[Bugfix] Fix Nemotron VL image processing (#22739)

Co-authored-by: ducviet00-h2 <viet.d.hoang@h2corporation.jp>
This commit is contained in:
Duc-Viet Hoang
2025-08-13 17:11:36 +07:00
committed by GitHub
parent 9e7e5baaa8
commit a01e0018b5
2 changed files with 190 additions and 4 deletions

View File

@ -23,15 +23,15 @@ def _get_expected_num_patches(
min_num: int,
max_num: int,
):
from vllm.model_executor.models.internvl import (
calculate_internvl_targets, get_internvl_target_ratios)
from vllm.model_executor.models.nemotron_vl import (
calculate_nemotron_vl_targets, get_nemotron_vl_target_ratios)
width, height = image.size
blocks, _, _ = calculate_internvl_targets(
blocks, _, _ = calculate_nemotron_vl_targets(
orig_width=width,
orig_height=height,
target_ratios=get_internvl_target_ratios(
target_ratios=get_nemotron_vl_target_ratios(
min_num,
max_num,
),

View File

@ -13,6 +13,7 @@ from typing import Optional
import torch
import torch.nn as nn
import torchvision.transforms as T
from PIL import Image
from transformers import AutoModel, PretrainedConfig
from transformers.image_processing_utils_fast import BaseImageProcessorFast
@ -27,6 +28,7 @@ from vllm.model_executor.models.internvl import (
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import NestedTensors
from vllm.multimodal.processing import PromptUpdateDetails
from vllm.sequence import IntermediateTensors
@ -44,6 +46,146 @@ IMG_END = '</img>'
IMG_CONTEXT = '<image>'
def build_transform(input_size: int):
return T.Compose([
T.Lambda(lambda img: convert_image_mode(img, 'RGB')),
T.Resize((input_size, input_size),
interpolation=T.InterpolationMode.BICUBIC),
T.ToTensor(),
])
# adapted from https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1
def find_closest_aspect_ratio(
aspect_ratio: float,
target_ratios: list[tuple[int, int]],
*,
width: int,
height: int,
image_size: int,
) -> tuple[int, int]:
best_factor = float('-inf')
best_ratio = (1, 1)
area = width * height
for rw, rh in target_ratios:
target_aspect_ratio = rw / rh
size_factor = min((rw * rh * image_size * image_size) / area, 0.6)
ratio_closeness = min(target_aspect_ratio / aspect_ratio,
aspect_ratio / target_aspect_ratio)
factor = size_factor * ratio_closeness
if factor > best_factor:
best_factor = factor
best_ratio = (rw, rh)
return best_ratio
def calculate_nemotron_vl_targets(
*,
orig_width: int,
orig_height: int,
target_ratios: list[tuple[int, int]],
image_size: int,
use_thumbnail: bool,
) -> tuple[int, int, int]:
aspect_ratio = orig_width / orig_height
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio,
target_ratios,
width=orig_width,
height=orig_height,
image_size=image_size,
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# add thumbnail image if num_blocks != 1
if use_thumbnail and blocks != 1:
blocks += 1
return blocks, target_width, target_height
def dynamic_preprocess_nemotron_vl(
image: Image.Image,
*,
target_ratios: list[tuple[int, int]],
image_size: int,
use_thumbnail: bool,
) -> list[Image.Image]:
orig_width, orig_height = image.size
# calculate the number of blocks without thumbnail
blocks, target_width, target_height = calculate_nemotron_vl_targets(
orig_width=orig_width,
orig_height=orig_height,
target_ratios=target_ratios,
image_size=image_size,
use_thumbnail=False,
)
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = ((i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def get_nemotron_vl_target_ratios(
min_num: int,
max_num: int,
) -> list[tuple[int, int]]:
target_ratios = {(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1) if min_num <= i * j <= max_num}
return sorted(target_ratios, key=lambda x: x[0] * x[1])
def image_to_pixel_values_nemotron_vl(
image: Image.Image,
*,
input_size: int,
min_num: int,
max_num: int,
use_thumbnail: bool,
) -> torch.Tensor:
target_ratios = get_nemotron_vl_target_ratios(min_num, max_num)
transform = build_transform(input_size=input_size)
images = dynamic_preprocess_nemotron_vl(
image,
target_ratios=target_ratios,
image_size=input_size,
use_thumbnail=use_thumbnail,
)
pixel_values = torch.stack([transform(image) for image in images])
return pixel_values
class NemotronVLProcessor(InternVLProcessor):
def __init__(
@ -87,6 +229,50 @@ class NemotronVLProcessor(InternVLProcessor):
def image_token_id(self) -> int:
return self.tokenizer.get_vocab()[IMG_CONTEXT]
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
target_ratios = self.resolve_target_ratios(
use_thumbnail=False, # Applied in calculate_targets
)
num_patches, _, _ = calculate_nemotron_vl_targets(
orig_width=image_width,
orig_height=image_height,
image_size=self.image_size,
target_ratios=target_ratios,
use_thumbnail=self.use_thumbnail,
)
return num_patches * self.num_image_token
def _images_to_pixel_values_lst(
self,
images: list[Image.Image],
min_dynamic_patch: Optional[int] = None,
max_dynamic_patch: Optional[int] = None,
dynamic_image_size: Optional[bool] = None,
) -> list[torch.Tensor]:
min_num, max_num = self.resolve_min_max_num(
min_dynamic_patch=min_dynamic_patch,
max_dynamic_patch=max_dynamic_patch,
dynamic_image_size=dynamic_image_size,
use_thumbnail=False, # Applied in image_to_pixel_values
)
return [
image_to_pixel_values_nemotron_vl(
image,
input_size=self.image_size,
min_num=min_num,
max_num=max_num,
use_thumbnail=self.use_thumbnail,
) for image in images
]
def _preprocess_image(
self,
text: list[str],