mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Doc] Convert Sphinx directives ( {class}
, {meth}
, {attr}
, ...) to MkDocs format for better documentation linking (#18663)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
This commit is contained in:
@ -39,7 +39,8 @@ class CompilerInterface:
|
||||
Gather all the relevant information from the vLLM config,
|
||||
to compute a hash so that we can cache the compiled model.
|
||||
|
||||
See {meth}`VllmConfig.compute_hash` to check what information
|
||||
See [`VllmConfig.compute_hash`][vllm.config.VllmConfig.compute_hash]
|
||||
to check what information
|
||||
is already considered by default. This function should only
|
||||
consider the information that is specific to the compiler.
|
||||
"""
|
||||
|
@ -2986,7 +2986,7 @@ class PoolerConfig:
|
||||
pooling_type: Optional[str] = None
|
||||
"""
|
||||
The pooling method of the pooling model. This should be a key in
|
||||
{class}`vllm.model_executor.layers.pooler.PoolingType`.
|
||||
[`vllm.model_executor.layers.pooler.PoolingType`][].
|
||||
"""
|
||||
|
||||
normalize: Optional[bool] = None
|
||||
@ -3697,23 +3697,27 @@ class CompilationConfig:
|
||||
"""Configuration for compilation. It has three parts:
|
||||
|
||||
- Top-level Compilation control:
|
||||
- {attr}`level`
|
||||
- {attr}`debug_dump_path`
|
||||
- {attr}`cache_dir`
|
||||
- {attr}`backend`
|
||||
- {attr}`custom_ops`
|
||||
- {attr}`splitting_ops`
|
||||
- [`level`][vllm.config.CompilationConfig.level]
|
||||
- [`debug_dump_path`][vllm.config.CompilationConfig.debug_dump_path]
|
||||
- [`cache_dir`][vllm.config.CompilationConfig.cache_dir]
|
||||
- [`backend`][vllm.config.CompilationConfig.backend]
|
||||
- [`custom_ops`][vllm.config.CompilationConfig.custom_ops]
|
||||
- [`splitting_ops`][vllm.config.CompilationConfig.splitting_ops]
|
||||
- CudaGraph capture:
|
||||
- {attr}`use_cudagraph`
|
||||
- {attr}`cudagraph_capture_sizes`
|
||||
- {attr}`cudagraph_num_of_warmups`
|
||||
- {attr}`cudagraph_copy_inputs`
|
||||
- {attr}`full_cuda_graph`
|
||||
- [`use_cudagraph`][vllm.config.CompilationConfig.use_cudagraph]
|
||||
- [`cudagraph_capture_sizes`]
|
||||
[vllm.config.CompilationConfig.cudagraph_capture_sizes]
|
||||
- [`cudagraph_num_of_warmups`]
|
||||
[vllm.config.CompilationConfig.cudagraph_num_of_warmups]
|
||||
- [`cudagraph_copy_inputs`]
|
||||
[vllm.config.CompilationConfig.cudagraph_copy_inputs]
|
||||
- [`full_cuda_graph`][vllm.config.CompilationConfig.full_cuda_graph]
|
||||
- Inductor compilation:
|
||||
- {attr}`use_inductor`
|
||||
- {attr}`compile_sizes`
|
||||
- {attr}`inductor_compile_config`
|
||||
- {attr}`inductor_passes`
|
||||
- [`use_inductor`][vllm.config.CompilationConfig.use_inductor]
|
||||
- [`compile_sizes`][vllm.config.CompilationConfig.compile_sizes]
|
||||
- [`inductor_compile_config`]
|
||||
[vllm.config.CompilationConfig.inductor_compile_config]
|
||||
- [`inductor_passes`][vllm.config.CompilationConfig.inductor_passes]
|
||||
- custom inductor passes
|
||||
|
||||
Why we have different sizes for cudagraph and inductor:
|
||||
|
@ -167,4 +167,7 @@ class HTTPConnection:
|
||||
|
||||
|
||||
global_http_connection = HTTPConnection()
|
||||
"""The global {class}`HTTPConnection` instance used by vLLM."""
|
||||
"""
|
||||
The global [`HTTPConnection`][vllm.connections.HTTPConnection] instance used
|
||||
by vLLM.
|
||||
"""
|
||||
|
@ -475,7 +475,8 @@ class _AsyncLLMEngine(LLMEngine):
|
||||
*,
|
||||
inputs: Optional[PromptType] = None, # DEPRECATED
|
||||
) -> None:
|
||||
"""Async version of {meth}`add_request`."""
|
||||
"""Async version of
|
||||
[`add_request`][vllm.engine.llm_engine.LLMEngine.add_request]."""
|
||||
if inputs is not None:
|
||||
prompt = inputs
|
||||
assert prompt is not None and params is not None
|
||||
@ -582,20 +583,21 @@ async def build_guided_decoding_logits_processor_async(
|
||||
|
||||
|
||||
class AsyncLLMEngine(EngineClient):
|
||||
"""An asynchronous wrapper for {class}`LLMEngine`.
|
||||
"""An asynchronous wrapper for [`LLMEngine`][vllm.LLMEngine].
|
||||
|
||||
This class is used to wrap the {class}`LLMEngine` class to make it
|
||||
asynchronous. It uses asyncio to create a background loop that keeps
|
||||
processing incoming requests. The {class}`LLMEngine` is kicked by the
|
||||
generate method when there are requests in the waiting queue. The generate
|
||||
method yields the outputs from the {class}`LLMEngine` to the caller.
|
||||
This class is used to wrap the [`LLMEngine`][vllm.LLMEngine] class to
|
||||
make it asynchronous. It uses asyncio to create a background loop that keeps
|
||||
processing incoming requests. The [`LLMEngine`][vllm.LLMEngine] is kicked
|
||||
by the generate method when there are requests in the waiting queue. The
|
||||
generate method yields the outputs from the [`LLMEngine`][vllm.LLMEngine]
|
||||
to the caller.
|
||||
|
||||
Args:
|
||||
log_requests: Whether to log the requests.
|
||||
start_engine_loop: If True, the background task to run the engine
|
||||
will be automatically started in the generate call.
|
||||
*args: Arguments for {class}`LLMEngine`.
|
||||
**kwargs: Arguments for {class}`LLMEngine`.
|
||||
*args: Arguments for [`LLMEngine`][vllm.LLMEngine].
|
||||
**kwargs: Arguments for [`LLMEngine`][vllm.LLMEngine].
|
||||
"""
|
||||
|
||||
_engine_class: Type[_AsyncLLMEngine] = _AsyncLLMEngine
|
||||
@ -985,8 +987,9 @@ class AsyncLLMEngine(EngineClient):
|
||||
from the LLMEngine to the caller.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to the LLM. See {class}`~vllm.inputs.PromptType`
|
||||
for more details about the format of each input.
|
||||
prompt: The prompt to the LLM. See
|
||||
[`PromptType`][vllm.inputs.PromptType] for more details about
|
||||
the format of each input.
|
||||
sampling_params: The sampling parameters of the request.
|
||||
request_id: The unique id of the request.
|
||||
lora_request: LoRA request to use for generation, if any.
|
||||
@ -1003,7 +1006,7 @@ class AsyncLLMEngine(EngineClient):
|
||||
Details:
|
||||
- If the engine is not running, start the background loop,
|
||||
which iteratively invokes
|
||||
{meth}`~vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`
|
||||
[`engine_step`][vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step]
|
||||
to process the waiting requests.
|
||||
- Add the request to the engine's `RequestTracker`.
|
||||
On the next background loop, this request will be sent to
|
||||
@ -1075,8 +1078,9 @@ class AsyncLLMEngine(EngineClient):
|
||||
from the LLMEngine to the caller.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to the LLM. See {class}`~vllm.inputs.PromptType`
|
||||
for more details about the format of each input.
|
||||
prompt: The prompt to the LLM. See
|
||||
[`PromptType`][vllm.inputs.PromptType] for more details about
|
||||
the format of each input.
|
||||
pooling_params: The pooling parameters of the request.
|
||||
request_id: The unique id of the request.
|
||||
lora_request: LoRA request to use for generation, if any.
|
||||
@ -1089,15 +1093,15 @@ class AsyncLLMEngine(EngineClient):
|
||||
for the request.
|
||||
|
||||
Details:
|
||||
- If the engine is not running, start the background loop,
|
||||
which iteratively invokes
|
||||
{meth}`~vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`
|
||||
to process the waiting requests.
|
||||
- Add the request to the engine's `RequestTracker`.
|
||||
On the next background loop, this request will be sent to
|
||||
the underlying engine.
|
||||
Also, a corresponding `AsyncStream` will be created.
|
||||
- Wait for the request outputs from `AsyncStream` and yield them.
|
||||
- If the engine is not running, start the background loop,
|
||||
which iteratively invokes
|
||||
[`vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`][]
|
||||
to process the waiting requests.
|
||||
- Add the request to the engine's `RequestTracker`.
|
||||
On the next background loop, this request will be sent to
|
||||
the underlying engine.
|
||||
Also, a corresponding `AsyncStream` will be created.
|
||||
- Wait for the request outputs from `AsyncStream` and yield them.
|
||||
|
||||
Example:
|
||||
```
|
||||
|
@ -130,11 +130,11 @@ class LLMEngine:
|
||||
iteration-level scheduling and efficient memory management to maximize the
|
||||
serving throughput.
|
||||
|
||||
The [LLM][vllm.LLM] class wraps this class for offline batched inference
|
||||
and the [AsyncLLMEngine][] class wraps this class for online serving.
|
||||
The [`LLM`][vllm.LLM] class wraps this class for offline batched inference
|
||||
and the [`AsyncLLMEngine`][vllm.engine.async_llm_engine.AsyncLLMEngine]
|
||||
class wraps this class for online serving.
|
||||
|
||||
The config arguments are derived from [EngineArgs][vllm.EngineArgs]. (See
|
||||
[engine-args][])
|
||||
The config arguments are derived from [`EngineArgs`][vllm.EngineArgs].
|
||||
|
||||
Args:
|
||||
vllm_config: The configuration for initializing and running vLLM.
