[doc] Add RAG Integration example (#17692)

Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
Reid
2025-05-07 00:10:23 +08:00
committed by GitHub
parent aabcd2cae3
commit 7525d5f3d5
4 changed files with 551 additions and 0 deletions

View File

@ -11,6 +11,7 @@ helm
lws
modal
open-webui
retrieval_augmented_generation
skypilot
streamlit
triton

View File

@ -0,0 +1,84 @@
(deployment-retrieval-augmented-generation)=
# Retrieval-Augmented Generation
[Retrieval-augmented generation (RAG)](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) is a technique that enables generative artificial intelligence (Gen AI) models to retrieve and incorporate new information. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to supplement information from its pre-existing training data. This allows LLMs to use domain-specific and/or updated information. Use cases include providing chatbot access to internal company data or generating responses based on authoritative sources.
Here are the integrations:
- vLLM + [langchain](https://github.com/langchain-ai/langchain) + [milvus](https://github.com/milvus-io/milvus)
- vLLM + [llamaindex](https://github.com/run-llama/llama_index) + [milvus](https://github.com/milvus-io/milvus)
## vLLM + langchain
### Prerequisites
- Setup vLLM and langchain environment
```console
pip install -U vllm \
langchain_milvus langchain_openai \
langchain_community beautifulsoup4 \
langchain-text-splitters
```
### Deploy
- Start the vLLM server with the supported embedding model, e.g.
```console
# Start embedding service (port 8000)
vllm serve ssmits/Qwen2-7B-Instruct-embed-base
```
- Start the vLLM server with the supported chat completion model, e.g.
```console
# Start chat service (port 8001)
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
```
- Use the script: <gh-file:examples/online_serving/retrieval_augmented_generation_with_langchain.py>
- Run the script
```python
python retrieval_augmented_generation_with_langchain.py
```
## vLLM + llamaindex
### Prerequisites
- Setup vLLM and llamaindex environment
```console
pip install vllm \
llama-index llama-index-readers-web \
llama-index-llms-openai-like \
llama-index-embeddings-openai-like \
llama-index-vector-stores-milvus \
```
### Deploy
- Start the vLLM server with the supported embedding model, e.g.
```console
# Start embedding service (port 8000)
vllm serve ssmits/Qwen2-7B-Instruct-embed-base
```
- Start the vLLM server with the supported chat completion model, e.g.
```console
# Start chat service (port 8001)
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
```
- Use the script: <gh-file:examples/online_serving/retrieval_augmented_generation_with_llamaindex.py>
- Run the script
```python
python retrieval_augmented_generation_with_llamaindex.py
```

