mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Chore][Doc] uses model id determined from OpenAI client (#17815)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
This commit is contained in:
@ -138,7 +138,7 @@ def main():
|
||||
api_key="-",
|
||||
)
|
||||
|
||||
model = "Qwen/Qwen2.5-3B-Instruct"
|
||||
model = client.models.list().data[0].id
|
||||
|
||||
print("Guided Choice Completion:")
|
||||
print(guided_choice_completion(client, model))
|
||||
|
@ -59,7 +59,7 @@ and San Francisco?
|
||||
}]
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
model=client.models.list().data[0].id,
|
||||
messages=messages,
|
||||
response_format={
|
||||
"type":
|
||||
|
@ -4,7 +4,7 @@ An example shows how to generate structured outputs from reasoning models
|
||||
like DeepSeekR1. The thinking process will not be guided by the JSON
|
||||
schema provided by the user. Only the final output will be structured.
|
||||
|
||||
To run this example, you need to start the vLLM server with the reasoning
|
||||
To run this example, you need to start the vLLM server with the reasoning
|
||||
parser:
|
||||
|
||||
```bash
|
||||
|
Reference in New Issue
Block a user