mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 23:03:52 +08:00
[V1] Fix yapf (#11538)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
@ -2,8 +2,7 @@ from typing import List, Set, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.model_executor.layers.utils import (
|
||||
apply_penalties as _apply_penalties)
|
||||
from vllm.model_executor.layers.utils import apply_penalties
|
||||
from vllm.utils import is_pin_memory_available, make_tensor_with_pad
|
||||
|
||||
|
||||
@ -17,27 +16,30 @@ def apply_min_token_penalties(logits: torch.Tensor,
|
||||
"""
|
||||
min_tokens_logits_to_penalize: List[Tuple[int, int]] = []
|
||||
for index, min_token in enumerate(min_tokens):
|
||||
if (len(output_token_ids[index]) < min_token):
|
||||
if len(output_token_ids[index]) < min_token:
|
||||
for stop_token_id in stop_token_ids[index]:
|
||||
min_tokens_logits_to_penalize.append((index, stop_token_id))
|
||||
if min_tokens_logits_to_penalize:
|
||||
logits[tuple(zip(*min_tokens_logits_to_penalize))] = -float("inf")
|
||||
|
||||
|
||||
def apply_penalties(logits: torch.Tensor, prompt_token_ids: torch.Tensor,
|
||||
presence_penalties: torch.Tensor,
|
||||
frequency_penalties: torch.Tensor,
|
||||
repetition_penalties: torch.Tensor,
|
||||
output_token_ids: List[List[int]]) -> torch.Tensor:
|
||||
def apply_all_penalties(
|
||||
logits: torch.Tensor,
|
||||
prompt_token_ids: torch.Tensor,
|
||||
presence_penalties: torch.Tensor,
|
||||
frequency_penalties: torch.Tensor,
|
||||
repetition_penalties: torch.Tensor,
|
||||
output_token_ids: List[List[int]],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Applies presence, frequency and repetition penalties to the logits.
|
||||
"""
|
||||
_, vocab_size = logits.shape
|
||||
output_tokens_t = _convert_to_tensors(output_token_ids, vocab_size,
|
||||
logits.device)
|
||||
return _apply_penalties(logits, prompt_token_ids, output_tokens_t,
|
||||
presence_penalties, frequency_penalties,
|
||||
repetition_penalties)
|
||||
return apply_penalties(logits, prompt_token_ids, output_tokens_t,
|
||||
presence_penalties, frequency_penalties,
|
||||
repetition_penalties)
|
||||
|
||||
|
||||
def _convert_to_tensors(output_token_ids: List[List[int]], vocab_size: int,
|
||||
|
@ -6,8 +6,8 @@ import torch.nn as nn
|
||||
|
||||
from vllm.v1.outputs import SamplerOutput
|
||||
from vllm.v1.sample.metadata import SamplingMetadata
|
||||
from vllm.v1.sample.ops.penalties import (apply_min_token_penalties,
|
||||
apply_penalties)
|
||||
from vllm.v1.sample.ops.penalties import (apply_all_penalties,
|
||||
apply_min_token_penalties)
|
||||
from vllm.v1.sample.ops.topk_topp_sampler import TopKTopPSampler
|
||||
|
||||
_SAMPLING_EPS = 1e-5
|
||||
@ -127,10 +127,10 @@ class Sampler(nn.Module):
|
||||
sampling_metadata.min_tokens)
|
||||
if not sampling_metadata.no_penalties:
|
||||
assert sampling_metadata.prompt_token_ids is not None
|
||||
logits = apply_penalties(logits,
|
||||
sampling_metadata.prompt_token_ids,
|
||||
sampling_metadata.presence_penalties,
|
||||
sampling_metadata.frequency_penalties,
|
||||
sampling_metadata.repetition_penalties,
|
||||
sampling_metadata.output_token_ids)
|
||||
logits = apply_all_penalties(
|
||||
logits, sampling_metadata.prompt_token_ids,
|
||||
sampling_metadata.presence_penalties,
|
||||
sampling_metadata.frequency_penalties,
|
||||
sampling_metadata.repetition_penalties,
|
||||
sampling_metadata.output_token_ids)
|
||||
return logits
|
||||
|
Reference in New Issue
Block a user