|
||||
|
@ -492,8 +492,9 @@ class MQLLMEngineClient(EngineClient):
|
||||
from the LLMEngine to the caller.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to the LLM. See {class}`~vllm.inputs.PromptType`
|
||||
for more details about the format of each input.
|
||||
prompt: The prompt to the LLM. See
|
||||
[`PromptType`][vllm.inputs.PromptType] for more details about
|
||||
the format of each input.
|
||||
sampling_params: The sampling parameters of the request.
|
||||
request_id: The unique id of the request.
|
||||
lora_request: LoRA request to use for generation, if any.
|
||||
@ -561,8 +562,9 @@ class MQLLMEngineClient(EngineClient):
|
||||
from the LLMEngine to the caller.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to the LLM. See {class}`~vllm.inputs.PromptType`
|
||||
for more details about the format of each input.
|
||||
prompt: The prompt to the LLM. See
|
||||
[`PromptType`][vllm.inputs.PromptType] for more details about
|
||||
the format of each input.
|
||||
pooling_params: The pooling parameters of the request.
|
||||
request_id: The unique id of the request.
|
||||
lora_request: LoRA request to use for generation, if any.
|
||||
|
@ -42,19 +42,22 @@ HEALTHY_RESPONSE = (pickle.dumps(VLLM_RPC_SUCCESS_STR), )
|
||||
|
||||
|
||||
class MQLLMEngine:
|
||||
"""A multiprocessing wrapper for {class}`LLMEngine`.
|
||||
"""A multiprocessing wrapper for
|
||||
[`LLMEngine`][vllm.engine.llm_engine.LLMEngine].
|
||||
|
||||
This class is used to wrap the {class}`LLMEngine` class to enable use
|
||||
This class is used to wrap the
|
||||
[`LLMEngine`][vllm.engine.llm_engine.LLMEngine] class to enable use
|
||||
in concurrnet manner. It runs a background loop and uses zeromq to
|
||||
receive new requests and stream outputs incrementally via ipc.
|
||||
|
||||
The {class}`LLMEngine` generate or encode process is kicked off when a new
|
||||
RPCProcessRequest is received by the input_socket.
|
||||
The [`LLMEngine`][vllm.engine.llm_engine.LLMEngine] generate or encode
|
||||
process is kicked off when a new RPCProcessRequest is received by the
|
||||
input_socket.
|
||||
|
||||
The self.engine_loop checks the input_socket for new requests,
|
||||
adds them to the LLMEngine if there are any, calls the internal
|
||||
{class}`LLMEngine.step()`, and sends the RequestOutputs back over
|
||||
the output_socket.
|
||||
[`LLMEngine.step()`][vllm.engine.llm_engine.LLMEngine.step], and sends
|
||||
the RequestOutputs back over the output_socket.
|
||||
|
||||
If use_async_sockets is set, the logic associated with reading new
|
||||
requests from the socket and sending data to the socket is passed
|
||||
@ -65,8 +68,8 @@ class MQLLMEngine:
|
||||
ipc_path: Base path for zeromq interprocess messaging
|
||||
use_async_sockets: Whether to make send/recv async with GPU
|
||||
log_requests: Whether to log the requests.
|
||||
*args: Arguments for {class}`LLMEngine`.
|
||||
**kwargs: Arguments for {class}`LLMEngine`.
|
||||
*args: Arguments for [`LLMEngine`][vllm.engine.llm_engine.LLMEngine].
|
||||
**kwargs: Arguments for [`LLMEngine`][vllm.engine.llm_engine.LLMEngine].
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -56,8 +56,11 @@ class MultiStepOutputProcessor(SequenceGroupOutputProcessor):
|
||||
scheduled computation.
|
||||
|
||||
Args:
|
||||
seq_group: the outputs are associated with this {class}`SequenceGroup`
|
||||
outputs: the {class}`SequenceGroupOutput`s for all scheduler steps
|
||||
seq_group: the outputs are associated with this
|
||||
[`SequenceGroup`][vllm.sequence.SequenceGroup]
|
||||
outputs: the
|
||||
[`SequenceGroupOutput`][vllm.sequence.SequenceGroupOutput]s
|
||||
for all scheduler steps
|
||||
"""
|
||||
for output in outputs:
|
||||
# Concatenate single-step prompt logprob processing results.
|
||||
|
@ -19,17 +19,21 @@ logger = init_logger(__name__)
|
||||
def single_step_process_prompt_logprob(
|
||||
sg_output_proc: SequenceGroupOutputProcessor, seq_group: SequenceGroup,
|
||||
output: CompletionSequenceGroupOutput) -> None:
|
||||
"""Process prompt logprobs associated with the {class}`SequenceGroupOutput`
|
||||
for a given step.
|
||||
"""Process prompt logprobs associated with the
|
||||
[`SequenceGroupOutput`][vllm.sequence.SequenceGroupOutput] for a given step.
|
||||
|
||||
Do nothing if the output has no prompt logprobs.
|
||||
|
||||
Account for the fact that transformers do not compute first-token logprobs.
|
||||
|
||||
Args:
|
||||
sg_output_proc: {class}`SequenceGroupOutputProcessor` instance
|
||||
seq_group: the output is associated with this {class}`SequenceGroup`
|
||||
output: the {class}`SequenceGroupOutput` for a single scheduler step
|
||||
sg_output_proc:
|
||||
[`SequenceGroupOutputProcessor`][vllm.engine.output_processor.interfaces.SequenceGroupOutputProcessor]
|
||||
instance
|
||||
seq_group: the output is associated with this
|
||||
[`SequenceGroup`][vllm.sequence.SequenceGroup]
|
||||
output: the [`SequenceGroupOutput`][vllm.sequence.SequenceGroupOutput]
|
||||
for a single scheduler step
|
||||
"""
|
||||
prompt_logprobs = output.prompt_logprobs
|
||||
|
||||
@ -103,8 +107,11 @@ class SingleStepOutputProcessor(SequenceGroupOutputProcessor):
|
||||
scheduled computation.
|
||||
|
||||
Args:
|
||||
seq_group: the output is associated with this {class}`SequenceGroup`
|
||||
outputs: the {class}`SequenceGroupOutput` for a single scheduler step
|
||||
seq_group: the output is associated with this
|
||||
[`SequenceGroup`][vllm.sequence.SequenceGroup]
|
||||
outputs: the
|
||||
[`SequenceGroupOutput`][vllm.sequence.SequenceGroupOutput]
|
||||
for a single scheduler step
|
||||
"""
|
||||
assert len(outputs) == 1, "Single step should only have 1 output."
|
||||
output = outputs[0]
|
||||
|
@ -129,8 +129,7 @@ class LLM:
|
||||
compilation_config: Either an integer or a dictionary. If it is an
|
||||
integer, it is used as the level of compilation optimization. If it
|
||||
is a dictionary, it can specify the full compilation configuration.
|
||||
**kwargs: Arguments for [EngineArgs][vllm.EngineArgs]. (See
|
||||
[engine-args][])
|
||||
**kwargs: Arguments for [`EngineArgs`][vllm.EngineArgs].
|
||||
|
||||
Note:
|
||||
This class is intended to be used for offline inference. For online
|
||||
@ -494,7 +493,7 @@ class LLM:
|
||||
`self` argument, in addition to the arguments passed in `args`
|
||||
and `kwargs`. The `self` argument will be the worker object.
|
||||
timeout: Maximum time in seconds to wait for execution. Raises a
|
||||
{exc}`TimeoutError` on timeout. `None` means wait indefinitely.
|
||||
[`TimeoutError`][] on timeout. `None` means wait indefinitely.
|
||||
args: Positional arguments to pass to the worker method.
|
||||
kwargs: Keyword arguments to pass to the worker method.
|
||||
|
||||
|
@ -582,7 +582,8 @@ class OpenAIServing:
|
||||
add_special_tokens: bool = True,
|
||||
) -> TextTokensPrompt:
|
||||
"""
|
||||
A simpler implementation of {meth}`_tokenize_prompt_input_or_inputs`
|
||||
A simpler implementation of
|
||||
[`_tokenize_prompt_input_or_inputs`][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs]
|
||||
that assumes single input.
|
||||
"""
|
||||
return next(
|
||||
@ -603,7 +604,8 @@ class OpenAIServing:
|
||||
add_special_tokens: bool = True,
|
||||
) -> Iterator[TextTokensPrompt]:
|
||||
"""
|
||||
A simpler implementation of {meth}`_tokenize_prompt_input_or_inputs`
|
||||
A simpler implementation of
|
||||
[`_tokenize_prompt_input_or_inputs`][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs]
|
||||
that assumes multiple inputs.
|
||||
"""
|
||||
for text in prompt_inputs:
|
||||
|
@ -74,7 +74,7 @@ class ExecutorBase(ABC):
|
||||
`self` argument, in addition to the arguments passed in `args`
|
||||
and `kwargs`. The `self` argument will be the worker object.
|
||||
timeout: Maximum time in seconds to wait for execution. Raises a
|
||||
{exc}`TimeoutError` on timeout. `None` means wait indefinitely.
|
||||
[`TimeoutError`][] on timeout. `None` means wait indefinitely.
|
||||
args: Positional arguments to pass to the worker method.
|
||||
kwargs: Keyword arguments to pass to the worker method.
|
||||
|
||||
|
@ -10,8 +10,9 @@ from .registry import (DummyData, InputContext, InputProcessingContext,
|
||||
|
||||
INPUT_REGISTRY = InputRegistry()
|
||||
"""
|
||||
The global {class}`~InputRegistry` which is used by {class}`~vllm.LLMEngine`
|
||||
to dispatch data processing according to the target model.
|
||||
The global [`InputRegistry`][vllm.inputs.registry.InputRegistry] which is used
|
||||
by [`LLMEngine`][vllm.LLMEngine] to dispatch data processing according to the
|
||||
target model.
