[BugFix] Fix async scheduling + request preemption (#26385)

Signed-off-by: Nick Hill <nhill@redhat.com>
This commit is contained in:
Nick Hill
2025-10-10 13:29:57 -07:00
committed by GitHub
parent e94cfd51da
commit 949cb0170d
2 changed files with 104 additions and 3 deletions

View File

@ -0,0 +1,96 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any
import pytest
from vllm import SamplingParams
from ...conftest import VllmRunner
from ...models.utils import check_outputs_equal
MODEL = "Qwen/Qwen3-0.6B"
def test_preempt_and_async_scheduling_e2e(monkeypatch: pytest.MonkeyPatch):
"""Test consistency of combos of async scheduling, preemption,
uni/multiproc executor, and various sampling parameters."""
first_prompt = (
"The following numbers of the sequence "
+ ", ".join(str(i) for i in range(10))
+ " are:"
)
example_prompts = [first_prompt, "In one word, the capital of France is "] + [
f"Tell me about the number {i}: " for i in range(32)
]
sampling_param_tests: list[dict[str, Any]] = [
dict(),
# dict(min_tokens=20),
# TODO enable these with https://github.com/vllm-project/vllm/pull/26467.
# dict(repetition_penalty=0.1),
# dict(bad_words=[]),
]
default_params = dict(
temperature=0.0, # greedy
max_tokens=20,
)
with monkeypatch.context() as m:
m.setenv("VLLM_ATTENTION_BACKEND", "FLEX_ATTENTION")
# m.setenv("VLLM_KERNEL_OVERRIDE_BATCH_INVARIANT", "1")
outputs = []
for test_preemption in [False, True]:
for executor in ["uni", "mp"]:
for async_scheduling in [False, True]:
cache_arg: dict[str, Any] = (
dict(num_gpu_blocks_override=32)
if test_preemption
else dict(gpu_memory_utilization=0.7)
)
test_config = (
f"executor={executor}, preemption={test_preemption},"
f" async_sched={async_scheduling}"
)
print("-" * 80)
print(f"---- TESTING: {test_config}")
print("-" * 80)
with VllmRunner(
MODEL,
max_model_len=512,
enforce_eager=True,
async_scheduling=async_scheduling,
distributed_executor_backend=executor,
dtype="float32", # avoid precision errors
**cache_arg,
) as vllm_model:
results = []
for override_params in sampling_param_tests:
print(f"----------- RUNNING PARAMS: {override_params}")
results.append(
vllm_model.generate(
example_prompts,
sampling_params=SamplingParams(
**default_params, **override_params
),
)
)
outputs.append((test_config, results))
baseline_config, baseline_tests = outputs[0]
for test_config, test_outputs in outputs[1:]:
for base_outs, test_outs, params in zip(
baseline_tests, test_outputs, sampling_param_tests
):
check_outputs_equal(
outputs_0_lst=base_outs,
outputs_1_lst=test_outs,
name_0=f"baseline=[{baseline_config}], params={params}",
name_1=f"config=[{test_config}], params={params}",
)
print(f"PASSED: config=[{test_config}], params={params}")

View File

@ -754,6 +754,12 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
# Replace the existing block IDs with the new ones.
req_state.block_ids = new_block_ids
if self.use_async_scheduling and num_output_tokens > 0:
# We must recover the output token ids for resumed requests in the
# async scheduling case, so that correct input_ids are obtained.
resumed_token_ids = req_data.resumed_req_token_ids[i]
assert resumed_token_ids is not None
req_state.output_token_ids = resumed_token_ids[-num_output_tokens:]
if req_index is None:
# The request is not in the persistent batch.
# The request was either preempted and resumed later, or was not
@ -991,7 +997,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
self.is_token_ids.copy_to_gpu(total_num_scheduled_tokens)
if num_commmon_tokens == 0:
# No requests in common with the previous iteration
# So input_ids_cpu will have all the input ids.
# So input_ids.cpu will have all the input ids.
return
if indices_match and max_flattened_index == (num_commmon_tokens - 1):
# Common-case optimization: the batch is unchanged
@ -1005,8 +1011,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
if self.enable_prompt_embeds:
self.is_token_ids.gpu[:num_commmon_tokens] = True
return
# Upload the index tensors asynchronously
# so the scatter can be non-blocking.
# Upload the index tensors asynchronously so the scatter can be non-blocking.
input_ids_index_tensor = torch.tensor(
flattened_indices, dtype=torch.int64, pin_memory=self.pin_memory
).to(self.device, non_blocking=True)