View File

@ -0,0 +1,249 @@
# SPDX-License-Identifier: Apache-2.0
"""
Retrieval Augmented Generation (RAG) Implementation with Langchain
==================================================================
This script demonstrates a RAG implementation using LangChain, Milvus
and vLLM. RAG enhances LLM responses by retrieving relevant context
from a document collection.
Features:
- Web content loading and chunking
- Vector storage with Milvus
- Embedding generation with vLLM
- Question answering with context
Prerequisites:
1. Install dependencies:
pip install -U vllm \
langchain_milvus langchain_openai \
langchain_community beautifulsoup4 \
langchain-text-splitters
2. Start services:
# Start embedding service (port 8000)
vllm serve ssmits/Qwen2-7B-Instruct-embed-base
# Start chat service (port 8001)
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
Usage:
python retrieval_augmented_generation_with_langchain.py
Notes:
- Ensure both vLLM services are running before executing
- Default ports: 8000 (embedding), 8001 (chat)
- First run may take time to download models
"""
import argparse
from argparse import Namespace
from typing import Any
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_milvus import Milvus
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
def load_and_split_documents(config: dict[str, Any]):
"""
Load and split documents from web URL
"""
try:
loader = WebBaseLoader(web_paths=(config["url"], ))
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=config["chunk_size"],
chunk_overlap=config["chunk_overlap"],
)
return text_splitter.split_documents(docs)
except Exception as e:
print(f"Error loading document from {config['url']}: {str(e)}")
raise
def init_vectorstore(config: dict[str, Any], documents: list[Document]):
"""
Initialize vector store with documents
"""
return Milvus.from_documents(
documents=documents,
embedding=OpenAIEmbeddings(
model=config["embedding_model"],
openai_api_key=config["vllm_api_key"],
openai_api_base=config["vllm_embedding_endpoint"],
),
connection_args={"uri": config["uri"]},
drop_old=True,
)
def init_llm(config: dict[str, Any]):
"""
Initialize llm
"""
return ChatOpenAI(
model=config["chat_model"],
openai_api_key=config["vllm_api_key"],
openai_api_base=config["vllm_chat_endpoint"],
)
def get_qa_prompt():
"""
Get question answering prompt template
"""
template = """You are an assistant for question-answering tasks.
Use the following pieces of retrieved context to answer the question.
If you don't know the answer, just say that you don't know.
Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
"""
return PromptTemplate.from_template(template)
def format_docs(docs: list[Document]):
"""
Format documents for prompt
"""
return "\n\n".join(doc.page_content for doc in docs)
def create_qa_chain(retriever: Any, llm: ChatOpenAI, prompt: PromptTemplate):
"""
Set up question answering chain
"""
return ({
"context": retriever | format_docs,
"question": RunnablePassthrough(),
}
| prompt
| llm
| StrOutputParser())
def get_parser() -> argparse.ArgumentParser:
"""
Parse command line arguments
"""
parser = argparse.ArgumentParser(description='RAG with vLLM and langchain')
# Add command line arguments
parser.add_argument('--vllm-api-key',
default="EMPTY",
help='API key for vLLM compatible services')
parser.add_argument('--vllm-embedding-endpoint',
default="http://localhost:8000/v1",
help='Base URL for embedding service')
parser.add_argument('--vllm-chat-endpoint',
default="http://localhost:8001/v1",
help='Base URL for chat service')
parser.add_argument('--uri',
default="./milvus.db",
help='URI for Milvus database')
parser.add_argument(
'--url',
default=("https://docs.vllm.ai/en/latest/getting_started/"
"quickstart.html"),
help='URL of the document to process')
parser.add_argument('--embedding-model',
default="ssmits/Qwen2-7B-Instruct-embed-base",
help='Model name for embeddings')
parser.add_argument('--chat-model',
default="qwen/Qwen1.5-0.5B-Chat",
help='Model name for chat')
parser.add_argument('-i',
'--interactive',
action='store_true',
help='Enable interactive Q&A mode')
parser.add_argument('-k',
'--top-k',
type=int,
default=3,
help='Number of top results to retrieve')
parser.add_argument('-c',
'--chunk-size',
type=int,
default=1000,
help='Chunk size for document splitting')
parser.add_argument('-o',
'--chunk-overlap',
type=int,
default=200,
help='Chunk overlap for document splitting')
return parser
def init_config(args: Namespace):
"""
Initialize configuration settings from command line arguments
"""
return {
"vllm_api_key": args.vllm_api_key,
"vllm_embedding_endpoint": args.vllm_embedding_endpoint,
"vllm_chat_endpoint": args.vllm_chat_endpoint,
"uri": args.uri,
"embedding_model": args.embedding_model,
"chat_model": args.chat_model,
"url": args.url,
"chunk_size": args.chunk_size,
"chunk_overlap": args.chunk_overlap,
"top_k": args.top_k
}
def main():
# Parse command line arguments
args = get_parser().parse_args()
# Initialize configuration
config = init_config(args)
# Load and split documents
documents = load_and_split_documents(config)
# Initialize vector store and retriever
vectorstore = init_vectorstore(config, documents)
retriever = vectorstore.as_retriever(search_kwargs={"k": config["top_k"]})
# Initialize llm and prompt
llm = init_llm(config)
prompt = get_qa_prompt()
# Set up QA chain
qa_chain = create_qa_chain(retriever, llm, prompt)
# Interactive mode
if args.interactive:
print("\nWelcome to Interactive Q&A System!")
print("Enter 'q' or 'quit' to exit.")
while True:
question = input("\nPlease enter your question: ")
if question.lower() in ['q', 'quit']:
print("\nThank you for using! Goodbye!")
break
output = qa_chain.invoke(question)
print(output)
else:
# Default single question mode
question = ("How to install vLLM?")
output = qa_chain.invoke(question)
