mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[V1][Bugfix] Fix data item ordering in mixed-modality inference (#12259)
Signed-off-by: Roger Wang <ywang@roblox.com>
This commit is contained in:
@ -1,4 +1,5 @@
|
||||
from functools import lru_cache
|
||||
from itertools import groupby
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Optional, TypeVar, Union
|
||||
from urllib.parse import ParseResult, urlparse
|
||||
@ -26,7 +27,7 @@ _M = TypeVar("_M")
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .hasher import MultiModalHashDict
|
||||
from .inputs import MultiModalPlaceholderDict
|
||||
from .inputs import MultiModalKwargs, MultiModalPlaceholderDict
|
||||
|
||||
|
||||
class MediaConnector:
|
||||
@ -477,3 +478,34 @@ def merge_and_sort_multimodal_metadata(
|
||||
merged_hashes = None
|
||||
|
||||
return sorted_modalities, merged_placeholders, merged_hashes
|
||||
|
||||
|
||||
def group_mm_inputs_by_modality(
|
||||
mm_inputs: list["MultiModalKwargs"]) -> list[list["MultiModalKwargs"]]:
|
||||
"""Group consecutive MultiModalKwargs from mm_inputs with the same modality
|
||||
together into the same list for batching purpose. For MultiModalKwargs with
|
||||
multiple modalities, put them into their own list.
|
||||
|
||||
Args:
|
||||
mm_inputs: List of MultiModalKwargs.
|
||||
|
||||
Returns:
|
||||
list[list[MultiModalKwargs]]: List of list of MultiModalKwargs, each
|
||||
inner list contains consecutive MultiModalKwargs with same modality, or
|
||||
one with multimodal modalities.
|
||||
"""
|
||||
if not mm_inputs:
|
||||
return []
|
||||
|
||||
def modality_group_func(mm_input: "MultiModalKwargs") -> Union[str, int]:
|
||||
# If the input has multiple modalities, return a id as the unique key
|
||||
# for the mm_input input.
|
||||
if len(mm_input.modalities) > 1:
|
||||
return id(mm_input)
|
||||
|
||||
# Otherwise return the modality string
|
||||
return list(mm_input.modalities)[0]
|
||||
|
||||
return [
|
||||
list(group) for _, group in groupby(mm_inputs, key=modality_group_func)
|
||||
]
|
||||
|
@ -17,6 +17,7 @@ from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
|
||||
from vllm.model_executor.model_loader import get_model
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
|
||||
from vllm.multimodal.utils import group_mm_inputs_by_modality
|
||||
from vllm.sampling_params import SamplingType
|
||||
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler,
|
||||
LayerBlockType, cdiv, is_pin_memory_available)
|
||||
@ -629,19 +630,34 @@ class GPUModelRunner:
|
||||
for input_id in encoder_input_ids:
|
||||
mm_inputs.append(req_state.mm_inputs[input_id])
|
||||
req_input_ids.append((req_id, input_id))
|
||||
batched_mm_inputs = MultiModalKwargs.batch(mm_inputs)
|
||||
batched_mm_inputs = MultiModalKwargs.as_kwargs(batched_mm_inputs,
|
||||
device=self.device)
|
||||
|
||||
# Run the encoder.
|
||||
# `encoder_outputs` is either of the following:
|
||||
# 1. A tensor of shape [num_images, feature_size, hidden_size]
|
||||
# in case when feature_size is fixed across all images.
|
||||
# 2. A list (length: num_images) of tensors, each of shape
|
||||
# [feature_size, hidden_size] in case when the feature size is
|
||||
# dynamic depending on input images.
|
||||
encoder_outputs = self.model.get_multimodal_embeddings(
|
||||
**batched_mm_inputs)
|
||||
# Batch mm inputs as much as we can: if a request in the batch has
|
||||
# multiple modalities or a different modality than the previous one,
|
||||
# we process it separately to preserve item order.
|
||||
# FIXME(ywang96): This is a hacky way to deal with multiple modalities
|
||||
# in the same batch while still being able to benefit from batching
|
||||
# multimodal inputs. The proper solution should be reordering the
|
||||
# encoder outputs.
|
||||
grouped_mm_inputs_list = group_mm_inputs_by_modality(mm_inputs)
|
||||
|
||||
encoder_outputs = []
|
||||
for grouped_mm_inputs in grouped_mm_inputs_list:
|
||||
batched_mm_inputs = MultiModalKwargs.batch(grouped_mm_inputs)
|
||||
batched_mm_inputs = MultiModalKwargs.as_kwargs(batched_mm_inputs,
|
||||
device=self.device)
|
||||
|
||||
# Run the encoder.
|
||||
# `curr_group_outputs` is either of the following:
|
||||
# 1. A tensor of shape (num_items, feature_size, hidden_size)
|
||||
# in case feature_size is fixed across all multimodal items.
|
||||
# 2. A list or tuple (length: num_items) of tensors, each of shape
|
||||
# (feature_size, hidden_size) in case the feature size is dynamic
|
||||
# depending on the input multimodal items.
|
||||
curr_group_outputs = self.model.get_multimodal_embeddings(
|
||||
**batched_mm_inputs)
|
||||
|
||||
for output in curr_group_outputs:
|
||||
encoder_outputs.append(output)
|
||||
|
||||
# Cache the encoder outputs.
|
||||
for (req_id, input_id), output in zip(req_input_ids, encoder_outputs):
|
||||
|
Reference in New Issue
Block a user