[Bugfix]: Fix issues related to prefix caching example (#5177) (#5180)

This commit is contained in:
Daniil Arapov
2024-06-02 01:53:52 +03:00
committed by GitHub
parent 8279078e21
commit c2d6d2f960

View File

@ -1,5 +1,8 @@
from time import time
from vllm import LLM, SamplingParams
# Common prefix.
prefix = (
"You are an expert school principal, skilled in effectively managing "
"faculty and staff. Draft 10-15 questions for a potential first grade "
@ -18,36 +21,60 @@ prompts = [
"The capital of France is",
"The future of AI is",
]
generating_prompts = [prefix + prompt for prompt in prompts]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.0)
# Create an LLM.
llm = LLM(model="facebook/opt-125m", enable_prefix_caching=True)
regular_llm = LLM(model="facebook/opt-125m", gpu_memory_utilization=0.4)
generating_prompts = [prefix + prompt for prompt in prompts]
prefix_cached_llm = LLM(model="facebook/opt-125m",
enable_prefix_caching=True,
gpu_memory_utilization=0.4)
print("Results without `enable_prefix_caching`")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(generating_prompts, sampling_params)
start_time_regular = time()
outputs = regular_llm.generate(generating_prompts, sampling_params)
duration_regular = time() - start_time_regular
regular_generated_texts = []
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
regular_generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
print("-" * 80)
# The llm.generate call will batch all prompts and send the batch at once
# if resources allow. The prefix will only be cached after the first batch
# is processed, so we need to call generate once to calculate the prefix
# and cache it.
outputs = llm.generate(generating_prompts[0], sampling_params)
# if resources allow.
start_time_cached = time()
outputs = prefix_cached_llm.generate(generating_prompts, sampling_params)
duration_cached = time() - start_time_cached
# Subsequent batches can leverage the cached prefix
outputs = llm.generate(generating_prompts, sampling_params)
print("Results with `enable_prefix_caching`")
# Print the outputs. You should see the same outputs as before
cached_generated_texts = []
# Print the outputs. You should see the same outputs as before.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
cached_generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
print("-" * 80)
# Compare the results and display the speedup
generated_same = all([
regular_generated_texts[i] == cached_generated_texts[i]
for i in range(len(prompts))
])
print(f"Generated answers are the same: {generated_same}")
speedup = round(duration_regular / duration_cached, 2)
print(f"Speed up of cached generation compared to the regular is: {speedup}")