[Hardware][AMD] integrate aiter chunked prefill into vllm (#18596)

Signed-off-by: fsx950223 <fsx950223@outlook.com>
Signed-off-by: charlifu <charlifu@amd.com>
Co-authored-by: fsx950223 <fsx950223@outlook.com>
Co-authored-by: charlifu <charlifu@amd.com>
This commit is contained in:
Zzz9990
2025-06-18 23:46:51 +08:00
committed by GitHub
parent 735a9de71f
commit 8b6e1d639c
3 changed files with 602 additions and 3 deletions

View File

@ -87,6 +87,7 @@ if TYPE_CHECKING:
VLLM_ROCM_USE_AITER_MOE: bool = True
VLLM_ROCM_USE_AITER_RMSNORM: bool = True
VLLM_ROCM_USE_AITER_MLA: bool = True
VLLM_ROCM_USE_AITER_MHA: bool = True
VLLM_ROCM_USE_SKINNY_GEMM: bool = True
VLLM_ROCM_FP8_PADDING: bool = True
VLLM_ROCM_MOE_PADDING: bool = True
@ -653,6 +654,13 @@ environment_variables: dict[str, Callable[[], Any]] = {
"VLLM_ROCM_USE_AITER_MLA":
lambda: (os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in
("true", "1")),
# Whether to use aiter mha ops.
# By default is enabled.
"VLLM_ROCM_USE_AITER_MHA":
lambda: (os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in
("true", "1")),
# use rocm skinny gemms
"VLLM_ROCM_USE_SKINNY_GEMM":
lambda: (os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in

View File

@ -215,9 +215,15 @@ class RocmPlatform(Platform):
selected_backend = _Backend.ROCM_FLASH
if envs.VLLM_USE_V1:
logger.info("Using Triton Attention backend on V1 engine.")
return ("vllm.v1.attention.backends."
"triton_attn.TritonAttentionBackend")
if envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_MHA \
and on_gfx9():
logger.info("Using Flash Attention backend on V1 engine.")
return ("vllm.v1.attention.backends."
"rocm_aiter_fa.AiterFlashAttentionBackend")
else:
logger.info("Using Triton Attention backend on V1 engine.")
return ("vllm.v1.attention.backends."
"triton_attn.TritonAttentionBackend")
if selected_backend == _Backend.ROCM_FLASH:
if not cls.has_device_capability(90):
# not Instinct series GPUs.

View File

@ -0,0 +1,585 @@
# SPDX-License-Identifier: Apache-2.0
"""Attention layer with AiterFlashAttention."""
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
import torch
from vllm import _custom_ops as ops
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata, AttentionType,
is_quantized_kv_cache)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.v1.attention.backends.flash_attn import (
make_local_attention_virtual_batches)
from vllm.v1.attention.backends.utils import CommonAttentionMetadata
from vllm.v1.kv_cache_interface import AttentionSpec
from vllm.v1.worker.block_table import BlockTable
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
if current_platform.is_rocm():
import aiter
from vllm.triton_utils import tl, triton
from vllm.utils import direct_register_custom_op
@triton.jit
def _vllm_layout_trans_kernel(
k_buffer_ptr,
v_buffer_ptr,
k_values_ptr,
v_values_ptr,
b_query_lens_loc,
b_seq_lens_loc,
block_table,
block_table_stride_0,
E_DIM: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
):
batch_idx = tl.program_id(0)
block_idx = tl.program_id(1)
batch_token_indexes = tl.load(b_seq_lens_loc + batch_idx +
tl.arange(0, 2))
batch_token_start, batch_token_end = tl.split(batch_token_indexes)
seq_len = batch_token_end - batch_token_start
batch_query_indexes = tl.load(b_query_lens_loc + batch_idx +
tl.arange(0, 2))
batch_query_start, batch_query_end = tl.split(batch_query_indexes)
