[Bugfix] Disable w16a16 2of4 sparse CompressedTensors24 (#12417)

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
This commit is contained in:
Tyler Michael Smith
2025-01-26 06:59:58 -05:00
committed by GitHub
parent 9ddc35220b
commit aa2cd2c43d
6 changed files with 263 additions and 169 deletions

View File

@ -2,7 +2,7 @@
Run `pytest tests/kernels/test_cutlass.py`.
"""
from typing import Optional, Type
from typing import Type
import pytest
import torch
@ -11,6 +11,8 @@ from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from .utils import baseline_scaled_mm, to_fp8, to_int8
MNK_FACTORS = [
(1, 256, 128),
(1, 16384, 1024),
@ -41,34 +43,10 @@ capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.Tensor):
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def rand_int8(shape: tuple, device: str = "cuda"):
return to_int8(torch.rand(shape, device=device) * 255 - 128)
def baseline_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: Type[torch.dtype],
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
output = (scale_a * (scale_b * (torch.mm(
a.to(dtype=torch.float32), b.to(dtype=torch.float32))))).to(out_dtype)
if bias is not None:
output = output + bias
return output
def cutlass_fp8_gemm_helper(m: int,
n: int,
k: int,

View File

@ -0,0 +1,214 @@
"""Tests for sparse cutlass kernels
Run `pytest tests/kernels/test_semi_structured.py`.
"""
from typing import Tuple, Type
import pytest
import torch
import torch.nn.functional as F
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
sparse_cutlass_supported)
from vllm.platforms import current_platform
from .utils import baseline_scaled_mm, to_fp8, to_int8
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
def to_bf16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.bfloat16)
def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.float16)
def prune_to_2_4(tensor):
# Reshape tensor to [N, 4] where N is number of groups of 4
original_shape = tensor.shape
reshaped = tensor.reshape(-1, 4)
# Get indices of top 2 absolute values in each group of 4
_, indices = torch.topk(torch.abs(reshaped), k=2, dim=1)
# Create binary mask
mask = torch.zeros_like(reshaped)
mask.scatter_(dim=1,
index=indices,
src=torch.ones_like(indices, dtype=mask.dtype))
# Apply mask and reshape back
pruned = reshaped * mask
# Turn all -0.0 to 0.0
pruned[pruned == -0.0] = 0.0
return pruned.reshape(original_shape)
def make_rand_sparse_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
b = prune_to_2_4(b.t()).t()
if dtype == torch.int8:
a, b = to_int8(a), to_int8(b)
elif dtype == torch.float8_e4m3fn:
a, b = to_fp8(a), to_fp8(b)
elif dtype == torch.float16:
a, b = to_fp16(a), to_fp16(b)
elif dtype == torch.bfloat16:
a, b = to_bf16(a), to_bf16(b)
else:
raise ValueError("unsupported dtype")
b_compressed, e = ops.cutlass_sparse_compress(b.t())
# Compressed B, Metadata, Original A, B
return b_compressed, e, a, b
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.")
# Test working with a subset of A and B for sparse matmul
def test_cutlass_sparse_subset():
big_m = 1024
m, n, k = 512, 512, 512
# Create tensors
b_comp, e, whole_a, b = make_rand_sparse_tensors(torch.float8_e4m3fn,
big_m, n, k)
a = whole_a[0:m, 0:k]
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
out = ops.cutlass_scaled_sparse_mm(a,
b_comp,
e,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
baseline = baseline_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
MNK_FACTORS = [
(1, 256, 128),
(1, 16384, 1024),
(1, 24576, 512),
(16, 256, 512),
(16, 16384, 128),
(16, 24576, 4096),
(32, 8192, 4096),
(32, 16384, 4096),
(33, 1024, 1024),
(33, 8192, 128),
(64, 2048, 512),
(64, 16384, 1024),
(100, 8192, 512),
(128, 32768, 4096),
(256, 4096, 4096),
(512, 256, 1024),
(512, 8192, 4096),
(512, 16384, 128),
(512, 24576, 128),
]
# Test working with a subset of A and B for sparse matmul
@pytest.mark.skip(reason="2of4 sparse w16a16 CUTLASS produces bad output.")
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.")
@pytest.mark.parametrize("m, k, n", MNK_FACTORS)
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
def test_cutlass_sparse_gemm(m: int, k: int, n: int, dtype: Type[torch.dtype]):
# Create tensors
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)
scale_a = torch.ones((1, 1), device="cuda", dtype=torch.float32)
scale_b = torch.ones((1, 1), device="cuda", dtype=torch.float32)
out = ops.cutlass_scaled_sparse_mm(a,
b_comp,
e,
scale_a,
scale_b,
out_dtype=dtype)
baseline = F.linear(a, b.T)
torch.testing.assert_close(out, baseline, rtol=1e-2, atol=1e-2)
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.")
@pytest.mark.parametrize("m, k, n", MNK_FACTORS)
@pytest.mark.skipif(not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.")
def test_cutlass_sparse_fp8_gemm(m: int, n: int, k: int):
# Create tensors
b_comp, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k)
scale_a = (torch.randn((1, 1), device="cuda", dtype=torch.float32))
scale_b = (torch.randn((1, 1), device="cuda", dtype=torch.float32))
out = ops.cutlass_scaled_sparse_mm(a,
b_comp,
e,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
baseline = baseline_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e0, atol=2e0)
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.")
@pytest.mark.parametrize("m,k,n", MNK_FACTORS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_sparse_int8_gemm(m: int, n: int, k: int, per_act_token: bool,
per_out_ch: bool, use_bias: bool):
# Create tensors
b_comp, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
scale_a = (torch.randn((1, 1), device="cuda", dtype=torch.float32))
scale_b = (torch.randn((1, 1), device="cuda", dtype=torch.float32))
out = ops.cutlass_scaled_sparse_mm(a,
b_comp,
e,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
baseline = baseline_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e0, atol=2e0)

