[Model] Extend Ultravox to accept audio longer than 30s (#13631)

Signed-off-by: Farzad Abdolhosseini <farzad@fixie.ai>
This commit is contained in:
Farzad Abdolhosseini
2025-03-11 19:27:10 -07:00
committed by GitHub
parent 4a42b9f5d6
commit 80e78d02ac
4 changed files with 231 additions and 79 deletions

View File

@ -15,7 +15,7 @@ from ....conftest import HfRunner, VllmRunner
from ....utils import RemoteOpenAIServer
from ...utils import check_logprobs_close
MODEL_NAME = "fixie-ai/ultravox-v0_4"
MODEL_NAME = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
AudioTuple = tuple[np.ndarray, int]

View File

@ -1,6 +1,8 @@
# SPDX-License-Identifier: Apache-2.0
import copy
from functools import partial
from typing import Optional
import numpy as np
import pytest
@ -21,6 +23,7 @@ def _test_processing_correctness(
hit_rate: float,
num_batches: int,
simplify_rate: float,
ignore_mm_keys: Optional[list[str]] = None,
):
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
model_info.check_available_online(on_fail="skip")
@ -123,8 +126,10 @@ def _test_processing_correctness(
hf_processor_mm_kwargs={},
)
assert baseline_result == cached_result, (
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
assert _drop_mm_kwargs_keys(
baseline_result, ignore_mm_keys) == _drop_mm_kwargs_keys(
cached_result, ignore_mm_keys), (
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
baseline_tokenized_result = baseline_processor.apply(
tokenizer.encode(prompt, **tokenizer_encode_kwargs),
@ -132,8 +137,10 @@ def _test_processing_correctness(
hf_processor_mm_kwargs={},
)
assert baseline_result == baseline_tokenized_result, (
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
assert _drop_mm_kwargs_keys(
baseline_result, ignore_mm_keys) == _drop_mm_kwargs_keys(
baseline_tokenized_result, ignore_mm_keys), (
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
cached_tokenized_result = cached_processor.apply(
tokenizer.encode(prompt, **tokenizer_encode_kwargs),
@ -141,8 +148,10 @@ def _test_processing_correctness(
hf_processor_mm_kwargs={},
)
assert cached_result == cached_tokenized_result, (
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
assert _drop_mm_kwargs_keys(
cached_result, ignore_mm_keys) == _drop_mm_kwargs_keys(
cached_tokenized_result, ignore_mm_keys), (
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
# yapf: disable
@ -173,7 +182,7 @@ def _test_processing_correctness(
"Qwen/Qwen2-VL-2B-Instruct",
"Qwen/Qwen2.5-VL-3B-Instruct",
"Qwen/Qwen2-Audio-7B-Instruct",
"fixie-ai/ultravox-v0_4",
"fixie-ai/ultravox-v0_5-llama-3_2-1b",
"openai/whisper-large-v3",
"google/paligemma-3b-mix-224",
"google/paligemma2-3b-ft-docci-448",
@ -188,11 +197,19 @@ def test_processing_correctness(
num_batches: int,
simplify_rate: float,
):
ignore_mm_keys = None
if 'ultravox' in model_id:
# In Ultravox, the audio_features can be different depending on padding
# The slight difference should not be a problem though, since
# attention_mask lets us ignore the difference.
ignore_mm_keys = ['audio_features']
_test_processing_correctness(
model_id,
hit_rate=hit_rate,
num_batches=num_batches,
simplify_rate=simplify_rate,
ignore_mm_keys=ignore_mm_keys,
)
@ -221,3 +238,29 @@ def test_processing_correctness_phi3v(
num_batches=num_batches,
simplify_rate=simplify_rate,
)
def _drop_mm_kwargs_keys(result: dict,
ignore_mm_keys: Optional[list[str]] = None) -> dict:
"""Drop specified keys from result['mm_kwargs'].
This is mainly to avoid doing exact match of audio_features in ultravox.
Args:
result: Result to drop keys from
ignore_mm_keys: List of keys to ignore, e.g. ['audio_features']
"""
if not ignore_mm_keys:
return result
if 'mm_kwargs' in result:
result = copy.deepcopy(result)
mm_kwargs = result['mm_kwargs']
for key in ignore_mm_keys:
mm_kwargs.pop(key, None)
for items in mm_kwargs._items_by_modality.values():
for item in items:
for key in ignore_mm_keys:
item.pop(key, None)
return result