query_len = batch_query_end - batch_query_start
if query_len <= 1:
return
if block_idx * BLOCK_SIZE < seq_len:
block_mask = (block_idx * BLOCK_SIZE +
tl.arange(0, BLOCK_SIZE)[:, None]) < seq_len
kv_idx = tl.load(block_table + batch_idx * block_table_stride_0 +
block_idx)
kv_buffer_off = kv_idx * BLOCK_SIZE * E_DIM + tl.arange(
0, BLOCK_SIZE)[:, None] * E_DIM + tl.arange(0, E_DIM)[None, :]
k_vals = tl.load(k_buffer_ptr + kv_buffer_off,
mask=block_mask,
other=0.0)
v_vals = tl.load(v_buffer_ptr + kv_buffer_off,
mask=block_mask,
other=0.0)
kv_values_off = batch_token_start * E_DIM + \
block_idx * BLOCK_SIZE * E_DIM + \
tl.arange(0, BLOCK_SIZE)[:, None] * E_DIM + \
tl.arange(0, E_DIM)[None, :]
tl.store(k_values_ptr + kv_values_off, k_vals, mask=block_mask)
tl.store(v_values_ptr + kv_values_off, v_vals, mask=block_mask)
def vllm_layout_trans(b_query_lens_loc, b_seq_lens_loc, block_table,
k_buffer, v_buffer, max_seq_len, total_tokens):
H_KV = v_buffer.shape[2]
D = v_buffer.shape[3]
BLOCK_SIZE = v_buffer.shape[1]
dtype = k_buffer.dtype
k_values = torch.empty((total_tokens, H_KV, D),
dtype=dtype,
device="cuda")
v_values = torch.empty((total_tokens, H_KV, D),
dtype=dtype,
device="cuda")
grid = (block_table.shape[0],
(max_seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE)
_vllm_layout_trans_kernel[grid](k_buffer,
v_buffer,
k_values,
v_values,
b_query_lens_loc,
b_seq_lens_loc,
block_table,
block_table.stride(0),
E_DIM=H_KV * D,
BLOCK_SIZE=BLOCK_SIZE)
return k_values, v_values
def flash_attn_varlen_func_impl(
q: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
out: torch.Tensor,
cu_seqlens_q: torch.Tensor,
cu_seqlens_k: torch.Tensor,
total_tokens: int,
max_seqlen_q: int,
max_seqlen_k: int,
softmax_scale: float,
window_size: Optional[list[int]], # -1 means infinite context window
alibi_slopes: Optional[list[float]],
block_table: torch.Tensor,
) -> torch.Tensor:
k, v = vllm_layout_trans(cu_seqlens_q, cu_seqlens_k, block_table,
k_cache, v_cache, max_seqlen_k, total_tokens)
output = aiter.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=cu_seqlens_q,
max_seqlen_q=max_seqlen_q,
min_seqlen_q=1,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
softmax_scale=softmax_scale,
causal=True,
alibi_slopes=alibi_slopes,
window_size=window_size,
out=out,
)
return output
def flash_attn_varlen_func_fake(
q: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
out: torch.Tensor,
cu_seqlens_q: torch.Tensor,
cu_seqlens_k: torch.Tensor,
total_tokens: int,
max_seqlen_q: int,
max_seqlen_k: int,
softmax_scale: float,
window_size: Optional[list[int]], # -1 means infinite context window
alibi_slopes: Optional[list[float]],
block_table: torch.Tensor,
) -> torch.Tensor:
return torch.empty(q.shape[0],
q.shape[1],
v_cache.shape[-2],
dtype=torch.float8_e4m3fnuz,
device="cuda")
direct_register_custom_op("flash_attn_varlen_func",
flash_attn_varlen_func_impl, ["out"],
flash_attn_varlen_func_fake,
dispatch_key=current_platform.dispatch_key)
logger = init_logger(__name__)
class AiterFlashAttentionMetadataBuilder:
def __init__(self, runner: "GPUModelRunner", kv_cache_spec: AttentionSpec,
block_table: BlockTable):
model_config = runner.model_config
self.runner = runner
self.num_heads_q = model_config.get_num_attention_heads(
runner.parallel_config)
self.num_heads_kv = model_config.get_num_kv_heads(
runner.parallel_config)
self.headdim = model_config.get_head_size()