View File

@ -1,134 +0,0 @@
"""Tests for sparse cutlass kernels
Run `pytest tests/kernels/test_semi_structured.py`.
"""
from typing import Optional, Tuple, Type
import pytest
import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
sparse_cutlass_supported)
from vllm.platforms import current_platform
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.Tensor):
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def rand_int8(shape: tuple, device: str = "cuda"):
return to_int8(torch.rand(shape, device=device) * 255 - 128)
def to_bf16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.bfloat16)
def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.float16)
def prune_to_2_4(tensor):
# Reshape tensor to [N, 4] where N is number of groups of 4
original_shape = tensor.shape
reshaped = tensor.reshape(-1, 4)
# Get indices of top 2 absolute values in each group of 4
_, indices = torch.topk(torch.abs(reshaped), k=2, dim=1)
# Create binary mask
mask = torch.zeros_like(reshaped)
mask.scatter_(dim=1,
index=indices,
src=torch.ones_like(indices, dtype=mask.dtype))
# Apply mask and reshape back
pruned = reshaped * mask
# Turn all -0.0 to 0.0
pruned[pruned == -0.0] = 0.0
return pruned.reshape(original_shape)
def make_rand_sparse_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device='cuda') * 5
b = torch.randn((n, k), device='cuda').t() * 5
b = prune_to_2_4(b.t()).t()
if dtype == torch.int8:
a, b = to_int8(a), to_int8(b)
elif dtype == torch.float8_e4m3fn:
a, b = to_fp8(a), to_fp8(b)
elif dtype == torch.float16:
a, b = to_fp16(a), to_fp16(b)
elif dtype == torch.bfloat16:
a, b = to_bf16(a), to_bf16(b)
else:
raise ValueError("unsupported dtype")
b_compressed, e = ops.cutlass_sparse_compress(b.t())
# Compressed B, Metadata, Original A, B
return b_compressed, e, a, b
def baseline_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: Type[torch.dtype],
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
output = (scale_a * (scale_b * (torch.mm(
a.to(dtype=torch.float32), b.to(dtype=torch.float32))))).to(out_dtype)
if bias is not None:
output = output + bias
return output
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse FP8 is not yet supported on this GPU type.")
# Test working with a subset of A and B for sparse matmul
def test_cutlass_sparse_subset():
big_m = 1024
m, n, k = 512, 512, 512
# Create tensors
b_comp, e, whole_a, b = make_rand_sparse_tensors(torch.float8_e4m3fn,
big_m, n, k)
a = whole_a[0:m, 0:k]
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
out = ops.cutlass_scaled_sparse_mm(a,
b_comp,
e,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
baseline = baseline_scaled_mm(a,
b,
scale_a,
scale_b,
out_dtype=torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)

