[Docs] Remove Neuron install doc as backend no longer exists (#24396)

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
This commit is contained in:
Harry Mellor
2025-09-13 08:15:03 +01:00
committed by GitHub
parent 9a8966bcc2
commit abc7989adc
7 changed files with 15 additions and 168 deletions

View File

@ -81,7 +81,7 @@ vLLM is flexible and easy to use with:
- Tensor, pipeline, data and expert parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
- Support for NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, and TPU. Additionally, support for diverse hardware plugins such as Intel Gaudi, IBM Spyre and Huawei Ascend.
- Prefix caching support
- Multi-LoRA support

View File

@ -56,7 +56,7 @@ vLLM is flexible and easy to use with:
- Tensor, pipeline, data and expert parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, Gaudi® accelerators and GPUs, IBM Power CPUs, TPU, and AWS Trainium and Inferentia Accelerators.
- Support for NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, and TPU. Additionally, support for diverse hardware plugins such as Intel Gaudi, IBM Spyre and Huawei Ascend.
- Prefix caching support
- Multi-LoRA support

View File

@ -76,6 +76,3 @@ th:not(:first-child) {
| multi-step | ✅ | ✅ | ✅ | ✅ | ✅ | [](gh-issue:8477) | ✅ | ❌ |
| best-of | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| beam-search | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
!!! note
Please refer to [Feature support through NxD Inference backend][feature-support-through-nxd-inference-backend] for features supported on AWS Neuron hardware

View File

@ -43,19 +43,19 @@ th:not(:first-child) {
}
</style>
| Implementation | Volta | Turing | Ampere | Ada | Hopper | AMD GPU | Intel GPU | Intel Gaudi | x86 CPU | AWS Neuron | Google TPU |
|-----------------------|---------|----------|----------|-------|----------|-----------|-------------|-------------|-----------|--------------|--------------|
| AWQ | ❌ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ✅︎ | ❌ | ✅︎ | ❌ | ❌ |
| GPTQ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ✅︎ | ❌ | ✅︎ | ❌ | ❌ |
| Marlin (GPTQ/AWQ/FP8) | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| INT8 (W8A8) | ❌ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ |
| FP8 (W8A8) | ❌ | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ✅︎ | ❌ |
| BitBLAS | ✅︎ | ✅ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| BitBLAS (GPTQ) | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| bitsandbytes | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| DeepSpeedFP | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| GGUF | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ |
| INC (W8A8) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅︎ | ❌ | ❌ | ❌ |
| Implementation | Volta | Turing | Ampere | Ada | Hopper | AMD GPU | Intel GPU | Intel Gaudi | x86 CPU | Google TPU |
|-----------------------|---------|----------|----------|-------|----------|-----------|-------------|-------------|-----------|--------------|
| AWQ | ❌ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ✅︎ | ❌ | ✅︎ | ❌ |
| GPTQ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ✅︎ | ❌ | ✅︎ | ❌ |
| Marlin (GPTQ/AWQ/FP8) | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ |
| INT8 (W8A8) | ❌ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ✅︎ | ✅︎ |
| FP8 (W8A8) | ❌ | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ |
| BitBLAS | ✅︎ | ✅ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ |
| BitBLAS (GPTQ) | ❌ | ❌ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ |
| bitsandbytes | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ |
| DeepSpeedFP | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ | ❌ |
| GGUF | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ✅︎ | ❌ | ❌ | ❌ | ❌ |
| INC (W8A8) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅︎ | ❌ | ❌ |
- Volta refers to SM 7.0, Turing to SM 7.5, Ampere to SM 8.0/8.6, Ada to SM 8.9, and Hopper to SM 9.0.
- ✅︎ indicates that the quantization method is supported on the specified hardware.

