mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Add missing rocm_skinny_gemms kernel test to CI (#17060)
Signed-off-by: mgoin <mgoin64@gmail.com>
This commit is contained in:
@ -87,3 +87,63 @@ def ref_dynamic_per_tensor_fp8_quant(x: torch.tensor) \
|
||||
ref_out = (as_float32_tensor(x) * ref_iscale).clamp(
|
||||
fp8_traits_min, fp8_traits_max).to(FP8_DTYPE)
|
||||
return ref_out, ref_scale.view((1, ))
|
||||
|
||||
|
||||
def native_w8a8_block_matmul(A: torch.Tensor, B: torch.Tensor,
|
||||
As: torch.Tensor, Bs: torch.Tensor, block_size,
|
||||
output_dtype):
|
||||
"""This function performs matrix multiplication with block-wise
|
||||
quantization using native torch.
|
||||
It is agnostic to the input data type and can be used for both int8 and
|
||||
fp8 data types.
|
||||
|
||||
It takes two input tensors `A` and `B` (int8) with scales `As` and
|
||||
`Bs` (float32).
|
||||
The output is returned in the specified `output_dtype`.
|
||||
"""
|
||||
A = A.to(torch.float32)
|
||||
B = B.to(torch.float32)
|
||||
assert A.shape[-1] == B.shape[-1]
|
||||
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
|
||||
assert len(block_size) == 2
|
||||
block_n, block_k = block_size[0], block_size[1]
|
||||
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
|
||||
assert A.shape[:-1] == As.shape[:-1]
|
||||
|
||||
M = A.numel() // A.shape[-1]
|
||||
N, K = B.shape
|
||||
origin_C_shape = A.shape[:-1] + (N, )
|
||||
A = A.reshape(M, A.shape[-1])
|
||||
As = As.reshape(M, As.shape[-1])
|
||||
n_tiles = (N + block_n - 1) // block_n
|
||||
k_tiles = (K + block_k - 1) // block_k
|
||||
assert n_tiles == Bs.shape[0]
|
||||
assert k_tiles == Bs.shape[1]
|
||||
|
||||
C_shape = (M, N)
|
||||
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
|
||||
|
||||
A_tiles = [
|
||||
A[:, i * block_k:min((i + 1) * block_k, K)] for i in range(k_tiles)
|
||||
]
|
||||
B_tiles = [[
|
||||
B[
|
||||
j * block_n:min((j + 1) * block_n, N),
|
||||
i * block_k:min((i + 1) * block_k, K),
|
||||
] for i in range(k_tiles)
|
||||
] for j in range(n_tiles)]
|
||||
C_tiles = [
|
||||
C[:, j * block_n:min((j + 1) * block_n, N)] for j in range(n_tiles)
|
||||
]
|
||||
As_tiles = [As[:, i:i + 1] for i in range(k_tiles)]
|
||||
|
||||
for i in range(k_tiles):
|
||||
for j in range(n_tiles):
|
||||
a = A_tiles[i]
|
||||
b = B_tiles[j][i]
|
||||
c = C_tiles[j]
|
||||
s = As_tiles[i] * Bs[j][i]
|
||||
c[:, :] += torch.matmul(a, b.t()) * s
|
||||
|
||||
C = C.reshape(origin_C_shape).to(output_dtype)
|
||||
return C
|
||||
|
@ -6,7 +6,7 @@ import itertools
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils_block import native_w8a8_block_matmul
|
||||
from tests.kernels.quant_utils import native_w8a8_block_matmul
|
||||
from vllm.config import VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import fused_moe
|
||||
|
@ -6,7 +6,7 @@ import itertools
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils_block import native_w8a8_block_matmul
|
||||
from tests.kernels.quant_utils import native_w8a8_block_matmul
|
||||
from vllm.config import VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import fused_moe
|
||||
|
@ -1,63 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def native_w8a8_block_matmul(A: torch.Tensor, B: torch.Tensor,
|
||||
As: torch.Tensor, Bs: torch.Tensor, block_size,
|
||||
output_dtype):
|
||||
"""This function performs matrix multiplication with block-wise
|
||||
quantization using native torch.
|
||||
It is agnostic to the input data type and can be used for both int8 and
|
||||
fp8 data types.
|
||||
|
||||
It takes two input tensors `A` and `B` (int8) with scales `As` and
|
||||
`Bs` (float32).
|
||||
The output is returned in the specified `output_dtype`.
|
||||
"""
|
||||
A = A.to(torch.float32)
|
||||
B = B.to(torch.float32)
|
||||
assert A.shape[-1] == B.shape[-1]
|
||||
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
|
||||
assert len(block_size) == 2
|
||||
block_n, block_k = block_size[0], block_size[1]
|
||||
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
|
||||
assert A.shape[:-1] == As.shape[:-1]
|
||||
|
||||
M = A.numel() // A.shape[-1]
|
||||
N, K = B.shape
|
||||
origin_C_shape = A.shape[:-1] + (N, )
|
||||
A = A.reshape(M, A.shape[-1])
|
||||
As = As.reshape(M, As.shape[-1])
|
||||
n_tiles = (N + block_n - 1) // block_n
|
||||
k_tiles = (K + block_k - 1) // block_k
|
||||
assert n_tiles == Bs.shape[0]
|
||||
assert k_tiles == Bs.shape[1]
|
||||
|
||||
C_shape = (M, N)
|
||||
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
|
||||
|
||||
A_tiles = [
|
||||
A[:, i * block_k:min((i + 1) * block_k, K)] for i in range(k_tiles)
|
||||
]
|
||||
B_tiles = [[
|
||||
B[
|
||||
j * block_n:min((j + 1) * block_n, N),
|
||||
i * block_k:min((i + 1) * block_k, K),
|
||||
] for i in range(k_tiles)
|
||||
] for j in range(n_tiles)]
|
||||
C_tiles = [
|
||||
C[:, j * block_n:min((j + 1) * block_n, N)] for j in range(n_tiles)
|
||||
]
|
||||
As_tiles = [As[:, i:i + 1] for i in range(k_tiles)]
|
||||
|
||||
for i in range(k_tiles):
|
||||
for j in range(n_tiles):
|
||||
a = A_tiles[i]
|
||||
b = B_tiles[j][i]
|
||||
c = C_tiles[j]
|
||||
s = As_tiles[i] * Bs[j][i]
|
||||
c[:, :] += torch.matmul(a, b.t()) * s
|
||||
|
||||
C = C.reshape(origin_C_shape).to(output_dtype)
|
||||
return C
|
Reference in New Issue
Block a user