View File

@ -284,8 +284,7 @@ _MULTIMODAL_EXAMPLE_MODELS = {
"Qwen2VLForConditionalGeneration": _HfExamplesInfo("Qwen/Qwen2-VL-2B-Instruct"), # noqa: E501
"Qwen2_5_VLForConditionalGeneration": _HfExamplesInfo("Qwen/Qwen2.5-VL-3B-Instruct", # noqa: E501
min_transformers_version="4.49"), # noqa: E501
"UltravoxModel": _HfExamplesInfo("fixie-ai/ultravox-v0_4",
extras={"v0.5": "fixie-ai/ultravox-v0_5-llama-3_2-1b"}, # noqa: E501
"UltravoxModel": _HfExamplesInfo("fixie-ai/ultravox-v0_5-llama-3_2-1b", # noqa: E501
trust_remote_code=True),
# [Encoder-decoder]
# Florence-2 uses BartFastTokenizer which can't be loaded from AutoTokenizer

View File

@ -5,7 +5,7 @@
import math
from collections.abc import Iterable, Mapping, Sequence
from functools import cached_property
from typing import Any, Literal, Optional, Set, Tuple, TypedDict, Union
from typing import Any, List, Literal, Optional, Set, Tuple, TypedDict, Union
import torch
import torch.utils.checkpoint
@ -44,12 +44,23 @@ from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
_AUDIO_PLACEHOLDER_OVERRIDE = "<|reserved_special_token_0|>"
_AUDIO_PLACEHOLDER_TOKEN = 128002
_AUDIO_TOKENS_PER_SECOND = 6.25
_MAX_ENCODER_BATCH_SIZE = 16
class UltravoxAudioFeatureInputs(TypedDict):
type: Literal["audio_features"]
data: NestedTensors
"""Shape: `(batch_size, num_audios, 80, M)`"""
"""Shape: `(batch_size, num_chunks, 80, M)`"""
lens: NestedTensors
"""
Length of the audio frames. Used for attention mask in WhisperEncoder.
Shape: `(batch_size, num_chunks)`
"""
token_len: NestedTensors
"""
Length of the audio tokens. Used for flattening the audio features.
Shape: `(batch_size, num_chunks)`
"""
class UltravoxAudioEmbeddingInputs(TypedDict):
@ -78,6 +89,7 @@ class UltravoxProcessingInfo(BaseProcessingInfo):
# token, thus we override placeholder with a reserved special
# token.
hf_processor.audio_token_replacement = _AUDIO_PLACEHOLDER_OVERRIDE
hf_processor.audio_replacement_token_id = _AUDIO_PLACEHOLDER_TOKEN
return hf_processor
def get_feature_extractor(
@ -104,7 +116,7 @@ class UltravoxProcessingInfo(BaseProcessingInfo):
max_audio_tokens = math.ceil(feature_extractor.chunk_length *
_AUDIO_TOKENS_PER_SECOND)
return {"audio": max_audio_tokens}
return {"audio": max_audio_tokens * _MAX_ENCODER_BATCH_SIZE}
class UltravoxDummyInputsBuilder(BaseDummyInputsBuilder[UltravoxProcessingInfo]
@ -118,7 +130,8 @@ class UltravoxDummyInputsBuilder(BaseDummyInputsBuilder[UltravoxProcessingInfo]
feature_extractor = self.info.get_feature_extractor()
sampling_rate = feature_extractor.sampling_rate
audio_len = feature_extractor.chunk_length * sampling_rate
audio_len = (feature_extractor.chunk_length * sampling_rate *
_MAX_ENCODER_BATCH_SIZE)
num_audios = mm_counts.get("audio", 0)
mm_data = {
@ -160,41 +173,38 @@ class UltravoxMultiModalProcessor(
mm_kwargs = dict(
**mm_kwargs,
sampling_rate=feature_extractor.sampling_rate,
include_audio_num_chunks=True,
)
# Ultravox processor doesn't support multiple inputs,
# therefore we need to input text and audio one by one
audio_features, audio_token_len = [], []
shared_outputs = {}
for audio in audios:
# NOTE: Ultravox processor accepts "audio" instead of "audios"
item_processor_data = dict(**mm_data, audio=audio)
item_processor_data = dict(**mm_data, audios=audios)
item_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=item_processor_data,
mm_kwargs=mm_kwargs,
)
audio_features.append(item_outputs.pop("audio_values")[0])
audio_token_len.append(item_outputs.pop("audio_token_len").item())
shared_outputs = item_outputs
combined_outputs = dict(
**shared_outputs,
audio_features=audio_features,
audio_token_len=audio_token_len,
output = super()._call_hf_processor(
prompt=prompt,
mm_data=item_processor_data,
mm_kwargs=mm_kwargs,
)
return BatchFeature(combined_outputs)
output['audio_features'] = output.pop('audio_values')
return output
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_chunks = hf_inputs.get('audio_num_chunks', torch.zeros(0))
return dict(
audio_features=MultiModalFieldConfig.batched("audio"),
audio_token_len=MultiModalFieldConfig.batched("audio"),
# to handle longer than 30s audio, each audio might be split
# into multiple chunks as such, their batch dimension can be
# higher than the number of audio samples
audio_features=MultiModalFieldConfig.flat_from_sizes(
"audio", num_chunks),
audio_token_len=MultiModalFieldConfig.flat_from_sizes(
