mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
[Model] Add Qwen2 PRM model support (#12202)
Signed-off-by: Isotr0py <2037008807@qq.com>
This commit is contained in:
@ -470,6 +470,11 @@ of the whole prompt are extracted from the normalized hidden state corresponding
|
|||||||
- `Qwen/Qwen2.5-Math-RM-72B`, etc.
|
- `Qwen/Qwen2.5-Math-RM-72B`, etc.
|
||||||
- ✅︎
|
- ✅︎
|
||||||
- ✅︎
|
- ✅︎
|
||||||
|
* - `Qwen2ForProcessRewardModel`
|
||||||
|
- Qwen2-based
|
||||||
|
- `Qwen/Qwen2.5-Math-PRM-7B`, `Qwen/Qwen2.5-Math-PRM-72B`, etc.
|
||||||
|
- ✅︎
|
||||||
|
- ✅︎
|
||||||
```
|
```
|
||||||
|
|
||||||
If your model is not in the above list, we will try to automatically convert the model using
|
If your model is not in the above list, we will try to automatically convert the model using
|
||||||
|
@ -17,14 +17,15 @@ from ..utils import check_embeddings_close
|
|||||||
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
|
||||||
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
|
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
|
||||||
pytest.param("intfloat/multilingual-e5-large"),
|
pytest.param("intfloat/multilingual-e5-large"),
|
||||||
# [Encoder-decoder]
|
# [Decoder-only]
|
||||||
pytest.param("intfloat/e5-mistral-7b-instruct",
|
|
||||||
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
|
|
||||||
pytest.param("BAAI/bge-multilingual-gemma2",
|
pytest.param("BAAI/bge-multilingual-gemma2",
|
||||||
marks=[pytest.mark.core_model]),
|
marks=[pytest.mark.core_model]),
|
||||||
pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"),
|
pytest.param("intfloat/e5-mistral-7b-instruct",
|
||||||
|
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
|
||||||
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"),
|
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"),
|
||||||
pytest.param("Alibaba-NLP/gte-Qwen2-7B-instruct"),
|
pytest.param("Alibaba-NLP/gte-Qwen2-7B-instruct"),
|
||||||
|
pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"),
|
||||||
|
# [Encoder-decoder]
|
||||||
pytest.param("sentence-transformers/stsb-roberta-base-v2"),
|
pytest.param("sentence-transformers/stsb-roberta-base-v2"),
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
@ -155,6 +155,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
|
|||||||
"MistralModel": _HfExamplesInfo("intfloat/e5-mistral-7b-instruct"),
|
"MistralModel": _HfExamplesInfo("intfloat/e5-mistral-7b-instruct"),
|
||||||
"Qwen2Model": _HfExamplesInfo("ssmits/Qwen2-7B-Instruct-embed-base"),
|
"Qwen2Model": _HfExamplesInfo("ssmits/Qwen2-7B-Instruct-embed-base"),
|
||||||
"Qwen2ForRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-RM-72B"),
|
"Qwen2ForRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-RM-72B"),
|
||||||
|
"Qwen2ForProcessRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-PRM-7B"),
|
||||||
"Qwen2ForSequenceClassification": _HfExamplesInfo("jason9693/Qwen2.5-1.5B-apeach"), # noqa: E501
|
"Qwen2ForSequenceClassification": _HfExamplesInfo("jason9693/Qwen2.5-1.5B-apeach"), # noqa: E501
|
||||||
"RobertaModel": _HfExamplesInfo("sentence-transformers/stsb-roberta-base-v2"), # noqa: E501
|
"RobertaModel": _HfExamplesInfo("sentence-transformers/stsb-roberta-base-v2"), # noqa: E501
|
||||||
"RobertaForMaskedLM": _HfExamplesInfo("sentence-transformers/all-roberta-large-v1"), # noqa: E501
|
"RobertaForMaskedLM": _HfExamplesInfo("sentence-transformers/all-roberta-large-v1"), # noqa: E501
|
||||||
|
@ -12,7 +12,7 @@ from vllm.attention import AttentionMetadata
|
|||||||
from vllm.config import VllmConfig
|
from vllm.config import VllmConfig
|
||||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||||
RowParallelLinear)
|
RowParallelLinear)
|
||||||
from vllm.model_executor.layers.pooler import Pooler, PoolingType
|
from vllm.model_executor.layers.pooler import Pooler, PoolingType, SimplePooler
|
||||||
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
||||||
from vllm.sequence import IntermediateTensors, PoolerOutput
|
from vllm.sequence import IntermediateTensors, PoolerOutput
|
||||||
|
|
||||||
@ -32,7 +32,7 @@ class ReLU(nn.Module):