print("-" * 50)
print(output)
print("-" * 50)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,217 @@
# SPDX-License-Identifier: Apache-2.0
"""
RAG (Retrieval Augmented Generation) Implementation with LlamaIndex
================================================================
This script demonstrates a RAG system using:
- LlamaIndex: For document indexing and retrieval
- Milvus: As vector store backend
- vLLM: For embedding and text generation
Features:
1. Document Loading & Processing
2. Embedding & Storage
3. Query Processing
Requirements:
1. Install dependencies:
pip install llama-index llama-index-readers-web \
llama-index-llms-openai-like \
llama-index-embeddings-openai-like \
llama-index-vector-stores-milvus \
2. Start services:
# Start embedding service (port 8000)
vllm serve ssmits/Qwen2-7B-Instruct-embed-base
# Start chat service (port 8001)
vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001
Usage:
python retrieval_augmented_generation_with_llamaindex.py
Notes:
- Ensure both vLLM services are running before executing
- Default ports: 8000 (embedding), 8001 (chat)
- First run may take time to download models
"""
import argparse
from argparse import Namespace
from typing import Any
from llama_index.core import Settings, StorageContext, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai_like import OpenAILikeEmbedding
from llama_index.llms.openai_like import OpenAILike
from llama_index.readers.web import SimpleWebPageReader
from llama_index.vector_stores.milvus import MilvusVectorStore
def init_config(args: Namespace):
"""Initialize configuration with command line arguments"""
return {
"url": args.url,
"embedding_model": args.embedding_model,
"chat_model": args.chat_model,
"vllm_api_key": args.vllm_api_key,
"embedding_endpoint": args.embedding_endpoint,
"chat_endpoint": args.chat_endpoint,
"db_path": args.db_path,
"chunk_size": args.chunk_size,
"chunk_overlap": args.chunk_overlap,
"top_k": args.top_k
}
def load_documents(url: str) -> list:
"""Load and process web documents"""
return SimpleWebPageReader(html_to_text=True).load_data([url])
def setup_models(config: dict[str, Any]):
"""Configure embedding and chat models"""
Settings.embed_model = OpenAILikeEmbedding(
api_base=config["embedding_endpoint"],
api_key=config["vllm_api_key"],
model_name=config["embedding_model"],
)
Settings.llm = OpenAILike(
model=config["chat_model"],
api_key=config["vllm_api_key"],
api_base=config["chat_endpoint"],
context_window=128000,
is_chat_model=True,
is_function_calling_model=False,
)
Settings.transformations = [
SentenceSplitter(
chunk_size=config["chunk_size"],
chunk_overlap=config["chunk_overlap"],
)
]
def setup_vector_store(db_path: str) -> MilvusVectorStore:
"""Initialize vector store"""
sample_emb = Settings.embed_model.get_text_embedding("test")
print(f"Embedding dimension: {len(sample_emb)}")
return MilvusVectorStore(uri=db_path, dim=len(sample_emb), overwrite=True)
def create_index(documents: list, vector_store: MilvusVectorStore):
"""Create document index"""
storage_context = StorageContext.from_defaults(vector_store=vector_store)
return VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
def query_document(index: VectorStoreIndex, question: str, top_k: int):
"""Query document with given question"""
query_engine = index.as_query_engine(similarity_top_k=top_k)
return query_engine.query(question)
def get_parser() -> argparse.ArgumentParser:
"""Parse command line arguments"""
parser = argparse.ArgumentParser(
description='RAG with vLLM and LlamaIndex')
# Add command line arguments
parser.add_argument(
'--url',
default=("https://docs.vllm.ai/en/latest/getting_started/"
"quickstart.html"),
help='URL of the document to process')
parser.add_argument('--embedding-model',
default="ssmits/Qwen2-7B-Instruct-embed-base",
help='Model name for embeddings')
parser.add_argument('--chat-model',
default="qwen/Qwen1.5-0.5B-Chat",
help='Model name for chat')
parser.add_argument('--vllm-api-key',
default="EMPTY",
help='API key for vLLM compatible services')
parser.add_argument('--embedding-endpoint',
default="http://localhost:8000/v1",
help='Base URL for embedding service')
parser.add_argument('--chat-endpoint',
default="http://localhost:8001/v1",
help='Base URL for chat service')
parser.add_argument('--db-path',
default="./milvus_demo.db",
help='Path to Milvus database')
parser.add_argument('-i',
'--interactive',
action='store_true',
help='Enable interactive Q&A mode')
parser.add_argument('-c',
'--chunk-size',
type=int,
default=1000,
help='Chunk size for document splitting')
parser.add_argument('-o',
'--chunk-overlap',
type=int,
default=200,
help='Chunk overlap for document splitting')
parser.add_argument('-k',
'--top-k',
type=int,
default=3,
help='Number of top results to retrieve')
return parser
def main():
# Parse command line arguments
args = get_parser().parse_args()
# Initialize configuration
config = init_config(args)
# Load documents
documents = load_documents(config["url"])
# Setup models
setup_models(config)
# Setup vector store
vector_store = setup_vector_store(config["db_path"])
# Create index
index = create_index(documents, vector_store)
if args.interactive:
print("\nEntering interactive mode. Type 'quit' to exit.")
while True:
# Get user question
question = input("\nEnter your question: ")
# Check for exit command
if question.lower() in ['quit', 'exit', 'q']:
print("Exiting interactive mode...")
break
# Get and print response
print("\n" + "-" * 50)
print("Response:\n")
response = query_document(index, question, config["top_k"])
print(response)
print("-" * 50)
else:
# Single query mode
question = "How to install vLLM?"
response = query_document(index, question, config["top_k"])
print("-" * 50)
print("Response:\n")
print(response)
print("-" * 50)
if __name__ == "__main__":
main()