self.block_size = kv_cache_spec.block_size
self.kv_cache_spec = kv_cache_spec
self.block_table = block_table
# Sliding window size to be used with the AOT scheduler will be
# populated on first build() call.
self.aot_sliding_window: Optional[tuple[int, int]] = None
def reorder_batch(self, input_batch: "InputBatch",
scheduler_output: "SchedulerOutput") -> bool:
return False
def build(self, common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata):
num_reqs = common_attn_metadata.num_reqs
num_actual_tokens = common_attn_metadata.num_actual_tokens
max_query_len = common_attn_metadata.max_query_len
max_seq_len = int(self.runner.seq_lens_np[:num_reqs].max())
total_tokens = int(self.runner.seq_lens_np[:num_reqs].sum())
query_start_loc = common_attn_metadata.query_start_loc
seq_lens = common_attn_metadata.seq_lens
block_table = self.block_table
block_table_tensor = block_table.get_device_tensor()[:num_reqs]
block_table.slot_mapping[:num_actual_tokens].copy_(
block_table.slot_mapping_cpu[:num_actual_tokens],
non_blocking=True)
# Fill unused with -1. Needed for reshape_and_cache in full cuda graph
# mode.
block_table.slot_mapping[num_actual_tokens:].fill_(-1)
slot_mapping = block_table.slot_mapping[:num_actual_tokens]
cu_seq_lens = torch.zeros(seq_lens.shape[0] + 1,
dtype=torch.int32,
device="cuda")
torch.cumsum(seq_lens,
dim=0,
dtype=cu_seq_lens.dtype,
out=cu_seq_lens[1:])
def schedule(batch_size, cu_query_lens, max_query_len, seqlens,
max_seq_len, causal):
return None
# for local attention
local_attn_metadata = None
if self.runner.attention_chunk_size is not None:
seqlens_q_local_np, virt_q_cu_seqlens_np, virt_k_seqlens_np, \
virt_block_table_tensor = make_local_attention_virtual_batches(
self.runner.attention_chunk_size,
self.runner.query_start_loc_np[:num_reqs + 1],
self.runner.seq_lens_np[:num_reqs],
block_table_tensor,
self.block_size,
)
local_query_start_loc = torch.from_numpy(virt_q_cu_seqlens_np).to(
self.runner.device, non_blocking=True)
local_seqused_k = torch.from_numpy(virt_k_seqlens_np).to(
self.runner.device, non_blocking=True)
local_max_query_len = seqlens_q_local_np.max()
local_max_seq_len = virt_k_seqlens_np.max()
local_scheduler_metadata = schedule(
batch_size=local_query_start_loc.shape[0] - 1,
cu_query_lens=local_query_start_loc,
max_query_len=local_max_query_len,
seqlens=local_seqused_k,
max_seq_len=local_max_seq_len,
causal=True)
local_attn_metadata = \
AiterFlashAttentionMetadata.LocalAttentionMetadata(
local_query_start_loc=local_query_start_loc,
local_seqused_k=local_seqused_k,
local_block_table=virt_block_table_tensor,
local_max_query_len=local_max_query_len,
local_max_seq_len=local_max_seq_len,
local_scheduler_metadata=local_scheduler_metadata,
)
use_cascade = common_prefix_len > 0
cu_prefix_query_lens = None
prefix_kv_lens = None
suffix_kv_lens = None
attn_metadata = AiterFlashAttentionMetadata(
num_actual_tokens=num_actual_tokens,
max_query_len=max_query_len,
query_start_loc=query_start_loc,
max_seq_len=max_seq_len,
seq_lens=seq_lens,
cu_seq_lens=cu_seq_lens,
total_tokens=total_tokens,
block_table=block_table_tensor,
slot_mapping=slot_mapping,
use_cascade=use_cascade,
common_prefix_len=common_prefix_len,
cu_prefix_query_lens=cu_prefix_query_lens,
prefix_kv_lens=prefix_kv_lens,
suffix_kv_lens=suffix_kv_lens,
local_attn_metadata=local_attn_metadata,
)
return attn_metadata
