[Bugfix] Fix precision error in LLaVA-NeXT (#11735)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Cyrus Leung
2025-01-04 23:45:57 +08:00
committed by GitHub
parent eed11ebee9
commit ba214dffbe
3 changed files with 26 additions and 14 deletions

View File

@ -15,10 +15,9 @@ def processor_for_llava_next():
return LlavaNextMultiModalProcessor
# FIXME: image_size [(198, 176), (176, 198)]
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
@pytest.mark.parametrize("image_size", [(1669, 2560), (2560, 1669), (183, 488),
(488, 183)])
(488, 183), (198, 176), (176, 198)])
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_processor_prompt_replacements(
processor_for_llava_next,

View File

@ -2,6 +2,7 @@ from functools import cached_property
from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple,
TypedDict, Union)
import numpy as np
import torch
import torch.nn as nn
from transformers import BatchFeature, LlavaNextConfig, LlavaNextProcessor
@ -139,16 +140,21 @@ class LlavaNextMultiModalProcessor(LlavaMultiModalProcessor):
current_height = npatches * num_patch_height
current_width = npatches * num_patch_width
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
# NOTE: HF resizes based on float32
original_aspect_ratio = np.array(original_width / original_height,
dtype=np.float32)
current_aspect_ratio = np.array(current_width / current_height,
dtype=np.float32)
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
scale_factor = np.array(current_width / original_width,
dtype=np.float32)
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
current_height -= 2 * padding
else:
scale_factor = current_height / original_height
scale_factor = np.array(current_height / original_height,
dtype=np.float32)
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
current_width -= 2 * padding

View File

@ -3,6 +3,7 @@ from functools import cached_property
from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple,
TypedDict, Union)
import numpy as np
import torch
import torch.nn as nn
from transformers import (BatchFeature, LlavaOnevisionConfig,
@ -127,18 +128,24 @@ class LlavaOnevisionMultiModalProcessor(LlavaNextMultiModalProcessor):
current_height = npatches * num_patch_height
current_width = npatches * num_patch_width
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
# NOTE: HF resizes based on float32
original_aspect_ratio = np.array(original_width / original_height,
dtype=np.float32)
current_aspect_ratio = np.array(current_width / current_height,
dtype=np.float32)
if original_aspect_ratio > current_aspect_ratio:
new_height = int(original_height *
(current_width / original_width))
scale_factor = np.array(current_width / original_width,
dtype=np.float32)
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
current_height -= padding * 2
current_height -= 2 * padding
else:
new_width = int(original_width *
(current_height / original_height))
scale_factor = np.array(current_height / original_height,
dtype=np.float32)
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
current_width -= padding * 2
current_width -= 2 * padding
unpadded_features = current_height * current_width
newline_features = current_height