"audio", num_chunks),
audio_lens=MultiModalFieldConfig.flat_from_sizes(
"audio", num_chunks),
# num_chunks can convert audio_chunked to audio batch dimension
audio_num_chunks=MultiModalFieldConfig.batched("audio"),
audio_embeds=MultiModalFieldConfig.batched("audio"),
)
@ -205,14 +215,23 @@ class UltravoxMultiModalProcessor(
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
tokenizer = self.info.get_tokenizer()
vocab = tokenizer.get_vocab()
replacement_id = vocab[
hf_processor.audio_token_replacement] # type: ignore
replacement_id = hf_processor.audio_replacement_token_id # type: ignore
# Each audio can be split into multiple chunks.
# chunks_start_idx[i] indicates the start index of the chunks
# belonging to the i-th audio.
num_chunks = out_mm_kwargs.get("audio_num_chunks", torch.zeros(0))
chunks_start_idx: torch.Tensor = torch.cumsum(num_chunks,
dim=0,
dtype=torch.int32)
chunks_start_idx = torch.cat(
[torch.tensor([0], dtype=torch.int32), chunks_start_idx])
def get_replacement_ultravox(item_idx: int):
audio_token_len = out_mm_kwargs["audio_token_len"][item_idx]
start = chunks_start_idx[item_idx]
end = chunks_start_idx[item_idx + 1]
audio_token_len = out_mm_kwargs["audio_token_len"][start:end].sum()
return [replacement_id] * int(audio_token_len) # type: ignore
return [
@ -304,12 +323,49 @@ class ModifiedWhisperEncoder(WhisperEncoder):
base_model_prefix = "model.encoder"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.config.is_decoder = False
@property
def max_context_length(self):
return (self.config.max_source_positions * self.conv1.stride[0] *
self.conv2.stride[0])
def get_attention_mask_by_audio_len(self,
audio_lens: Optional[torch.Tensor],
hidden_states: torch.Tensor):
"""
Create attention mask based on audio lengths to mask out padding tokens
For each sample in batch:
- Convert raw audio length to feature length after convolutions
- Create bool mask: True for valid positions and False for padding
- Convert to attention mask format expected by transformer layers
(1.0 for positions to attend to, large negative for positions to ignore)
This masking ensures consistent behavior between training and inference
by preventing the model from attending to padding tokens in both cases
"""
if audio_lens is None:
return None
audio_feature_len = self._get_feat_extract_output_lengths(audio_lens)
max_seq_len = hidden_states.shape[1]
attention_mask = torch.arange(max_seq_len,
device=hidden_states.device)[None, :].lt(
audio_feature_len.view(-1, 1))
attention_mask = self.get_extended_attention_mask(
attention_mask,
None,
dtype=hidden_states.dtype,
)
return attention_mask
def forward(
self,
input_features,
input_features: torch.Tensor,
audio_lens: Optional[torch.Tensor] = None,
):
expected_seq_length = (self.config.max_source_positions *
self.conv1.stride[0] * self.conv2.stride[0])
expected_seq_length = self.max_context_length
if input_features.shape[-1] > expected_seq_length:
raise ValueError(
f"Whisper expects the mel input features to be of length "
@ -328,10 +384,13 @@ class ModifiedWhisperEncoder(WhisperEncoder):
p=self.dropout,
training=self.training)
attention_mask = self.get_attention_mask_by_audio_len(
audio_lens, hidden_states)
for encoder_layer in self.layers:
layer_outputs = encoder_layer(
hidden_states,
None,
attention_mask,
layer_head_mask=None,
)
@ -409,17 +468,34 @@ class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
)
def _audio_features_to_embeddings(
self, input_features: torch.Tensor) -> torch.Tensor:
audio_input = input_features.to(self.audio_tower.dtype)
audio_features = self.audio_tower(audio_input)
audio_features = audio_features.to(self.audio_tower.dtype)
audio_embeddings = self.multi_modal_projector(audio_features)
self, input_features: torch.Tensor,
audio_lens: torch.Tensor) -> torch.Tensor:
audio_features = input_features.to(self.audio_tower.dtype)
batch_size = audio_features.size(0)
audio_embeddings = []
# Process audio features in batches to keep memory usage predictable
for start in range(0, batch_size, _MAX_ENCODER_BATCH_SIZE):
end = min(start + _MAX_ENCODER_BATCH_SIZE, batch_size)
# Process through audio tower
batch_features = self.audio_tower(audio_features[start:end],
audio_lens[start:end])
batch_features = batch_features.to(self.audio_tower.dtype)
# Process through projector
batch_embeddings = self.multi_modal_projector(batch_features)
audio_embeddings.append(batch_embeddings)