View File

@ -5,7 +5,7 @@ import random
import unittest
from numbers import Number
from typing import (Any, Dict, List, NamedTuple, Optional, Sequence, Tuple,
Union)
Type, Union)
import pytest
import torch
@ -1100,3 +1100,28 @@ def opcheck(op: Union[torch._ops.OpOverload, torch._ops.OpOverloadPacket,
kwargs,
test_utils=test_utils,
raise_exception=raise_exception) if cond else {}
# For testing quantized linear kernels
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return torch.round(tensor.clamp(
min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn)
def to_int8(tensor: torch.Tensor):
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
def baseline_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: Type[torch.dtype],
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
output = (scale_a * (scale_b * (torch.mm(
a.to(dtype=torch.float32), b.to(dtype=torch.float32))))).to(out_dtype)
if bias is not None:
output = output + bias
return output

View File

@ -313,8 +313,10 @@ def test_compressed_tensors_2of4_quant_int8(vllm_runner, args_2of4):
assert output
@pytest.mark.skip(reason="2of4 sparse w16a16 CUTLASS produces bad output.")
@pytest.mark.skipif(not sparse_cutlass_supported(),
reason="Sparse FP8 is not yet supported on this GPU type.")
reason="2of4 Sparse is not yet supported on this GPU type."
)
@pytest.mark.parametrize(
"args_2of4",
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-2of4-Sparse-Dense-Compressor")])

View File

@ -9,6 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs,
QuantizationType)
from pydantic import BaseModel
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
UnquantizedLinearMethod)
@ -27,6 +28,8 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.platforms import current_platform
logger = init_logger(__name__)
__all__ = ["CompressedTensorsLinearMethod"]
SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config"
@ -79,6 +82,8 @@ class CompressedTensorsConfig(QuantizationConfig):
return UnquantizedLinearMethod()
if isinstance(layer, LinearBase):
scheme = self.get_scheme(layer=layer, layer_name=prefix)
if scheme is None:
return UnquantizedLinearMethod()
layer.scheme = scheme
return CompressedTensorsLinearMethod(self)
if isinstance(layer, Attention):
@ -340,10 +345,10 @@ class CompressedTensorsConfig(QuantizationConfig):
raise NotImplementedError(
"No compressed-tensors compatible scheme was found.")
def get_scheme(
self,
layer: torch.nn.Module,
layer_name: Optional[str] = None) -> "CompressedTensorsScheme":
def get_scheme(self,
layer: torch.nn.Module,
layer_name: Optional[str] = None
) -> Optional["CompressedTensorsScheme"]:
"""
compressed-tensors supports non uniform in the following way:
@ -353,10 +358,7 @@ class CompressedTensorsConfig(QuantizationConfig):
which can be a full layer_name, a regex for a layer_name, or
an nn.Module name.
We first check whether a layer is in the ignore group and use
CompressedTensorsUnquantized (i.e. fp16/bf16) scheme for the layer
We then detect whether a layer_name is found in any target and
Detect whether a layer_name is found in any target and
use the quantization scheme corresponding to the matched target
to select the CompressedTensorsScheme used for infernece.
"""
@ -394,6 +396,13 @@ class CompressedTensorsConfig(QuantizationConfig):
if self.supports_cutlass_24(weight_quant=weight_quant,
input_quant=input_quant,
sparsity_scheme=sparsity_scheme):
# FIXME(tlrmchlsmth): layers using W16A16 CUTLASS 2:4 sparse kernels
# currently produce bad output in some cases
if weight_quant is None:
logger.warning_once(
"CompressedTensors24 scheme is disabled for the w16a16 "
"case. Falling back to UnquantizedLinearMethod")
return None
# Have a valid sparsity scheme
# Validate layer is supported by Cutlass 2:4 Kernel
scheme = CompressedTensors24(quantized=weight_quant is not None