[EPLB] Support ernie4.5-moe (#22100)

Signed-off-by: Haisheng Chen <langzs335@outlook.com>
Signed-off-by: Haisheng Chen <60504847+HsChen-sys@users.noreply.github.com>
Signed-off-by: Haisheng Chen <hac048@ucsd.edu>
Co-authored-by: Haisheng Chen <langzs335@outlook.com>
This commit is contained in:
Haisheng Chen
2025-10-11 19:40:47 -07:00
committed by GitHub
parent 01653a917b
commit c5c8f5ea59

View File

@ -33,8 +33,12 @@ from transformers import PretrainedConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config
from vllm.distributed import (
get_ep_group,
get_pp_group,
get_tensor_model_parallel_world_size,
)
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
@ -58,7 +62,7 @@ from vllm.model_executor.model_loader.weight_utils import (
)
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
@ -118,12 +122,34 @@ class Ernie4_5_MoeMoE(nn.Module):
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_eplb: bool = False,
):
super().__init__()
layer_idx = extract_layer_index(prefix)
self.layer_idx = layer_idx
self.tp_size = get_tensor_model_parallel_world_size()
self.moe_num_shared_experts = getattr(config, "moe_num_shared_experts", None)
self.ep_group = get_ep_group().device_group
self.ep_rank = self.ep_group.rank()
self.ep_size = self.ep_group.size()
self.n_routed_experts: int = config.moe_num_experts
self.n_shared_experts: int = self.moe_num_shared_experts
# Load balancing settings.
vllm_config = get_current_vllm_config()
parallel_config = vllm_config.parallel_config
self.enable_eplb = enable_eplb
self.n_redundant_experts = parallel_config.num_redundant_experts
self.n_logical_experts = self.n_routed_experts
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
self.physical_expert_end = (
self.physical_expert_start + self.n_local_physical_experts
)
self.has_shared_experts = getattr(config, "moe_num_shared_experts", 0) > 0
if self.tp_size > config.moe_num_experts:
@ -171,6 +197,8 @@ class Ernie4_5_MoeMoE(nn.Module):
quant_config=quant_config,
prefix=f"{prefix}.experts",
e_score_correction_bias=self.gate.e_score_correction_bias,
enable_eplb=self.enable_eplb,
num_redundant_experts=self.n_redundant_experts,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
@ -298,6 +326,7 @@ class Ernie4_5_MoeDecoderLayer(nn.Module):
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_eplb: bool = False,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
@ -338,7 +367,10 @@ class Ernie4_5_MoeDecoderLayer(nn.Module):
and layer_idx <= moe_layer_end_index
):
self.mlp = Ernie4_5_MoeMoE(
config=config, quant_config=quant_config, prefix=f"{prefix}.mlp"
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
enable_eplb=enable_eplb,
)
else:
self.mlp = Ernie4_5_MoeMLP(
@ -393,6 +425,9 @@ class Ernie4_5_MoeModel(nn.Module):
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.config = config
parallel_config = vllm_config.parallel_config
enable_eplb = parallel_config.enable_eplb
self.num_redundant_experts = parallel_config.num_redundant_experts
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
@ -411,6 +446,7 @@ class Ernie4_5_MoeModel(nn.Module):
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
enable_eplb=enable_eplb,
),
prefix=f"{prefix}.layers",
)
@ -465,6 +501,7 @@ class Ernie4_5_MoeModel(nn.Module):
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.moe_num_experts,
num_redundant_experts=self.num_redundant_experts,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
@ -513,15 +550,22 @@ class Ernie4_5_MoeModel(nn.Module):
weight_loader(param, loaded_weight, shard_id)
break
else:
is_expert_weight = False
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Anyway, this is an expert weight and should not be
# attempted to load as other weights later
is_expert_weight = True
# Do not modify `name` since the loop may continue here
# Instead, create a new variable
name_mapped = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
if is_pp_missing_parameter(name_mapped, self):
continue
# Skip loading extra bias for GPTQ models.
@ -541,6 +585,12 @@ class Ernie4_5_MoeModel(nn.Module):
)
break
else:
if is_expert_weight:
# We've checked that this is an expert weight
# However it's not mapped locally to this rank
# So we simply skip it
continue
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
@ -563,7 +613,7 @@ class Ernie4_5_MoeModel(nn.Module):
return loaded_params
class Ernie4_5_MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
class Ernie4_5_MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA, MixtureOfExperts):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
@ -605,6 +655,81 @@ class Ernie4_5_MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
self.model.make_empty_intermediate_tensors
)
self.expert_weights = []
# Set MoE hyperparameters
moe_layers_indices = [
i
for i in range(config.num_hidden_layers)
if (
i >= config.moe_layer_start_index
and i <= config.moe_layer_end_index
and (i + 1) % config.moe_layer_interval == 0
)
]
self.num_moe_layers = len(moe_layers_indices)
self.num_expert_groups = 1
self.moe_layers: list[SharedFusedMoE] = []
example_moe = None
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
assert isinstance(layer, Ernie4_5_MoeDecoderLayer)
if isinstance(layer.mlp, Ernie4_5_MoeMoE):
example_moe = layer.mlp
self.moe_layers.append(layer.mlp.experts)
if example_moe is None:
logger.warning("No Ernie4_5_MoeMoE layer found in model.layers.")
self.num_logical_experts = 0
self.num_physical_experts = 0
self.num_local_physical_experts = 0
self.num_routed_experts = 0
self.num_shared_experts = 0
self.num_redundant_experts = 0
else:
self.num_logical_experts = example_moe.n_logical_experts
self.num_physical_experts = example_moe.n_physical_experts
self.num_local_physical_experts = example_moe.n_local_physical_experts
self.num_routed_experts = example_moe.n_routed_experts
self.num_shared_experts = example_moe.n_shared_experts
self.num_redundant_experts = example_moe.n_redundant_experts
def set_eplb_state(
self,
expert_load_view: torch.Tensor,
logical_to_physical_map: torch.Tensor,
logical_replica_count: torch.Tensor,
) -> None:
for layer_idx, layer in enumerate(self.moe_layers):
# Register the expert weights.
self.expert_weights.append(layer.get_expert_weights())
layer.set_eplb_state(
moe_layer_idx=layer_idx,
expert_load_view=expert_load_view,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count,
)
def update_physical_experts_metadata(
self,
num_physical_experts: int,
num_local_physical_experts: int,
) -> None:
assert self.num_local_physical_experts == num_local_physical_experts
self.num_physical_experts = num_physical_experts
self.num_local_physical_experts = num_local_physical_experts
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
for layer in self.model.layers:
if isinstance(layer.mlp, Ernie4_5_MoeMoE):
moe = layer.mlp
moe.n_local_physical_experts = num_local_physical_experts
moe.n_physical_experts = num_physical_experts
moe.n_redundant_experts = self.num_redundant_experts
moe.experts.update_expert_map()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)