View File

@ -3,5 +3,3 @@ nav:
- gpu.md
- cpu.md
- google_tpu.md
- intel_gaudi.md
- aws_neuron.md

View File

@ -12,7 +12,6 @@ vLLM supports the following hardware platforms:
- [Apple silicon](cpu.md#apple-silicon)
- [IBM Z (S390X)](cpu.md#ibm-z-s390x)
- [Google TPU](google_tpu.md)
- [AWS Neuron](aws_neuron.md)
## Hardware Plugins

View File

@ -1,147 +0,0 @@
# AWS Neuron
[AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/) is the software development kit (SDK) used to run deep learning and
generative AI workloads on AWS Inferentia and AWS Trainium powered Amazon EC2 instances and UltraServers (Inf1, Inf2, Trn1, Trn2,
and Trn2 UltraServer). Both Trainium and Inferentia are powered by fully-independent heterogeneous compute-units called NeuronCores.
This describes how to set up your environment to run vLLM on Neuron.
!!! warning
There are no pre-built wheels or images for this device, so you must build vLLM from source.
## Requirements
- OS: Linux
- Python: 3.9 or newer
- Pytorch 2.5/2.6
- Accelerator: NeuronCore-v2 (in trn1/inf2 chips) or NeuronCore-v3 (in trn2 chips)
- AWS Neuron SDK 2.23
## Configure a new environment
### Launch a Trn1/Trn2/Inf2 instance and verify Neuron dependencies
The easiest way to launch a Trainium or Inferentia instance with pre-installed Neuron dependencies is to follow this
[quick start guide](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/neuron-setup/multiframework/multi-framework-ubuntu22-neuron-dlami.html#setup-ubuntu22-multi-framework-dlami) using the Neuron Deep Learning AMI (Amazon machine image).
- After launching the instance, follow the instructions in [Connect to your instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html) to connect to the instance
- Once inside your instance, activate the pre-installed virtual environment for inference by running
```bash
source /opt/aws_neuronx_venv_pytorch_2_6_nxd_inference/bin/activate
```
Refer to the [NxD Inference Setup Guide](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/nxd-inference/nxdi-setup.html)
for alternative setup instructions including using Docker and manually installing dependencies.
!!! note
NxD Inference is the default recommended backend to run inference on Neuron. If you are looking to use the legacy [transformers-neuronx](https://github.com/aws-neuron/transformers-neuronx)
library, refer to [Transformers NeuronX Setup](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/transformers-neuronx/setup/index.html).
## Set up using Python
### Pre-built wheels
Currently, there are no pre-built Neuron wheels.
### Build wheel from source
To build and install vLLM from source, run:
```bash
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -U -r requirements/neuron.txt
VLLM_TARGET_DEVICE="neuron" pip install -e .
```
AWS Neuron maintains a [Github fork of vLLM](https://github.com/aws-neuron/upstreaming-to-vllm/tree/neuron-2.23-vllm-v0.7.2) at
<https://github.com/aws-neuron/upstreaming-to-vllm/tree/neuron-2.23-vllm-v0.7.2>, which contains several features in addition to what's
available on vLLM V0. Please utilize the AWS Fork for the following features:
- Llama-3.2 multi-modal support
- Multi-node distributed inference
Refer to [vLLM User Guide for NxD Inference](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/nxd-inference/developer_guides/vllm-user-guide.html)
for more details and usage examples.
To install the AWS Neuron fork, run the following:
```bash
git clone -b neuron-2.23-vllm-v0.7.2 https://github.com/aws-neuron/upstreaming-to-vllm.git
cd upstreaming-to-vllm
pip install -r requirements/neuron.txt
VLLM_TARGET_DEVICE="neuron" pip install -e .
```
Note that the AWS Neuron fork is only intended to support Neuron hardware; compatibility with other hardwares is not tested.
## Set up using Docker
### Pre-built images
Currently, there are no pre-built Neuron images.
### Build image from source
See [deployment-docker-build-image-from-source][deployment-docker-build-image-from-source] for instructions on building the Docker image.
Make sure to use <gh-file:docker/Dockerfile.neuron> in place of the default Dockerfile.
## Extra information
[](){ #feature-support-through-nxd-inference-backend }
