mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Bugfix] Fix Fuyu tensor parallel inference (#8986)
This commit is contained in:
@ -37,7 +37,9 @@ VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
|
||||
(1, 2, 1, 1, 1, "OpenGVLab/InternVL2-1B", "mp"),
|
||||
(1, 2, 1, 1, 1, "OpenGVLab/InternVL2-2B", "mp"),
|
||||
(1, 2, 1, 0, 1, "OpenGVLab/InternVL2-4B", "mp"),
|
||||
(1, 2, 0, 1, 0, "Qwen/Qwen2-VL-2B-Instruct", "mp")
|
||||
(1, 2, 0, 1, 0, "Qwen/Qwen2-VL-2B-Instruct", "mp"),
|
||||
# TP only models
|
||||
(2, 1, 1, 0, 0, "adept/fuyu-8b", "mp"),
|
||||
],
|
||||
)
|
||||
@fork_new_process_for_each_test
|
||||
|
@ -237,8 +237,9 @@ class FuyuForCausalLM(nn.Module, SupportsMultiModal):
|
||||
self.image_feature_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
gather_output=True,
|
||||
)
|
||||
self.language_model = PersimmonForCausalLM(config,
|
||||
self.language_model = PersimmonForCausalLM(config.text_config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
|
||||
|
@ -25,11 +25,11 @@ from typing import Iterable, List, Optional, Tuple
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PersimmonConfig
|
||||
from transformers.activations import ReLUSquaredActivation
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
@ -57,7 +57,7 @@ class PersimmonMLP(nn.Module):
|
||||
self.dense_4h_to_h = RowParallelLinear(config.intermediate_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config)
|
||||
self.act = ReLUSquaredActivation()
|
||||
self.act = get_act_fn(config.hidden_act, quant_config)
|
||||
|
||||
def forward(self, hidden_states) -> torch.Tensor:
|
||||
hidden_states, _ = self.dense_h_to_4h(hidden_states)
|
||||
@ -96,7 +96,7 @@ class PersimmonAttention(nn.Module):
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.dense = RowParallelLinear(
|
||||
self.num_heads * self.head_dim,
|
||||
self.total_num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=True,
|
||||
quant_config=quant_config,
|
||||
@ -213,10 +213,10 @@ class PersimmonModel(nn.Module):
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None):
|
||||
super().__init__()
|
||||
self.vocab_size = config.text_config.vocab_size
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.text_config.vocab_size, config.hidden_size)
|
||||
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
|
||||
config.hidden_size)
|
||||
self.layers = nn.ModuleList([
|
||||
PersimmonDecoderLayer(config,
|
||||
cache_config=cache_config,
|
||||
@ -252,19 +252,19 @@ class PersimmonModel(nn.Module):
|
||||
class PersimmonForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config,
|
||||
config: PersimmonConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.vocab_size = config.text_config.vocab_size
|
||||
self.vocab_size = config.vocab_size
|
||||
self.model = PersimmonModel(config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
self.lm_head = ParallelLMHead(config.text_config.vocab_size,
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
bias=False)
|
||||
self.logits_processor = LogitsProcessor(config.text_config.vocab_size)
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def forward(
|
||||
|
Reference in New Issue
Block a user