|
||||
"""
|
||||
|
||||
__all__ = [
|
||||
|
@ -80,22 +80,24 @@ SingletonPrompt = Union[str, TextPrompt, TokensPrompt, EmbedsPrompt]
|
||||
"""
|
||||
Set of possible schemas for a single prompt:
|
||||
|
||||
- A text prompt ({class}`str` or {class}`TextPrompt`)
|
||||
- A tokenized prompt ({class}`TokensPrompt`)
|
||||
- An embeddings prompt ({class}`EmbedsPrompt`)
|
||||
- A text prompt ([`str`][] or [`TextPrompt`][vllm.inputs.data.TextPrompt])
|
||||
- A tokenized prompt ([`TokensPrompt`][vllm.inputs.data.TokensPrompt])
|
||||
- An embeddings prompt ([`EmbedsPrompt`][vllm.inputs.data.EmbedsPrompt])
|
||||
|
||||
Note that "singleton" is as opposed to a data structure
|
||||
which encapsulates multiple prompts, i.e. of the sort
|
||||
which may be utilized for encoder/decoder models when
|
||||
the user desires to express both the encoder & decoder
|
||||
prompts explicitly, i.e. {class}`ExplicitEncoderDecoderPrompt`
|
||||
prompts explicitly, i.e.
|
||||
[`ExplicitEncoderDecoderPrompt`][vllm.inputs.data.ExplicitEncoderDecoderPrompt]
|
||||
|
||||
A prompt of type {class}`SingletonPrompt` may be employed
|
||||
as (1) input to a decoder-only model, (2) input to
|
||||
A prompt of type [`SingletonPrompt`][vllm.inputs.data.SingletonPrompt] may be
|
||||
employed as (1) input to a decoder-only model, (2) input to
|
||||
the encoder of an encoder/decoder model, in the scenario
|
||||
where the decoder-prompt is not specified explicitly, or
|
||||
(3) as a member of a larger data structure encapsulating
|
||||
more than one prompt, i.e. {class}`ExplicitEncoderDecoderPrompt`
|
||||
more than one prompt, i.e.
|
||||
[`ExplicitEncoderDecoderPrompt`][vllm.inputs.data.ExplicitEncoderDecoderPrompt]
|
||||
"""
|
||||
|
||||
|
||||
@ -126,18 +128,20 @@ class ExplicitEncoderDecoderPrompt(TypedDict, Generic[_T1_co, _T2_co]):
|
||||
comprising an explicit encoder prompt and a decoder prompt.
|
||||
|
||||
The encoder and decoder prompts, respectively, may be formatted
|
||||
according to any of the {class}`SingletonPrompt` schemas,
|
||||
according to any of the
|
||||
[`SingletonPrompt`][vllm.inputs.data.SingletonPrompt] schemas,
|
||||
and are not required to have the same schema.
|
||||
|
||||
Only the encoder prompt may have multi-modal data. mm_processor_kwargs
|
||||
should be at the top-level, and should not be set in the encoder/decoder
|
||||
prompts, since they are agnostic to the encoder/decoder.
|
||||
|
||||
Note that an {class}`ExplicitEncoderDecoderPrompt` may not
|
||||
be used as an input to a decoder-only model,
|
||||
Note that an
|
||||
[`ExplicitEncoderDecoderPrompt`][vllm.inputs.data.ExplicitEncoderDecoderPrompt]
|
||||
may not be used as an input to a decoder-only model,
|
||||
and that the `encoder_prompt` and `decoder_prompt`
|
||||
fields of this data structure themselves must be
|
||||
{class}`SingletonPrompt` instances.
|
||||
[`SingletonPrompt`][vllm.inputs.data.SingletonPrompt] instances.
|
||||
"""
|
||||
|
||||
encoder_prompt: _T1_co
|
||||
@ -152,11 +156,11 @@ PromptType = Union[SingletonPrompt, ExplicitEncoderDecoderPrompt]
|
||||
Set of possible schemas for an LLM input, including
|
||||
both decoder-only and encoder/decoder input types:
|
||||
|
||||
- A text prompt ({class}`str` or {class}`TextPrompt`)
|
||||
- A tokenized prompt ({class}`TokensPrompt`)
|
||||
- An embeddings prompt ({class}`EmbedsPrompt`)
|
||||
- A text prompt ([`str`][] or [`TextPrompt`][vllm.inputs.data.TextPrompt])
|
||||
- A tokenized prompt ([`TokensPrompt`][vllm.inputs.data.TokensPrompt])
|
||||
- An embeddings prompt ([`EmbedsPrompt`][vllm.inputs.data.EmbedsPrompt])
|
||||
- A single data structure containing both an encoder and a decoder prompt
|
||||
({class}`ExplicitEncoderDecoderPrompt`)
|
||||
([`ExplicitEncoderDecoderPrompt`][vllm.inputs.data.ExplicitEncoderDecoderPrompt])
|
||||
"""
|
||||
|
||||
|
||||
@ -189,7 +193,8 @@ def token_inputs(
|
||||
prompt: Optional[str] = None,
|
||||
cache_salt: Optional[str] = None,
|
||||
) -> TokenInputs:
|
||||
"""Construct {class}`TokenInputs` from optional values."""
|
||||
"""Construct [`TokenInputs`][vllm.inputs.data.TokenInputs] from optional
|
||||
values."""
|
||||
inputs = TokenInputs(type="token", prompt_token_ids=prompt_token_ids)
|
||||
|
||||
if prompt is not None:
|
||||
@ -221,7 +226,8 @@ def embeds_inputs(
|
||||
prompt_embeds: torch.Tensor,
|
||||
cache_salt: Optional[str] = None,
|
||||
) -> EmbedsInputs:
|
||||
"""Construct :class:`EmbedsInputs` from optional values."""
|
||||
"""Construct [`EmbedsInputs`][vllm.inputs.data.EmbedsInputs] from optional
|
||||
values."""
|
||||
inputs = EmbedsInputs(type="embeds", prompt_embeds=prompt_embeds)
|
||||
|
||||
if cache_salt is not None:
|
||||
@ -232,7 +238,7 @@ def embeds_inputs(
|
||||
|
||||
DecoderOnlyInputs = Union[TokenInputs, EmbedsInputs, "MultiModalInputs"]
|
||||
"""
|
||||
The inputs in {class}`~vllm.LLMEngine` before they are
|
||||
The inputs in [`LLMEngine`][vllm.engine.llm_engine.LLMEngine] before they are
|
||||
passed to the model executor.
|
||||
This specifies the data required for decoder-only models.
|
||||
"""
|
||||
@ -240,11 +246,12 @@ This specifies the data required for decoder-only models.
|
||||
|
||||
class EncoderDecoderInputs(TypedDict):
|
||||
"""
|
||||
The inputs in {class}`~vllm.LLMEngine` before they are
|
||||
passed to the model executor.
|
||||
The inputs in [`LLMEngine`][vllm.engine.llm_engine.LLMEngine] before they
|
||||
are passed to the model executor.
|
||||
|
||||
This specifies the required data for encoder-decoder models.
|
||||
"""
|
||||
|
||||
encoder: Union[TokenInputs, "MultiModalInputs"]
|
||||
"""The inputs for the encoder portion."""
|
||||
|
||||
@ -254,13 +261,13 @@ class EncoderDecoderInputs(TypedDict):
|
||||
|
||||
SingletonInputs = Union[TokenInputs, EmbedsInputs, "MultiModalInputs"]
|
||||
"""
|
||||
A processed {class}`SingletonPrompt` which can be passed to
|
||||
{class}`vllm.sequence.Sequence`.
|
||||
A processed [`SingletonPrompt`][vllm.inputs.data.SingletonPrompt] which can be
|
||||
passed to [`vllm.sequence.Sequence`][].
|
||||
"""
|
||||
|
||||
ProcessorInputs = Union[DecoderOnlyInputs, EncoderDecoderInputs]
|
||||
"""
|
||||
The inputs to {data}`vllm.inputs.InputProcessor`.
|
||||
The outputs from [`vllm.inputs.preprocess.InputPreprocessor`][].
|
||||
"""
|
||||
|
||||
_T1 = TypeVar("_T1", bound=SingletonPrompt, default=SingletonPrompt)
|
||||
@ -277,7 +284,8 @@ def build_explicit_enc_dec_prompt(
|
||||
return ExplicitEncoderDecoderPrompt(
|
||||
encoder_prompt=encoder_prompt,
|
||||
decoder_prompt=decoder_prompt,
|
||||
mm_processor_kwargs=mm_processor_kwargs)
|
||||
mm_processor_kwargs=mm_processor_kwargs,
|
||||
)
|
||||
|
||||
|
||||
def zip_enc_dec_prompts(
|
||||
@ -288,7 +296,8 @@ def zip_enc_dec_prompts(
|
||||
) -> list[ExplicitEncoderDecoderPrompt[_T1, _T2]]:
|
||||
"""
|
||||
Zip encoder and decoder prompts together into a list of
|
||||
{class}`ExplicitEncoderDecoderPrompt` instances.
|
||||
[`ExplicitEncoderDecoderPrompt`][vllm.inputs.data.ExplicitEncoderDecoderPrompt]
|
||||
instances.
|
||||
|
||||
``mm_processor_kwargs`` may also be provided; if a dict is passed, the same
|
||||
dictionary will be used for every encoder/decoder prompt. If an iterable is
|
||||
@ -299,10 +308,11 @@ def zip_enc_dec_prompts(
|
||||
if isinstance(mm_processor_kwargs, dict):
|
||||
return [
|
||||
build_explicit_enc_dec_prompt(
|
||||
encoder_prompt, decoder_prompt,
|
||||
cast(dict[str, Any], mm_processor_kwargs))
|
||||
for (encoder_prompt,
|
||||
decoder_prompt) in zip(enc_prompts, dec_prompts)
|
||||
encoder_prompt,
|
||||
decoder_prompt,
|
||||
cast(dict[str, Any], mm_processor_kwargs),
|
||||
) for (encoder_prompt,
|
||||
decoder_prompt) in zip(enc_prompts, dec_prompts)
|
||||
]
|
||||
return [
|
||||
build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt,
|
||||
|
@ -23,13 +23,13 @@ class ParsedTokens(TypedDict):
|
||||
|
||||
@overload
|
||||
def parse_and_batch_prompt(
|
||||
prompt: Union[str, list[str]]) -> Sequence[ParsedText]:
|
||||
prompt: Union[str, list[str]], ) -> Sequence[ParsedText]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def parse_and_batch_prompt(
|
||||
prompt: Union[list[int], list[list[int]]]) -> Sequence[ParsedTokens]:
|
||||
prompt: Union[list[int], list[list[int]]], ) -> Sequence[ParsedTokens]:
|
||||
...
