mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[core][rlhf] add colocate example for RLHF (#12984)
Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
@ -128,7 +128,7 @@ steps:
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/ray_placement.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
commands:
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
@ -137,7 +137,7 @@ steps:
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- python3 ../examples/offline_inference/rlhf.py
|
||||
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/ray_placement.py
|
||||
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/rlhf_colocate.py
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
num_gpus: 2
|
||||
|
@ -1,13 +1,18 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
a simple demonstration to show how to control
|
||||
the placement of the vLLM workers with Ray.
|
||||
The key is to set VLLM_RAY_PER_WORKER_GPUS and
|
||||
VLLM_RAY_BUNDLE_INDICES properly.
|
||||
a simple demonstration to show how to co-locate
|
||||
vLLM worker with training actors on the same GPUs,
|
||||
for RLHF-like applications.
|
||||
The key points:
|
||||
- Control the placement of the vLLM workers with Ray, by setting
|
||||
VLLM_RAY_PER_WORKER_GPUS and VLLM_RAY_BUNDLE_INDICES properly.
|
||||
- Use cuda-ipc to pass tensors, since NCCL does not work when we have
|
||||
multiple processes on the same GPU.
|
||||
"""
|
||||
import os
|
||||
|
||||
import ray
|
||||
import torch
|
||||
from ray.util.placement_group import placement_group
|
||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
||||
|
||||
@ -19,7 +24,33 @@ class MyWorker(Worker):
|
||||
|
||||
def report_device_id(self) -> str:
|
||||
from vllm.platforms import current_platform
|
||||
return current_platform.get_device_uuid(self.device.index)
|
||||
self.device_uuid = current_platform.get_device_uuid(self.device.index)
|
||||
return self.device_uuid
|
||||
|
||||
def update_weights_from_ipc_handles(self, ipc_handles):
|
||||
handles = ipc_handles[self.device_uuid]
|
||||
device_id = self.device.index
|
||||
weights = []
|
||||
for name, handle in handles.items():
|
||||
func, args = handle
|
||||
list_args = list(args)
|
||||
# the key is to change device id to the current device id
|
||||
# in case two processes have different CUDA_VISIBLE_DEVICES
|
||||
list_args[6] = device_id
|
||||
tensor = func(*list_args)
|
||||
weights.append((name, tensor))
|
||||
self.model_runner.model.load_weights(weights=weights)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def check_weights_changed(self):
|
||||
"""
|
||||
Check if the weights are updated to 0.
|
||||
"""
|
||||
weights_updated = True
|
||||
for name, p in self.model_runner.model.named_parameters():
|
||||
weights_updated = weights_updated and torch.allclose(
|
||||
p, torch.zeros_like(p))
|
||||
return weights_updated
|
||||
|
||||
|
||||
class MyLLM(LLM):
|
||||
@ -40,12 +71,32 @@ class MyLLM(LLM):
|
||||
|
||||
class RayTrainingActor:
|
||||
|
||||
def report_device_id(self) -> str:
|
||||
def __init__(self):
|
||||
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
|
||||
from transformers import AutoModelForCausalLM
|
||||
self.model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
|
||||
self.model.to("cuda:0")
|
||||
for name, p in self.model.named_parameters():
|
||||
p.data.zero_()
|
||||
torch.cuda.synchronize()
|
||||
# the argument for get_device_uuid is the index
|
||||
# of the GPU in the visible devices.
|
||||
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
|
||||
from vllm.platforms import current_platform
|
||||
return current_platform.get_device_uuid(0)
|
||||
self.device_uuid = current_platform.get_device_uuid(0)
|
||||
|
||||
def report_device_id(self) -> str:
|
||||
return self.device_uuid
|
||||
|
||||
def get_weight_ipc_handles(self):
|
||||
from torch.multiprocessing.reductions import reduce_tensor
|
||||
data = {}
|
||||
for name, p in self.model.named_parameters():
|
||||
# the training actor might only have a subset of the weights
|
||||
# and need to all-gather the weights from all the actors.
|
||||
# for demonstration, here we assume all training actors have
|
||||
# the full weights.
|
||||
data[name] = reduce_tensor(p.detach())
|
||||
return {self.device_uuid: data}
|
||||
|
||||
|
||||
# ray manages 4 GPUs
|
||||
@ -78,6 +129,8 @@ for bundle_index in [0, 1, 2, 3]:
|
||||
),
|
||||
)(RayTrainingActor).remote()
|
||||
training_actors.append(training_actor)
|
||||
|
||||
for bundle_index, training_actor in enumerate(training_actors):
|
||||
device_id = ray.get(training_actor.report_device_id.remote())
|
||||
print(f"training actor {bundle_index} is on {device_id}")
|
||||
training_actor_device_ids.append(device_id)
|
||||
@ -119,3 +172,18 @@ assert training_actor_device_ids[:2] == inference_engine_device_ids[0]
|
||||
# the last two training actors should be
|
||||
# on the same GPUs as the second inference engine
|
||||
assert training_actor_device_ids[2:] == inference_engine_device_ids[1]
|
||||
|
||||
print("gather all the IPC handles from the training actors")
|
||||
ipc_handles = {}
|
||||
for actor in training_actors:
|
||||
ipc_handles.update(ray.get(actor.get_weight_ipc_handles.remote()))
|
||||
|
||||
print("update the weights of the inference engines")
|
||||
for llm in inference_engines:
|
||||
ray.get(
|
||||
llm.collective_rpc.remote("update_weights_from_ipc_handles",
|
||||
args=(ipc_handles, )))
|
||||
print("check if the weights are updated")
|
||||
for llm in inference_engines:
|
||||
assert ray.get(
|
||||
llm.collective_rpc.remote("check_weights_changed", args=tuple()))
|
Reference in New Issue
Block a user