[TPU] Use mark_dynamic to reduce compilation time (#7340)

This commit is contained in:
Woosuk Kwon
2024-08-10 18:12:22 -07:00
committed by GitHub
parent 4c5d8e8ea9
commit 90bab18f24
3 changed files with 50 additions and 16 deletions

View File

@ -1,4 +1,4 @@
ARG NIGHTLY_DATE="20240726"
ARG NIGHTLY_DATE="20240808"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
FROM $BASE_IMAGE

View File

@ -56,7 +56,7 @@ First, install the dependencies:
$ pip uninstall torch torch-xla -y
$ # Install PyTorch and PyTorch XLA.
$ export DATE="+20240726"
$ export DATE="+20240808"
$ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-nightly${DATE}-cp310-cp310-linux_x86_64.whl
$ pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-nightly${DATE}-cp310-cp310-linux_x86_64.whl
@ -65,7 +65,7 @@ First, install the dependencies:
$ pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
$ # Install other build dependencies.
$ pip install packaging aiohttp
$ pip install -r requirements-tpu.txt
Next, build vLLM from source. This will only take a few seconds:

View File

@ -147,19 +147,7 @@ class TPUModelRunner(ModelRunnerBase[ModelInputForTPU]):
)
model = model.eval()
xm.wait_device_ops()
model = ModelWrapper(model)
# NOTE(woosuk): There are two stages of compilation: torch.compile and
# XLA compilation. Setting dynamic=True can reduce the torch.compile
# overhead by reusing the FX graph for different shapes.
# However, the XLA graph will still require static shapes and needs to
# be re-compiled for every different shapes. This overhead is inevitable
# in the first run, but can be skipped afterwards as we cache the XLA
# graphs in the disk (VLLM_XLA_CACHE_PATH).
self.model = torch.compile(model,
backend="openxla",
fullgraph=True,
dynamic=True)
self.model = CompiledModelWrapper(model)
def _dummy_run(
self,
@ -697,6 +685,52 @@ class ModelWrapper(nn.Module):
return next_token_ids
class CompiledModelWrapper:
def __init__(self, model: nn.Module):
model = ModelWrapper(model)
self.model = torch.compile(model,
backend="openxla",
fullgraph=True,
dynamic=False)
def __call__(
self,
token_ids: torch.Tensor,
position_ids: torch.Tensor,
attn_metadata: AttentionMetadata,
input_lens: torch.Tensor,
t: torch.Tensor,
p: torch.Tensor,
num_samples: int,
kv_caches: List[Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]],
) -> torch.Tensor:
# NOTE(woosuk): There are two stages of compilation: torch.compile and
# XLA compilation. Using `mark_dynamic` can reduce the torch.compile
# overhead by reusing the FX graph for different shapes.
# However, the XLA graph will still require static shapes and needs to
# be re-compiled for every different shapes. This overhead is inevitable
# in the first run, but can be skipped afterwards as we cache the XLA
# graphs in the disk (VLLM_XLA_CACHE_PATH).
if attn_metadata.num_prefills > 0:
# Prefll
torch._dynamo.mark_dynamic(token_ids, 1)
torch._dynamo.mark_dynamic(position_ids, 1)
torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 1)
else:
# Decode
torch._dynamo.mark_dynamic(token_ids, 0)
torch._dynamo.mark_dynamic(position_ids, 0)
torch._dynamo.mark_dynamic(input_lens, 0)
torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
torch._dynamo.mark_dynamic(attn_metadata.context_lens, 0)
torch._dynamo.mark_dynamic(attn_metadata.block_tables, 0)
torch._dynamo.mark_dynamic(t, 0)
torch._dynamo.mark_dynamic(p, 0)
return self.model(token_ids, position_ids, attn_metadata, input_lens,
t, p, num_samples, kv_caches)
def _get_padded_prefill_len(x: int) -> int:
# NOTE(woosuk): The pallas FlashAttention kernel requires the sequence
# length to be a multiple of 16. We pad the prompt length to the nearest