|
||||
|
||||
|
||||
@ -86,7 +86,7 @@ class ParsedTokensPrompt(TypedDict):
|
||||
|
||||
|
||||
class ParsedEmbedsPrompt(TypedDict):
|
||||
type: Literal['embeds']
|
||||
type: Literal["embeds"]
|
||||
content: EmbedsPrompt
|
||||
|
||||
|
||||
@ -133,7 +133,7 @@ def parse_singleton_prompt(prompt: SingletonPrompt) -> ParsedSingletonPrompt:
|
||||
|
||||
|
||||
def is_explicit_encoder_decoder_prompt(
|
||||
prompt: PromptType) -> TypeIs[ExplicitEncoderDecoderPrompt]:
|
||||
prompt: PromptType, ) -> TypeIs[ExplicitEncoderDecoderPrompt]:
|
||||
return isinstance(prompt, dict) and "encoder_prompt" in prompt
|
||||
|
||||
|
||||
|
@ -67,11 +67,11 @@ class InputPreprocessor:
|
||||
return self.tokenizer.get_lora_tokenizer(lora_request).eos_token_id
|
||||
|
||||
def get_decoder_start_token_id(self) -> Optional[int]:
|
||||
'''
|
||||
"""
|
||||
Obtain the decoder start token id employed by an encoder/decoder
|
||||
model. Returns None for non-encoder/decoder models or if the
|
||||
model config is unavailable.
|
||||
'''
|
||||
"""
|
||||
|
||||
if not self.model_config.is_encoder_decoder:
|
||||
logger.warning_once(
|
||||
@ -79,14 +79,14 @@ class InputPreprocessor:
|
||||
"this is not an encoder/decoder model.")
|
||||
return None
|
||||
|
||||
if (self.model_config is None or self.model_config.hf_config is None):
|
||||
if self.model_config is None or self.model_config.hf_config is None:
|
||||
logger.warning_once(
|
||||
"Using None for decoder start token id because "
|
||||
"model config is not available.")
|
||||
return None
|
||||
|
||||
dec_start_token_id = getattr(self.model_config.hf_config,
|
||||
'decoder_start_token_id', None)
|
||||
"decoder_start_token_id", None)
|
||||
if dec_start_token_id is None:
|
||||
logger.warning_once(
|
||||
"Falling back on <BOS> for decoder start token "
|
||||
@ -97,7 +97,7 @@ class InputPreprocessor:
|
||||
return dec_start_token_id
|
||||
|
||||
def _get_default_enc_dec_decoder_prompt(self) -> list[int]:
|
||||
'''
|
||||
"""
|
||||
Specifically for encoder/decoder models:
|
||||
generate a default decoder prompt for when
|
||||
the user specifies only the encoder prompt.
|
||||
@ -126,7 +126,7 @@ class InputPreprocessor:
|
||||
Returns:
|
||||
|
||||
* prompt_token_ids
|
||||
'''
|
||||
"""
|
||||
|
||||
bos_token_id = self.get_bos_token_id()
|
||||
assert bos_token_id is not None
|
||||
@ -224,7 +224,10 @@ class InputPreprocessor:
|
||||
lora_request: Optional[LoRARequest],
|
||||
tokenization_kwargs: Optional[dict[str, Any]] = None,
|
||||
) -> list[int]:
|
||||
"""Async version of {meth}`_tokenize_prompt`."""
|
||||
"""
|
||||
Async version of
|
||||
[`_tokenize_prompt`][vllm.inputs.preprocess.InputPreprocessor._tokenize_prompt].
|
||||
"""
|
||||
tokenizer = self.get_tokenizer_group()
|
||||
tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs)
|
||||
|
||||
@ -287,7 +290,10 @@ class InputPreprocessor:
|
||||
lora_request: Optional[LoRARequest],
|
||||
return_mm_hashes: bool = False,
|
||||
) -> MultiModalInputs:
|
||||
"""Async version of {meth}`_process_multimodal`."""
|
||||
"""
|
||||
Async version of
|
||||
[`_process_multimodal`][vllm.inputs.preprocess.InputPreprocessor._process_multimodal].
|
||||
"""
|
||||
tokenizer = await self._get_mm_tokenizer_async(lora_request)
|
||||
|
||||
mm_processor = self.mm_registry.create_processor(self.model_config,
|
||||
@ -472,7 +478,7 @@ class InputPreprocessor:
|
||||
|
||||
Returns:
|
||||
|
||||
* {class}`SingletonInputs` instance
|
||||
* [`SingletonInputs`][vllm.inputs.data.SingletonInputs] instance
|
||||
"""
|
||||
parsed = parse_singleton_prompt(prompt)
|
||||
|
||||
@ -508,7 +514,10 @@ class InputPreprocessor:
|
||||
lora_request: Optional[LoRARequest] = None,
|
||||
return_mm_hashes: bool = False,
|
||||
) -> SingletonInputs:
|
||||
"""Async version of {meth}`_prompt_to_llm_inputs`."""
|
||||
"""
|
||||
Async version of
|
||||
[`_prompt_to_llm_inputs`][vllm.inputs.preprocess.InputPreprocessor._prompt_to_llm_inputs].
|
||||
"""
|
||||
parsed = parse_singleton_prompt(prompt)
|
||||
|
||||
if parsed["type"] == "embeds":
|
||||
@ -644,7 +653,9 @@ class InputPreprocessor:
|
||||
) -> EncoderDecoderInputs:
|
||||
"""
|
||||
For encoder/decoder models only:
|
||||
Process an input prompt into an {class}`EncoderDecoderInputs` instance.
|
||||
Process an input prompt into an
|
||||
[`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
|
||||
instance.
|
||||
|
||||
There are two types of input prompts:
|
||||
singleton prompts which carry only the
|
||||
@ -670,7 +681,8 @@ class InputPreprocessor:
|
||||
|
||||
Returns:
|
||||
|
||||
* {class}`EncoderDecoderInputs` instance
|
||||
* [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
|
||||
instance
|
||||
"""
|
||||
encoder_inputs: SingletonInputs
|
||||
decoder_inputs: Optional[SingletonInputs]
|
||||
@ -710,7 +722,10 @@ class InputPreprocessor:
|
||||
prompt: PromptType,
|
||||
tokenization_kwargs: Optional[dict[str, Any]] = None,
|
||||
) -> EncoderDecoderInputs:
|
||||
"""Async version of {meth}`_process_encoder_decoder_prompt`."""
|
||||
"""
|
||||
Async version of
|
||||
[`_process_encoder_decoder_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_encoder_decoder_prompt].
|
||||
"""
|
||||
encoder_inputs: SingletonInputs
|
||||
decoder_inputs: Optional[SingletonInputs]
|
||||
|
||||
@ -778,7 +793,8 @@ class InputPreprocessor:
|
||||
) -> DecoderOnlyInputs:
|
||||
"""
|
||||
For decoder-only models:
|
||||
Process an input prompt into an {class}`DecoderOnlyInputs` instance.
|
||||
Process an input prompt into a
|
||||
[`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance.
|
||||
|
||||
Arguments:
|
||||
|
||||
@ -789,7 +805,7 @@ class InputPreprocessor:
|
||||
|
||||
Returns:
|
||||
|
||||
* {class}`DecoderOnlyInputs` instance
|
||||
* [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance
|
||||
"""
|
||||
|
||||
prompt_comps = self._prompt_to_llm_inputs(
|
||||
@ -812,7 +828,10 @@ class InputPreprocessor:
|
||||
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
||||
return_mm_hashes: bool = False,
|
||||
) -> DecoderOnlyInputs:
|
||||
"""Async version of {meth}`_process_decoder_only_prompt`."""
|
||||
"""
|
||||
Async version of
|
||||
[`_process_decoder_only_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_decoder_only_prompt].
|
||||
"""
|
||||
prompt_comps = await self._prompt_to_llm_inputs_async(
|
||||
prompt,
|
||||
tokenization_kwargs=tokenization_kwargs,
|
||||
@ -863,7 +882,10 @@ class InputPreprocessor:
|
||||
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
||||
return_mm_hashes: bool = False,
|
||||
) -> ProcessorInputs:
|
||||
"""Async version of {meth}`preprocess`."""
|
||||
"""
|
||||
Async version of
|
||||
[`preprocess`][vllm.inputs.preprocess.InputPreprocessor.preprocess].
|
||||
"""
|
||||
if self.model_config.is_encoder_decoder:
|
||||
assert not return_mm_hashes, (
|
||||
"Multimodal hashes for encoder-decoder models should not be ",
|
||||
|
@ -38,7 +38,7 @@ class InputContext:
|
||||
) -> _C:
|
||||
"""
|
||||
Get the HuggingFace configuration
|
||||
({class}`transformers.PretrainedConfig`) of the model,
|
||||
(`transformers.PretrainedConfig`) of the model,
|
||||
additionally checking its type.
|
||||
|
||||
Raises:
|
||||
@ -79,7 +79,7 @@ class InputContext:
|
||||
) -> _P:
|
||||
"""
|
||||
Get the HuggingFace processor
|
||||
({class}`transformers.ProcessorMixin`) of the model,
|
||||
(`transformers.ProcessorMixin`) of the model,
|
||||
additionally checking its type.
|
||||
|
||||
Raises:
|
||||
|
@ -68,22 +68,22 @@ class _VllmLogger(Logger):
|
||||
"""
|
||||
Note:
|
||||
This class is just to provide type information.
|
||||
We actually patch the methods directly on the {class}`logging.Logger`
|
||||
We actually patch the methods directly on the [`logging.Logger`][]
|
||||
instance to avoid conflicting with other libraries such as
|
||||
`intel_extension_for_pytorch.utils._logger`.