def can_run_in_cudagraph(
self, common_attn_metadata: CommonAttentionMetadata) -> bool:
# Full CUDA Graph always supported (FA2 support checked separately)
return True
def use_cascade_attention(self, *args, **kwargs) -> bool:
return False
class AiterFlashAttentionBackend(AttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_supported_head_sizes() -> list[int]:
return [32, 64, 96, 128, 160, 192, 224, 256]
@staticmethod
def get_name() -> str:
return "FLASH_ATTN_VLLM_V1"
@staticmethod
def get_impl_cls() -> type["AiterFlashAttentionImpl"]:
return AiterFlashAttentionImpl
@staticmethod
def get_metadata_cls() -> type["AttentionMetadata"]:
return AiterFlashAttentionMetadata
@staticmethod
def get_builder_cls() -> type["AiterFlashAttentionMetadataBuilder"]:
return AiterFlashAttentionMetadataBuilder
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> tuple[int, ...]:
if block_size % 16 != 0:
raise ValueError("Block size must be a multiple of 16.")
return (2, num_blocks, block_size, num_kv_heads, head_size)
@dataclass
class AiterFlashAttentionMetadata:
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
num_actual_tokens: int # Number of tokens excluding padding.
max_query_len: int
query_start_loc: torch.Tensor
max_seq_len: int
seq_lens: torch.Tensor
cu_seq_lens: torch.Tensor
total_tokens: int
block_table: torch.Tensor
slot_mapping: torch.Tensor
# For cascade attention.
use_cascade: bool
common_prefix_len: int
cu_prefix_query_lens: Optional[torch.Tensor]
prefix_kv_lens: Optional[torch.Tensor]
suffix_kv_lens: Optional[torch.Tensor]
# for local attention
@dataclass
class LocalAttentionMetadata:
local_query_start_loc: torch.Tensor
local_seqused_k: torch.Tensor
local_block_table: torch.Tensor
local_max_query_len: int
local_max_seq_len: int
local_scheduler_metadata: Optional[torch.Tensor]
local_attn_metadata: Optional[LocalAttentionMetadata] = None
class AiterFlashAttentionImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
use_irope: bool = False,
) -> None:
if blocksparse_params is not None:
raise ValueError(
"AiterFlashAttention does not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
if sliding_window is None:
self.sliding_window = [-1, -1]
else:
self.sliding_window = [sliding_window - 1, 0]
self.kv_cache_dtype = kv_cache_dtype
if logits_soft_cap is None:
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
logits_soft_cap = 0.
self.logits_soft_cap = logits_soft_cap
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
support_head_sizes = \
AiterFlashAttentionBackend.get_supported_head_sizes()
if head_size not in support_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by "
"AiterFlashAttention. "
f"Supported head sizes are: {support_head_sizes}. "
"Set VLLM_USE_V1=0 to use another attention backend.")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"FlashAttentionImpl")
self.use_irope = use_irope
if is_quantized_kv_cache(self.kv_cache_dtype):
raise NotImplementedError(
"AiterFlashAttention does not support fp8 kv-cache on this "
"device.")
def forward(
self,
layer: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AiterFlashAttentionMetadata,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with AiterFlashAttention.
Args:
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
NOTE: FP8 quantization, flash-attn expect the size of
{q,k,v}_descale to be (num_sequences, num_kv_heads).
