mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
@ -1,5 +1,8 @@
|
||||
from time import time
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Common prefix.
|
||||
prefix = (
|
||||
"You are an expert school principal, skilled in effectively managing "
|
||||
"faculty and staff. Draft 10-15 questions for a potential first grade "
|
||||
@ -18,36 +21,60 @@ prompts = [
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
generating_prompts = [prefix + prompt for prompt in prompts]
|
||||
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.0)
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="facebook/opt-125m", enable_prefix_caching=True)
|
||||
regular_llm = LLM(model="facebook/opt-125m", gpu_memory_utilization=0.4)
|
||||
|
||||
generating_prompts = [prefix + prompt for prompt in prompts]
|
||||
prefix_cached_llm = LLM(model="facebook/opt-125m",
|
||||
enable_prefix_caching=True,
|
||||
gpu_memory_utilization=0.4)
|
||||
print("Results without `enable_prefix_caching`")
|
||||
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(generating_prompts, sampling_params)
|
||||
start_time_regular = time()
|
||||
outputs = regular_llm.generate(generating_prompts, sampling_params)
|
||||
duration_regular = time() - start_time_regular
|
||||
|
||||
regular_generated_texts = []
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
regular_generated_texts.append(generated_text)
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
print("-" * 80)
|
||||
|
||||
# The llm.generate call will batch all prompts and send the batch at once
|
||||
# if resources allow. The prefix will only be cached after the first batch
|
||||
# is processed, so we need to call generate once to calculate the prefix
|
||||
# and cache it.
|
||||
outputs = llm.generate(generating_prompts[0], sampling_params)
|
||||
# if resources allow.
|
||||
start_time_cached = time()
|
||||
outputs = prefix_cached_llm.generate(generating_prompts, sampling_params)
|
||||
duration_cached = time() - start_time_cached
|
||||
|
||||
# Subsequent batches can leverage the cached prefix
|
||||
outputs = llm.generate(generating_prompts, sampling_params)
|
||||
print("Results with `enable_prefix_caching`")
|
||||
|
||||
# Print the outputs. You should see the same outputs as before
|
||||
cached_generated_texts = []
|
||||
# Print the outputs. You should see the same outputs as before.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
cached_generated_texts.append(generated_text)
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
print("-" * 80)
|
||||
|
||||
# Compare the results and display the speedup
|
||||
generated_same = all([
|
||||
regular_generated_texts[i] == cached_generated_texts[i]
|
||||
for i in range(len(prompts))
|
||||
])
|
||||
print(f"Generated answers are the same: {generated_same}")
|
||||
|
||||
speedup = round(duration_regular / duration_cached, 2)
|
||||
print(f"Speed up of cached generation compared to the regular is: {speedup}")
|
||||
|
Reference in New Issue
Block a user