|
||||
"""
|
||||
|
||||
def info_once(self, msg: str, *args: Hashable) -> None:
|
||||
"""
|
||||
As {meth}`info`, but subsequent calls with the same message
|
||||
are silently dropped.
|
||||
As [`info`][logging.Logger.info], but subsequent calls with
|
||||
the same message are silently dropped.
|
||||
"""
|
||||
_print_info_once(self, msg, *args)
|
||||
|
||||
def warning_once(self, msg: str, *args: Hashable) -> None:
|
||||
"""
|
||||
As {meth}`warning`, but subsequent calls with the same message
|
||||
are silently dropped.
|
||||
As [`warning`][logging.Logger.warning], but subsequent calls with
|
||||
the same message are silently dropped.
|
||||
"""
|
||||
_print_warning_once(self, msg, *args)
|
||||
|
||||
|
@ -228,17 +228,19 @@ class Sampler(nn.Module):
|
||||
) -> Optional[SamplerOutput]:
|
||||
"""
|
||||
Single-step scheduling:
|
||||
* Perform GPU-side sampling computation & compute
|
||||
GPU-side logprobs tensor
|
||||
* Pythonize sampling result & logprobs tensor
|
||||
* Perform GPU-side sampling computation & compute
|
||||
GPU-side logprobs tensor
|
||||
* Pythonize sampling result & logprobs tensor
|
||||
|
||||
Multi-step scheduling:
|
||||
* Perform GPU-side sampling computation & compute
|
||||
GPU-side logprobs tensor
|
||||
* Defer Pythonization of sampling result & logprobs
|
||||
tensor
|
||||
* Encapsulate arguments required for deferred Pythonization
|
||||
in the {class}`SamplerOutput` structure
|
||||
* Perform GPU-side sampling computation & compute
|
||||
GPU-side logprobs tensor
|
||||
* Defer Pythonization of sampling result & logprobs
|
||||
tensor
|
||||
* Encapsulate arguments required for deferred Pythonization
|
||||
in the
|
||||
[`SamplerOutput`][vllm.model_executor.layers.sampler.SamplerOutput]
|
||||
structure
|
||||
|
||||
Args:
|
||||
logits: (num_tokens, vocab_size).
|
||||
|
@ -226,9 +226,11 @@ class SupportsPP(Protocol):
|
||||
intermediate_tensors: Optional["IntermediateTensors"],
|
||||
) -> Union[Tensor, "IntermediateTensors"]:
|
||||
"""
|
||||
Accept {class}`IntermediateTensors` when PP rank > 0.
|
||||
Accept [`IntermediateTensors`][vllm.sequence.IntermediateTensors] when
|
||||
PP rank > 0.
|
||||
|
||||
Return {class}`IntermediateTensors` only for the last PP rank.
|
||||
Return [`IntermediateTensors`][vllm.sequence.IntermediateTensors] only
|
||||
for the last PP rank.
|
||||
"""
|
||||
...
|
||||
|
||||
|
@ -965,7 +965,7 @@ def select_tiling(
|
||||
|
||||
class MolmoProcessorWrapper:
|
||||
"""
|
||||
Wraps {class}`MolmoProcessor` so that it can be called directly.
|
||||
Wraps `MolmoProcessor` so that it can be called directly.
|
||||
|
||||
The original definition can be found here:
|
||||
https://huggingface.co/allenai/Molmo-7B-D-0924/blob/main/preprocessing_molmo.py
|
||||
|
@ -67,14 +67,14 @@ class PixtralImagePixelInputs(TypedDict):
|
||||
"""
|
||||
Shape: `(batch_size * num_images, num_channels, image_width, image_height)`
|
||||
|
||||
The result of stacking {attr}`ImageEncoding.tokens` from each prompt.
|
||||
The result of stacking `ImageEncoding.tokens` from each prompt.
|
||||
"""
|
||||
|
||||
|
||||
class PixtralProcessorAdapter:
|
||||
"""
|
||||
Provide a HF-compatible interface for
|
||||
{class}`mistral_common.tokens.tokenizers.multimodal.ImageEncoder`.
|
||||
`mistral_common.tokens.tokenizers.multimodal.ImageEncoder`.
|
||||
"""
|
||||
|
||||
def __init__(self, tokenizer: MistralTokenizer) -> None:
|
||||
|
@ -382,7 +382,8 @@ def _get_tokenizer_without_image_pad(
|
||||
tokenizer: PreTrainedTokenizer) -> PreTrainedTokenizer:
|
||||
"""
|
||||
The logic of adding image pad tokens should only be applied in
|
||||
{class}`QwenVLProcessor`, so they are patched out here.
|
||||
[`QwenVLProcessor`][vllm.model_executor.models.qwen_vl.QwenVLProcessor],
|
||||
so they are patched out here.
|
||||
|
||||
The definition of the wrapped tokenizer can be found here:
|
||||
https://huggingface.co/Qwen/Qwen-VL/blob/main/tokenization_qwen.py
|
||||
|
@ -383,7 +383,7 @@ class _ModelRegistry:
|
||||
|
||||
`model_cls` can be either:
|
||||
|
||||
- A {class}`torch.nn.Module` class directly referencing the model.
|
||||
- A [`torch.nn.Module`][] class directly referencing the model.
|
||||
- A string in the format `<module>:<class>` which can be used to
|
||||
lazily import the model. This is useful to avoid initializing CUDA
|
||||
when importing the model and thus the related error
|
||||
|
@ -66,7 +66,7 @@ class WeightsMapper:
|
||||
|
||||
class AutoWeightsLoader:
|
||||
"""
|
||||
Helper class to load weights into a {class}`torch.nn.Module`. It is able
|
||||
Helper class to load weights into a [`torch.nn.Module`][]. It is able
|
||||
to automatically detect child modules and parameters while iterating over
|
||||
the weights only once.
|
||||
|
||||
|
@ -8,11 +8,12 @@ from .registry import MultiModalRegistry
|
||||
|
||||
MULTIMODAL_REGISTRY = MultiModalRegistry()
|
||||
"""
|
||||
The global {class}`~MultiModalRegistry` is used by model runners to
|
||||
dispatch data processing according to the target model.
|
||||
The global [`MultiModalRegistry`][vllm.multimodal.registry.MultiModalRegistry]
|
||||
is used by model runners to dispatch data processing according to the target
|
||||
model.
|
||||
|
||||
Info:
|
||||
[mm-processing][]
|
||||
[mm_processing](../../../design/mm_processing.html)
|
||||
"""
|
||||
|
||||
__all__ = [
|
||||
|
@ -29,14 +29,14 @@ _T = TypeVar("_T")
|
||||
|
||||
HfImageItem: TypeAlias = Union["Image", np.ndarray, "torch.Tensor"]
|
||||
"""
|
||||
A {class}`transformers.image_utils.ImageInput` representing a single image
|
||||
A `transformers.image_utils.ImageInput` representing a single image
|
||||
item, which can be passed to a HuggingFace `ImageProcessor`.
|
||||
"""
|
||||
|
||||
HfVideoItem: TypeAlias = Union[list["Image"], np.ndarray, "torch.Tensor",
|
||||
list[np.ndarray], list["torch.Tensor"]]
|
||||
"""
|
||||
A {class}`transformers.image_utils.VideoInput` representing a single video
|
||||
A `transformers.image_utils.VideoInput` representing a single video
|
||||
item, which can be passed to a HuggingFace `VideoProcessor`.
|
||||
"""
|
||||
|
||||
@ -48,7 +48,7 @@ item, which can be passed to a HuggingFace `AudioProcessor`.
|
||||
|
||||
ImageItem: TypeAlias = Union[HfImageItem, "torch.Tensor"]
|
||||
"""
|
||||
A {class}`transformers.image_utils.ImageInput` representing a single image
|
||||
A `transformers.image_utils.ImageInput` representing a single image
|
||||
item, which can be passed to a HuggingFace `ImageProcessor`.
|
||||
|
||||
Alternatively, a 3-D tensor or batch of 2-D tensors,
|
||||
@ -58,7 +58,7 @@ these are directly passed to the model without HF processing.
|
||||
|
||||
VideoItem: TypeAlias = Union[HfVideoItem, "torch.Tensor"]
|
||||
"""
|
||||
A {class}`transformers.image_utils.VideoInput` representing a single video
|
||||
A `transformers.image_utils.VideoInput` representing a single video
|
||||
item, which can be passed to a HuggingFace `VideoProcessor`.
|
||||
|
||||
Alternatively, a 3-D tensor or batch of 2-D tensors,
|
||||
@ -108,7 +108,8 @@ MultiModalDataDict: TypeAlias = Mapping[str, ModalityData[Any]]
|
||||
"""
|
||||
A dictionary containing an entry for each modality type to input.
|
||||
|
||||
The built-in modalities are defined by {class}`MultiModalDataBuiltins`.
|
||||
The built-in modalities are defined by
|
||||
[`MultiModalDataBuiltins`][vllm.multimodal.inputs.MultiModalDataBuiltins].
|
||||
"""
|
||||
|
||||
|
||||
@ -169,7 +170,8 @@ Uses a list instead of a tensor if the dimensions of each element do not match.
|
||||
|
||||
|
||||
def nested_tensors_equal(a: NestedTensors, b: NestedTensors) -> bool:
|
||||
"""Equality check between {data}`NestedTensors` objects."""
|
||||
"""Equality check between
|
||||
[`NestedTensors`][vllm.multimodal.inputs.NestedTensors] objects."""
|
||||
if isinstance(a, torch.Tensor):
|
||||
return isinstance(b, torch.Tensor) and torch.equal(a, b)
|
||||
elif isinstance(b, torch.Tensor):
|
||||
@ -189,7 +191,7 @@ def nested_tensors_equal(a: NestedTensors, b: NestedTensors) -> bool:
|
||||
BatchedTensorInputs: TypeAlias = Mapping[str, NestedTensors]
|
||||
"""
|
||||
A dictionary containing nested tensors which have been batched via
|
||||
{meth}`MultiModalKwargs.batch`.
|
||||
[`MultiModalKwargs.batch`][vllm.multimodal.inputs.MultiModalKwargs.batch].
