[Model] Add Qwen2 PRM model support (#12202)

Signed-off-by: Isotr0py <2037008807@qq.com>
This commit is contained in:
Isotr0py
2025-01-20 14:59:46 +08:00
committed by GitHub
parent 0974c9bc5c
commit 83609791d2
5 changed files with 45 additions and 13 deletions

View File

@ -470,6 +470,11 @@ of the whole prompt are extracted from the normalized hidden state corresponding
- `Qwen/Qwen2.5-Math-RM-72B`, etc.
- ✅︎
- ✅︎
* - `Qwen2ForProcessRewardModel`
- Qwen2-based
- `Qwen/Qwen2.5-Math-PRM-7B`, `Qwen/Qwen2.5-Math-PRM-72B`, etc.
- ✅︎
- ✅︎
```
If your model is not in the above list, we will try to automatically convert the model using

View File

@ -17,14 +17,15 @@ from ..utils import check_embeddings_close
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
pytest.param("intfloat/multilingual-e5-large"),
# [Encoder-decoder]
pytest.param("intfloat/e5-mistral-7b-instruct",
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
# [Decoder-only]
pytest.param("BAAI/bge-multilingual-gemma2",
marks=[pytest.mark.core_model]),
pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"),
pytest.param("intfloat/e5-mistral-7b-instruct",
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"),
pytest.param("Alibaba-NLP/gte-Qwen2-7B-instruct"),
pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"),
# [Encoder-decoder]
pytest.param("sentence-transformers/stsb-roberta-base-v2"),
],
)

View File

@ -155,6 +155,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
"MistralModel": _HfExamplesInfo("intfloat/e5-mistral-7b-instruct"),
"Qwen2Model": _HfExamplesInfo("ssmits/Qwen2-7B-Instruct-embed-base"),
"Qwen2ForRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-RM-72B"),
"Qwen2ForProcessRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-PRM-7B"),
"Qwen2ForSequenceClassification": _HfExamplesInfo("jason9693/Qwen2.5-1.5B-apeach"), # noqa: E501
"RobertaModel": _HfExamplesInfo("sentence-transformers/stsb-roberta-base-v2"), # noqa: E501
"RobertaForMaskedLM": _HfExamplesInfo("sentence-transformers/all-roberta-large-v1"), # noqa: E501

View File

@ -12,7 +12,7 @@ from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.pooler import Pooler, PoolingType
from vllm.model_executor.layers.pooler import Pooler, PoolingType, SimplePooler
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import IntermediateTensors, PoolerOutput
@ -32,7 +32,7 @@ class ReLU(nn.Module):
return self.activation(input)
class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
class Qwen2RewardBaseModel(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
@ -60,7 +60,6 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
pooler_config = vllm_config.model_config.pooler_config
self.config = config
self.lora_config = lora_config
@ -74,14 +73,11 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
config.hidden_size,
quant_config=quant_config),
ReLU(),
RowParallelLinear(config.hidden_size, 1,
RowParallelLinear(config.hidden_size,
config.num_labels,
quant_config=quant_config),
)
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.ALL,
normalize=False,
softmax=False)
self._pooler: SimplePooler
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
@ -115,3 +111,31 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
loader = AutoWeightsLoader(self,
ignore_unexpected_prefixes=["lm_head."])
return loader.load_weights(weights)
class Qwen2ForRewardModel(Qwen2RewardBaseModel):
def __init__(self, *, vllm_config, prefix=""):
vllm_config.model_config.hf_config.num_labels = 1
super().__init__(vllm_config=vllm_config, prefix=prefix)
pooler_config = vllm_config.model_config.pooler_config
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.ALL,
normalize=False,
softmax=False)
class Qwen2ForProcessRewardModel(Qwen2RewardBaseModel):
def __init__(self, *, vllm_config, prefix=""):
vllm_config.model_config.hf_config.num_labels = 2
super().__init__(vllm_config=vllm_config, prefix=prefix)
pooler_config = vllm_config.model_config.pooler_config
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.STEP,
normalize=False,
softmax=True,
step_tag_id=151651,
)

View File

@ -127,6 +127,7 @@ _EMBEDDING_MODELS = {
"Qwen2Model": ("qwen2", "Qwen2EmbeddingModel"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
"Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"),
"Qwen2ForProcessRewardModel": ("qwen2_rm", "Qwen2ForProcessRewardModel"),
"TeleChat2ForCausalLM": ("telechat2", "TeleChat2ForCausalLM"),
# [Multimodal]
"LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # noqa: E501