### Feature support through NxD Inference backend
The current vLLM and Neuron integration relies on either the `neuronx-distributed-inference` (preferred) or `transformers-neuronx` backend
to perform most of the heavy lifting which includes PyTorch model initialization, compilation, and runtime execution. Therefore, most
[features supported on Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/nxd-inference/developer_guides/feature-guide.html) are also available via the vLLM integration.
To configure NxD Inference features through the vLLM entrypoint, use the `override_neuron_config` setting. Provide the configs you want to override
as a dictionary (or JSON object when starting vLLM from the CLI). For example, to disable auto bucketing, include
```python
override_neuron_config={
"enable_bucketing":False,
}
```
or when launching vLLM from the CLI, pass
```bash
--override-neuron-config "{\"enable_bucketing\":false}"
```
Alternatively, users can directly call the NxDI library to trace and compile your model, then load the pre-compiled artifacts
(via `NEURON_COMPILED_ARTIFACTS` environment variable) in vLLM to run inference workloads.
### Known limitations
- EAGLE speculative decoding: NxD Inference requires the EAGLE draft checkpoint to include the LM head weights from the target model. Refer to this
[guide](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/nxd-inference/developer_guides/feature-guide.html#eagle-checkpoint-compatibility)
for how to convert pretrained EAGLE model checkpoints to be compatible for NxDI.
- Quantization: the native quantization flow in vLLM is not well supported on NxD Inference. It is recommended to follow this
[Neuron quantization guide](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/nxd-inference/developer_guides/custom-quantization.html)
to quantize and compile your model using NxD Inference, and then load the compiled artifacts into vLLM.
- Multi-LoRA serving: NxD Inference only supports loading of LoRA adapters at server startup. Dynamic loading of LoRA adapters at
runtime is not currently supported. Refer to [multi-lora example](https://github.com/aws-neuron/upstreaming-to-vllm/blob/neuron-2.23-vllm-v0.7.2/examples/offline_inference/neuron_multi_lora.py)
- Multi-modal support: multi-modal support is only available through the AWS Neuron fork. This feature has not been upstreamed
to vLLM main because NxD Inference currently relies on certain adaptations to the core vLLM logic to support this feature.
- Multi-node support: distributed inference across multiple Trainium/Inferentia instances is only supported on the AWS Neuron fork. Refer
to this [multi-node example](https://github.com/aws-neuron/upstreaming-to-vllm/tree/neuron-2.23-vllm-v0.7.2/examples/neuron/multi_node)
to run. Note that tensor parallelism (distributed inference across NeuronCores) is available in vLLM main.
- Known edge case bug in speculative decoding: An edge case failure may occur in speculative decoding when sequence length approaches
max model length (e.g. when requesting max tokens up to the max model length and ignoring eos). In this scenario, vLLM may attempt
to allocate an additional block to ensure there is enough memory for number of lookahead slots, but since we do not have good support
for paged attention, there isn't another Neuron block for vLLM to allocate. A workaround fix (to terminate 1 iteration early) is
implemented in the AWS Neuron fork but is not upstreamed to vLLM main as it modifies core vLLM logic.
### Environment variables
- `NEURON_COMPILED_ARTIFACTS`: set this environment variable to point to your pre-compiled model artifacts directory to avoid
compilation time upon server initialization. If this variable is not set, the Neuron module will perform compilation and save the
artifacts under `neuron-compiled-artifacts/{unique_hash}/` subdirectory in the model path. If this environment variable is set,
but the directory does not exist, or the contents are invalid, Neuron will also fall back to a new compilation and store the artifacts
under this specified path.
- `NEURON_CONTEXT_LENGTH_BUCKETS`: Bucket sizes for context encoding. (Only applicable to `transformers-neuronx` backend).
- `NEURON_TOKEN_GEN_BUCKETS`: Bucket sizes for token generation. (Only applicable to `transformers-neuronx` backend).