[misc][ci] fix quant test (#8449)

This commit is contained in:
youkaichao
2024-09-13 02:20:14 -07:00
committed by GitHub
parent 06311e2956
commit a2469127db
2 changed files with 21 additions and 15 deletions

View File

@ -10,6 +10,8 @@ import torch
from tests.quantization.utils import is_quant_method_supported
from ..utils import fork_new_process_for_each_test
models_4bit_to_test = [
('huggyllama/llama-7b', 'quantize model inflight'),
]
@ -29,6 +31,7 @@ models_pre_quant_8bit_to_test = [
@pytest.mark.skipif(not is_quant_method_supported("bitsandbytes"),
reason='bitsandbytes is not supported on this GPU type.')
@pytest.mark.parametrize("model_name, description", models_4bit_to_test)
@fork_new_process_for_each_test
def test_load_4bit_bnb_model(hf_runner, vllm_runner, example_prompts,
model_name, description) -> None:
@ -41,6 +44,7 @@ def test_load_4bit_bnb_model(hf_runner, vllm_runner, example_prompts,
reason='bitsandbytes is not supported on this GPU type.')
@pytest.mark.parametrize("model_name, description",
models_pre_qaunt_4bit_to_test)
@fork_new_process_for_each_test
def test_load_pre_quant_4bit_bnb_model(hf_runner, vllm_runner, example_prompts,
model_name, description) -> None:
@ -52,6 +56,7 @@ def test_load_pre_quant_4bit_bnb_model(hf_runner, vllm_runner, example_prompts,
reason='bitsandbytes is not supported on this GPU type.')
@pytest.mark.parametrize("model_name, description",
models_pre_quant_8bit_to_test)
@fork_new_process_for_each_test
def test_load_8bit_bnb_model(hf_runner, vllm_runner, example_prompts,
model_name, description) -> None:
@ -77,18 +82,8 @@ def validate_generated_texts(hf_runner,
model_name,
hf_model_kwargs=None):
if hf_model_kwargs is None:
hf_model_kwargs = {}
# Run with HF runner
with hf_runner(model_name, model_kwargs=hf_model_kwargs) as llm:
hf_outputs = llm.generate_greedy(prompts, 8)
hf_logs = log_generated_texts(prompts, hf_outputs, "HfRunner")
# Clean up the GPU memory for the next test
torch.cuda.synchronize()
gc.collect()
torch.cuda.empty_cache()
# NOTE: run vLLM first, as it requires a clean process
# when using distributed inference
#Run with vLLM runner
with vllm_runner(model_name,
@ -104,6 +99,19 @@ def validate_generated_texts(hf_runner,
gc.collect()
torch.cuda.empty_cache()
if hf_model_kwargs is None:
hf_model_kwargs = {}
# Run with HF runner
with hf_runner(model_name, model_kwargs=hf_model_kwargs) as llm:
hf_outputs = llm.generate_greedy(prompts, 8)
hf_logs = log_generated_texts(prompts, hf_outputs, "HfRunner")
# Clean up the GPU memory for the next test
torch.cuda.synchronize()
gc.collect()
torch.cuda.empty_cache()
# Compare the generated strings
for hf_log, vllm_log in zip(hf_logs, vllm_logs):
hf_str = hf_log["generated_text"]

View File

@ -1,12 +1,10 @@
import torch
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.platforms import current_platform
def is_quant_method_supported(quant_method: str) -> bool:
# Currently, all quantization methods require Nvidia or AMD GPUs
if not torch.cuda.is_available():
if not (current_platform.is_cuda() or current_platform.is_rocm()):
return False
capability = current_platform.get_device_capability()