# Concatenate results
audio_embeddings = torch.cat(audio_embeddings, dim=0)
return audio_embeddings
def _parse_and_validate_audio_input(
self, **kwargs: object) -> Optional[UltravoxAudioInputs]:
audio_features = kwargs.pop("audio_features", None)
audio_embeds = kwargs.pop("audio_embeds", None)
audio_lens = kwargs.pop("audio_lens", None)
audio_token_len = kwargs.pop("audio_token_len", None)
if audio_features is None and audio_embeds is None:
return None
@ -430,7 +506,9 @@ class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
f"Got type: {type(audio_features)}")
return UltravoxAudioFeatureInputs(type="audio_features",
data=audio_features)
data=audio_features,
lens=audio_lens,
token_len=audio_token_len)
if audio_embeds is not None:
if not isinstance(audio_embeds, (torch.Tensor, list)):
@ -447,34 +525,34 @@ class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
if audio_input["type"] == "audio_embeds":
return audio_input["data"]
audio_features = audio_input["data"]
if isinstance(audio_features, torch.Tensor):
# Combine the B and N dimensions for the encoder/projector
flattened = flatten_bn(audio_features)
flattened_embeddings = self._audio_features_to_embeddings(
flattened)
# Pad and concatenate audio features
# [[B1, 80, M1], [B2, 80, M2]] -> [B1+B2, 80, max(M1, M2)]
audio_features = pad_and_concat_to_dim3(audio_input["data"])
# Restore the original dimensions
embeddings = flattened_embeddings.unflatten(
0, audio_features.shape[:2])
return embeddings
if isinstance(audio_input['lens'], list):
# [B1, B2] -> [B1+B2]
audio_lens = torch.cat(audio_input['lens'])
audio_token_len = torch.cat(audio_input['token_len'])
else:
audio_lens = flatten_bn(audio_input['lens'])
audio_token_len = flatten_bn(audio_input['token_len'])
result = []
# TODO: Batch heterogeneous tensors through the encoder/projector
for audio_features_item in audio_features:
if isinstance(audio_features_item, torch.Tensor):
result.append(
self._audio_features_to_embeddings(audio_features_item))
else:
embeddings = [
# Add a batch dimension to embed it, then remove it.
self._audio_features_to_embeddings(tensor.unsqueeze(0)
).squeeze(0)
for tensor in audio_features_item
]
result.append(embeddings)
embeddings = self._audio_features_to_embeddings(
audio_features, audio_lens)
return result
# We should flatten and concatenate embeddings based on token lengths
# For example, with token_len = [4, 2, 3], flattened_embeddings will be
# concat(embeddings[0][:4], embeddings[1][:2], embeddings[2][:3])
# Create a mask of valid indices based on token lengths
max_len = embeddings.shape[1]
indices = torch.arange(max_len, device=embeddings.device).expand(
embeddings.shape[0], -1)
mask = indices < audio_token_len[:, None]
# Apply mask and flatten
flattened_embeddings = embeddings[mask]
return flattened_embeddings
def get_multimodal_embeddings(
self, **kwargs
@ -521,7 +599,11 @@ class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
with the `input_ids`.
Args:
audio_features: A batch of audio inputs [B, N, 80, M].
audio_features: A batch of audio input chunks [B, N, 80, M].
audio_lens: Length of audio frames for each audio chunk [B].
audio_token_len: Length of audio tokens for each audio chunk [B'].
Note: batch dim is different from batch dim in audio chunks.
"""
if intermediate_tensors is not None:
@ -560,3 +642,31 @@ class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
loader = AutoWeightsLoader(self,
ignore_unexpected_prefixes=["audio_tower."])
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def pad_and_concat_to_dim3(
features: Union[torch.Tensor, List[torch.Tensor], List[List[torch.Tensor]]]
) -> torch.Tensor:
"""
Pad and concatenate a list of tensors.
output:
Tensor of shape [B, C, M] where M is the maximum length of the input
tensors, B is the sum of the batch sizes of the input tensors.
C must be the same for all input tensors.
"""
if isinstance(features, torch.Tensor):
if features.ndim > 3:
# Flatten [B, N, 80, M] -> [B * N, 80, M]
features = flatten_bn(features)
return features
features = [pad_and_concat_to_dim3(f) for f in features]
max_len = max(f.shape[-1] for f in features)
# Ensure all features have dim=3
features = [f.view(-1, *f.shape[-2:]) for f in features]
# Pad and oncatenate:
# [[B1, 80, M1], [B2, 80, M2]] -> [B1+B2, 80, max(M1, M2)]
features = [F.pad(f, (0, max_len - f.shape[-1])) for f in features]
return torch.cat(features)