|
||||
|
||||
# for attn backends supporting query quantization
|
||||
self.query_quant = None
|
||||
@ -668,13 +653,9 @@ class MLAAttention(nn.Module, AttentionLayerBase):
|
||||
self.use_sparse = use_sparse
|
||||
|
||||
# Initialize q/k/v range constants.
|
||||
try:
|
||||
self.q_range = torch.tensor(envs.Q_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32)
|
||||
except torch.cuda.OutOfMemoryError:
|
||||
# Keep defaults if allocation fails; not critical for init.
|
||||
pass
|
||||
self.q_range = torch.tensor(envs.Q_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32)
|
||||
self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -34,7 +34,6 @@ from vllm.model_executor.parameter import (
|
||||
)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import GiB_bytes
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -211,33 +210,17 @@ class UnquantizedLinearMethod(LinearMethodBase):
|
||||
# The weights are not quantized, and they are not sharded.
|
||||
# The amount of memory allocated for the weights is
|
||||
# sum(output_partition_sizes) * input_size_per_partition.
|
||||
try:
|
||||
weight_loader = extra_weight_attrs.pop("weight_loader")
|
||||
weight = ModelWeightParameter(
|
||||
data=torch.empty(
|
||||
sum(output_partition_sizes),
|
||||
input_size_per_partition,
|
||||
dtype=params_dtype,
|
||||
),
|
||||
input_dim=1,
|
||||
output_dim=0,
|
||||
weight_loader=weight_loader,
|
||||
)
|
||||
except torch.cuda.OutOfMemoryError as e:
|
||||
logger.error("Failed to create unquantized linear weights: %s", e)
|
||||
if torch.cuda.is_available():
|
||||
logger.debug("CUDA device: %s", torch.cuda.current_device())
|
||||
logger.debug(
|
||||
"Allocated: %.2f GiB", torch.cuda.memory_allocated() / GiB_bytes
|
||||
)
|
||||
logger.debug(
|
||||
"Reserved: %.2f GiB", torch.cuda.memory_reserved() / GiB_bytes
|
||||
)
|
||||
raise RuntimeError(
|
||||
"Failed to create unquantized linear weights. "
|
||||
"This may be caused by insufficient memory to allocate "
|
||||
"the weight."
|
||||
) from e
|
||||
weight_loader = extra_weight_attrs.pop("weight_loader")
|
||||
weight = ModelWeightParameter(
|
||||
data=torch.empty(
|
||||
sum(output_partition_sizes),
|
||||
input_size_per_partition,
|
||||
dtype=params_dtype,
|
||||
),
|
||||
input_dim=1,
|
||||
output_dim=0,
|
||||
weight_loader=weight_loader,
|
||||
)
|
||||
|
||||
layer.register_parameter("weight", weight)
|
||||
set_weight_attrs(weight, extra_weight_attrs)
|
||||
|
Reference in New Issue
Block a user