|
||||
"""
|
||||
|
||||
|
||||
@ -197,7 +199,7 @@ A dictionary containing nested tensors which have been batched via
|
||||
class MultiModalFieldElem:
|
||||
"""
|
||||
Represents a keyword argument corresponding to a multi-modal item
|
||||
in {class}`MultiModalKwargs`.
|
||||
in [`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs].
|
||||
"""
|
||||
|
||||
modality: str
|
||||
@ -208,13 +210,15 @@ class MultiModalFieldElem:
|
||||
|
||||
key: str
|
||||
"""
|
||||
The key of this field in {class}`MultiModalKwargs`,
|
||||
The key of this field in
|
||||
[`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs],
|
||||
i.e. the name of the keyword argument to be passed to the model.
|
||||
"""
|
||||
|
||||
data: NestedTensors
|
||||
"""
|
||||
The tensor data of this field in {class}`MultiModalKwargs`,
|
||||
The tensor data of this field in
|
||||
[`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs],
|
||||
i.e. the value of the keyword argument to be passed to the model.
|
||||
"""
|
||||
|
||||
@ -237,7 +241,8 @@ class MultiModalFieldElem:
|
||||
class BaseMultiModalField(ABC):
|
||||
"""
|
||||
Defines how to interpret tensor data belonging to a keyword argument in
|
||||
{class}`MultiModalKwargs` for multiple multi-modal items, and vice versa.
|
||||
[`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs] for multiple
|
||||
multi-modal items, and vice versa.
|
||||
"""
|
||||
|
||||
def _field_factory(self, *, modality: str, key: str):
|
||||
@ -262,10 +267,12 @@ class BaseMultiModalField(ABC):
|
||||
data: NestedTensors,
|
||||
) -> Sequence[MultiModalFieldElem]:
|
||||
"""
|
||||
Construct {class}`MultiModalFieldElem` instances to represent
|
||||
the provided data.
|
||||
Construct
|
||||
[`MultiModalFieldElem`][vllm.multimodal.inputs.MultiModalFieldElem]
|
||||
instances to represent the provided data.
|
||||
|
||||
This is the inverse of {meth}`reduce_data`.
|
||||
This is the inverse of
|
||||
[`reduce_data`][vllm.multimodal.inputs.BaseMultiModalField.reduce_data].
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@ -275,9 +282,11 @@ class BaseMultiModalField(ABC):
|
||||
|
||||
def reduce_data(self, elems: list[MultiModalFieldElem]) -> NestedTensors:
|
||||
"""
|
||||
Merge the data from multiple instances of {class}`MultiModalFieldElem`.
|
||||
Merge the data from multiple instances of
|
||||
[`MultiModalFieldElem`][vllm.multimodal.inputs.MultiModalFieldElem].
|
||||
|
||||
This is the inverse of {meth}`build_elems`.
|
||||
This is the inverse of
|
||||
[`build_elems`][vllm.multimodal.inputs.BaseMultiModalField.build_elems].
|
||||
"""
|
||||
field_types = [type(item.field) for item in elems]
|
||||
if len(set(field_types)) > 1:
|
||||
@ -290,7 +299,7 @@ class BaseMultiModalField(ABC):
|
||||
class MultiModalBatchedField(BaseMultiModalField):
|
||||
"""
|
||||
Info:
|
||||
[MultiModalFieldConfig.batched][]
|
||||
[`MultiModalFieldConfig.batched`][vllm.multimodal.inputs.MultiModalFieldConfig.batched]
|
||||
"""
|
||||
|
||||
def build_elems(
|
||||
@ -320,8 +329,8 @@ class MultiModalBatchedField(BaseMultiModalField):
|
||||
class MultiModalFlatField(BaseMultiModalField):
|
||||
"""
|
||||
Info:
|
||||
[MultiModalFieldConfig.flat][]
|
||||
[MultiModalFieldConfig.flat_from_sizes][]
|
||||
[`MultiModalFieldConfig.flat`][vllm.multimodal.inputs.MultiModalFieldConfig.flat]
|
||||
[`MultiModalFieldConfig.flat_from_sizes`][vllm.multimodal.inputs.MultiModalFieldConfig.flat_from_sizes]
|
||||
"""
|
||||
slices: Union[Sequence[slice], Sequence[Sequence[slice]]]
|
||||
dim: int = 0
|
||||
@ -362,7 +371,7 @@ class MultiModalFlatField(BaseMultiModalField):
|
||||
class MultiModalSharedField(BaseMultiModalField):
|
||||
"""
|
||||
Info:
|
||||
[MultiModalFieldConfig.shared][]
|
||||
[`MultiModalFieldConfig.shared`][vllm.multimodal.inputs.MultiModalFieldConfig.shared]
|
||||
"""
|
||||
batch_size: int
|
||||
|
||||
@ -508,7 +517,7 @@ class MultiModalFieldConfig:
|
||||
```
|
||||
|
||||
Info:
|
||||
[MultiModalFieldConfig.flat][]
|
||||
[`MultiModalFieldConfig.flat`][vllm.multimodal.inputs.MultiModalFieldConfig.flat]
|
||||
"""
|
||||
|
||||
if size_per_item.ndim != 1:
|
||||
@ -572,8 +581,10 @@ class MultiModalFieldConfig:
|
||||
|
||||
class MultiModalKwargsItem(UserDict[str, MultiModalFieldElem]):
|
||||
"""
|
||||
A collection of {class}`MultiModalFieldElem`
|
||||
corresponding to a data item in {class}`MultiModalDataItems`.
|
||||
A collection of
|
||||
[`MultiModalFieldElem`][vllm.multimodal.inputs.MultiModalFieldElem]
|
||||
corresponding to a data item in
|
||||
[`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems].
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@ -592,11 +603,13 @@ class MultiModalKwargsItem(UserDict[str, MultiModalFieldElem]):
|
||||
class MultiModalKwargs(UserDict[str, NestedTensors]):
|
||||
"""
|
||||
A dictionary that represents the keyword arguments to
|
||||
{meth}`~torch.nn.Module.forward`.
|
||||
[`torch.nn.Module.forward`][].
|
||||
|
||||
The metadata `items` enables us to obtain the keyword arguments
|
||||
corresponding to each data item in {class}`MultiModalDataItems`, via
|
||||
{meth}`get_item` and {meth}`get_items`.
|
||||
corresponding to each data item in
|
||||
[`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems], via
|
||||
[`get_item`][vllm.multimodal.inputs.MultiModalKwargs.get_item] and
|
||||
[`get_items`][vllm.multimodal.inputs.MultiModalKwargs.get_items].
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@ -635,7 +648,9 @@ class MultiModalKwargs(UserDict[str, NestedTensors]):
|
||||
|
||||
@staticmethod
|
||||
def from_items(items: Sequence[MultiModalKwargsItem]):
|
||||
"""Construct a new {class}`MultiModalKwargs` from multiple items."""
|
||||
"""Construct a new
|
||||
[`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs]
|
||||
from multiple items."""
|
||||
elems_by_key = defaultdict[str, list[MultiModalFieldElem]](list)
|
||||
for item in items:
|
||||
for key, elem in item.items():
|
||||
@ -800,7 +815,7 @@ A dictionary containing placeholder ranges for each modality.
|
||||
class MultiModalInputs(TypedDict):
|
||||
"""
|
||||
Represents the outputs of
|
||||
{class}`vllm.multimodal.processing.BaseMultiModalProcessor`,
|
||||
[`BaseMultiModalProcessor`][vllm.multimodal.processing.BaseMultiModalProcessor],
|
||||
ready to be passed to vLLM internals.
|
||||
"""
|
||||
|
||||
@ -836,7 +851,8 @@ class MultiModalInputs(TypedDict):
|
||||
|
||||
class MultiModalEncDecInputs(MultiModalInputs):
|
||||
"""
|
||||
Represents the outputs of {class}`vllm.multimodal.EncDecMultiModalProcessor`
|
||||
Represents the outputs of
|
||||
[`EncDecMultiModalProcessor`][vllm.multimodal.processing.EncDecMultiModalProcessor]
|
||||
ready to be passed to vLLM internals.
|
||||
"""
|
||||
|
||||
|
@ -28,7 +28,8 @@ else:
|
||||
|
||||
class ModalityDataItems(ABC, Generic[_T, _I]):
|
||||
"""
|
||||
Represents data items for a modality in {class}`MultiModalDataItems`.
|
||||
Represents data items for a modality in
|
||||
[`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems].
|
||||
"""
|
||||
|
||||
def __init__(self, data: _T, modality: str) -> None:
|
||||
@ -251,15 +252,15 @@ _D = TypeVar("_D", bound=ModalityDataItems[Any, Any])
|
||||
|
||||
class MultiModalDataItems(UserDict[str, ModalityDataItems[Any, Any]]):
|
||||
"""
|
||||
As {data}`~vllm.multimodal.inputs.MultiModalDataDict`, but normalized
|
||||
such that each entry corresponds to a list.
|
||||
As [`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict], but
|
||||
normalized such that each entry corresponds to a list.
|
||||
"""
|
||||
|
||||
def get_count(self, modality: str, *, strict: bool = True) -> int:
|
||||
"""
|
||||
Get the number of data items belonging to a modality.
|
||||
|
||||
If `strict=False`, return `0` instead of raising {exc}`KeyError`
|
||||
If `strict=False`, return `0` instead of raising [`KeyError`][]
|
||||
even if the modality is not found.
|
||||
"""
|
||||
if modality not in self:
|
||||
@ -305,8 +306,8 @@ ModalityDataParser: TypeAlias = Callable[[ModalityData[Any]],
|
||||
|
||||
class MultiModalDataParser:
|
||||
"""
|
||||
Parses {data}`~vllm.multimodal.inputs.MultiModalDataDict` into
|
||||
{class}`MultiModalDataItems`.
|
||||
Parses [`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
|
||||
into [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems].
|
||||
|
||||
Args:
|
||||
target_sr (float, optional): Enables automatic resampling of audio
|
||||
|
@ -114,13 +114,14 @@ class PromptUpdateDetails(Generic[_S]):
|
||||
|
||||
is_embed: Optional[Callable[["_BoundPromptSequence"], torch.Tensor]] = None
|
||||
"""
|
||||
Given {attr}`full`, return a boolean mask of shape `(len(full),)`
|
||||
indicating which positions of `full` to assign embeddings to.
|
||||
Given [`full`][vllm.multimodal.processing.PromptUpdateDetails.full],
|
||||
return a boolean mask of shape `(len(full),)` indicating which positions
|
||||
of `full` to assign embeddings to.
|
||||
|
||||
`None` (default) means to assign embeddings to all positions of `full`.
|
||||
|
||||
The embeddings are obtained by calling
|
||||
{class}`SupportsMultiModal.get_multimodal_embeddings`.
|
||||
[`SupportsMultiModal.get_multimodal_embeddings`][vllm.model_executor.models.interfaces.SupportsMultiModal.get_multimodal_embeddings].
