[CI/Build] Clean up LoRA test (#23890)

Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
Jee Jee Li
2025-08-29 14:28:35 +08:00
committed by GitHub
parent 05d839c19e
commit b4f9e9631c
4 changed files with 40 additions and 87 deletions

View File

@ -164,7 +164,6 @@ if [[ $commands == *" entrypoints/llm "* ]]; then
--ignore=entrypoints/llm/test_chat.py \
--ignore=entrypoints/llm/test_accuracy.py \
--ignore=entrypoints/llm/test_init.py \
--ignore=entrypoints/llm/test_generate_multiple_loras.py \
--ignore=entrypoints/llm/test_prompt_validation.py "}
fi

View File

@ -109,10 +109,9 @@ steps:
- tests/entrypoints/offline_mode
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_collective_rpc.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
- label: Entrypoints Test (API Server) # 40min
@ -326,7 +325,7 @@ steps:
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_llm_with_multi_loras.py
parallelism: 4
- label: PyTorch Compilation Unit Tests
@ -807,13 +806,13 @@ steps:
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_multi_loras_with_tp.py
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- label: Weight Loading Multiple GPU Test # 33min
mirror_hardwares: [amdexperimental]
working_dir: "/vllm-workspace/tests"
num_gpus: 2
num_gpus: 2
optional: true
source_file_dependencies:
- vllm/

View File

@ -1,80 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
# downloading lora to test lora requests
from huggingface_hub import snapshot_download
from vllm import LLM
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.lora.request import LoRARequest
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
LORA_NAME = "typeof/zephyr-7b-beta-lora"
@pytest.fixture(scope="module")
def monkeypatch_module():
from _pytest.monkeypatch import MonkeyPatch
mpatch = MonkeyPatch()
yield mpatch
mpatch.undo()
@pytest.fixture(scope="module", params=[False, True])
def llm(request, monkeypatch_module):
use_v1 = request.param
monkeypatch_module.setenv('VLLM_USE_V1', '1' if use_v1 else '0')
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
tensor_parallel_size=1,
max_model_len=8192,
enable_lora=True,
max_loras=4,
max_lora_rank=64,
max_num_seqs=128,
enforce_eager=True)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.fixture(scope="module")
def zephyr_lora_files():
return snapshot_download(repo_id=LORA_NAME)
@pytest.mark.skip_global_cleanup
def test_multiple_lora_requests(llm: LLM, zephyr_lora_files):
lora_request = [
LoRARequest(LORA_NAME + str(idx), idx + 1, zephyr_lora_files)
for idx in range(len(PROMPTS))
]
# Multiple SamplingParams should be matched with each prompt
outputs = llm.generate(PROMPTS, lora_request=lora_request)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.generate(PROMPTS, lora_request=lora_request[:1])
# Single LoRARequest should be applied to every prompt
single_lora_request = lora_request[0]
outputs = llm.generate(PROMPTS, lora_request=single_lora_request)
assert len(PROMPTS) == len(outputs)

View File

@ -1,8 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Script to test multi loras service with tp >= 2
This script contains:
1. test multi loras service with tp >= 2
2. test multi loras request
"""
import pytest
from tests.utils import multi_gpu_test
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
@ -156,3 +160,34 @@ def test_multi_loras_with_tp_sync():
output_text = call_llm_get_outputs(prompt, "Alice")
check_outputs(output_text, expected_output)
def test_multiple_lora_requests():
llm = LLM(
model=MODEL_PATH,
enable_lora=True,
max_loras=4,
max_lora_rank=LORA_RANK,
max_model_len=512,
gpu_memory_utilization=0.5,
enforce_eager=True,
)
PROMPTS = ["Hello, my name is"] * 2
LORA_NAME = "Alice"
lora_request = [
LoRARequest(LORA_NAME + str(idx), idx + 1,
LORA_NAME_PATH_MAP[LORA_NAME])
for idx in range(len(PROMPTS))
]
# Multiple SamplingParams should be matched with each prompt
outputs = llm.generate(PROMPTS, lora_request=lora_request)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.generate(PROMPTS, lora_request=lora_request[:1])
# Single LoRARequest should be applied to every prompt
single_lora_request = lora_request[0]
outputs = llm.generate(PROMPTS, lora_request=single_lora_request)
assert len(PROMPTS) == len(outputs)