We use torch's .expand() to avoid duplicating values
"""
assert output is not None, "Output tensor must be provided."
if output_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for FlashAttentionImpl")
if attn_metadata is None:
# Profiling run.
return output
# IMPORTANT!
# NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
# eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
# in this method. For example, `view` and `slice` (or `[:n]`) operations
# are surprisingly slow even in the case they do not invoke any GPU ops.
# Minimize the PyTorch ops in this method as much as possible.
# Whenever making a change in this method, please benchmark the
# performance to make sure it does not introduce any overhead.
num_actual_tokens = attn_metadata.num_actual_tokens
# Reshape the input keys and values and store them in the cache.
# NOTE(woosuk): Here, key and value are padded while slot_mapping is
# not padded. However, we don't need to do key[:num_actual_tokens] and
# value[:num_actual_tokens] because the reshape_and_cache_flash op uses
# the slot_mapping's shape to determine the number of actual tokens.
key_cache, value_cache = kv_cache.unbind(0)
torch.ops._C_cache_ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping,
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
if self.kv_cache_dtype.startswith("fp8"):
key_cache = key_cache.view(torch.float8_e4m3fnuz)
value_cache = value_cache.view(torch.float8_e4m3fnuz)
num_tokens, num_heads, head_size = query.shape
query, _ = ops.scaled_fp8_quant(
query.reshape(
(num_tokens, num_heads * head_size)).contiguous(),
layer._q_scale)
query = query.reshape((num_tokens, num_heads, head_size))
# Compute attention and update output up to `num_actual_tokens`.
use_local_attn = \
(self.use_irope and attn_metadata.local_attn_metadata is not None)
if not attn_metadata.use_cascade or use_local_attn:
if use_local_attn:
assert attn_metadata.local_attn_metadata is not None
local_metadata = attn_metadata.local_attn_metadata
cu_seqlens_q = local_metadata.local_query_start_loc
seqused_k = local_metadata.local_seqused_k
max_seqlen_q = local_metadata.local_max_query_len
max_seqlen_k = local_metadata.local_max_seq_len
block_table = local_metadata.local_block_table
else:
cu_seqlens_q = attn_metadata.query_start_loc
seqused_k = attn_metadata.seq_lens
max_seqlen_q = attn_metadata.max_query_len
max_seqlen_k = attn_metadata.max_seq_len
block_table = attn_metadata.block_table
if max_seqlen_q > 1:
cu_seq_lens = attn_metadata.cu_seq_lens
total_tokens = attn_metadata.total_tokens
torch.ops.vllm.flash_attn_varlen_func(
query[:num_actual_tokens],
key_cache,
value_cache,
out=output[:num_actual_tokens],
cu_seqlens_q=cu_seqlens_q,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
total_tokens=total_tokens,
softmax_scale=self.scale,
alibi_slopes=self.alibi_slopes,
window_size=self.sliding_window,
block_table=block_table,
cu_seqlens_k=cu_seq_lens,
)
_, num_heads, head_size = query.shape
_PARTITION_SIZE_ROCM = 256
num_seqs = seqused_k.shape[0]
nbyes_per_qo_elem = torch.finfo(output.dtype).bits // 8
max_num_partitions = (max_seqlen_k + _PARTITION_SIZE_ROCM -
1) // _PARTITION_SIZE_ROCM
workspace_buffer = torch.empty(
(num_seqs * num_heads * max_num_partitions * head_size) *
nbyes_per_qo_elem + 2 *
(num_seqs * num_heads * max_num_partitions) * 4,
dtype=torch.uint8,
device=output.device,
)
aiter.paged_attention_v1(
output[:num_actual_tokens],
workspace_buffer,
query[:num_actual_tokens],
key_cache,
value_cache,
self.scale,
block_table,
cu_seqlens_q,
seqused_k,
max_seqlen_k,
self.alibi_slopes,
self.kv_cache_dtype,
"NHD",
self.logits_soft_cap,
layer._k_scale,
layer._v_scale,
None,
_PARTITION_SIZE_ROCM,
)
return output
else:
raise NotImplementedError(
"Cascade attention is not implemented for ROCM AITER")