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@ -159,13 +160,15 @@ PromptUpdateInfo = Union[PromptSeq, PromptUpdateDetails]
|
||||
The token sequence or text that are part of the update.
|
||||
|
||||
If only part of the content corresponds to feature placeholders, you can
|
||||
use {class}`PromptUpdateDetails` to specify which part.
|
||||
use [`PromptUpdateDetails`][vllm.multimodal.processing.PromptUpdateDetails] to
|
||||
specify which part.
|
||||
"""
|
||||
|
||||
PromptUpdateContent = Union[Callable[[int], PromptUpdateInfo],
|
||||
PromptUpdateInfo]
|
||||
"""
|
||||
Given the index of the processed item within {attr}`modality`,
|
||||
Given the index of the processed item within
|
||||
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
||||
output the corresponding token sequence (or text).
|
||||
|
||||
For convenience, you can directly pass in the token sequence (or text)
|
||||
@ -260,8 +263,10 @@ class PromptInsertion(PromptUpdate):
|
||||
|
||||
insertion: PromptUpdateContent = field(repr=False)
|
||||
"""
|
||||
Given the index of the processed item within {attr}`modality`,
|
||||
output the token sequence (or text) to insert right after {attr}`target`.
|
||||
Given the index of the processed item within
|
||||
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
||||
output the token sequence (or text) to insert right after
|
||||
[`target`][vllm.multimodal.processing.PromptUpdate.target].
|
||||
|
||||
For convenience, you can directly pass in the token sequence (or text)
|
||||
instead of a function if it does not depend on the input.
|
||||
@ -332,8 +337,10 @@ class PromptReplacement(PromptUpdate):
|
||||
|
||||
replacement: PromptUpdateContent = field(repr=False)
|
||||
"""
|
||||
Given the index of the processed item within {attr}`modality`,
|
||||
output the token sequence (or text) to replace {attr}`target`.
|
||||
Given the index of the processed item within
|
||||
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
||||
output the token sequence (or text) to replace
|
||||
[`target`][vllm.multimodal.processing.PromptUpdate.target].
|
||||
|
||||
For convenience, you can directly pass in the token sequence (or text)
|
||||
instead of a function if it does not depend on the input.
|
||||
@ -387,14 +394,16 @@ _M = TypeVar("_M", bound=Union[_HasModalityAttr, _HasModalityProp])
|
||||
|
||||
|
||||
def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
|
||||
"""Convenience function to apply [full_groupby][] based on modality."""
|
||||
"""Convenience function to apply [`full_groupby`][vllm.utils.full_groupby]
|
||||
based on modality."""
|
||||
return full_groupby(values, key=lambda x: x.modality)
|
||||
|
||||
|
||||
@dataclass
|
||||
class _BoundPromptSequence:
|
||||
"""
|
||||
A {data}`_PromptSeq` bound to a tokenizer to automatically
|
||||
A [`_PromptSeq`][vllm.multimodal.processing.PromptSeq] bound
|
||||
to a tokenizer to automatically
|
||||
convert between token sequence and text representations.
|
||||
"""
|
||||
tokenizer: AnyTokenizer = field(repr=False)
|
||||
@ -446,9 +455,11 @@ class _BoundPromptContent:
|
||||
@dataclass
|
||||
class BoundPromptUpdate:
|
||||
"""
|
||||
A {class}`PromptUpdate` bound to a tokenizer to automatically convert
|
||||
{attr}`target` and the result of {meth}`get_content` between
|
||||
token sequence and text representations.
|
||||
A [`PromptUpdate`][vllm.multimodal.processing.PromptUpdate] bound
|
||||
to a tokenizer to automatically convert
|
||||
[`target`][vllm.multimodal.processing.PromptUpdate.target] and the result of
|
||||
[`get_content`][vllm.multimodal.processing.BoundPromptUpdate.get_content]
|
||||
between token sequence and text representations.
|
||||
"""
|
||||
_origin: PromptUpdate
|
||||
tokenizer: AnyTokenizer = field(repr=False)
|
||||
@ -482,7 +493,8 @@ class BoundPromptUpdate:
|
||||
|
||||
def get_content(self, item_idx: int) -> _BoundPromptContent:
|
||||
"""
|
||||
Given the index of the processed item within {attr}`modality`,
|
||||
Given the index of the processed item within
|
||||
[`modality`][vllm.multimodal.processing.PromptUpdate.modality],
|
||||
output the token sequence (or text) to update.
|
||||
"""
|
||||
content = self.content
|
||||
@ -1019,7 +1031,8 @@ class ProcessingCache:
|
||||
) -> None:
|
||||
"""
|
||||
Put a processed multi-modal item into the cache
|
||||
according to its dependencies (see {meth}`get`).
|
||||
according to its dependencies
|
||||
(see [`get`][vllm.multimodal.processing.ProcessingCache.get]).
|
||||
"""
|
||||
cache_key = MultiModalHasher.hash_kwargs(model_id=model_id,
|
||||
**{modality: input_item},
|
||||
@ -1091,7 +1104,8 @@ _I = TypeVar("_I", bound=BaseProcessingInfo)
|
||||
|
||||
MultiModalHashes = dict[str, list[str]]
|
||||
"""
|
||||
A collection of hashes with a similar structure as {class}`MultiModalKwargs`.
|
||||
A collection of hashes with a similar structure as
|
||||
[`MultiModalKwargs`][vllm.multimodal.inputs.MultiModalKwargs].
|
||||
"""
|
||||
|
||||
|
||||
@ -1099,7 +1113,7 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
|
||||
"""
|
||||
Abstract base class to process multi-modal inputs to be used in vLLM.
|
||||
|
||||
Not to be confused with {class}`transformers.ProcessorMixin`.
|
||||
Not to be confused with `transformers.ProcessorMixin`.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@ -1126,10 +1140,12 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
|
||||
def _get_data_parser(self) -> MultiModalDataParser:
|
||||
"""
|
||||
Construct a parser to preprocess multi-modal data items
|
||||
before passing them to {meth}`_get_hf_mm_data`.
|
||||
before passing them to
|
||||
[`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
|
||||
|
||||
You can support additional modalities by creating a subclass
|
||||
of {class}`MultiModalDataParser` that has additional subparsers.
|
||||
of [`MultiModalDataParser`][vllm.multimodal.parse.MultiModalDataParser]
|
||||
that has additional subparsers.
|
||||
"""
|
||||
return MultiModalDataParser()
|
||||
|
||||
@ -1138,8 +1154,11 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
|
||||
mm_data: MultiModalDataDict,
|
||||
) -> MultiModalDataItems:
|
||||
"""
|
||||
Normalize {class}`MultiModalDataDict` to {class}`MultiModalDataItems`
|
||||
before passing them to {meth}`_get_hf_mm_data`.
|
||||
Normalize
|
||||
[`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
|
||||
to [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems]
|
||||
before passing them to
|
||||
[`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
|
||||
"""
|
||||
mm_items = self.data_parser.parse_mm_data(mm_data)
|
||||
supported_mm_limits = self.info.get_supported_mm_limits()
|
||||
@ -1191,7 +1210,8 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
|
||||
inputs.
|
||||
|
||||
Moreover, this information is critical to determine the token positions
|
||||
in order to construct {class}`~vllm-multimodal.input.PlaceholderRange`
|
||||
in order to construct
|
||||
[`PlaceholderRange`][vllm.multimodal.inputs.PlaceholderRange]
|
||||
for each multi-modal item.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
@ -1315,7 +1335,9 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
|
||||
Most HF processors accept prompt text but not prompt tokens.
|
||||
If the HF processor adds or removes tokens that are not related to
|
||||
multi-modal data, you should override this method so it is consistent
|
||||
with the output of {meth}`_apply_hf_processor_text_only` on the
|
||||
with the output of
|
||||
[`_apply_hf_processor_text_only`][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_text_only]
|
||||
on the
|
||||
corresponding text.
|
||||
"""
|
||||
return prompt_tokens
|
||||
@ -1330,7 +1352,8 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
|
||||
|
||||
Since HF processor requires that text and multi-modal items
|
||||
correspond to each other, we generate dummy text using
|
||||
{class}`DummyInputsBuilder` to go along with the multi-modal data.
|
||||
[`DummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
|
||||
to go along with the multi-modal data.
|
||||
"""
|
||||
mm_counts = mm_items.get_all_counts()
|
||||
|
||||
|
@ -25,7 +25,7 @@ logger = init_logger(__name__)
|
||||
class ProcessorInputs:
|
||||
"""
|
||||
Represents the keyword arguments to
|
||||
{meth}`vllm.multimodal.processing.BaseMultiModalProcessor.apply`.
|
||||
[`vllm.multimodal.processing.BaseMultiModalProcessor.apply`][].
|
||||
"""
|
||||
prompt: Union[str, list[int]]
|
||||
mm_data: MultiModalDataDict
|
||||
|
@ -29,7 +29,11 @@ _I_co = TypeVar("_I_co", bound=BaseProcessingInfo, covariant=True)
|
||||
|
||||
|
||||
class ProcessingInfoFactory(Protocol[_I_co]):
|
||||
"""Constructs a {class}`MultiModalProcessor` instance from the context."""
|
||||
"""
|
||||
Constructs a
|
||||
[`BaseMultiModalProcessor`][vllm.multimodal.processing.BaseMultiModalProcessor]
|
||||
instance from the context.