|
|||||||
return self.activation(input)
|
return self.activation(input)
|
||||||
|
|
||||||
|
|
||||||
class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
|
class Qwen2RewardBaseModel(nn.Module, SupportsLoRA, SupportsPP):
|
||||||
packed_modules_mapping = {
|
packed_modules_mapping = {
|
||||||
"qkv_proj": [
|
"qkv_proj": [
|
||||||
"q_proj",
|
"q_proj",
|
||||||
@ -60,7 +60,6 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
|
|||||||
config = vllm_config.model_config.hf_config
|
config = vllm_config.model_config.hf_config
|
||||||
quant_config = vllm_config.quant_config
|
quant_config = vllm_config.quant_config
|
||||||
lora_config = vllm_config.lora_config
|
lora_config = vllm_config.lora_config
|
||||||
pooler_config = vllm_config.model_config.pooler_config
|
|
||||||
|
|
||||||
self.config = config
|
self.config = config
|
||||||
self.lora_config = lora_config
|
self.lora_config = lora_config
|
||||||
@ -74,14 +73,11 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
|
|||||||
config.hidden_size,
|
config.hidden_size,
|
||||||
quant_config=quant_config),
|
quant_config=quant_config),
|
||||||
ReLU(),
|
ReLU(),
|
||||||
RowParallelLinear(config.hidden_size, 1,
|
RowParallelLinear(config.hidden_size,
|
||||||
|
config.num_labels,
|
||||||
quant_config=quant_config),
|
quant_config=quant_config),
|
||||||
)
|
)
|
||||||
self._pooler = Pooler.from_config_with_defaults(
|
self._pooler: SimplePooler
|
||||||
pooler_config,
|
|
||||||
pooling_type=PoolingType.ALL,
|
|
||||||
normalize=False,
|
|
||||||
softmax=False)
|
|
||||||
self.make_empty_intermediate_tensors = (
|
self.make_empty_intermediate_tensors = (
|
||||||
self.model.make_empty_intermediate_tensors)
|
self.model.make_empty_intermediate_tensors)
|
||||||
|
|
||||||
@ -115,3 +111,31 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
|
|||||||
loader = AutoWeightsLoader(self,
|
loader = AutoWeightsLoader(self,
|
||||||
ignore_unexpected_prefixes=["lm_head."])
|
ignore_unexpected_prefixes=["lm_head."])
|
||||||
return loader.load_weights(weights)
|
return loader.load_weights(weights)
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2ForRewardModel(Qwen2RewardBaseModel):
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config, prefix=""):
|
||||||
|
vllm_config.model_config.hf_config.num_labels = 1
|
||||||
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
||||||
|
pooler_config = vllm_config.model_config.pooler_config
|
||||||
|
self._pooler = Pooler.from_config_with_defaults(
|
||||||
|
pooler_config,
|
||||||
|
pooling_type=PoolingType.ALL,
|
||||||
|
normalize=False,
|
||||||
|
softmax=False)
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2ForProcessRewardModel(Qwen2RewardBaseModel):
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config, prefix=""):
|
||||||
|
vllm_config.model_config.hf_config.num_labels = 2
|
||||||
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
||||||
|
pooler_config = vllm_config.model_config.pooler_config
|
||||||
|
self._pooler = Pooler.from_config_with_defaults(
|
||||||
|
pooler_config,
|
||||||
|
pooling_type=PoolingType.STEP,
|
||||||
|
normalize=False,
|
||||||
|
softmax=True,
|
||||||
|
step_tag_id=151651,
|
||||||
|
)
|
||||||
|
@ -127,6 +127,7 @@ _EMBEDDING_MODELS = {
|
|||||||
"Qwen2Model": ("qwen2", "Qwen2EmbeddingModel"),
|
"Qwen2Model": ("qwen2", "Qwen2EmbeddingModel"),
|
||||||
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
|
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
|
||||||
"Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"),
|
"Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"),
|
||||||
|
"Qwen2ForProcessRewardModel": ("qwen2_rm", "Qwen2ForProcessRewardModel"),
|
||||||
"TeleChat2ForCausalLM": ("telechat2", "TeleChat2ForCausalLM"),
|
"TeleChat2ForCausalLM": ("telechat2", "TeleChat2ForCausalLM"),
|
||||||
# [Multimodal]
|
# [Multimodal]
|
||||||
"LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # noqa: E501
|
"LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # noqa: E501
|
||||||
|
Reference in New Issue
Block a user