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
@ -40,7 +44,9 @@ class ProcessingInfoFactory(Protocol[_I_co]):
|
||||
|
||||
class DummyInputsBuilderFactory(Protocol[_I]):
|
||||
"""
|
||||
Constructs a {class}`BaseDummyInputsBuilder` instance from the context.
|
||||
Constructs a
|
||||
[`BaseDummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
|
||||
instance from the context.
|
||||
"""
|
||||
|
||||
def __call__(self, info: _I) -> BaseDummyInputsBuilder[_I]:
|
||||
@ -48,7 +54,11 @@ class DummyInputsBuilderFactory(Protocol[_I]):
|
||||
|
||||
|
||||
class MultiModalProcessorFactory(Protocol[_I]):
|
||||
"""Constructs a {class}`MultiModalProcessor` instance from the context."""
|
||||
"""
|
||||
Constructs a
|
||||
[`BaseMultiModalProcessor`][vllm.multimodal.processing.BaseMultiModalProcessor]
|
||||
instance from the context.
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
@ -155,8 +165,6 @@ class MultiModalRegistry:
|
||||
"""
|
||||
Get the maximum number of tokens from each modality
|
||||
for profiling the memory usage of a model.
|
||||
|
||||
See {meth}`MultiModalPlugin.get_max_multimodal_tokens` for more details.
|
||||
"""
|
||||
mm_limits = self.get_mm_limits_per_prompt(model_config)
|
||||
|
||||
@ -170,8 +178,6 @@ class MultiModalRegistry:
|
||||
"""
|
||||
Get the maximum number of multi-modal tokens
|
||||
for profiling the memory usage of a model.
|
||||
|
||||
See {meth}`MultiModalPlugin.get_max_multimodal_tokens` for more details.
|
||||
"""
|
||||
return sum(self.get_max_tokens_by_modality(model_config).values())
|
||||
|
||||
@ -213,9 +219,6 @@ class MultiModalRegistry:
|
||||
|
||||
When the model receives multi-modal data, the provided function is
|
||||
invoked to transform the data into a dictionary of model inputs.
|
||||
|
||||
Info:
|
||||
[mm-processing][]
|
||||
"""
|
||||
|
||||
def wrapper(model_cls: N) -> N:
|
||||
@ -258,9 +261,6 @@ class MultiModalRegistry:
|
||||
) -> BaseMultiModalProcessor[BaseProcessingInfo]:
|
||||
"""
|
||||
Create a multi-modal processor for a specific model and tokenizer.
|
||||
|
||||
Info:
|
||||
[mm-processing][]
|
||||
"""
|
||||
if not model_config.is_multimodal_model:
|
||||
raise ValueError(f"{model_config.model} is not a multimodal model")
|
||||
|
@ -259,7 +259,8 @@ class MediaConnector:
|
||||
|
||||
|
||||
global_media_connector = MediaConnector()
|
||||
"""The global {class}`MediaConnector` instance used by vLLM."""
|
||||
"""The global [`MediaConnector`][vllm.multimodal.utils.MediaConnector]
|
||||
instance used by vLLM."""
|
||||
|
||||
fetch_audio = global_media_connector.fetch_audio
|
||||
fetch_image = global_media_connector.fetch_image
|
||||
|
@ -84,7 +84,7 @@ class DeviceCapability(NamedTuple):
|
||||
|
||||
def to_int(self) -> int:
|
||||
"""
|
||||
Express device capability as an integer ``<major><minor>``.
|
||||
Express device capability as an integer `<major><minor>`.
|
||||
|
||||
It is assumed that the minor version is always a single digit.
|
||||
"""
|
||||
@ -206,10 +206,11 @@ class Platform:
|
||||
"""
|
||||
Test whether this platform is compatible with a device capability.
|
||||
|
||||
The ``capability`` argument can either be:
|
||||
The `capability` argument can either be:
|
||||
|
||||
- A tuple ``(major, minor)``.
|
||||
- An integer ``<major><minor>``. (See {meth}`DeviceCapability.to_int`)
|
||||
- A tuple `(major, minor)`.
|
||||
- An integer `<major><minor>`. (See
|
||||
[`DeviceCapability.to_int`][vllm.platforms.interface.DeviceCapability.to_int])
|
||||
"""
|
||||
current_capability = cls.get_device_capability(device_id=device_id)
|
||||
if current_capability is None:
|
||||
|
@ -27,7 +27,7 @@ VLLM_INVALID_TOKEN_ID = -1
|
||||
|
||||
|
||||
def array_full(token_id: int, count: int):
|
||||
"""{class}`array` equivalent of [numpy.full][]."""
|
||||
"""[`array`][] equivalent of [numpy.full][]."""
|
||||
return array(VLLM_TOKEN_ID_ARRAY_TYPE, [token_id]) * count
|
||||
|
||||
|
||||
@ -192,8 +192,8 @@ class SequenceData(msgspec.Struct,
|
||||
def from_prompt_token_counts(
|
||||
*token_counts: tuple[int, int]) -> "SequenceData":
|
||||
"""
|
||||
Construct a {class}`SequenceData` instance by concatenating
|
||||
prompt token sequences.
|
||||
Construct a [`SequenceData`][vllm.sequence.SequenceData] instance
|
||||
by concatenating prompt token sequences.
|
||||
|
||||
Each tuple represents one token sequence, expressed in the form
|
||||
`(token_id, count)`.
|
||||
@ -216,8 +216,8 @@ class SequenceData(msgspec.Struct,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
) -> "SequenceData":
|
||||
"""
|
||||
Construct a {class}`SequenceData` instance from prompt and output
|
||||
token sequences.
|
||||
Construct a [`SequenceData`][vllm.sequence.SequenceData] instance
|
||||
from prompt and output token sequences.
|
||||
"""
|
||||
prompt_token_ids_arr = array(VLLM_TOKEN_ID_ARRAY_TYPE,
|
||||
prompt_token_ids)
|
||||
@ -452,9 +452,11 @@ class SequenceData(msgspec.Struct,
|
||||
class Sequence:
|
||||
"""Stores the data, status, and block information of a sequence.
|
||||
|
||||
The sequence is constructed from the {data}`DecoderOnlyInputs`
|
||||
(for decoder-only) or {data}`EncoderDecoderInputs` (for encoder-decoder)
|
||||
instance passed in through the `inputs` constructor argument.
|
||||
The sequence is constructed from the
|
||||
[`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] (for decoder-only)
|
||||
or [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
|
||||
(for encoder-decoder) instance passed in through the `inputs`
|
||||
constructor argument.
|
||||
|
||||
Args:
|
||||
seq_id: The ID of the sequence.
|
||||
|
@ -1005,7 +1005,7 @@ def flatten_2d_lists(lists: Iterable[Iterable[T]]) -> list[T]:
|
||||
|
||||
def full_groupby(values: Iterable[_V], *, key: Callable[[_V], _K]):
|
||||
"""
|
||||
Unlike {class}`itertools.groupby`, groups are not broken by
|
||||
Unlike [`itertools.groupby`][], groups are not broken by
|
||||
non-contiguous data.
|
||||
"""
|
||||
groups = defaultdict[_K, list[_V]](list)
|
||||
@ -1926,7 +1926,8 @@ class _PlaceholderBase:
|
||||
Disallows downstream usage of placeholder modules.
|
||||
|
||||
We need to explicitly override each dunder method because
|
||||
{meth}`__getattr__` is not called when they are accessed.
|
||||
[`__getattr__`][vllm.utils._PlaceholderBase.__getattr__]
|
||||
is not called when they are accessed.
|
||||
|
||||
Info:
|
||||
[Special method lookup](https://docs.python.org/3/reference/datamodel.html#special-lookup)
|
||||
|
@ -10,7 +10,7 @@ def sanity_check_mm_encoder_outputs(
|
||||
) -> None:
|
||||
"""
|
||||
Perform sanity checks for the result of
|
||||
{meth}`vllm.model_executor.models.SupportsMultiModal.get_multimodal_embeddings`.
|
||||
[`vllm.model_executor.models.SupportsMultiModal.get_multimodal_embeddings`][].
|
||||
"""
|
||||
assert isinstance(mm_embeddings, (list, tuple, torch.Tensor)), (
|
||||
"Expected multimodal embeddings to be a list/tuple of 2D tensors, "
|
||||
@ -39,7 +39,7 @@ def scatter_mm_placeholders(
|
||||
Scatter the multimodal embeddings into a contiguous tensor that represents
|
||||
the placeholder tokens.
|
||||
|
||||
{class}`vllm.multimodal.processing.PromptUpdateDetails.is_embed`.
|
||||
[`vllm.multimodal.processing.PromptUpdateDetails.is_embed`][].
|
||||
|
||||
Args:
|
||||
embeds: The multimodal embeddings.
|
||||
|
@ -733,12 +733,13 @@ def _pythonize_sampler_output(
|
||||
logprobs_tensor: Optional[torch.Tensor],
|
||||
cache: Optional[PythonizationCache],
|
||||
) -> None:
|
||||
""" This function is only called when the output tensors are ready.
|
||||
See {class}`ModelOutput`.
|
||||
|
||||
Modifies `output.outputs` and `pinned_sampled_token_buffer` in-place,
|
||||
""" This function is only called when the output tensors are ready.
|
||||
See [`ModelOutput`][vllm.worker.multi_step_model_runner.ModelOutput].
|
||||
|
||||
Modifies `output.outputs` and `pinned_sampled_token_buffer` in-place,
|
||||
adding a Pythonized output data structure
|
||||
({class}`CompletionSequenceGroupOutput`) for each {class}`SequenceGroup`.
|
||||
([`CompletionSequenceGroupOutput`][vllm.sequence.CompletionSequenceGroupOutput])
|
||||
for each [`SequenceGroup`][vllm.sequence.SequenceGroup].
|
||||
|
||||
Args:
|
||||
model_input
|
||||
|
Reference in New Issue
Block a user